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Unwinding fermionic symmetry-protected topological phases: Supersymmetry extension
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We show how 1 + 1-dimensional fermionic symmetry-protected topological states (SPTs, i.e., nontrivial
short-range entangled gapped phases of quantum matter whose boundary exhibits ’t Hooft anomaly and whose
bulk cannot be deformed into a trivial tensor product state under finite-depth local unitary transformations only
in the presence of global symmetries), indeed can be unwound to a trivial state by enlarging the Hilbert space via
adding extra degrees of freedom and suitably extending the global symmetries. The extended projective global
symmetry on the boundary can become supersymmetric in a specific sense, i.e., it contains group elements
that do not commute with the fermion number parity (−1)F , while the antiunitary time-reversal symmetry
becomes fractionalized. This also means we can uplift and remove certain exotic fermionic anomalies (e.g.,
“parity” anomaly in time-reversal or reflection symmetry) via appropriate supersymmetry extensions in terms
of group extensions. We work out explicit examples for multilayers of 1 + 1d Majorana fermion chains, then
comment on models with Sachdev-Ye-Kitaev (SYK) interactions, intrinsic fermionic gapless SPTs protected by
supersymmetry, and generalizations to higher space-time dimensions via a cobordism theory.
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I. OVERVIEW AND SUMMARY OF RESULTS

A. Classification of gapped phases of matter

A central goal of condensed matter physics is to enumerate
and understand the properties of various phases of matter. The
systems of interest are generally many-body quantum systems
in the infinite system size limit described by local interactions
and typically invariant under some group of global symme-
tries. Long-range ordering is one common way a system can
transit to a nontrivial phase. The paramagnet-ferromagnet
transition of magnets and the superfluid transition via Bose-
Einstein condensation are prominent examples of such an
ordering and are well described by the Ginzburg-Landau
framework based on spontaneous symmetry breaking (SSB)
and characterized by local order parameters. The discovery
of quantum Hall phases, which were beyond this framework
heralded a new era in condensed matter and was followed by
intense theoretical and experimental research attempting to
get a sense of the various possible phases of matter (classi-
fication) and their distinguishing properties (characterization)
which continues to this day. This program has been particu-
larly successful in the case of gapped phases of matter, i.e.,
when the systems of interest have a nonzero spectral gap
separating the lowest energy states from the excited states.

Gapped phases can be divided into two categories: nonin-
vertible and invertible phases. Loosely speaking, a physical
system P belongs to an invertible phase if there exists an
inverse system, P inv such that the composite system produced
by stacking P and P inv, belongs to the trivial phase, i.e.,
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can be connected, without encountering a phase transition,
to a trivial system P0 which has always has a unique trivial
ground state, i.e., product state for bosons or slater determi-
nant state for fermions. The collection of invertible phases
forms an Abelian group, with group multiplication arising
from stacking and the identity element being the trivial phase.
Examples of invertible phases include paramagnets, integer
quantum Hall states, insulators and superconductors. On the
other hand, any phase that is not invertible is called a non-
invertible phase. Examples of noninvertible phases include
all gapped phases with long-range order arising through SSB
like ferromagnets as well as fractional quantum Hall phases
and spin liquids. In this work, we will be concerned with a
specific class of invertible phases in the presence of global
symmetries.

Given a physical system with some global symmetries G
belonging to a nontrivial invertible phase, if we explicitly
break global symmetries, one of two things can happen- the
phase can become trivial (e.g., topological insulators), or the
phase can continue to remain nontrivial (e.g., integer quan-
tum Hall phases). The latter phases form a subgroup of the
group of invertible phases and are called symmetry-protected-
topological states or symmetry-protected-trivial states or
simply SPT states (SPTs) [1,2] and will be the focus of this
work.

Let us state the above in the language of groups. Let IG

be the Abelian group of invertible phases. Explicitly break-
ing symmetries maps each element of IG to I0, the group
of invertible phases with no symmetries. It is easy to see
that breaking symmetry induces a surjective group homomor-
phism, π

IG
π−→ I0. (1.1)
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SPT phases are those elements of IG that land on the trivial
element of I0 under the symmetry breaking map, i.e., π . In
other words, SPT phases (which we will call SG) correspond
to the kernel of π .

SG = ker π (1.2)

These simple arguments reveals a rich structure in the space of
gapped physical systems- for any dimension, for either bosons
or fermions with global symmetry G, SG, IG, and I0 can be
arranged in the following short exact sequence1

1 → SG
i−→ IG

π−→ I0 → 1. (1.3)

Let us briefly review some important properties of SPT
phases.

(1) If symmetries are disregarded, all SPT phases become
trivial. This means that we can adiabatically connect the
ground state to a tensor product state using a finite time-
evolution operator generated by a local Hamiltonian which
can be represented as a finite depth unitary circuit (FDUC).
Following the terminology of our previous work [3] based
on the method of symmetry extension [4], we call this un-
winding.2 An FDUC is a locality preserving unitary operator
that be written as a product of a finite number of layers of
ultralocal unitaries schematically shown in Fig. 1.

(2) Boundaries of SPT phases are always nontrivial, i.e.,
are gapless or have some form of long-range order if gapped.
This persistent ordering [7] is due to the presence of an ’t
Hooft anomaly for the global symmetry G that forbids a trivial
phase.

Although not immediately obvious, the above two proper-
ties are intimately connected—the different gapped boundary
terminations of SPT phases can tell us how to construct FDUC
to unwind an SPT phase. Let us focus on symmetry breaking
boundary terminations of SPT phases. If a G-SPT phase can
be terminated by spontaneously breaking G down to one of
its subgroups, Gsub on the boundary, this means that the same

1An exact sequence is a sequence of homomorphisms {φn} between
groups {An} of the form

. . . An
φn−→ An+1

φn+1−−→ . . .

such that imφn = ker φn+1. A short exact sequence is an exact se-
quence of the form

1 → C
i−→ B

π−→ A → 1,

where i is injective and π is surjective as a consequence of exactness.
2A more mathematical way to interpret our approach on unwind-

ing of SPTs [3,4] can be that pulling back trivialization of fiber
bundle via fibrations [5]. These have physical consequences of (1)
removing ’t Hooft anomalies or (2) constructing symmetry-extended
topological boundaries, via symmetry extensions [3,4]. The ’t Hooft
anomalies are the obstruction of gauging global symmetries; here we
concern the global symmetries including time-reversal or reflection
symmetry, in additional to space-time or internal symmetries. These
anomalies are generalized “parity” anomalies—more accurately in-
volving time-reversal ZT

2 or reflection symmetry Z2 instead of the
spatial parity. In fact, Refs. [5,6] provide further mathematical in-
sights of the problems dealt in Refs. [3,4].

FIG. 1. Finite depth unitary circuit (FDUC). The operator can
be expressed as a produce of finite number of layers (vertically
separated in the figure, indicating the time direction). Each layer is a
product of unitary operators with strictly local support (square blobs
in the figure), i.e., acts on the Hilbert space of a finite number of
spins.

SPT phase can be unwound by a FDUC that is invariant under
Gsub. Note that breaking all symmetries is one specific case
of the above paradigm corresponding to Gsub being the trivial
group.

A second boundary termination, particularly insightful for
3 + 1d bulk systems,3 is when no global symmetry is broken
but the boundary is topologically ordered. The anomalous na-
ture of the boundary symmetry is seen in the way it acts on the
anyons of the theory which is impossible in a purely 2 + 1d
system [8,9] (see the review [2] and references within for an
overview). For a specific class of bosonic SPT phases (those
classified by group cohomology), the authors of Ref. [4] were
able to place the understanding of symmetric gapped bound-
ary terminations in a systematic framework. They prove that
given a system belonging to a nontrivial d + 1-dimensional
bosonic G-SPT phase with criteria: (1) bosonic SPTs classi-
fied by group cohomology; (2) G is a finite group, including
both unitary and/or antiunitary symmetries; (3) d � 1 for d
is the spatial dimension (namely, the space-time dimension
d + 1 � 2), there always exists a larger group, G̃ such that,
starting with a (d − 1) + 1 dimensional G̃-symmetric invari-
ant theory and gauging a particular subgroup, K satisfying
G̃/K ∼= G, we are left with a K gauge theory with G symmetry
realized anomalously and can form a boundary termination
for the G-SPT. This in turn also teaches us something else
very interesting- the G-SPT phase can be unwound, not by
breaking symmetry but by extending to G̃! In other words,
the ’t Hooft anomaly of G-symmetry of a boundary theory
(in a d − 1-dimensional space and one-dimensional time) can
be trivialized by extending the system to G̃-symmetry. In
Ref. [3], this was demonstrated explicitly in the case of 1 + 1d
for various groups G by constructing FDUCs invariant under
an appropriately identified G̃.

This naturally brings about the following questions—can
there be a systematic framework to understand symmetric
gapped boundary terminations for SPT phases not classified by
group cohomology? and can these be obtained by symmetry ex-
tension? In particular, this includes all intrinsically fermionic
SPT phases, i.e., which cannot be constructed by stacking a

3Our convention on the dimensions is that the one, two, three spatial
dimensions are written as 1d, 2d, 3d, etc. We denote their space-time
dimensions as 1 + 1d, 2 + 1d, 3 + 1d, etc.
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nontrivial bosonic SPT phase with a trivial fermionic phase.
In this work, for 1 + 1d fermionic SPT phases, we provide
evidence that the answer to both the above italicized questions
is in the affirmative.

B. Summary of results and outline

We focus only on on-site, unitary and antiunitary sym-
metries (including various time-reversal symmetries) in this
paper. We find that just like bosonic SPT phases, 1 + 1d
fermionic SPT phases can be unwound by an FDUC invariant
under an extended symmetry. For intrinsically fermionic SPT
phases, we find that the extended symmetry has an interest-
ing property—the fermion parity is not at the center of the
symmetry group, i.e., there exists elements of the symmetry
group that do not commute with fermion parity locally. We
term this as supersymmetry extension. This is our main result
which we demonstrate using several examples. Our results
are demonstrated using exactly solvable lattice models and
constructing explicit FDUCs.

This paper is organized as follows: we warm up by consid-
ering a bosonic example in Sec. II, which sets the language
and the general ideas that are detailed in Ref. [3]. In Sec. III,
we consider nontrivial free-fermion models of SPT phases
in 1 + 1d corresponding to classes BDI, AIII, and DIII and
demonstrate how they can be unwound to a trivial phase
by symmetry extension. In Sec. IV, we study an interacting
example of a fermionic SPT phase with time-reversal sym-
metry and demonstrate its unwinding. In Sec. V, we justify
our usage of the term supersymmetry extension and show
that the extended symmetry has an intimate correspondence
to the supersymmetric quantum mechanics. In Sec. VI, we
make comments about generalization in the continuum, suit-
able for quantum field theory (QFT) formulation. In Sec. VII,
we explore generalizations to higher dimensions and rela-
tions to a cobordism theory (from Sec. VII A to Sec. VII G)
and the implications to intrinsically fermionic gapless SPTs
(Sec. VII H), and finally conclude with possible future direc-
tions in (Sec. VII I). Additional details are relegated to the
appendices.

II. WARM UP: A BOSONIC EXAMPLE—
THE HALDANE PHASE

In this section, we warm-up by considering a bosonic
example to set the language as well as list the results that
we generalize to fermionic systems in this work. Additional
examples as well as general results for bosonic SPTs can be
found in Ref. [3].

A. The Hamiltonian, symmetry fractionalization,
and classification

We consider a 1 + 1d bosonic spin chain belonging to the
Haldane phase protected by an on-site SO(3) symmetry. The
Hilbert space on each site is a pair of qubits each of which
transforms as the J = 1

2 representation of the SU(2) group (see
Fig. 2). Together, each site forms a 1

2 ⊗ 1
2

∼= 1 ⊕ 0 reducible
representation that is faithful to SO(3). The Hamiltonian with

FIG. 2. Model Hamiltonian belonging to the Haldane phase with
open boundary conditions. The SU(2) doublet written as the SU(2)
representation J = 1

2 qubits at both ends are indicated.

� sites and SO(3) symmetry operators are

H = −
�∑

j=1

�σB, j · �σA, j+1, (2.1)

U (n̂, θ ) =
�∏

j=1

exp

(
i n̂ · �σ θ

2

)
A, j

exp

(
i n̂ · �σ θ

2

)
B, j

. (2.2)

For Eq. (2.2), two SU(2) symmetry operators (two of J = 1
2 )

act on the same site j makes the SO(3) symmetry operator (for
J = 0 ⊕ 1). The model by Affleck, Kennedy, Lieb, and Tasaki
(AKLT) is obtained by projecting out the J = 0 sector on each
site and only retaining J = 1 [10]. We will choose not to per-
form this projection and work with the exactly solvable model
of Eq. (2.2). With periodic boundary conditions, Eq. (2.2) has
the following unique ground state which has SO(3) singlets
on each bond connecting the sites:

|GS〉 =
�∏

j=1

|↑B, j ↓A,( j|�)+1〉 − |↓B, j ↑A,( j|�)+1〉√
2

, (2.3)

where ( j|�) ≡ j mod �. With any symmetry preserving open
boundary conditions, the ground state degeneracy is four
(GSD = 4), i.e., any ground state can be written as a vector
in a four-dimensional Hilbert subspace of ground states:

|GS〉 =
(

�∏
j=1

|↑B, j ↓A, j+1〉 − |↓B, j ↑A, j+1〉√
2

)
⊗ |ψ〉, (2.4)

|ψ〉 =
∑

α=↑,↓

∑
β=↑,↓

ψα,β |αA,1〉|βB,�〉,
∑

α=↑,↓

∑
β=↑,↓

|ψα,β |2 = 1.

(2.5)

We can define a Hermitian projection operator PGS = P†
GS

onto the ground space that has support on the ends of the chain

PGS = Pleft ⊗ |s〉〈s| ⊗ Pright, (2.6)

Pleft =
∑

α=↑,↓
|αA,1〉〈αA,1|, Pright =

∑
α=↑,↓

|αB,�〉〈αB,�|, (2.7)

|s〉 =
(

�∏
j=1

|↑B, j ↓A, j+1〉 − |↓B, j ↑A, j+1〉√
2

)
. (2.8)

PGS has support on the boundaries of the chain. This allows
us to study the fractionalization of the SO(3) symmetry on
the boundaries at low energies:

PGSU (n̂, θ )PGS = exp

(
i n̂ · �σ θ

2

)
A,1

⊗ exp

(
i n̂ · �σ θ

2

)
B,�

= V (n̂, θ )left ⊗ V (n̂, θ )right. (2.9)

The matrix symmetry representation of each of the boundary
modes corresponds to J = 1

2 which is a fraction of the quan-
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FIG. 3. Unwinding two-layers of Eq. (2.10) via the 2-layer
FDUC W = W2W1 in Eq. (2.14).

tum numbers allowed by the bulk symmetry group SO(3).
Furthermore, the representation is faithful to the group SU(2),
which is a nontrivial extension of SO(3) by Z2. This is an
example demonstration of the emergence of extended sym-
metries on the boundaries of SPT phases [4].

The nontrivial nature of the Haldane phase comes from the
fact that there does not exist an SO(3) invariant FDUC that
can map the ground state to a product state. If we consider
two layers of the Hamiltonian (2.2), however,

H II = −
�∑

j=1

�σB, j · �σA, j+1 −
�∑

j=1

�τB, j · �τA, j+1, (2.10)

U (n̂, θ ) =
�∏

j=1

exp

(
i n̂ · �σ θ

2

)
j,A

exp

(
i n̂ · �σ θ

2

)
j,B

× exp

(
i n̂ · �τ θ

2

)
j,A

exp

(
i n̂ · �τ θ

2

)
j,B

. (2.11)

It is easy to see that it can be unwound to one whose ground
state is a product state F3as shown in Fig. 3 using a 2-layer
FDUC W = W2W1:

W H IIW † = −
�∑

j=1

�σA, j · �σB, j −
�∑

j=1

�τA, j · �τB, j, (2.12)

W = W2W1, (2.13)

W1 =
�∏

j=1

1

2
(1 + �σB, j · �τA, j+1), W2 =

�∏
j=1

1

2
(1 + �σA, j · �τB, j ).

(2.14)

The bosonic SWAP operator 1
2 (1 + �σ · �τ ) swaps the basis

states of the σ and τ qubits. What we have reproduced is the
well-known Z2 classification of the Haldane phase [1].

B. Unwinding by symmetry extension

We now demonstrate that by elevating the extended bound-
ary symmetry [SU(2)] to the bulk, we can unwind the single
layer Hamiltonian (2.2). To do this, we first add an extra J = 1

2

FIG. 4. Unwinding the extended Hamiltonian (2.15) state by ex-
tending the bulk on-site symmetry to SU(2), via W = W2W1 in two
steps: W1 and W2 in Eq. (2.18).

qubit on each site (which we label “C”). We also add a trivial
Hamiltonian that dimerizes the C qubits in the ground state.4

H = −
�∑

j=1

�σB, j · �σA, j+1 −
∑
odd j

�σC, j · �σC, j+1. (2.15)

This Hamiltonian can be unwound as shown in Fig. 4 using a
F42-layer FDUC

W HW † = −
�∑

j=1

�σA, j · �σB, j −
∑
even j

�σC, j · �σC, j+1, (2.16)

W = W2W1, (2.17)

W1 =
∏
odd j

1

2
(1 + �σC, j · �σA, j+1), W2 =

∏
odd j

1

2
(1 + �σA, j · �σC, j ).

(2.18)

C. Boundary Hamiltonians and protected degeneracy for the
Haldane chain: Generalized Sachdev-Ye interactions

The classification of the Haldane phase tells us that even
copies of Hamiltonian (2.2) belong to the trivial phase and
odd number of copies belong to the Haldane phase. This result

4An aside: when the on-site representation is half-odd-integer as
in Eq. (2.15), the Hamiltonian has to explicitly break the lattice
translation symmetry if we want to have a unique ground state. This
is a consequence of the Lieb-Schultz-Mattis theorem [11,12].

FIG. 5. Multiple copies of the Hamiltonian (2.2).
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can also be obtained by attempting to lift the boundary degen-
eracy by introducing interactions. Let us consider N copies
of the Hamiltonian (2.2) (see Fig. 5). The boundary Hilbert
space consists of N of bosonic J = 1

2 qubits, which we shall
label m = 1, . . . , N . The most general symmetry preserving
Hamiltonian we can write down is as follows:

Hbdry =
N∑

a,b=1

Jab �σa · �σb+
N∑

a,b,c,d=1

Kabcd (�σa · �σb)(�σc · �σd )+ . . .

(2.19)

The leading term in the above Hamiltonian with Jab drawn
from a random distribution is the model by Sachdev and
Ye [13]. We are concerned with the question of when there
is a possibility that Eq. (2.19) can have a unique ground
state. This can be answered from some basic representation
theoretic facts of SU(2). The total Hilbert space of N spins
forms a reducible representation of SU(2) corresponding to
the Clebsch-Gordan (CG) decomposition

1
2 ⊗ 1

2 ⊗ 1
2 . . . ⊗ 1

2 (N terms). (2.20)

The only way to obtain a symmetric unique ground state is if
the Hilbert space contains a J = 0 irreducible representation
(irrep) in the above CG decomposition. If N is even, this is
possible. For example, consider N = 2:

1
2 ⊗ 1

2
∼= 1 ⊕ 0. (2.21)

If N is odd however, we only obtain half-odd-integer values
of J in the CG decomposition. For example, for N = 3,

1
2 ⊗ 1

2 ⊗ 1
2

∼= 3
2 ⊕ 1

2 ⊕ 1
2 . (2.22)

This recovers the Z2 classification.

D. Formal explanation

We now provide a formal way of understanding the above
results following for the mathematically inclined reader [4].
In Sec. II A, the boundary spin J = 1

2 is a projective represen-
tation of SO(3), which is in fact the faithful representation of
SU(2). This can also be interpreted as the group extension as
a short exact sequence:

1 −→ Z2 −→ SU(2)|boundary
r−→ SO(3)|bulk −→ 1, (2.23)

as the boundary-bulk symmetry extension, with the following
implications.

(1) Topological invariant. The 1 + 1d Haldane chain
is characterized by a 1 + 1d topological invariant given
by a nontrivial group element of the cohomology group
H2(BSO(3), U(1)) = Z2 [1] also the cobordism group
�SO

2 (BSO(3)) = Z2 (see Sec. 5.5.2 of Ref. [14].) Precisely
the 1 + 1d topological invariant contains the second Stiefel-
Whitney (SW) class w2 of the associated vector bundle V of
SO(3), as

exp( iπ
∫

M2
w2(VSO(3))) (2.24)

(which is known as the group cocycle in a group cohomology,
or the cobordism invariant in a cobordism theory). Equation
(2.24) is a partition function of the low energy physics of
Haldane chain on a 1 + 1d space-time manifold M2.

For example, we can construct a nontrivial manifold gen-
erator: take the base manifold M2 = S2 as a 2-sphere, the map
S2 → BSO(3) determines an SO(3) bundle over S2. Recall the
homotopy group π2(BSO(3)) = π1(SO(3)) = Z2. The homo-
topy class of the map S2 → BSO(3) → B2Z2 is given by a
nontrivial generator exactly w2(VSO(3)) that can be pull back
to the base manifold S2.

(2) Trivialization of topological invariant. This group
extension Eq. (2.25) actually solves a problem about the
trivialization of topological invariant via the symmetry
extension—once we pull back the SO(3) bundle to the SU(2)
bundle via the pull back r∗, then the 1 + 1d topological
invariant of Haldane chain r∗ exp( iπ

∫
w2(VSO(3))) ∼ 1 be-

comes trivialized because r∗w2(VSO(3)) = w2(VSU(2)) = 0(the
trivialization means that it is a group coboundary as a trivial
element in the cohomology group [in H2(BSU(2), U(1)) =
0], also a trivial identity invariant in the cobordism theory [in
�SO

2 (BSU(2)) = 0]).
This implies that we can in fact add an extra SU(2) doublet

J = 1
2 on each of the boundary of Haldane chain, then we

can add SU(2)-invariant interaction terms to the boundary
Hamiltonian to gap the degenerate GSD = 4 states, left with
only a single unique ground state (GSD = 1) preserving the
extended SU(2) symmetry (but not preserving the SO(3) sym-
metry), see Ref. [3].

(3) Trivialization of ’t Hooft anomaly. The 1 + 1d
bulk topological invariant from H2(BSO(3), U(1)) =
�SO

2 (BSO(3)) = Z2 classifies its 0 + 1d boundary ’t Hooft
anomaly of the SO(3) global symmetry. The w2(VSO(3)) re-
garded as the SO(3) background field, once turned on, can
detect the ’t Hooft anomaly.

It is shown that the Eq. (2.25), with the suitable condition
mentioned above, says that the 0 + 1d ’t Hooft anomaly of the
SO(3) global symmetry becomes anomaly-free once we pull
back the theory to the SU(2) symmetry in 0 + 1d [4].

(4) Bulk trivialization. If we consider the trivialization of
topological invariant not only at the boundary but also at the
full bulk via the unwinding method in Sec. II B. Then we
also write the group extension as the bulk-bulk symmetry
extension:

1 −→ Z2 −→ SU(2)|bulk
r−→ SO(3)|bulk −→ 1. (2.25)

The above bosonic SPTs serve as a guiding principle, for
the readers to follow. In the following sections, we will ex-
plore the generalization to fermionic SPTs counterpart. We
provide many examples in Secs. III and IV, then we provide a
formal explanation of the fermionic examples in Sec. VI.

III. UNWINDING SPT PHASES OF FERMIONS

In this section, we present the key results of the pa-
per. Fermionic invertible phases as well as SPT phases
were originally discovered in noninteracting systems, i.e.,
Hamiltonians are quadratic in fermion creation and annihila-
tion operators. Prominent examples are the integer quantum
Hall states, topological insulators and superconductors with
various symmetries. In a monumental series of works [15,16],
all free-fermion invertible phases have been classified in all
dimensions. The program of extending the classification to
interacting fermions in any dimension is under progress,
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TABLE I. For 1+1d fermionic systems, on the left-hand side (l.h.s) table, we show the free fermion clas sification of invertible phases,
IG and the subgroup of SPT phases, SG of a given symmetry class. On the right-hand side (r.h.s) table, we show the corresponding symmetry
group G suitable for the interacting systems (interacting analogous of symmetry class), their interacting fermion classification of invertible
topological phases (TP) denoted as a version of cobordism group TP2(G) in Freed-Hopkins’s [24], and interacting fermion classification of
SPT phases denoted as TP2(G)

TP2(Spin) . The TP2(G)
TP2(Spin) means that the invertible topological phases (TP) of symmetry group G mod out the invertible

fermionic topological order TP2(Spin) that is long-range entangled (LRE). Thus the TP2(G)
TP2(Spin) is the short-range entangled (SRE) fermionic SPT

phases. Note that U(1)F × ZT
2 is equivalent to

U(1)F ×ZT
4

ZF
2

via a redefinition of the time-reversal symmetry (see Sec. III D). See also Table III for

a systematic web of these 1+1d fermionic SPTs. The cobordism group data is explained in more details in Sec. III F.

Symmetry Internal Space-time-internal
Class IG SG Symmetry Symmetry G TP2(G) TP2(G)

TP2(Spin)

D Z2 0 ZF
2 Spin Z2 0

BDI Z 2Z ZT
2 × ZF

2 Pin− Z8 Z4

DIII Z2 Z2 ZT F
4 Pin+ Z2 Z2

AIII Z Z U(1)F × ZT
2 Pinc Z4 Z4

CII Z Z SU(2)F × ZT
2 Pin− ×ZF

2
SU(2) Z2 Z2

although so far the best known mathematical framework is
known to be the generalization of group supercohomology
[17–22] and the cobordism group classification [14,23–26].

In the coming sections, we will demonstrate unwinding
1 + 1 d fermionic SPT phases by extended symmetries sim-
ilar to Sec. II B and Ref. [3] with examples of models from
fermion SPT phases with a free-limit, i.e., have representa-
tives which are quadratic Hamiltonians and whose symmetries
can be placed in one of the symmetry classes (see Ref. [27]
for an accessible review on symmetry classes). This is only
for convenience. We focus on the following five symmetry
classes—D, BDI, DIII, AII, and CII and pick a particular
representative symmetry for each class.5 In Table I, we list the
group of invertible phases and the subgroup of SPT phases.
Following Sec. I A, we use the following convention.

(1) For the free fermion symmetry classes and their group
classification of phases, we denote the group of invertible
phases as IG and the group of SPT phases, which forms a
subgroup of IG, as SG.

(2) For the interacting fermion systems and their group
classification of phases, we can obtain the group classifica-
tion from a cobordism group TPd (G) defined in Ref. [24]
for invertible topological phases with a G-global symmetry.
Here G is the full space-time-internal global symmetry in the
continuum limit, see examples of G listed in Table I. The low
energy physics of invertible topological phases are described
by the invertible topological field theory (iTQFT) [24] which
is also known as SPT invariants [28].

Based on Wen’s definition [29], part of the invertible
topological phases are long-ranged entangled invertible topo-
logical orders, while another part are short-ranged entangled
invertible SPTs. For example, any layer of Kitaev chains is

5The A and C symmetry classes have no SPT phases in 1 + 1d. The
AI and CI have also SPT phases but they are only bosonic phases
(in fact, Haldane spin-1 chain) up to stacking gapped fermionic
product states. For bosonic SPTs, we can unwind by the approach
of Refs. [3,4]. See the later Table III for the systematic web of SPTs
related by a symmetry group embedding.

an invertible topological phase: a single Kitaev chain is a
long-ranged entangled invertible topological order, while two
or more layers of Kitaev chains are short-ranged entangled
invertible SPTs.

We can generate a representative of each 1 + 1d free-
fermion invertible phase for every class by considering an
appropriate number of layers of Kitaev’s Majorana chains
[30] and identifying an appropriate symmetry belonging to
the symmetry class in consideration. SPT phases on the other
hand turn out to be those invertible phases which can be rep-
resented by an even number of Majorana chains.6 We relegate
a mathematical and formal explanation on the classifications
of invertible phases vs SPT phases via the cobordism group
data in the end of section in Sec. III F.

A. Toy model Hamiltonian of Majorana fermionic chains

Let us start by writing down the Hamiltonian for the
Kitaev’s Majorana chain [30]. The Hilbert space is of one
complex fermion per unit site on a 1d lattice which can be
represented using two Majorana operators, γ , γ̄ satisfying
γ

†
i = γi, γ̄

†
i = γ̄i, {γi, γ j} = {γ̄i, γ̄ j} = 2δi j , and {γi, γ̄ j} = 0.

Majorana operators, which are Hermitian, can be defined in
terms of creation and annihilation operators of the complex

6By Wen’s definition [4], a single layer of Kitaev chain is protected
by no symmetry except by the fermion parity, this means that in fact
an odd number of Kitaev chains is a 1 + 1d long-range entangled
state as a 1 + 1d fermionic invertible topological order. Based on
the Wen’s definition using the local unitary quantum circuit, Kitaev
chain is long-range entangled (LRE) but not short-range entangled
(SRE) because it cannot be deformed to a trivial product state by
breaking all symmetries (but maintaining the fermion parity ZF

2 as a
fermionic system). In contrast, an even number of Kitaev chains is
a 1 + 1d short-range entangled state as a 1 + 1d fermionic invertible
SPT state, because it can be deformed to a trivial product state by
breaking all symmetries (but maintaining the fermion parity ZF

2 as a
fermionic system).
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FIG. 6. Graphical representation of Kitaev’s Majorana chain of
Eq. (3.2).

fermions, ψi and ψ
†
i as 7

γi = (ψ†
i + ψi ), γ̄i = i (ψ†

i − ψi ). (3.1)

Kitaev’s Majorana chain [30] has the Hamiltonian (see Fig. 6):

HKitaev = − i
∑

j

γ j γ̄ j+1. (3.2)

Let us consider two layers of Majorana chains with their
flavor indices ς =↑,↓:

H II
Kitaev = − i

∑
ς=↑,↓

∑
j

γς, j γ̄ς, j+1. (3.3)

For convenience, we now perform a change-of-basis on the
Hamiltonian of Eq. (3.3) using the unitary operator M,

M =
∏

j

exp
(π

4
γ↓, j γ̄↑, j

)
=

∏
j

1√
2

(1 + γ↓, j γ̄↑, j ). (3.4)

The new Hamiltonian Hgen under the change of basis (see
Fig. 7) becomes8

Hgen = MH II
KitaevM† = − i

∑
j

(γ↑, jγ↓, j+1 − γ̄↑, j γ̄↓, j+1).

(3.5)

7Throughout the paper, we denote the imaginary number as i
with i 2 = −1. The complex fermion operators obey {ψi, ψ

†
j } = δi j ,

{ψi, ψ j} = 0, and {ψ†
i , ψ†

j } = 0. We have

ψi = 1
2 (γi + i γ̄i ), ψ†

i = 1
2 (γi − i γ̄i ).

8In terms of complex fermion bases Eq. (3.1), we have H II
Kitaev =

+∑
ς=↑,↓

∑
j (ψ

†
ς, j + ψς, j )(ψ

†
ς, j+1 − ψς, j+1), while Hgen =

MH II
KitaevM† = − i

∑
j ((ψ

†
↑, j + ψ↑, j )(ψ

†
↓, j+1 + ψ↓, j+1) + (ψ†

↑, j −
ψ↑, j )(ψ

†
↓, j+1 − ψ↓, j+1)).

The M in Eq. (3.4) and in Fig. 7 is the fermionic analog of
the SWAP operator of F7bosonic spin systems (such as the
bosonic SWAP operator in Ref. [3]’s Fig. 7).9 The Hamil-
tonian Hgen of Eq. (3.5) is the proper form of generator of
two layers of Kitaev chains, which will be a primary object of
focus of this section and throughout our work.

B. Class BDI: ZT
2 × ZF

2 symmetry or Pin−

We start with class BDI with representative global sym-
metry ZT

2 × ZF
2 where ZT

2 is generated by the antiunitary
operator T satisfying T 2 = 1 and ZF

2 is the fermion parity
group generated by PF = (−1)F , where F is the total fermion
number. In the absence of interactions, it is known that there
are an infinite number of invertible phases [16] indexed by an
integer k ∈ Z representing the number of “dangling” Majo-
rana modes on each end i.e IG

∼= Z. This reduces to Z8 in
the presence of interactions [31,32]. A representative of the
generator of these phases is the Majorana chain of Eq. (3.2)
with symmetry operator

T = K, (3.6)

which is a complex conjugation which acts as

KγK = γ , Kγ̄K = −γ̄ , K iK = − i , (3.7)

and

PF = (−1)F =
∏

j

i γ̄ jγ j . (3.8)

The subgroup of SPT phases are those corresponding to even
members k ∈ 2Z and are nontrivial only in the presence of

9The bosonic SWAP operator SWAPb ≡ 1
2 (1 + �σA · �σB ) exchanges

the basis states |↑〉, |↓〉 of two qubit Hilbert spaces, A and B, and
satisfies (SWAPb)2 = 1. On the other hand, the fermionic SWAP
operator

SWAP f ≡ 1√
2

(1 + γAγB ) = exp

(
π

4
γAγB

)

acts on two Majorana operators (γA, γB ) to give

SWAP f · (γA, γB ) · SWAP−1
f = (−γB, γA).

Note that (SWAP f )2 = γAγB, (SWAP f )4 = −1, and (SWAP f )8 = 1.

FIG. 7. Fermionic SWAP operator and two layers of Kitaev’s Majorana chains. Two layers of Majorana chains before and after change of
basis by the fermionic SWAP operator SWAP f = M = ∏

j
1√
2
(1 + γ↓, j γ̄↑, j ) in Eq. (3.4). The M is the fermionic analog of the SWAP operator

of bosonic spin systems (i.e., the bosonic SWAP operator in Fig. 3 and in Ref. [3]’s Fig. 7). The Hamiltonian before the basis changing is
Eq. (3.3), after the basis changing is Hgen = MH II

KitaevM† = − i
∑

j (γ↑, jγ↓, j+1 − γ̄↑, j γ̄↓, j+1) in Eq. (3.5).
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FIG. 8. Basis-changed 2-layer Majorana chain with left (L) and
right (R) open boundaries, with a symmetry as in Eq. (3.9), we have
fourfold ground state degeneracy (GSD = 4) with two degenerate
Majorana modes on each end, emphasized in the box frames.

symmetries ZT
2 × ZF

2 . The SPT phases also correspond to also
the even members k = 0, 2, 4, 6 ∈ Z8 in the interacting SPT
classification (see Table I). A generator of the SPT phases
(corresponding to k = 2) is two layers of the Majorana chains,
Eq. (3.3) or its equivalent representation in Eq. (3.5) with
the new time-reversal ZT

2 symmetry operators T̃ under the
Eq. (3.4) basis-change via a unitary M:

T̃ ≡ MT M† = MKM† =
(∏

j

(γ↓, j γ̄↑, j )

)
K. (3.9)

The form of fermion parity PF stays unchanged under basis
change MPF = PF M.

1. Gapping the boundary: Extension to a non-Abelian DF,T
8

Let us see how we can gap the boundary when we
have open boundary conditions for Hamiltonian (3.5).
Figure 8 shows that the boundary has fourfold ground state
F8degeneracy (GSD = 4) coming from the two-dimensional
Hilbert space from two Majorana modes (i.e., one complex
fermion) on each boundary site, L and R.

Figure 9 shows another boundary termination of the Hamil-
tonian of Eq. (3.5) by F9adding two extra Majorana modes
on each end (L and R) leading to a unique ground state.
From Fig. 9, we can read-off the effective extended boundary
symmetry operators on the left (L) and right (R) boundaries
(on the site j = 0 and j = � + 1) omitting site indices below:

TL = γ̄↑K, PF,L = i γ̄↑γ↑,

T 2
L = −1, P2

F,L = 1, TLPF,L = −PF,LTL. (3.10)

TR = γ↓K, PF,R = i γ̄↓γ↓,

T 2
R = P2

F,R = 1, TLPF,R = −PF,RTR. (3.11)

FIG. 9. Basis-changed 2-layer Majorana chain from Fig. 8 with
two open boundaries, but now each of the boundary couples to
additional two Majorana modes on both the left L and right R (the
j = 1 site couples to a new site j = 0, j = � site couples to a
new site j = � + 1, respectively). We can modify Hgen to Hgen +
Hgen,bdry by adding local Hamiltonian terms to two boundaries as
Hgen,bdry = − i (γ↑,0γ↓,1 − γ̄↑,0γ̄↓,1) − i (γ↑,�γ↓,�+1 − γ̄↑,�γ̄↓,�+1). The
whole system becomes gapped but with only a unique ground state
(GSD = 1).

We can also show that

TLγ↑T −1
L = −γ↑, TLγ̄↑T −1

L = −γ̄↑. (3.12)

TRγ↓T −1
R = γ↓, TRγ̄↓T −1

R = γ̄↓ (3.13)

It can be easily checked that the boundary symmetry operators
generate a faithful representation of the dihedral group of
order 8 known as D8 which is a group with two generators
satisfying the following relation:

D8 ≡ Z4 � Z2 ≡ 〈a, x|a4 = x2 = 1, xax = a−1〉. (3.14)

On the left (L) end, a = TL, x = PF,L, giving us

DF,T
8 |boundary = ZT

4 � ZF
2

≡ 〈
TL, PF,L

∣∣T 4
L = P2

F,L = 1, PF,LTLPF,L = T −1
L

〉
.

On the right (R) end, a = TRPF,R, x = PF,R, giving us

DF,T
8 |boundary = ZT

4 � ZF
2 ≡ 〈(TRPF,R), PF,R|(TRPF,R)4

= (PF,R)2 = 1, PF,R(TRPF,R)PF,R = (TRPF,R)−1〉.
Importantly, we observe that the fermion parity (PF,L or PF,R)
is not in the center of DF,T

8 = ZT
4 � ZF

2 with ZT
4 generated by

a and ZF
2 generated by x. This is the extended symmetry that

will help us to unwind the bulk.10

In particular, given the bulk onsite symmetry ZT
2 × ZF

2
(where time-reversal ZT

2 and fermion parity ZF
2 commutes),

we can extend the symmetry transformation on the boundary
to DF,T

8 written as a short exact sequence:

1 −→ Z2 −→ DF,T
8

∣∣
boundary −→ ZT

2 × ZF
2

∣∣
bulk −→ 1. (3.15)

See footnote 10 for our conventions. The normal subgroup
N = Z2 = {1,−1} is at the center of D8 on both ends (left
and right), while the quotient group ZT

2 × ZF
2 contains four

commutative elements: N{1, a, x, ax} for DF,T
8 .

Some more comments. (1) We can explicitly check
that the fully gapped system in Fig. 9 preserves the
global symmetry. Not only the bulk Hamiltonian term
Hgen respects the bulk ZT

2 × ZF
2 symmetry, but the

boundary Hamiltonian Hgen,bdry = Hgen,bdry,L + Hgen,bdry,R =
− i (γ↑,0γ↓,1 − γ̄↑,0γ̄↓,1) − i (γ↑,�γ↓,�+1 − γ̄↑,�γ̄↓,�+1) also re-
spects the boundary DF,T

8 symmetry. More precisely, for the
time-reversal symmetry on the boundary Hamiltonian. On
the left end L, we have the symmetry operator from TL on
the site 0 and T̃ on the site 1, which together act on the left end
Hgen,bdry,L. On the right end R, we have the symmetry operator
from TR on the site � + 1 and T̃ on the site �, which together
act on the right end Hgen,bdry,R. The system of Fig. 9 is fully

10Some comments about our conventions and notations. (1) Here
the DF,T

8 in our conventions is the left (L) or right (R) boundary
versions of D8 in Eq. (3.14). The upper indices (F, T ) emphasize
that fermion parity and time reversal are included, but they do not
commute in the extended groups. (2) In general, when we write a
group GF,T , the fermion parity (PF ) and time-reversal (T ) do not
necessarily commute in G. (3) GT F means that G contains time-
reversal (T ) which commutes with and generates fermion parity
T 2 = (−1)F . (4) GT B means G contains the time-reversal (T ) which
satisfies T 2 = (−1).
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gapped with a unique ground state (GSD = 1), preserving the
bulk ZT

2 × ZF
2 symmetry and the boundary DF,T

8 symmetry.
(2) We should emphasize that there are at least three differ-

ent ways to look at T symmetries on the boundary depending
on (1) the boundary truncation types of quantum systems and
(2) the Hilbert space projection PGS to ground state subspace
(Below we omit the boundary site j labels, j = 1 for the left
L and j = � for the right R, throughout). (a) On boundaries of
Fig. 8, if we look at TL and TR acting on whole boundary sites
of j = 1 and j = � respectively without PGS projection, then
we have

TL = γ↓γ̄↑K, TR = γ↓γ̄↑K.

(b) On boundaries of Fig. 9, if we look at TL and TR acting
on extra boundary sites of j = 0 and j = � + 1 respectively
(with or without PGS projection), then we have:

TL = γ̄↑K, TR = γ↓K.

(c) On boundaries of Fig. 8, if we look at TL and TR acting
on whole boundary sites of j = 1 and j = � respectively with
PGS projection to dangling zero energy modes, then we have

TL = γ↓K, TR = γ̄↑K.

(3) There is a special supersymmetric feature for two layers
of Kitaev chains which holds when the layer number N = 2
mod 4 only.

(a) When the layer number N = 2 mod 4, we have two
Majorana zero modes (with two operators γ , γ̄ ) with GSD =
2 on each end of system (with the left and right ends combined
to give GSD = 4). In fact, for this GSD = 2, on one end,
the Hilbert space H must have one bosonic ground state |B〉
and one fermionic ground state |F 〉. We denote the GSD =
2 ground state subspace as H = {|B〉, |F 〉} = HB ⊕ HF , say
|B〉 = (1

0) and |F 〉 = (0
1). Consider the L boundary in Fig. 8, we

can write down the operators acting on the two-dimensional
Hilbert space H explicitly:

γ =
(

0 1
1 0

)
= σx, γ̄ =

(
0 − i
i 0

)
= σy,

PF = − iγ γ̄ =
(

1 0
0 −1

)
= σz.

ψ = 1

2
(γ + i γ̄ ) =

(
0 1
0 0

)
,

ψ† = 1

2
(γ − i γ̄ ) =

(
0 0
1 0

)
, T = γ̄K = σyK. (3.16)

The bosonic |B〉 and fermionic |F 〉 have the distinct fermion
parity PF (even versus odd).

The GSD = 2 on each end is protected by time-reversal T
symmetry: because to gap any ground state, the only possible
Hamiltonian is

H ′ ∝ − iγ γ̄ = PF (3.17)

which is disallowed by a global symmetry T due to the fact
H ′ does not preserve T (i.e., T does not commute with PF ,
namely T PFT −1 = −PF or PFT PF = −T .) We will revisit
the underlying supersymmetric quantum mechanics in Sec. V
in depth.

FIG. 10. Unwinding the Hamiltonian of the basis-changed 2-
layer Majorana chain [Eq. (3.20) for BDI class] by three steps. We
show four sites (as even, odd, even, and odd sites) from the left to the
right. Step 1: we add one extra complex fermion per site to extend
the Hilbert space. Step 2: we perform a local unitary transformation
W1 on each of two neighbor sites (a neighbor pair of odd and even
sites). Step 3: we perform a local unitary transformation W2 on each
of sites, while the odd and even sites have different transformations.
The final form of Hamiltonian becomes Eq. (3.24), while the ground
state becomes a tensor product state, which is a trivial tensor product
state respect to effective sites (with each effective site combining two
neighbor [an even and an odd] sites). See footnote 4: we have the
final ground state breaking the translation symmetry with a double
unit cell due to the LSM constraint.

(b) When the layer number N = 4 (or a nonzero N = 0
mod 4), we have four Majorana zero modes (with four oper-
ators γ1, γ̄1, γ2, γ̄2) with GSD = 4 on one end (with the left
and right ends combined to give GSD = 16). However, we
can introduce a four Majorana interaction with a T -symmetric
Hamiltonian

H ′ = αγ1γ̄1γ2γ̄2 = −α(PF,1)(PF,2) = −αPF , (3.18)

where PF,i = − iγiγ̄i is the fermion parity for the ith com-
plex fermion ψi sector. This H ′ is T -symmetric because
T (PF,1PF,2)T −1 = (−PF,1)(−PF,2) = (PF,1PF,2). Overall, we
can gap two ground states out of GSD = 4 to leave with
only GSD = 2 on one end. By turning on H ′ = αγ1γ̄1γ2γ̄2,
depend on the sign of α, we are left with only either two
bosonic states (α > 0, so ground states with PF = +1) or two
fermionic states (α < 0, so ground states with PF = −1).

In summary, the N = 0 mod 4 may be left with two
ground states but always with the same fermion parity. In con-
trast, only N = 2 mod 4, we have two ground states with the
different fermion parity, hinting the supersymmetric quantum
mechanics to be revealed in Sec. V.

2. Unwinding the bulk: Extension to a non-Abelian DF,T
8

In order to unwind the bulk, we follow the similar steps
as in Sec. II B, see Fig 10. (1) The first step, we extend the
Hilbert space by adding one complex fermion per site (which
corresponds to Majorana operators γ and γ̄ ) with dynamics
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given by a dimerizing Hamiltonian:

Ho = i
∑
odd j

(γ jγ j+1 − γ̄ j γ̄ j+1). (3.19)

The extended Hamiltonian and symmetry operators are [with
Hgen in Eq. (3.5)]

Hext = Hgen + Ho, (3.20)

Text =
( ∏

odd j

(γ↓, j γ̄↑, j )γ j

)( ∏
even j

(γ↓, j γ̄↑, j )γ̄ j

)
K, (3.21)

PF =
∏

j

( i γ̄↓, jγ↓, j )( i γ̄↑, jγ↑, j )( i γ̄ jγ j ). (3.22)

In the extended 1 + 1d bulk, we have the extended DF,T
8

symmetry on-site in the bulk:

DF,T
8 |bulk ≡ 〈

Text, PF |T 4
ext = P2

F = 1,

PFTextPF = T −1
ext = −Text

〉
. (3.23)

(2) The second and third steps, we show the Hamiltonian
can be unwound as shown in Fig. 10 using a 2-layer D8-
symmetry invariant FDUC W = W2W1 as

W HextW
† = (W2W1)Hext(W2W1)†

= −i
∑

j

(γ↓, jγ↑, j − γ̄↓, j γ̄↑, j ) + He, (3.24)

such that TextWlT −1
ext = Wl and PFWlP

−1
F = Wl with l = 1, 2,

where

W1 =
∏
odd j

(
1 + γ jγ↓, j+1√

2

)(
1 + γ̄ j γ̄↓, j+1√

2

)
, (3.25)

W2 =
∏
odd j

(
1 + γ jγ↓, j√

2

)(
1 + γ̄ j γ̄↓, j√

2

)

×
∏

even j

(
1 + γ↑, jγ j√

2

)(
1 + γ̄↑, j γ̄ j√

2

)
, (3.26)

He = i
∑
even j

(γ jγ j+1 − γ̄ j γ̄ j+1). (3.27)

The deformed Hamiltonian (3.24) under FDUC is exactly
what we aim for, which shows that under the enlarged Hilbert
space and extended global symmetry, its ground state can be
deformed to a trivial tensor product state (see the outcome
state in Fig. 10)! In short, the bulk unwinding follows also the
symmetry extension:

1 −→ Z2 −→ DF,T
8 |bulk −→ ZT

2 × ZF
2 |bulk −→ 1. (3.28)

C. Class DIII: ZTF
4 symmetry or Pin+

We now consider 1 + 1d superconductors with a conven-
tional ZT F

4 time-reversal invariance, which is known as the
class DIII for the free fermion systems. We work with the
same Hilbert space as the previous section, i.e., two species
of fermions per unit site. The 2-layer Majorana chain with a
Hamiltonian H II

Kitaev (3.3) is in fact the generator of ν = 1 ∈

Z2 class of the interacting SPTs with ZT F
4 symmetry (see

Table I. The T transformation generating ZT F
4 obey

T =
∏

j

(
1 + γ↑, jγ↓, j√

2

)(
1 + γ̄↑, j γ̄↓, j√

2

)

K =
∏

j

e
π
4 γ↑, jγ↓, j e

π
4 γ̄↑, j γ̄↓, jK, (3.29)

T 2 = PF = (−1)F =
∏

j

∏
ς=↑,↓

i γ̄ς, jγς, j, T 4 = 1. (3.30)

This means ZF
2 ⊂ ZT F

4 , the fermion parity generated by PF

is a normal subgroup of time reversal ZT F
4 , thus these bulk

global symmetries form a short exact sequence:

1 → ZF
2 → ZT F

4 → ZT
2 → 1. (3.31)

It can easily be checked that the Hamiltonian of Eq. (3.3) is in-
variant under the time-reversal symmetry defined above. Once
again, we use the basis change via Eq. (3.4)’s M to get the
Hamiltonian Hgen of Eq. (3.5) and the following basis-changed
time-reversal operator:

T̃ ≡ MT M† =
∏

j

γ↓, j

(
1 − γ↓, j γ̄↓, j√

2

)
γ̄↑, j

(
1 + γ↑, j γ̄↑, j√

2

)
K.

(3.32)
The fermion parity P̃F = MPF M† = PF stays unchanged.

1. Gapping the boundary: Extension to a non-Abelian MF,T
16

To find the symmetry extension, let us now look at the
symmetry transformation on the edges. We have

TL = γ̄↑

(
1 + γ↑γ̄↑√

2

)
K= γ̄↑e

π
4 γ↑γ̄↑K, PF,L = i γ̄↑γ↑.

(3.33)

TR = γ↓

(
1 − γ↓γ̄↓√

2

)
K= γ↓e− π

4 γ↓γ̄↓K, PF,R = i γ̄↓γ↓.

(3.34)

We can also show that

TLγ↑T −1
L = −γ̄↑, TLγ̄↑T −1

L = γ↑, (3.35)

TRγ↓T −1
R = −γ̄↓, TRγ̄↓T −1

R = γ↓. (3.36)

The 0 + 1d edge symmetry operators form a finite non-
Abelian group M16 [33] of order 16:11

MF,T
16 |boundary ≡ 〈

TL/R, PF,L/R

∣∣T 4
L/R = −1,

T 8
L/R = P2

F,L/R = 1,

PF,L/RTL/RPF,L/R = T 5
L/R

〉
. (3.37)

which again has the fermion parity PF,L/R not at its center
Z (MF,T

16 ) ∼= Z4 = {1, T 2
L/R, T 4

L/R, T 6
L/R}. There is a short

11Note that K2 = 1, we can show T 2
L = γ↑γ̄↑ = − iPF,L , T 2

R =
γ↓γ̄↓ = − iPF,R, T 4

L = T 4
R = −1, and T 8

L = T 8
R = 1, while

PF,L/RTL/RPF,L/R = −TL/R = T 5
L/R.
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exact sequence for M16 as a central extension

1 −→ (Z (M16) ∼= Z4) −→ (M16) −→ (Z2)2 −→ 1,

(3.38)
where the quotient group can be regarded as (Z2)2 =
Z (M16){1, TL/R, PF,L/R, TL/RPF,L/R}. But the short exact se-
quence that relates the extended symmetry on the boundary
MF,T

16 |boundary and the original symmetry group ZT F
4 |bulk, is the

following:

1 −→ Z4 −→ MF,T
16 |boundary −→ ZT F

4 |bulk −→ 1, (3.39)

where the normal subgroup N = Z4 =
{1, T 2

L/RPF,L/R, T 4
L/R, T 6

L/RPF,L/R} is not the center Z (MF,T
16 ).

Thus Eq. (3.39) is the noncentral extension. The quotient
group can be regarded as ZT F

4 = N{1, TL/R, T 2
L/R, T 3

L/R}.
In fact the boundary fractionalized symmetry with T 4 =

−1 and T 8 = +1 has been noticed by a remarkable work by
Gu in Ref. [34]. We further point out that the full boundary
fractionalized symmetry group forms a non-Abelian MF,T

16
which contains a subgroup ZT

8 with the fractionalized time-
reversal symmetry.

2. Unwinding the bulk: Extension to a non-Abelian MF,T
16

The DIII Hamiltonian can be unwound using the same
Hilbert space extension and the same 2-layer FDUC,

W = W2W1

as for class BDI [Eqs. (3.24)–(3.26)]. It is easy to check that W
is also invariant under the extended MF,T

16 symmetry generator
Text and the new PF defined below

Text =
∏
odd j

γ↓, j

(
1 − γ↓, j γ̄↓, j√

2

)
γ̄↑, j

(
1 + γ↑, j γ̄↑, j√

2

)
γ j

×
(

1 − γ j γ̄ j√
2

)

·
∏

even j

γ↓, j

(
1 − γ↓, j γ̄↓, j√

2

)
γ̄↑, j

(
1 + γ↑, j γ̄↑, j√

2

)
γ̄ j

×
(

1 + γ j γ̄ j√
2

)
K, (3.40)

PF =
∏

j

( i γ̄↓, jγ↓, j )(iγ̄↑, jγ↑, j )( i γ̄ jγ j ). (3.41)

The extended bulk symmetry operators form again a non-
Abelian M16 [33] of order 16:12

MF,T
16

∣∣
bulk ≡ 〈

Text, PF

∣∣T 4
ext = −1, T 8

ext = P2
F = 1,

PFTextPF = T 5
ext

〉
. (3.42)

The short exact sequence that relates the extended and original
symmetry groups in the bulk again is the following

1 −→ Z4 −→ MF,T
16 |bulk −→ ZT F

4 |bulk −→ 1. (3.43)

12Note that K2 = 1, we can show T 2
ext =∏

j (γ↓, j γ̄↓, j )(γ↑, j γ̄↑, j )(γ j γ̄ j ), T 4
ext = −1, and T 8

ext = 1, also
PFTextPF = −Text = T 5

ext.

where the normal subgroup Z4 = {1, T 2
extPF , T 4

ext, T 6
extPF }

is not the center Z (MF,T
16 ). The quotient group ZT F

4 contains
{1, Text, T 2

ext, T 3
ext}.

D. Class AIII: U(1)F × ZT
2 or U(1)F ×ZT

4
ZF

2
symmetry or Pinc

Let us look at another example for free fermion Hamil-
tonian AIII class, which can be chosen to be U(1)F × ZT

2 or
U(1)F ×ZT

4

ZF
2

symmetry, see Table I.13 For U(1)F × ZT
2 symmetry,

a representative of class AIII systems is a superconductor with
time reversal T = K and a spin-rotation U(1) symmetry

V (θ ) =
∏

j

exp

(
θ

2
(γ↓, jγ↑, j + γ̄↓, j γ̄↑, j )

)
. (3.44)

It can be easily checked that the Hamiltonian H II
Kitaev of

Eq. (3.3) is invariant under the symmetries defined above.
Once again, we use the basis change to get the Hamiltonian
Hgen of Eq. (3.5) and the following basis-changed symmetry
operators:

T̃ ≡ MT M† = MKM† =
(∏

j

(γ↓, j γ̄↑, j )

)
K, (3.45)

Ṽ (θ ) ≡ MV (θ )M† =
∏

j

exp

(
θ

2
(γ̄↓, jγ↓, j − γ̄↑, jγ↑, j )

)

=
∏

j

exp( iθ ((NF,↓) j − (NF,↑) j )). (3.46)

Here we use the fact for the flavor ↑ or ↓ (abbreviated as
↑ / ↓),14

(NF,↑/↓) j ≡ ψ
†
↑/↓, jψ↑/↓, j = 1 − i γ̄↑/↓, jγ↑/↓, j

2

= 1 − (PF,↑/↓) j

2
.

Note that Eq. (3.46) is in the form of Sz spin-rotational
U(1) symmetry generator

∏
j exp(− iθ (Sz ) j ) of the spin-1/2

system [a fundamental representation 2 of SU(2)], with a
periodicity θ ∼ θ + 2π , so θ ∈ [0, 2π ).

13The time reversal T with T 2 = +1 in U(1)F × ZT
2 can be rede-

fined as a new time reversal T ′ = exp( iπ/2)T = iT with T ′2 =
−1 and T ′4 = +1 in

U(1)F ×ZT
4

ZF
2

. Here the exp( iπ/2) = i is a π/2

rotation of the U(1) symmetry transformation which is also related
to the π rotation of fermion since the 2π rotation of fermion gives a
spin-statistics (−1) from ZF

2 .
14We remark that the left-handed side expression fermion number

(NF,↑/↓) j has eigenvalues in {0, 1} for states with a complex fermion
empty or filled. In contrast, i γ̄↑/↓, jγ↑/↓, j = (PF,↑/↓) j is the fermion
parity on the site j for the flavor ↑ or ↓, which (PF,↑/↓) j has eigen-

values in {1,−1}. So the right-handed side
1−(PF,↑/↓ ) j

2 also indeed has
eigenvalues in {0, 1} exactly matching (NF,↑/↓) j .
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1. Gapping the boundary: extension to a non-Abelian
U(1)×DF,T

8
Z2

Let us now look at the symmetry transformation on the
edges, on the left (L) and right (R) boundaries:

VL(θ ) = exp

(
θ

2
γ̄↓γ↓

)
, VR(θ ) = exp

(
− θ

2
γ̄↑γ↑

)
,

(3.47)

TL = γ↓K, TR = γ̄↑K, (3.48)

PF,L = i γ̄↓γ↓, PF,R = i γ̄↑γ↑. (3.49)

Some comments are in order. (1) The bulk U(1)F symmetry
Eq. (3.46) acting on the two complex fermions per site has
a 2π periodicity: θ ∈ [0, 2π ). Note that Eq. (3.46) at θ = π ,
we have effectively Ṽ (θ = π ) = PF ; this generates a ZF

2 =
{Ṽ (θ = 0), Ṽ (θ = π )} = {1, PF }, which is a normal subgroup
of U(1)F .

(2) The boundary U(1) symmetry Eq. (3.47) acting on
the one complex fermion per site has a 4π periodicity: θ ∈
[0, 4π ). Note that this boundary U(1) does not contain ZF

2 =
{1, PF }, since Eq. (3.47)’s generator exp( θ

2 γ̄ γ ) = cos( θ
2 ) +

sin( θ
2 )γ̄ γ can not contain Eq. (3.49)’s PF = i γ̄ γ . Instead

Eq. (3.47) of the L/R boundary contains a Z2 = {1,VL/R(θ =
2π )} = {1,−1}.

(3) On the boundary, still there is a DF,T
8 finite group

symmetry generated by TL/R and PF,L/R, similar to Sec. III B 1.
There is a normal subgroup Z2 = {1,−1} shared by both the
boundary symmetry U(1) and DF,T

8 ≡ ZF
2 � ZT

4 with the new
fractionalized ZT

4 . We can explicitly check the boundary U(1)
commutes with other generators of DF,T

8 .
In summary of the above, so the edge symmetry operators

form the boundary extended symmetry group G̃|boundary, which
can be written into the short exact sequence:15

1 → Z2 → U(1) × DF,T
8

Z2
⊇DF,T

8 =ZF
2 �ZT

4

∣∣∣∣∣∣
boundary

→ U(1)F × ZT
2

⊇ZF
2 ×ZT

2

∣∣
bulk → 1.

(3.50)
In the underset of groups G̃|boundary and G|bulk, we indicate that
they contain the subgroups (⊇ . . . ) established in Sec. III B 1.

2. Unwinding the bulk: extension to a non-Abelian
U(1)×DF,T

8
Z2

The AIII Hamiltonian can be unwound using the same
Hilbert space extension and 2-layer FDUC, W = W2W1 as
for class BDI [Eqs. (3.24)–(3.27)]. It is easy to check that

15To check some of the above mentioned equalities, we use
the fact exp( iθX ) = cos(θX ) + i sin(θX ) for a matrix operator
X . For example, we have exp( θ

2 γ̄ γ ) = cos( θ

2 ) + sin( θ

2 )γ̄ γ . Note
that for Eq. (3.46) of the bulk, Ṽ (θ = π ) = ∏

j exp( iπ ((NF,↑) j +
(NF,↓) j )) = (−1)((NF,↑ ) j+(NF,↓ ) j ) = PF = ∏

j ( i γ̄↑, jγ↑, j )( i γ̄↓, jγ↓, j )
generates the fermion parity ZF

2 of the bulk system. Note
that for Eq. (3.47) of the L or R boundary, VL/R(θ = 2π ) =
exp (πγ̄↓/↑γ↓/↑) = (−1) i (γ̄↓/↑γ↓/↑ ) = (−1)PF,L/R = −1, generates a
Z2 but not the fermion parity ZF

2 of the effective boundary.

W is also invariant under the extended U(1)×DF,T
8

Z2
symmetry

generators defined below

Vext(θ ) =
∏
odd j

exp

(
θ

2
(γ̄↓, jγ↓, j − γ̄↑, jγ↑, j + γ̄ jγ j )

)

×
∏

even j

exp

(
θ

2
(γ̄↓, jγ↓, j − γ̄↑, jγ↑, j − γ̄ jγ j )

)
,

(3.51)

Text =
∏
odd j

γ↓, j γ̄↑, jγ j

∏
even j

γ↓, j γ̄↑, j γ̄ jK, (3.52)

PF =
∏

j

( i γ̄↓, jγ↓, j )( i γ̄↑, jγ↑, j )( i γ̄ jγ j ). (3.53)

In short, the bulk unwinding follows also the symmetry exten-
sion:

1−→ Z2 −→ U(1) × DF,T
8

Z2

∣∣∣∣∣∣
bulk

−→ U(1)F × ZT
2

∣∣
bulk −→ 1.

(3.54)

E. Class CII: SU(2)F × ZT
2 symmetry or Pin− ×ZF

2
SU(2)F

The 1 + 1d CII fermion phase has a nontrivial class νCII ∈
Z2 which actually corresponds to a bosonic SPT phase with
a ZT

2 time-reversal symmetry tensor product with a trivial
fermionic gapped phase, and can be unwound by an extended
symmetry that has a fermion parity at the center, see the
detailed discussions in Ref. [3]. In terms of the CII class
symmetry realization, other than SU(2)F × ZT

2 , it can also be

realized as (U(1)�ZC
4 )

ZF
2

symmetry [3,25]. Let us interpret how
to gap the boundary and unwind the bulk via the following
symmetry extensions.

If we extend the ZT
2 via a new species of fermions with a

fermion parity ZF+
2 to ZT F+

4 with T 2 = (−1)F+ , we have the
symmetry extensions:

1 −→ ZF+
2 −→ SU(2)F × ZT F+

4 −→ SU(2)F × ZT
2 −→ 1,

1 −→ ZF+
2 −→

(
U(1) � ZC

4

)
ZF

2

× ZT F+
4

−→
(
U(1) � ZC

4

)
ZF

2

ZT
2 −→ 1,

1 −→ ZF+
2 −→ ZT F+

4 −→ ZT
2 −→ 1. (3.55)

If we extend the ZT
2 via a bosonic ZB

2 to ZT B
4 symmetry

with T 2 = −1 as a bosonic (−1), we have the symmetry
extensions:

1 −→ ZB
2 −→ SU(2)F × ZT B

4 −→ SU(2)F × ZT
2 −→ 1,

1 −→ ZB
2 −→

(
U(1) � ZC

4

)
ZF

2

× ZT B
4

−→
(
U(1) � ZC

4

)
ZF

2

ZT
2 −→ 1,

1 −→ ZB
2 −→ ZT B

4 −→ ZT
2 −→ 1. (3.56)
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FIG. 11. The interacting ZT
2 × ZF

2 invariant SPT Hamiltonian of Eq. (4.1). The squares consist of two complex fermions, labeled ↑ and ↓
and reside on the sites of the lattice. The diamonds represent the qubits σ and reside on the links of the lattice.

The quantum mechanical lattice constructions of the above
are done in Ref. [3]. Formally, we can also understand it
from trivializing the 2d topological term in the bordism group

�
Pin−×ZF

2
SU(2)F

2 , which will be explained in Sec. VI.

F. Formal explanation on the classifications of invertible
phases versus SPT phases

(1) Long-ranged entangled (LRE) invertible fermionic topo-
logical orders (protected by no other symmetry, except the
fermion parity ZF

2 essential for fermionic systems). To obtain
its classification, we can read from TPd (Spin) with the group
G = Spin(d ) symmetry. Note that Spin(d )/SO(d ) = ZF

2 with
the SO(d ) is the rotational symmetry for the continuum limit
of the tangent manifold of space-time manifold.

(2) Short-ranged entangled (SRE) invertible SPTs. To ob-
tain its classification, we can consider the quotient group

TPd (G)
TPd (Spin) . Namely, the invertible fermionic phases classified
by TPd (G) mod out the LRE invertible fermionic topological
orders in TPd (Spin), indeed are left with only SRE invertible
SPTs [26]. In fact, for interacting systems, for the finite group
subclasses of the SRE SPT classification (known as the tor-
sion [tors] classes in mathematics), we can rewrite the SRE
fermionic SPT finite-subgroup-part classification following
[26] as the torsion part of the quotient group TPd (G)

TPd (Spin) :[
TPd (G)

TPd (Spin)

]
tors

= [TPd (G)]tors

[TPd (Spin)]tors
=

[
�G

d

]
tors[

�
Spin
d (pt )

]
tors

.

(3.57)

Here we use the fact that the torsion (finite subgroup) part of
cobordism and bordism groups are the same [TPd (G)]tors =
[�G

d ]tors; this Eq. (3.57) relates to the dth bordism group �d .
This expression in Eq. (3.57) left out other infinite group Z
classes. (a) Some of Z classes are known as the free classes in
mathematics correspond to LRE invertible topological orders
by Wen’s definition [29], captured by

[TPd (Spin)]free. (3.58)

(b) Other Z classes are captured by the free part of quotient
group TPd (G)

TPd (Spin) as

[
TPd (G)

TPd (Spin)

]
free

, (3.59)

which happen especially in an odd dimensional space-time
and correspond to the Z classes of SRE invertible SPTs whose
boundary exhibits the perturbative local anomalies. For ex-
ample, in 2 + 1d, there is a Z class of SRE invertible SPTs
protected by U(1) symmetry, for both bosonic or fermionic
systems [14].

(c) In contrast, the other Zn classes (the torsion) from
[TPd (G)]tors correspond to invertible topological phases
whose boundary exhibits the nonperturbative global anoma-
lies. This [TPd (G)]tors includes both the [TPd (Spin)]tors
as classes of LRE invertible topological orders and the
[ TPd (G)

TPd (Spin) ]tors as SRE invertible SPTs. The pt is a point as a
certain classifying space.

FIG. 12. Extended D8 ≡ DF,T
8 invariant SPT Hamiltonian of Eq. (4.6). The squares consist of three complex fermions and one qubit and

reside on the sites of the lattice. Two other qubits (diamonds not enclosed in squares) reside on the links of the lattice.
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FIG. 13. Unwinding the interacting ZT
2 × ZF

2 invariant SPT Hamiltonian (4.6). The unwinding is done in two steps using a series of bosonic
and fermionic swap operators which commute with the extended symmetry.

IV. INTERACTING MODELS FOR EVEN ν ∈ Z8 CLASSES
WITH ZT

2 × ZF
2 SYMMETRY OR PIN−

We now consider an interacting model of time-reversal
invariant fermions with ZT

2 × ZF
2 symmetry belonging to

the same k = 2 phase as the model in Sec. III B of the
Z8 classification. This is a basis-changed version of the
model introduced by Tantivasadakarn and Vishwanath [35]
(see Appendix A for details of the basis-change operations).
The Hilbert space for the model consists of two species of
fermions (ς =↑,↓: each complex fermions beget two Majo-
rana fermions, γ and γ̄ ) on the sites and qubits (σ ) on the links
of a one-dimensional lattice. Using the Majorana operators as
defined in the previous sections, the Hamiltonian is written as

H = − i
∑

j

[
σ z

j, j+1(γ̄↑, jγ↑, j + γ̄↓, j+1γ↓, j+1)

+ σ x
j, j+1γ̄↑, jγ↓, j+1

]
. (4.1)

The above Hamiltonian is also represented graphically in
Fig. 11.

The time-reversal and fermion parity operators are

T =
(∏

j

( iγ↓, j γ̄↑, j )σ
x
j, j+1

)
K, PF =

∏
j

∏
ς=↑,↓

i γ̄ς, jγς, j,

(4.2)

where K is the complex conjugation operation as before. The
boundary symmetry operators are as follows:

TL = γ↓K, TR = i γ̄↑K, (4.3)

PF,L = i γ̄↓γ↓, PF,R = i γ̄↑γ↑. (4.4)

On both ends, the symmetry operators generate the group
DF,T

8 which does not have fermion parity at the center

DF,T
8 ≡ 〈

(TL/RPF,L/R), PF,L/R

∣∣ T 2
L/R = P2

F,L/R = 1,

PF,L/RTL/RPF,L/R = −TL/R
〉
. (4.5)

We now proceed to extend the Hilbert space and unwind
the Hamiltonian using a DF,T

8 invariant quantum circuit. The
extended Hilbert space we choose consists of an additional
qubit per link (τ j, j+1), an additional qubit per site (σ j) and an
additional fermion per site (γ j, γ̄ j). The extended Hamiltonian
we consider is

Hext = H −
∑

j

σ x
j − i

∑
odd j

[
τ z

j, j+1(γ̄ jγ j + γ̄ j+1γ j+1)

+ τ x
j, j+1γ j γ̄ j+1

] −
∑
even j

τ x
j, j+1. (4.6)

This extended Hamiltonian is schematically shown in
Fig. 12. The Hamiltonian Hext is unwound to Htriv as shown
in Fig. 13 using the FDUC, W as follows:

W HextW
† = Htriv, (4.7)

Htriv = −
∑

j

[
σ z

j

( ∑
ς=↑,↓

i γ̄ς, jγς, j

)
+ iσ x

j γ↓, j γ̄↑, j + σ x
j, j+1

]
− i

∑
odd j

[
τ z

j, j+1(γ̄ jγ j + γ̄ j+1γ j+1) + τ x
j, j+1γ̄ jγ j+1

] −
∑
even j

τ x
j, j+1,

(4.8)
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W = W2W1, W1 =
∏
odd j

SWAP(σ j, σ j, j+1)SWAP(τ j, j+1, σ j+1)

(
1 + γ jγ↓, j+1√

2

)(
1 + γ̄ j γ̄↓, j+1√

2

)
,

W2 =
∏

even j

[
SWAP(σ j, j+1, τ j, j+1)

(
1 + γ jγ↑, j√

2

)(
1 + γ̄ j γ̄↑, j√

2

)] ∏
odd j

[(
1 + γ jγ↓, j√

2

)(
1 + γ̄ j γ̄↓, j√

2

)]
. (4.9)

It can be verified that the extended Hamiltonian as well as the unwinding FDUC are invariant under the extended symmetry
operator transformation

Text =
∏
odd j

(
iγ↓, j γ̄↑, jγ j σ

x
j σ

x
j, j+1τ

x
j, j+1

) ∏
even j

(
iγ↓, j γ̄↑, j i γ̄ j σ

x
j σ

x
j, j+1τ

x
j, j+1

)
K

=
∏
all j

(
iγ↓, j γ̄↑, j σ

x
j σ

x
j, j+1τ

x
j, j+1

)
(
∏
odd j

γ j )(
∏

even j

i γ̄ j )K. (4.10)

V. SUPERSYMMETRIC QUANTUM MECHANICS

In this section, we detail the relationship between the
extended symmetries and supersymmetric quantum mechan-
ics. More details can be found in Ref. [36]. Supersymmetric
systems are characterized by the presence of supercharges—
symmetry operators which are fermionic, i.e., anticommute
with fermion parity and square to the generators of space-time
translations [37]. The simplest of supersymmetric systems
are supersymmetric quantum-mechanical (SUSY QM) sys-
tems where supercharges only square to the generator of
time-translations i.e., the Hamiltonian. More specifically, a
Hamiltonian H is a SUSY QM system if there exists α =
1, . . . ,N Hermitian supercharges Qα satisfying the following
algebra [38–41]:

{Qα, Qβ} = 2Hδα,β, [Qα, H] = {Qα, PF } = 0. (5.1)

If we consider the fractionalized time-reversal symmetry on
the boundaries, (1) from ZT

2 (T 2 = +1 for BDI) to a fraction-
alized ZT

4 (T 4 = +1 in Sec. III B) and (2) from ZT F
4 (T 4 =

+1 for DIII) to a fractionalized ZT
8 (T 8 = +1 in Sec. III C),

their anticommutation with the fermion parity PF operator,

{T , PF } ≡ T PF + PFT = 0,

will result in any compatible Hamiltonian being a SUSY QM
system. As a result, we refer to the presence of any symme-
try operators which do not commute with fermion parity as
supersymmetric.

A. General setting for SUSY quantum mechanics

Let us see the emergence of SUSY QM from global
symmetries. Consider a fermionic system described by some
Hamiltonian operator H . This means that the Hamiltonian
commutes with a fermion parity ZF

2 symmetry, generated
by PF ≡ (−1)F , so PF HP−1

F = H . Let {Vg} be a collection
of symmetry operators, including PF that commute with H .
Recall that PF also grades states and operators as bosonic and
fermionic as follows:

Pf |b〉 = +|b〉, PF ObPF = +Ob, (5.2)

Pf | f 〉 = +| f 〉, PF O f PF = −O f . (5.3)

We show that if there exist symmetry operators which are
fermionic, i.e., anticommutes with PF , H is a SUSY QM

system with at least N = 2 supercharges. Let T be a such a
symmetry of H , i.e., T HT −1 = H , and PFT PF = −T . This
implies that any eigenstate with nonzero eigenvalue (ensured
by a constant shift of H) is degenerate and contains an even
number of bosonic and fermionic states. The diagonalized
Hamiltonian can be schematically written, with μ the eigen-
value labels, as

H =
∑

μ

∑
aμ

Eμ(|μ, aμ,+〉〈μ, aμ,+|

+ |μ, aμ,−〉〈μ, aμ,−|). (5.4)

The + or − specifies the (−1)F eigenvalue which correspond
to bosonic or fermionic sector and aμ keeps track of additional
degeneracies. Let us consider the minimal setting when there
are no other degeneracies in the system. For concreteness,
let us also take T 2 = 1 so we have a ZT

2 symmetry (in fact,
ZT

2 can be more general, either unitary or antiunitary in this
section). We assume that the Hamiltonian is shifted so as to
ensure that all energies are positive-definite. The eigenstates
are organized as

H |μ,±〉 = Eμ|μ,±〉, PF |μ,±〉 = ±|μ,±〉. (5.5)

It is clear that T switches the parity

T |μ,±〉 = |μ,∓〉. (5.6)

Following Ref. [42], we can now define the following opera-
tors

Qμ ≡ √
Eμ|μ,+〉〈μ,−|, Q†

μ ≡ √
Eμ|μ,−〉〈μ,+|, (5.7)

using which we can define the following two Hermitian su-
percharges:

Q+ ≡
∑

μ

Qμ + Q†
μ, (5.8)

Q− ≡
∑

μ

−i(Qμ − Q†
μ). (5.9)

We also have the fermion parity PF and identity 1 operators
as

PF ≡
∑

μ

|μ,+〉〈μ,+| − |μ,−〉〈μ,−|,

1 ≡
∑

μ

|μ,+〉〈μ,+| + |μ,−〉〈μ,−|. (5.10)
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It can be checked that the supercharges satisfy the algebra of
Eq. (4.1) (below α, β ∈ {±}) [38,41], i.e., (1) Supersymmetry
anticommutes with the ZF

2 fermion parity symmetry, gener-
ated by PF ≡ (−1)F :

{Qα, PF } ≡ QαPF + PF Qα = 0. (5.11)

(2) Supercharges commute with Hamiltonian thus supersym-
metry is a global symmetry:

[Qα, H] ≡ QαH − HQα = 0. (5.12)

(3) The anticommutator for supersymmetric quantum me-
chanics obeys:

{Qα, Qβ} ≡ QαQβ + QαQβ = 2Hδαβ. (5.13)

This means that we have an N = 2 SUSY QM system
at hand. The value of N could be larger depending on the
additional symmetries but some SUSY is guaranteed. The
symmetry T acts on the supercharges as follows.16 If T is
a unitary Z2 symmetry, we can choose

T : Q± �→ T Q±T −1 = ±Q±. (5.16)

If the T is an antiunitary Z2 symmetry, we can choose T acts
as an identity operator on the supercharges:

T : Q± �→ T Q±T −1 = +Q±. (5.17)

16In general, for each energy Eμ sector, we have a two-dimensional
Hilbert space Hμ = HB,μ ⊕ HF,μ where the bosonic sector HB,μ is
spanned by the vector {|μ,+〉}, the fermionic sector HF,μ is spanned
by the vector {|μ, −〉}. Overall, the total Hilbert space is even dimen-
sional:

H = HB ⊕ HF =
⊕

μ

Hμ =
⊕

μ

(HB,μ ⊕ HF,μ). (5.14)

We can write all the aforementioned operators H, PF ,T , and Q±
respect to the two-dimensional Hilbert space Hμ associated
to each energy Eμ. We can denote the projection of the
H, PF ,T , and Q± to a two-dimensional Hilbert space Hμ ≡
{|μ, +〉, |μ, −〉} as (H )μ, (PF )μ, (Q±)μ, and (T )μ. Then we have

(H )μ = Eμ

(
1 0
0 1

)
μ

= Eμ(σ0 )μ, (PF )μ =
(

1 0
0 −1

)
μ

≡ (σz )μ,

(Q+)μ =
(

0 1
1 0

)
μ

≡ (σx )μ, (Q− )μ =
(

0 − i
i 0

)
μ

≡ (σy )μ,

Qμ =
(

0 1
0 0

)
μ

, Q†
μ =

(
0 0
1 0

)
μ

.

(T )μ =
{

(nx (Q+ )μ+ny(Q− )μ )=(nx (σx )μ+ny(σy )μ ), if T is unitary.

(nx (Q+ )μ+ny(Q− )μ )K=(nx (σx )μ+ny(σy )μ )K, if T is antiunitary.

(5.15)

Here, (nx, ny ) ∈ S1 ⊂ R2 is a unit vector so n2
x + n2

y = 1, and K is a
complex conjugation operator. It is amusing to notice such a (T )μ
is in fact a linear combination (nx (Q+)μ + ny(Q−)μ). In the case if
T is an antiunitary time-reversal symmetry, interestingly we have
(T )μ proportional to SUSY charge linear combination (Q+)μ and
(Q−)μ up to a complex conjugation K . In the main text, we choose
(nx, ny ) = (1, 0) to derive Eq. (5.16) and Eq. (5.17).

Generally, the original symmetries acts by permuting the su-
percharges.

B. N = 2 SUSY on the boundary of 1 + 1d fermionic SPT
phase with ZT

2 × ZF
2 symmetry:

Generalized Sachdev-Ye-Kitaev interactions

Recall that one-dimensional SPT phases have symmetries
that are realized projectively. For intrinsically fermionic SPT
phases i.e phases that cannot be thought of as a stack of
a bosonic SPT phase, tensor product with a trivial gapped
fermionic system, some of the projective symmetry generators
do not commute with fermion parity [43]. Due to the argu-
ments of the previous subsection, this leads to the boundary
Hamiltonian being supersymmetric. Let us consider a specific
phase for concreteness. We again consider the ν = 2 mod 8
phase of time-reversal invariant superconductors where T
which acts antiunitarily and has the property T 2 = 1. This
belongs to class BDI and (in the presence of interactions)
has a Z8 classification. We again consider the Hamiltonian
in Eq. (3.5):

H = − i
�∑

j=1

(γ↑, jγ↓, j+1 − γ̄↑, j γ̄↓, j+1). (5.18)

Recall the symmetries are

T =
(∏

j

(γ↓, j γ̄↑, j )

)
K. PF =

(∏
j

∏
ς=↑,↓

iγ̄ς, jγς, j

)
.

(5.19)

K is the complex conjugation which acts on the Majorana
operators as

KγK = γ , Kγ̄K = −γ̄ , K iK = − i . (5.20)

Let us now consider a boundary termination as shown in
Fig. 8. There are two dangling Majorana zero modes on each
(left or right) end of Fig. 8, each end has a two-dimensional
Hilbert space. For Fig. 8, the symmetries acting on the bound-
ary sites are the same as the bulk sites. However, if we
only consider how the effective symmetries acting on the
ground state subspace which associated with the boundary
zero modes, we can do the ground state (GS) projection PGS =
P†

GS on T which factorize Eq. (5.19) to left and right boundary
symmetry operators:

PGST PGS � TL ⊗ TR.

Here effective TL and TR act only on the left and right Majo-
rana zero modes of Fig. 8 as

TL = γ↓K, PF,L = iγ̄↓γ↓,

T 2
L = P2

F,L = 1, TLPF,L = −PF,LTL, (5.21)

TR = γ̄↑K, PF,R = iγ̄↑γ↑, T 2
R = −1,

P2
F,R = 1, TRPF,R = −PF,RTR. (5.22)

It can be easily checked that the boundary symmetry operators
generate a faithful representation of dihedral group of order 8,
D8 ≡ DF,T

8 , which is a group with two generators satisfying
the following relation: 〈a, x|a4 = x2 = 1, xax = a−1〉. On the
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FIG. 14. Representative of the ν = 2 phase with ZT
2 × ZF

2 symmetry consisting of multiple layers—here (4N + 1) layers for the ν = 2
phase. We can introduce SYK model Hamiltonian on the boundary, similar to the setup of [44].

left end, a = TLPF,L, x = PF,L and on the right, a = TR, x =
PF,R.17 Observe that fermion parity is not in the center of DF,T

8 .
This is going to be crucial. From now on, we focus only on the
left boundary and drop the ↓ index. The effective symmetry
can be simply written as

T = γK, PF = i γ̄ γ . (5.23)

The symmetry acts on the Majorana operators trivially:

T :

(
γ

γ̄

)
�→

(
γ

γ̄

)
. (5.24)

However, it is antilinear T : i �→ − i . As a result, the only
possible boundary Hamiltonian term in this Hilbert space,

H∝ − iγ γ̄ = PF , (5.25)

is disallowed by T symmetry. Therefore, the only allowed
boundary Hamiltonian is proportional to the identity operator,

H = c1. (5.26)

17Readers may be puzzled by why that the boundary TL and
TR symmetries act oppositely in comparison between those of
Eqs. (3.10) and (3.11) versus those of Eqs. (5.21) and (5.22). Recall
Sec. III B 1’s remark III B 1 that there are three different ways to look
at T symmetries on the boundary depending on (1) the boundary
truncation types of quantum systems and (2) the Hilbert space pro-
jection PGS to ground state subspace. Here we do the remark III B 1’s
(c) case, with the PGS projection to dangling zero energy modes.

As shown in Ref. [36], with c being positive (with no loss of
generality), this has an N = 2 SUSY with supercharges

Q+ = √
cγ , Q− = √

cγ̄ . (5.27)

We can increase the possible boundary dynamics by layering
trivial phases on the bulk and therefore increasing the bound-
ary by mod 8 layers of Kitaev chains. Since the Hamiltonian
(5.18) is the ν = 2 mod 8 member, this means that we can
add multiples of four copies of the Hamiltonian (5.18) to the
bulk and preserve the same phase. The bulk Hamiltonian and
symmetry operators correspond to this layered system shown
in Fig. 14 is

H = − i
�∑

j=1

4N+1∑
a=1

(γ↑,a, jγ↓,a, j+1 − γ̄↑,a, j γ̄↓,a, j+1), (5.28)

T =
(

4N+1∏
a=1

�∏
j=1

(γ↓,a, j γ̄↑,a, j )

)
K, (5.29)

PF =
(

4N+1∏
a=1

�∏
j=1

∏
ς=↑,↓

i γ̄ς,a, jγς, j

)
. (5.30)

We now focus on the boundary. The Hilbert space can be
acted by a total 8N + 2 Majorana operators: {γa, γ̄a} for a =
1, . . . , 4N + 1. The symmetry operators are

T =
4N+1∏
a=1

γaK, PF =
4N+1∏
a=1

i γ̄aγa. (5.31)
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It can be checked that the operators again form a DF,T
8 group

where the fermion parity is not at the center subgroup because
T anticommutes with PF .

T 2 = P2
F = 1, T PF = −PFT . (5.32)

However, we can have a boundary Hamiltonian that is not
quadratic, but can consist of Majorana operators coupled in
multiples of 4:

H =
∑

a,b,c,d

J1
a,b,c,dγaγbγcγd + J2

a,b,c,d γ̄aγbγcγd

+ J3
a,b,c,d γ̄aγ̄bγcγd + J4

a,b,c,d γ̄aγ̄bγ̄cγd + J5
a,b,c,d γ̄aγ̄bγ̄cγ̄d

+ K1
a,b,c,d,e, f ,g,hγaγbγcγdγeγ f γgγh

+ K2
a,b,c,d,e, f ,g,hγ̄aγbγcγdγeγ f γgγh + . . . . (5.33)

This Hamiltonian H is time-reversal invariant: T HT −1 = H .
A shown in Ref. [44], if the couplings are restricted to the
quartic operators and Ji

abcd are drawn from a random distri-
bution, this is the famous Sachdev-Ye-Kitaev (SYK) model
([13,45] also the later expositions in Refs. [46,47]). The SUSY
nature of the SYK model was shown by the authors of [42].
This SUSY nature still holds if we add any number of 4n-
Majorana operators [such as quartic, or octatonic as shown in
Eq. (5.33)] to the Hamiltonian all of which preserve the T and
PF symmetry. The logic is precisely what was sketched out
in the previous subsection and detailed in Ref. [42]: once we
have the anticommutative T PF = −PFT , this implies that we
must have twofold degenerate spectra from the equal number
of bosonic sectors {|μ,+〉} and fermionic sectors {|μ,−〉} at
every energy level Eμ, each with a distinct fermion parity
PF = +1 and PF = −1. We denote the number of states

nB,μ = nF,μ = 1 (5.34)

for each Eμ. By a constant shift, we can ensure that the
Hamiltonian has positive definite energies and can be written
as

H =
∑

μ

Eμ(|μ,+〉〈μ,+| + |μ,−〉〈μ,−|), (5.35)

where

H |μ,±〉 = Eμ|μ,±〉, PF |μ,±〉 = ±|μ,±〉, (5.36)

and T switches the parity

T |μ,±〉 = |μ,∓〉. (5.37)

We can now define the two supercharges

Q+ =
∑

μ

Qμ + Q†
μ, Q− =

∑
μ

− i (Qμ − Q†
μ), (5.38)

where Qμ ≡ √
Eμ|μ,+〉〈μ,−| and Q†

μ ≡ √
Eμ|μ,−〉〈μ,+|,

and check that the supercharges satisfy the algebra of Eq. (5.1)

{Qα, Qβ} = 2Hδαβ, [Qα, H] = {Qα, PF } = 0. (5.39)

This means that we have an N = 2 SUSY QM system on the
boundary of these fermionic SPT phases. The action of T on
the supercharges is as shown in Eq. (5.17), i.e.,

T : Q± �→ T Q±T −1 = +Q±. (5.40)

C. N = 2 SUSY on the boundary of 1 + 1d fermionic SPT
phase with ZTF

4 symmetry

In Sec. V B, we had shown that the Sec. III B’s model with
a bulk ZT

2 × ZF
2 -symmetric 8N + 2 layers of 1 + 1d Kitaev

chains, the boundary exhibits the N = 2 SUSY quantum
mechanics. In this section, we can also take the Sec. III C’s
model with a bulk ZT F

4 -symmetric 8N + 2 layers of Kitaev
chains, to analyze its boundary energy spectrum property.
Follow the Remark III B 1 in Sec. III B 1, when the number of
Kitaev chains is 2 mod 4 and when T PF = −PFT , we have
at least twofold generate ground states (with GSD = 2), one
bosonic |B〉 and one fermionic |F 〉. In general, we have the
equal number of bosonic eigenstate {|μ,+〉} and fermionic
eigenstate {|μ,−〉} for each eigenvalue Eμ. We again have
nB,μ = nF,μ = 1 as in Eq. (5.34) for each Eμ. Thus we can re-
peat the analysis Sec. V B again reaching the same conclusion
that we have N = 2 SUSY quantum mechanics, but with a
different bulk symmetry ZT F

4 and the boundary has T 4 = −1
and T 8 = +1. This would also result in a different action on
the supercharges.

D. Systematic framework in 1 + 1d

The original fractionalized global symmetry such as T acts
on the supercharges Qα , thus the T is within a subgroup of
the R symmetry that permutes the supercharges Qα . Note that
the usual R symmetry is a unitary symmetry, here we need to
generalize R symmetry to include both unitary and antiunitary
symmetry (to include time-reversal).

In general, we only have the N = 2 SUSY quantum
mechanics when the layer number k = 2 mod 4. We can
summarize our result in Table II.

We remark again that the fact that the SYK model can
be thought of as a termination of fermionic SPT phases has
been observed by You, Ludwig, and Xu [44]. Also the SUSY
QM property of the SYK model was studied by Behrends
and Béri [42]. However, our interpretation of SUSY is tightly
connected to the generalization of the symmetry extension.

VI. GENERALIZATIONS:
FROM THE LATTICE TO CONTINUUM

In Sec. VI, We will make some refinement about the
group extension (for a quick overview see Appendix B 1)
and properties of bosonic/fermionic/time-reversal/space-time
symmetries and group extensions (for a quick overview see
Appendix B 2) that we used.18 In Table III, we show a symme-
try embedding web of 1 + 1d fermionic invertible topological
phases with their symmetry groups (relevant for 10 Cartan
symmetry classes), and the number of layers of Kitaev chains
to construct the minimal phase. In Table IV, we summarize
the result of fermionic symmetry group extension presented
in Sec. III and IV, also those in Ref. [3], for fermionic SPT
phases in 1 + 1d.

18We relegate the two subsections B 1 and B 2 to Appendices
due to their heavy mathematical formality. However, the readers
are strongly encouraged to read Appendix B 1 and B 2 first before
proceed to Sec. VI.
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TABLE II. We show the relations between the SUSY number N , the global symmetry (Cartan symmetry class or Wigner-Dyson-Altland-
Zirnbauer symmetry class) and their SPT classes ν, and the number k of Majorana zero modes. For k ∈ Z+

odd, the - implies that those models
are not studied in our framework. The blanks mean those classes are either not the generators of the SPT classification, or they are already
determined by the smaller k of SPT class (other filled data).

Cartan class k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

BDI (ν ∈ Z8) − N = 2
(ν = 2)

− N = 0
(ν = 4)

− N = 2
(ν = 6)

−

DIII (ν ∈ Z2) − N = 2
(ν = 1)

− − −

AI, CI, CII (ν ∈ Z2) − − N = 0
(ν = 1)

− −

AIII (ν ∈ Z4) − N = 2
(ν = 1)

− N = 0
(ν = 2)

− N = 2
(ν = 3)

−

We also summarize the bundle constraints for various
symmetry groups and corresponding space-time structures in
Table VI following Ref. [48].

In the following subsections, we show by examples, based
on the knowledge of Appendixes B 1 and B 2, how to convert
the discrete group version of symmetry extensions (Table IV)
to the continuous group version of symmetry extensions
(Table V), suitable for the continuum quantum field theory
[QFT]).

A. 1 + 1d: Lift Pin−(d ) to EPin(d ) for νBDI = 4 ∈ Z8 class

The symmetry extension Z2 → G̃ = ZT
4 × ZF

2 → G =
ZT

2 × ZF
2 in Table IV, reduces BDI class from the interacting

Z8 classification to Z4 classification. The G̃ = ZT
4 × ZF

2 in
fact can have at least three physical interpretations of the
symmetry realization, which in turn give also three physical
interpretations of Z2 → EPin(d ) → Pin−(d ). The EPin(d ) is
firstly introduced by Ref. [48].19 The three interpretations are
the following.

(1) One interpretation of Table IV’s involves a T 2 = −1
boson B and a T 2 = 1 fermion F−:

ZB
2 → ZT B

4 × ZF−
2 → ZT

2 × ZF−
2 ,

by including SO(d ) which becomes Table V’s

ZB
2 → EPinBF− (d )

≡ ((
ZF−

2 � SO(d )
) × ZB

2

)
ZTE

2 → Pin−(d ). (6.1)

Note that EPinBF− (d ) ≡ ((ZF−
2 � SO(d )) × ZB

2 ) � ZTE
2 =

(Spin(d ) × ZB
2 ) � ZTE

2 has the properties specifically here: (a)
(ZF−

2 � SO(d )) � ZTE
2 = Spin(d ) � ZTE

2 = Pin−(d ). (b) In
Euclidean signature: ZB

2 � ZTE
2 = ZTEB

4 and ZF−
2 � ZTE

2 =
ZTEF−

4 . (c) In Lorentzian signature: ZB
2 � ZT

2 = ZT B
4

and ZF−
2 � ZT

2 = ZT
2 × ZF−

2 . (d) (SO(d ) × ZB
2 ) � ZTE

2 =
ZB

2 � O(d ) = SO(d ) � ZTEB
4 = E(d ).

19Below we encounter and define three versions of EPin called
EPinBF− (d ), EPinBF+ (d ), and EPinF+F− (d ). In fact the EPinF+F− (d )
is denoted as EPin(d ) in Ref. [48]. It is shown in Ref. [48] and in
this section that the three versions of EPin are the same group.

(2) One interpretation of Table IV’s involves two types of
fermions, F+ with T 2 = −1 and F− with T 2 = 1:

ZF+
2 → ZT F+

4 × ZF−
2 → ZT

2 × ZF−
2 ,

by including SO(d ) which becomes Table V’s

ZF+
2 → EPinF (d )

≡ (
ZF+

2 × ZF−
2

)
�

(
SO(d ) � ZT

2

) → Pin−(d ). (6.2)

Note that EPinF (d ) ≡ (ZF+
2 × ZF−

2 ) � (SO(d ) � ZT
2 ) has

the properties specifically here: (a) ZF+
2 � SO(d ) ∼= ZF−

2 �

SO(d ) ∼= Spin(d ). (b) In Euclidean signature: ZF+
2 � ZTE

2 =
ZF+

2 × ZTE
2 and ZF−

2 � ZTE
2 = ZTEF−

4 . (c) In Lorentzian sig-
nature: ZF+

2 � ZT
2 = ZT F+

4 and ZF−
2 � ZT

2 = ZT
2 × ZF−

2 . (d)

ZF±
2 � (SO(d ) � ZTE

2 ) = Pin±(d ).
(3) Another interpretation of Table IV’s involves a T 2 =

−1 boson B and a T 2 = −1 fermion F+:

ZF+
2 → ZT B

4 × ZT F+
4

ZT
2

→ ZT
2 × ZF−

2 ,

by including SO(d ) which becomes Table V’s

ZB
2 → EPinBF+ (d ) ≡ ((

ZF+
2 � SO(d )

) × ZB
2

)
�ZTE

2 → Pin−(d ). (6.3)

Note that EPinBF+ (d ) ≡ ((ZF+
2 � SO(d )) × ZB

2 ) � ZTE
2

has the properties specifically here. (a) Pin+(d ) =
(ZF+

2 � SO(d )) � ZTE
2 = Spin(d ) � ZTE

2 = Spin(d )�Z
TEF
4

ZF
2

. (b)

In Euclidean signature: ZB
2 � ZTE

2 = ZTEB
4 and ZF+

2 � ZTE
2 =

ZTE
2 (c)ZF+

2 . (d) In Lorentzian signature: ZB
2 � ZT

2 = ZT B
4 and

ZF+
2 � ZT

2 = ZT F+
4 . (e) (SO(d ) × ZB

2 ) � ZTE
2 = ZB

2 � O(d ) =
SO(d ) � ZTEB

4 = E(d ).
Reference [48] finds that the three interpretations and

expressions Eqs. (6.1), (6.2), and (6.3) are equivalent by re-
labeling the group elements, so we can generally write all of
them as the same as the EPin extension:

Z2 → EPin(d ) → Pin−(d ). (6.4)
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TABLE III. The symmetry embedding web of 1+1d fermionic invertible topological phases relevant for 10 Cartan symmetry classes (we
follow the notations of Table 2 in Ref. [3] and Table 4 in Ref. [25] for 3+1D cases). The web suggests the maps between the nontrivial classes
of their classifications of SPTs (namely, cobordism invariants). The web can also suggest a possible symmetry group extension to unwind the
SPT states. We include topological invariants from the 2d Pin− bordism invariant Arf-Brown-Kervaire (ABK), and 1d spin bordism invariant
η̃. The PD means the Poincaré dual. The “n Kitaev chains” mean the generator of invertible phases of given symmetries.

Our claim is that the 1 + 1d ZT
2 × ZF

2 fermionic SPTs
classified by �Pin−

2 = Z8 with νBDI ∈ Z8 class 2d
topological invariants over a 2-manifold M2 with Pin−

structure

exp

(
i

2πνBDI

8
ABK

)∣∣∣∣
M2

(6.5)

can be trivialized at νBDI = 4 by an extension from Pin−

to EPin. The reason is that 4ABK (four layers of Kitaev
fermionic chain) equals to the topological invariant of the first

Stiefel-Whitney classes w2
1 ≡ w1(T M )2 (1 layer of Haldane

spin chain) [3].20 Namely, the two topological invariants are

20Here we denote w j ≡ w j (T M ) are the jth Stiefel-Whitney (SW)
classes of the tangent bundle T M of the space-time manifold M.
For the SW class for the vector bundle VG associated with certain
group G (where G can be gauge group or global symmetry group),
we denote it as w j (VG) or simply w j (G). All the product notations
between cohomology classes are cup products, such as wiw j :=
wi(T M )w j (T M ) = wi(T M ) ∪ w j (T M ).
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TABLE IV. Summary of unwinding 1+1d fermionic G-SPT of G-invertible topological field theory (iTQFT) phases via the symmetry
extension 1 → N → G̃ → G → 1 and the change of classification by symmetry extension. It turns out that the group extension of G by Z2 has
the Z2 = ZB

2 as a bosonic symmetry acting on any state by multiplying a sign {1, −1}. So the ZT
4 in the G̃ is in fact ZT

4 = ZT B
4 obtained from

1 → ZB
2 → ZT B

4 → ZT
2 → 1, which by including (Lorentz to Euclidean) space-time symmetry becomes 1 → ZB

2 → E(d ) → O(d ) → 1, with
the E(d ) = ZB

2 � O(d ) = SO(d ) � ZT B
4 , see details in Appendix B 2.

Reduced classification
of 1+1d G-iTQFT or

Cartan class Symmetry G N → G̃ → G 0+1d G-anomaly in G̃

BDI ZT
2 × ZF

2 Z2 → ZT
4 × ZF

2 → G Z8 ⇒ Z4

Z2 → DF,T
8 → G Z8 ⇒ Z2

DIII ZT F
4 Z4 → MF,T

16 → G Z2 ⇒ 0

AIII U(1)F × ZT
2 Z2 → U(1)F × ZT

4 → G Z4 ⇒ Z2

Z2 → U(1)×DF,T
8

Z2
→ G Z4 ⇒ 0

CII
(U(1)F

�ZC
4 )

ZF
2

× ZT
2 Z2 → (U(1)F

�ZC
4 )

ZF
2

× ZT
4 → G Z2 ⇒ 0

SU(2)F × ZT
2 Z2 → SU(2)F × ZT

4 → G Z2 ⇒ 0

related

exp

(
i

2π4

8
ABK

)∣∣∣∣
M2

� exp( iπ (w1)2)|M2 (6.6)

up to a trivially gapped fermionic sector specifying spin struc-
tures.

Let us show the Eq. (6.4)’s EPin can trivialize the Eq. (6.6).
First, the EPin structure requires both Pin+ and Pin− to hold,
while Pin+ requires w2 = 0 and Pin− requires w2 + w2

1 = 0,
so EPin requires w2 = w2

1 = 0, but all can have nontrivial w1

to be on unorientable manifolds. (See Ref. [48] and Table VI
for a summary of the bundle constraints for various symme-
try groups and corresponding space-time structures.) Second,
Eq. (6.6) also implies exp( iπ (w1)2) = exp( iπw2) in 2d Pin−,
while both expressions become trivial as 1 in EPin. Thus

EPin as a symmetry extension of Pin− trivializes Eq. (6.4) for
νBDI = 4.

We can also write down how the symmetry operator S of
EPin(d ) group acts on the state vectors of Hilbert space

H = HB ⊕ HF+ ⊕ HF− ,

spanned by three sectors, the bosonic sector |B〉 with T 2 =
+1, the fermionic sector |F+〉 with T 2 = −1, and the
fermionic sector |F−〉 with T 2 = +1. Naively one looks for
the larger symmetry including O(d ), Pin+(d ), and Pin−(d )
for three sectors in the continuum, in a more general manifold
on Md+1. But for quantum mechanics, it is more practi-
cal to define the Hilbert space on a flat space on a Rd−1

with a continuous time t on R1. Then we find the opera-
tor S acts on state vectors living on the Rd−1 generating

TABLE V. The continuum version description of Table IV. The extended G̃Tot includes the EPin group (firstly introduced in Ref. [48] and
reviewed in Sec. VI A), the DF,T

8 Pin and MF,T
16 Pin (that we will introduce in Secs. VI C and VI D).

Cartan class
Space-time-internal

Symmetry GTot

Symmetry extension
to G̃Tot

Reduced classification
of 1+1d G-iTQFT or

0+1d G-anomaly in G̃

BDI Pin− EPin Z8 ⇒ Z4

DF,T
8 Pin Z8 ⇒ Z2

DIII Pin+ MF,T
16 Pin Z2 ⇒ 0

AIII
Pinc = Pin− ×ZF

2
U(1)F

= Pin+ ×ZF
2

U(1)F EPin ×ZF
2

U(1)F Z4 ⇒ Z2

DF,T
8 Pin ×ZF

2
U(1)F Z4 ⇒ 0

CII Pin− ×ZF
2

(U(1)F
�ZC

4 )

ZF
2

EPin ×ZF
2

(U(1)F
�ZC

4 )

ZF
2

Z2 ⇒ 0

Pin− ×ZF
2

SU(2)F EPin ×ZF
2

SU(2)F Z2 ⇒ 0
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the following groups for each sector:

⎛
⎝O(d − 1) × ZT

2 0 0
0 Pin+(d − 1) ×ZF

2
ZT F

4 0
0 0 Pin−(d − 1) × ZT

2

⎞
⎠ acts on

⎛
⎝[l]|B〉

|F+〉
|F−〉

⎞
⎠. (6.7)

Note that ZF+
2 and ZF−

2 have the two generators

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠ and

⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠ act on

⎛
⎝[l]|B〉

|F+〉
|F−〉

⎞
⎠,

each sits at the Z2 center of Spin group within Pin+ and Pin−

groups for each. If we choose |B〉 with T 2 = −1, we must
change Eq. (6.7)’s O(d − 1) × ZT

2 to E(d − 1) ×ZB
2
ZT B

4 . This
Eq. (6.7) is our interpretation of EPin(d ) acting on the as-
sumed Hilbert space.

In summary, Eq. (6.4) on Z2 → EPin(d ) → Pin−(d ) gives
the mathematical way to understand the unwinding of four
layers of Kitaev chains via the symmetry extension Z2 →
ZT

4 × ZF
2 → ZT

2 × ZF
2 demonstrated in Ref. [3]’s Sec. 4.

B. 1 + 1d: Lift O(d ) to E(d )
for νCII = 1 ∈ Z2 or even νAIII ∈ Z4 class

In fact, the previous extension method in Sec. VI A also
works for 1 + 1d SPTs with the same topological invariants
exp( iπ (w1)2) but with other symmetry groups of Table IV,
such as CII and AIII classes. In the discrete version, we
have Z2 → ZT

4 → ZT
2 , converting to a continuum language

becomes Z2 → E(d ) → O(d ).
For example, Sec. III E’s CII class symmetry extension

(3.55) and (3.56), and AIII even νAIII ∈ Z4 class studied in
Ref. [3]’s Sec. 4, can be understood by including the space-
time symmetry in the continuum as the following extensions
N → G̃Tot → GTot:

CII: Z2 → EPin ×ZF
2

SU(2)F

→ Pin−ZF
2 SU(2)F ,

TABLE VI. Follow Ref. [48], we list down the (space-time)
bundle constraints for various space-time structures. Here we de-
note w j ≡ w j (T M ) are the jth Stiefel-Whitney (SW) classes of the
tangent bundle T M of the space-time manifold M. The product of
cohomology classes as w2

1 ≡ w1(T M ) ∪ w1(T M ) is the cup prod-
uct. The free here means no restriction which can be a nontrivial
cohomology class.

Group w1 w2
1 w2

SO(d ) 0 0 Free
Spin(d ) 0 0 0
O(d ) Free Free Free
E(d ) Free 0 Free
Pin+(d ) Free Free 0
Pin−(d ) Free w2

1 + w2 = 0
EPin(d ) Free 0 0

Z2 → EPin ×ZF
2

(
U(1) � ZC

4

)
ZF

2

→ Pin−ZF
2

(
U(1) � ZC

4

)
ZF

2

,

AIII: Z2 → EPin ×ZF
2

U(1)F → Pin− ×ZF
2

U(1)F ,

in principle: Z2 → E(d ) → O(d ). (6.8)

Here, d = 2. The above extension works because the
exp( iπ (w1)2) is a nontrivial topological invariant in �O

2 but
becomes trivial by pulling it back to �E

2 due to the constraint
(w1)2 = 0 for E(d ) structure, see Table VI. More generally,
the cocycle (w1)2 becomes a coboundary, thus (w1)2 = δβ1,
which splits into one lower-dimensional 1-cochain β1 under
the pullback trivialization.21

C. 1 + 1d supersymmetry extension: Lift Pin− to DF,T
8 Pin

for even νBDI ∈ Z8 class

We have given a discrete group interpretation of DF,T
8 of

Table IV and the extension:

ZB
2 → (

DF,T
8 ≡ ZT

4 � ZF
2

) → ZT
2 × ZF

2 .

Now we will like to include the continuous SO(d ) sector in
order to generalize our formulation to the continuum QFT.
Note that DF,T

8 Pin(d ) contains the ingredients

ZF
2 � SO(d ) = Spin(d ),

SO(d ) � ZTB
4 = E(d ),

DF,T
8 ≡ ZT

4 � ZF
2 .

(6.9)

However, there is a caveat: the short exact sequence

1 → Z2 → G̃Tot → Pin−(d ) → 1

is classified by G̃Tot = Z2 �ρ,ϕ Pin−(d ) controlled by no
ρ ∈ GTot → Aut(Z2) = 0, but only by a 2-cocycle ϕ ∈
H2(BPin−(d ),Z2) = Z2: (1) the trivial ϕ gives G̃Tot = Z2 ×
Pin−(d ) and (2) the nontrivial ϕ = w2

1 gives the G̃Tot =
EPin(d ).

So naively G̃Tot has only two solutions, Z2 × Pin−(d ) and
EPin, there is no DF,T

8 Pin. How can we make sense the exten-
sion from Pin−(d ) to DF,T

8 Pin(d )?22

21More generally in a multiplicative notation, in terms of 2-cocycle
with U(1) coefficient: ω2 = (−1)

∫
(w1 )2

, we mean the ω2 = δα1 can
split into one lower-dimensional 1-cochain α1 under the pullback
trivialization.

22We should clarify that our DF,T
8 Pin(d ) is distinct from the

DPin(d ) studied in Refs. [49,50]. The DF,T
8 Pin(d ) contains a DF,T

8 ≡
ZT

4 � ZF
2 , where fermion parity is not at the DF,T

8 ’s center. The
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The answer comes to the subtle fact that the time-reversal
T in DF,T

8 has to switch between bosonic and fermionic sec-
tors, thus a supersymmetry extension comes in. We can write
down how the symmetry operator S of DF,T

8 Pin group acts on
the state vectors of Hilbert space

H = HB ⊕ HF ,

spanned by two sectors, the bosonic sector |B〉 with T 2 = −1,
the fermionic sector |F 〉 with T 2 = −1. Again it is practical
to define the Hilbert space on a flat space on a Rd−1 with a
continuous time t on R1. Then we find the S acts on state
vectors living on the Rd−1 generating the following groups
for each sector.23 (1) The unitary ZF

2 generator is

PF = (−1)F =
(

1 0
0 −1

)
= σz, which acts on

(
[l]|B〉
|F 〉

)
.

(6.12)

We omit a square identity matrix 1 that acts on the whole
Hilbert space of |B〉 and |F 〉 (fermionic and bosonic sec-
tors have equal Hilbert space dimensions), so precisely PF =
σz ⊗ 1.

(2) The antiunitary ZT
4 generator, with complex conjuga-

tion K , is

T =
(

0 − i
i 0

)
K = σyK , which acts on

(
[l]|B〉
|F 〉

)
, (6.13)

or precisely T = (σy ⊗ 1)K . The T switches between |B〉 and
|F 〉.

(3) The DF,T
8 ≡ ZT B

4 � ZF−
2 is generated by {T , PF |T 4 =

P2
F = 1, PFT PF = T 3 = −T }. Note that T 2 = −1 for all

bosonic and fermionic states.

DPin(d ) contains a different D8 which is D8 = (ZF+
2 × ZF−

2 ) �ρ,0

ZT
2 , where ρ is a nontrivial ZT

2 action on Aut(ZF+
2 × ZF−

2 ) with two
kinds of fermion parity ZF+

2 × ZF−
2 at the D8’s center. In fact, in

this paper, we will not pursue a Euclidean space-time realization of
DF,T

8 Pin(d ). We do not yet know whether the full version DF,T
8 Pin(d )

(with the full space-time rotation SO(d )) exists mathematically.
Since we do not specify the full dd space-time rotational part, we
will denote it as DF,T

8 Pin from now on. We shall only discuss the
DF,T

8 Pin symmetry generator acts on the states in the Hilbert space.
23We represent the complex and Majorana fermionic operators

acting on two-dimensional Hilbert space ([l]|B〉
|F 〉 ) as

ψ ≡
(

0 1
0 0

)
≡ σ− ≡ (σx + iσy )

2
,

ψ† ≡
(

0 0
1 0

)
≡ σ+ ≡ (σx − iσy )

2
,

F ≡ NF ≡ ψ†ψ ≡ σ+σ− ≡
(

0 0
0 1

)
. (6.10)

γ =
(

0 1
1 0

)
= σx, γ̄ =

(
0 − i
i 0

)
= σy,

PF = (−1)F = i γ̄ γ = − iγ γ̄ =
(

1 0
0 −1

)
= σz. (6.11)

The following matrix representations of higher-dimensional Hilbert
spaces are the direct parallel story of two-dimensional Hilbert space.

(4) The Spin group has elements Srot acting on the Hilbert
space associated with a Rd−1 space:

Srot =
(

SO(d − 1) 0
0 Spin(d − 1)

)
acts on

(
[l]|B〉
|F 〉

)
.

(6.14)
The PF is the Z2 center of Spin group.

Combining the group elements PF , T , and Srot together, we
generate the full structure of DF,T

8 Pin that acts on the assume
Hilbert space H = HB ⊕ HF associated with the Rd−1 space.
We name such an extension as a supersymmetry extension
when we require some of the group elements (here T ) per-
mutes bosonic and fermionic sectors. Formally, we propose
that by pulling back Pin− to DF,T

8 Pin via the supersymmetry
extension, we can trivialize the even ν ∈ �Pin−

2 = Z8 whose
cobordism invariant Eq. (6.5) can be written as

exp

(
i

2π2

8
ABK

)∣∣∣∣
M2

� exp

(
i

2π

4
η′PD(w1(T M ))

)∣∣∣∣
M2

.

(6.15)

The η′ is the 1d cobordism invariant of �
Spin×Z2

Z4

1 = Z4,
which is a Z4 extended version of the η̃ (which is the 1d in-
variant of �

Spin
1 = Z2). See more discussions about cobordism

invariants in Sec. VII A.

D. 1 + 1d supersymmetry extension: Lift Pin+ to MF,T
16 Pin

for odd νDIII ∈ Z2 class

We have given a discrete group interpretation of MF,T
16 of

Table IV via an extension:

Z4 → (
MF,T

16 ≡ ZT F
4 � Z4

) → ZT F
4 .

Similar to Sec. VI C, we write down how the symmetry oper-
ator S of MF,T

16 Pin group acts on the state vectors of Hilbert
space24

H = HB ⊕ HF ,

spanned by two sectors, the bosonic sector |B〉 and the
fermionic sector |F 〉 both with T 4 = −1 and T 8 = +1. Again
it is practical to define the Hilbert space on a flat space on a
Rd−1 with a continuous time t on R1. Then we find the S acts
on state vectors living on the Rd−1 generating the following
groups for each sector. (1) The unitary ZF

2 generator is the
same as Eq. (6.12).

(2) The antiunitary ZT
8 generator, with complex conjuga-

tion K , is

T = 1√
2

(
0 1 + i

1 − i 0

)
K =

(
σx − σy√

2

)
K,

which acts on

(
[l]|B〉
|F 〉

)
, (6.16)

24Similar to Footnote 22, in this paper, we will not pursue a Eu-
clidean space-time realization of MF,T

16 Pin(d ). We do not yet know
whether the full version MF,T

16 Pin(d ) (with the full space-time rota-
tion SO(d )) exists mathematically. Since we do not specify the full
dd space-time rotational part, we will denote it as MF,T

16 Pin from now
on. We shall only discuss the MF,T

16 Pin symmetry generator acts on
the states in the Hilbert space.
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or precisely T = (( σx−σy√
2

) ⊗ 1)K . The T switches between
|B〉 and |F 〉.

(3) The MF,T
16 is generated by {T , PF |T 8 = P2

F =
1, PFT PF = T 5 = −T }. Note that T 2 = − iPF = − i (σz ⊗
1), while T 4 = −1 for all bosonic and fermionic states.

(4) The Spin group has elements Srot the same as
Eq. (6.14), with PF its Z2 center.

Combining the group elements PF , T , and Srot together, we
generate the full structure of MF,T

16 Pin that acts on the assume
Hilbert space H = HB ⊕ HF associated with the Rd−1 space.
Again such an extension is a supersymmetry extension when
we require some group element (here T ) permutes bosonic
and fermionic sectors. Formally, we propose that we can trivi-
alize the odd ν ∈ �Pin+

2 = Z2 class whose cobordism invariant
is the same as in Eq. (6.15), by pulling back Pin+ to MF,T

16 Pin
via a supersymmetry extension.

VII. CONCLUSION AND HIGHER-DIMENSIONAL
GENERALIZATION

Let us discuss the higher-dimensional generalization of the
fermionic symmetry extension and supersymmetry extension.

Earlier we have studied ZT
2 × ZF

2 (Pin−) and ZT F
4 (Pin+)

and their fermionic symmetry extension and supersymmetry
(SUSY) extension via a finite group extension. In fact, there
are maps known as Smith homomorphisms in any dimension
relating the following SPT classes and symmetry groups (see
Refs. [23,51,52] and also Refs. [26,48]):

(n + 3)d unitary Z2 × ZF
2

⇒ (n + 2)dantiunitary ZT
2 × ZF

2

⇒ (n + 1)d unitary ZF
4

⇒ nd antiunitary ZT F
4 ⇒ . . . (7.1)

By an adding SO rotational symmetry in terms of continuous
groups, Eq. (7.1) becomes

(n + 3)d Spin × Z2 ⇒ (n + 2)d Pin−

⇒ (n + 1)dSpin ×ZF
2
Z4

⇒ nd Pin+ ⇒ . . . (7.2)

Smith homomorphism maps include the maps between SPT
classifications of these symmetries [23,48,51,52]:

�Pin+
8 = Z32 × Z2 → �

Spin×Z2
7 = Z16,

�
Spin×Z2
7 = Z16 → �Pin−

6 = Z16,

�Pin−
6 = Z16 → �

Spin×Z2
Z4

5 = Z16,

�
Spin×Z2

Z4

5 = Z16 → �Pin+
4 = Z16,

�Pin+
4 = Z16 → �

Spin×Z2
3 = Z8,

�
Spin×Z2
3 = Z8 → �Pin−

2 = Z8,

�Pin−
2 = Z8 → �

Spin×Z2
Z4

1 = Z4,

�
Spin×Z2

Z4

1 = Z4 → �Pin+
0 = Z2. (7.3)

In fact, as found in Refs. [48,53] and [53], the Z2 extensions
can trivialize many SPT classes — thus this symmetry ex-
tension can help to construct the symmetry-extended gapped
boundaries (lifting all boundary zero modes):

1 → Z2 → EPin(d ) → Pin± → 1. (7.4)

1 → Z2 → Spin(d ) × Z4 →
Spin(d ) × Z2

or
Spin(d )×Z4

Z2

→ 1. (7.5)

In the following sections, we make some comments about
these extensions and the generalization to supersymmetry ex-
tensions, for various dimensions.

A. 1 + 1d

For d = 2 or 1 + 1d: In the bulk part of our work, we had
focused on d = 2 or 1 + 1d cases. We have ZT

2 × ZF
2 SPTs

classified by �Pin−
2 = Z8, which involves 3d SPT cobordism

invariant with ν ∈ Z8 [23]:

exp

(
2π iν

8

∫
M2

ABK

)
. (7.6)

When ν = 4, we can show that the four layers of Kitaev
fermionic chain (ν = 4) has SPT invariants 4ABK relates
to the bosonic Haldane spin chain w1(T M )2 up to a trivial
gapped fermionic sector,

exp

(
2π i4

8

∫
M2

ABK

)
= exp

(
π i

∫
M2

w1(T M )2

)
.

such as in Pin− which becomes trivialized w1(T M )2 = δμ as
a coboundary in EPin, via the group extension 1 → Z2 →
EPin(d ) → Pin− → 1, see the result of Ref. [48], Secs. VI A
and VI B.

When ν = 2, we can show that 2ABK is related to
w1(T M )η′ ≡ η′ PD(w1(T M )) via

exp

(
2π i2

8

∫
M2

ABK

)
= exp

(
π i

2

∫
M2

η′ PD(w1(T M ))

)
.

The η′ is the 1d cobordism invariant of �
Spin×Z2

Z4

1 = Z4, a
Z4 enhancement of the η̃. The η̃ is the 1d cobordism invariant
of �

Spin
1 = Z2 which assigns different spin structures with

different values:

for the periodic (Ramond) boundary condition, η̃ = 1.

for the antiperiodic (Neveu-Schwarz) boundary condition, η̃ = 0.

The η′ PD(w1(T M )) is also a Z4 class like η′. In Sec. III B,
we have shown this 2 ABK invariant can be trivialized by a

SUSY extension involving a discrete DF,T
8 that we introduce

(or we denote it as a DF,T
8 Pin in the continuum).
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When ν = 1, our method does not apply. However,
Dijkgraaf-Witten [54] suggests that 2d topological gravity can
lift up a single Majorana zero mode and thus trivialize the
Kitaev chain. Other related ten Cartan symmetry classes and
2d topological gravity are explored subsequently by Stanford-
Witten [55].

B. 2 + 1d

For d = 3 or 2 + 1d: we have Z2 × ZF
2 SPTs classified by

�
Spin×Z2
3 = Z8, which involves 3d SPT cobordism invariant

with ν ∈ Z8 [23,56]:

exp

(
2π iν

8

∫
M3

ABK(PD(A))

)
, (7.7)

where ABK is the Arf-Brown-Kervaire (ABK) invariant and
A is a Z2 gauge field so it is a mod 2 cohomology class A ∈
H1(M,Z2).

When ν = 4, Ref. [4,48] shows that the 4ABK(PD(A))
is related to A3. This is the same generator as a 2 + 1d
bosonic SPTs with Z2 symmetry given by H3(BZ2, U(1)) =
Z2, namely up to a trivial gapped fermionic sector

exp

(
2π i4

8

∫
M3

ABK(PD(A))

)
= exp

(
π i

∫
M3

A3

)
.

When ν = 2, the 2ABK(PD(A)) is related to A2η′ ≡
η′(PD(A2)). Namely,

exp

(
2π i2

8

∫
M3

ABK(PD(A))

)
=exp

(
π i

2

∫
M3

η′(PD(A2))

)
.

Again, the η′ is the 1d cobordism invariant of �
Spin×Z2

Z4

1 =
Z4. By pulling back Spin × Z2 to Spin × Z4, we can trivialize
A2 by a Z2 extension, thus we also trivialize all the even
classes ν = 4, 2 at once [48,53].

When ν = 1 or odd, it will be interesting to check whether
our SUSY extension method applies.

C. 3 + 1d

For d = 4 or 3 + 1d: We have ZT F
4 SPTs classified by

�Pin+
4 = Z16, which involves 4d SPT cobordism invariant with

ν ∈ Z16 [18,23]:

exp

(
2π iν

16

∫
M4

η

)
, (7.8)

where η is the famous eta invariant
When ν = 8, the 8η is related to w1(T M )4 up to trivial

gapped fermions, namely,

exp

(
2π i8

16

∫
M4

η

)
= exp

(
π i

∫
M4

w1(T M )4

)
.

When ν = 4, the 4η is related to w1(T M )3η′ ≡
η′(PD(w1(T M )3), namely,

exp

(
2π i4

16

∫
M4

η

)
= exp

(
π i

2

∫
M4

η′(PD(w1(T M )3)

)
.

When ν = 2, the 2η is related to w1(T M )2ABK ≡
ABK(PD(w1(T M )2), namely,

exp

(
2π i2

16

∫
M4

η

)
= exp

(
π i

4

∫
M4

ABK(PD(w1(T M )2)

)
.

By pulling back Pin+ to EPin, we can trivialize w1(T M )2 by
a Z2 extension, thus we also trivialize all the even classes ν =
8, 4, 2 at once [48,53]

When ν = 1 or odd, it will be interesting to check whether
our SUSY extension method applies.

D. 4 + 1d

For d = 5 or 4 + 1d: We have ZF
4 SPTs classified by

�
Spin×Z2

Z4

5 = Z16, which involves 5d SPT cobordism invari-
ant with ν ∈ Z16 [26,48,51]:

exp

(
2π iν

16

∫
M5

η(PD(A))

)
. (7.9)

When ν = 8, the 8η(PD(A)) is related to A5 up to trivial
gapped fermions, namely,

exp

(
2π i8

16

∫
M5

η(PD(A))

)
= exp

(
π i

∫
M5

A5

)
.

When ν = 4, the 4η(PD(A)) is related to A4η′ ≡
η′(PD(A4)), namely,

exp

(
2π i4

16

∫
M5

η(PD(A))

)
= exp

(
π i

2

∫
M5

η′(PD(A4))

)
.

When ν = 2, the 2η(PD(A)) is related to A3Arf ≡
ABK(PD(A3)), namely,

exp

(
2π i2

16

∫
M5

η(PD(A))

)
= exp

(
π i

4

∫
M5

ABK(PD(A3))

)
.

By pulling back Spin ×Z2 Z4 to Spin × Z4, we can trivialize
A3 by a Z2 extension, thus we also trivialize all the even
classes ν = 8, 4, 2 at once [48,53].

When ν = 1 or odd, it will be interesting to check whether
our SUSY extension method applies.

These results of 4d Z16 ’t Hooft anomalies have applica-
tions to the 3 + 1d Beyond the Standard model physics and
nonperturbative interactions [57–62]. Our work suggests that
the Z2 symmetry extension [48,53] and possible SUSY exten-
sions can help to compensate the ν ∈ Z16 ’t Hooft anomaly
via:

a 3+1d symmetry-extended TQFT by trivializing the ν ∈ Z16 anomaly via the symmetry-extension [4].

a 3+1d symmetric anomalous gapped TQFT with the ν ∈ Z16 ’t Hooft anomaly.

The 3 + 1d symmetric anomalous gapped TQFT with the ν ∈
Z16 ’t Hooft anomaly may only require a Z2 gauge group if
the symmetry extension only requires a Z2-extension.

If there is no ’t Hooft anomaly, namely ν = 0 mod 16,
then we can in principle have a 3 + 1d symmetric gap bound-
ary preserving the Spin ×Z2 Z4 symmetry with a trivial order
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(no topological order, no TQFT, no symmetry-breaking order,
etc.). See the related work on the 3 + 1d physics along this
research direction [63–68].

E. 5 + 1d

For d = 6 or 5 + 1d: We have ZT
2 × ZF

2 SPTs classified by
�Pin−

6 = Z16, which involves 6d SPT invariant with ν ∈ Z16

[53]:

exp

(
2π iν

16

∫
M6

η(PD(w1(T M )2))

)
. (7.10)

When ν = 8, the 8η(PD(w1(T M )2))) is related to
w1(T M )6 up to trivial gapped fermions, namely,

exp

(
2π i8

16

∫
M6

η(PD(w1(T M )2))

)

= exp

(
π i

∫
M6

w1(T M )6

)
.

When ν = 4, the 4η(PD(w1(T M )2))) is related to
w1(T M )5η′ ≡ η′(PD(w1(T M )6)), namely

exp

(
2π i4

16

∫
M6

η(PD(w1(T M )2))

)

= exp

(
π i

2

∫
M6

η′(PD(w1(T M )5))

)
.

When ν = 2, the 2η(PD(w1(T M )2)) is related to
w1(T M )4ABK ≡ ABK(PD(w1(T M )4)), namely,

exp

(
2π i2

16

∫
M6

η(PD(w1(T M )2))

)

= exp

(
π i

4

∫
M6

ABK(PD(w1(T M )4))

)
.

When ν = 1, we have the η(PD(w1(T M )2)). However,
by pulling back Pin− to EPin, we can trivialize w1(T M )2

by a Z2 extension, thus we also trivialize all these classes
ν = 8, 4, 2, 1 and any ν ∈ Z16 at once [48,53].

F. 6 + 1d

For d = 7 or 6 + 1d: We have Z2 × ZF
2 SPTs classified

by �
Spin×Z2
7 = Z16, which involves 7d SPT invariant with ν ∈

Z16 [53]:

exp

(
2π iν

16

∫
M7

η(PD(A3))

)
. (7.11)

When ν = 8, the 8η(PD(A3)) is related to A7 up to trivial
gapped fermions, namely,

exp

(
2π i8

16

∫
M7

η(PD(A3))

)
= exp

(
π i

∫
M7

A7

)
.

When ν = 4, the 4η(PD(A3)) is related to A6η̃ ≡
η̃(PD(A6)), namely,

exp

(
2π i4

16

∫
M7

η(PD(A3))

)
= exp

(
π i

2

∫
M7

η′(PD(A6))

)
.

When ν = 2, the 2η(PD(A3)) is related to A5ABK ≡
ABK(PD(A5)), namely,

exp

(
2π i2

16

∫
M7

η(PD(A3))

)

= exp

(
π i

4

∫
M7

ABK(PD(A5))

)
.

When ν = 1, we have the η(PD(A3)). However, by pulling
back Spin × Z2 to Spin × Z4, we can trivialize A3 by a Z2 ex-
tension, thus we also trivialize all these classes ν = 8, 4, 2, 1
and any ν ∈ Z16 at once [48,53].

G. Smooth (DIFF) manifolds to topological (TOP) manifolds

Sec. VII C shows that the following extension can trivial-
ize the cobordism invariant of �Pin+

4 = Z16 when ν is even
(2, 4, 6, 8, 10, 12, 14, 16) ∈ Z16:

Z2 → EPin → Pin+, (7.12)

because we can trivialize the w2
1 (T M ) in EPin. The EPin

is introduced in Ref. [48] and reviewed in Sec. VI A.
Is there any way we can trivialize when the ν is odd
(1, 3, 5, 7, 9, 11, 13, 15) ∈ Z16?

(1) One known way is by the construction of Ref. [9],
which shows that the 3d SO(3)3,± Chern-Simons (CS) theory
can saturate the ’Hooft anomaly of ν = ±3 ∈ Z16. The ± in
3d SO(3)3,± CS means two version of time-reversal symmetry
assignment.

(2) Here we provide another possibility by looking into
more general categories of manifolds. The bordism group
�Pin+

4 = Z16 classifies the 4d smooth and differentiable
(DIFF) manifolds with Pin+ structures. However, Ref. [69]
looks at the bordism group

�
TopPin+
4 = Z8 × Z2 (7.13)

which classifies the 4d nontriangulable topological (Top)
manifolds also with Pin+ structures. It turns out that what
survives as Z8 in �

TopPin+
4 is the even ν class in �Pin+

4 = Z16.
Which means all the odd ν class in �Pin+

4 = Z16 may be “triv-
ialized” in the more general category of topological manifolds
in �

TopPin+
4 .25

Since EPin trivializes the even ν ∈ Z16 of �Pin+
4 = Z16,

while the TopPin+ may trivialize odd ν ∈ Z16 of �Pin+
4 = Z16,

therefore we expect that the combined categories of topolog-
ical manifolds with the extended EPin structure, which we
name TopEPin, may be capable to trivialize all ν ∈ Z16 of
�Pin+

4 = Z16. For future work, it will be illuminating to study
the bordism group �

TopEPin
4 further.

25The remained Z2 in �
TopPin+
4 = Z8 × Z2 is given by the nontrivial

Kirby-Siebenmann class κ ∈ H4(M,Z2), whose manifold generator
is the Freedman’s E8 manifold. The E8 manifold is a unique com-
pact, simply connected 4d topological manifold whose intersection
form is the positive-definite even unimodular rank-8 matrix of the E8
lattice. Th E8 manifold does not have a smooth DIFF or piecewise
linear PL structure.
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H. Intrinsic fermionic gapless topological phase protected
by supersymmetry

Recent work [70] points out the relation between (1)
the boundary of D + 1-dimensional SPTs whose ’t Hooft
anomaly can be trivialized by symmetry extension, and (2)
the intrinsic gapless D-dimensional SPTs living in one lower
dimension.

Reference [70] focus on the bosonic SPT example, here
we can propose a novel intrinsically fermionic “gapless” SPTs
protected by supersymmetry.

Take the 0 + 1d boundary of the 1 + 1d 2-layer of Kitaev
chains, we had found that

the bulk ZT
2 × ZF

2 symmetry can be extended to the boundary DF,T
8 with ’t Hooft anomaly trivialized,

the bulk ZT F
4 symmetry can be extended to the boundary MF,T

16 with ’t Hooft anomaly trivialized.

So there should be a 0 + 1d intrinsic fermionic “gapless”
SPTs protected by supersymmetry DF,T

8 or MF,T
16 , living in

0 + 1d (without the requirement of an extra dimension 1 +
1d). “Gapless” in 0 + 1d only means degenerate zero en-
ergy modes. How to find such a 0 + 1d intrinsic fermionic
“gapless” SPTs with degenerate zero energy modes? We can
consider N = 0 mod 8-layer of Kitaev chains, such as the
8-layer of 1 + 1d Kitaev chains. The 8-layer of 1 + 1d Kitaev
chains can be gapped in the bulk with a trivial order without
any SPTs. Thus, the 0 + 1d boundary of 1 + 1d 8-layer Kitaev
chains must be intrinsically 0 + 1d.

Say we consider the Hilbert space of 8 Majorana fermion
operators: γ1, γ1′ , γ2, γ2′ , γ3, γ3′ , γ4, γ4′ (on the boundary of
8-layer of Kitaev chains). The eight Majorana fermions have
at most GSD = 24 = 16 ground states. However, we can turn
on the 0 + 1d time-reversal symmetric Hamiltonian.

(1) Consider the 0 + 1d Hamiltonian

H ′
BB = (γ1γ1′γ2γ2′ ) + (γ3γ3′γ4γ4′ ) + (�Sα

B · �Sβ
B

)
= (−PF,1 PF,2) + (−PF,3 PF,4) + (�Sα

B · �Sβ
B

)
≡ H ′

B,11′22′ + H ′
B,33′44′ + (�Sα

B · �Sβ
B

)
. (7.14)

The PF,a = − iγaγa′ is the fermion parity from the a-th Ma-
jorana pairs, for a = 1, 2, 3, 4. The H ′

BB leaves us a single
bosonic ground state (GSD = 1) with a total fermion parity
PF = PF,1PF,2PF,3PF,4 = +1. The reasoning is the following.

(a) The first interaction term H ′
B,11′22′ ≡ (γ1γ1′γ2γ2′ ) in

H ′
BB energetically selects the bosonic ground state sector

in PF,1 PF,2 = +1 out of the GSD = 22 = 4 from the first
four Majorana γ1, γ1′ , γ2, γ2′ . There are two bosonic sectors:
PF,1 = PF,2 = +1 and PF,1 = PF,2 = −1. In short, we gap the
other two fermionic sectors out of GSD = 4 to leave with only
bosonic GSD = 2 remained for the first four Majorana modes.

(b) The second interaction term H ′
B,33′44′ ≡ (γ3γ3′γ4γ4′ ) in

H ′
BB also selects the bosonic ground state sector in PF,3 PF,4 =

+1 out of the GSD = 22 = 4 from the second four Majorana
γ3, γ3′ , γ4, γ4′ . We gap the other two fermionic sectors out of
GSD = 4 to leave with only bosonic GSD = 2 remained for
the last four Majorana modes.

(c) So far the first two interaction terms H ′
B,11′22′ + H ′

B,33′44′
in H ′

BB energetically select 4 bosonic ground states out of
the original 16 states. Out of the bosonic GSD = 4, the first
four Majorana modes form a bosonic doublet, while the last
Majorana modes form another bosonic doublet. Each bosonic
doublet is the same degree of freedom as a J = 1

2 spin [as

a representation of SU(2)] at the one end of Haldane spin-1
chain. We can write these two SU(2) bosonic spin- 1

2 operators

as, �Sα
B and �Sβ

B , respectively. Since the two bosonic doublets
can form a spin-0 singlet and a spin-1 triplet (via 1

2 B
⊗ 1

2 B
=

0B ⊕ 1B), we can gap the spin-1 triplet via the third interaction
term, the Heisenberg-type interaction (�Sα

B · �Sβ
B ). Thus turning

on the full H ′
BB, we end up with only a bosonic sector of spin-0

singlet with GSD = 1. Let us call this single bosonic ground
state sector |B0〉.

(d) In fact the H ′
B of Eq. (7.14) can be rewritten as 14

terms of four-Majorana interactions similar to Ref. [32], firstly
known by Fidkowski-Kitaev.

(2) We can also tune the 0 + 1d Hamiltonian via different
interactions:

H ′
FF = (−γ1γ1′γ2γ2′ ) + ( − γ3γ3′γ4γ4′

) + (�Sα
F · �Sβ

F

)
= (PF,1 PF,2) + (PF,3 PF,4) + (�Sα

F · �Sβ
F

)
≡ H ′

F,11′22′ + H ′
F,33′44′ + (�Sα

F · �Sβ
F

)
. (7.15)

The H ′
F,11′22′ gives two fermionic ground states with

(PF,1 PF,2) = −1, and the H ′
F,33′44′ gives another two

fermionic ground states with (PF,3 PF,4) = −1. Here we write
these two SU(2) fermionic spin- 1

2 operators as, �Sα
F and �Sβ

F ,
respectively. However, the full fermion parity of each of these
GSD = 4 is still PF = PF,1PF,2PF,3PF,4 = +1 thus bosonic.
We can further gap the spin-1 triplet (three ground states) via
the spin-1 interaction in 1

2 F
⊗ 1

2 F
= 0B ⊕ 1B, which can be

constructed out of two fermionic spin- 1
2 doublets as (�Sα

F · �Sβ
F ).

Thus turning on the full H ′
FF , we still end up with only a

bosonic sector of spin-0 singlet with GSD = 1.
(3) An interesting question is whether we can tune Hamil-

tonian ending up with only a fermionic sector with GSD = 1?
Consider the 0 + 1d Hamiltonian

H ′
BF = (γ1γ1′γ2γ2′ ) + (−γ3γ3′γ4γ4′ ) + (�Sα

B · �Sβ
F

)
= (−PF,1 PF,2) + (+PF,3 PF,4) + (�Sα

B · �Sβ
F

)
≡ H ′

B,11′22′ + H ′
F,33′44′ + (�Sα

B · �Sβ
F

)
. (7.16)

The H ′
B,11′22′ gives two bosonic ground states with

(PF,1 PF,2) = +1, and the H ′
F,33′44′ gives another two

fermionic ground states with (PF,3 PF,4) = −1. However,
the full fermion parity of each of these GSD = 4 is
PF = PF,1PF,2PF,3PF,4 = −1 fermionic. We further gap
the spin-1 triplet (3 ground states) via the spin-1 interaction
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1
2 B

⊗ 1
2 F

= 0F ⊕ 1F constructed out of one bosonic and one

fermionic spin- 1
2 doublet as (�Sα

B · �Sβ
F ). Thus turning on the full

H ′
BF , we end up with only a fermionic sector of spin-0 singlet

with GSD = 1. Let us call this single fermionic ground state
sector |F0〉.

Similarly, we can also define H ′
FB analogous to Eq. (7.16),

which also ends up with only a fermionic sector of spin-0
singlet with GSD = 1.

The combined Hamiltonian above, by tuning the coupling
appropriately

H ′ = gBB H ′
BB + gFF H ′

FF + gBF H ′
BF + gFB H ′

FB + . . .

(7.17)

can energetically select ground states out of the original 16
ground states. With certain appropriate couplings, when the
bosonic and fermionic states, |B0〉 and |F0〉, are both favored
as ground states, we have GSD = 2. We can imagine a process
when the |B0〉 is favored on one side of coupling choice,
while the |F0〉 is favored on the other side of coupling choice
(both have GSD = 1); while at some critical coupling, we
have the GSD = 2 formed by a two-dimensional Hilbert space
H = HB ⊕ HF = {|B0〉, |F0〉}. Although we are studying the
boundary of 8-layer Kitaev chains, we find with appropriate
interactions, we land on the same two-dimensional Hilbert
space H = {|B0〉, |F0〉} for 2-layer of Kitaev chain studied in
Secs. III and V!

As mentioned, the boundary of 8-layer Kitaev chains is
intrinsically 0 + 1d. Thus, this theory at the critical cou-
pling with a Hilbert space H = {|B0〉, |F0〉}, can be regarded

as a critical “gapless” intrinsically 0 + 1d fermionic SPTs
protected by supersymmetry (here gapless only means the de-
generate ground states in 0 + 1d)! Depends on the assignment
of time-reversal T symmetry shown in Sec. III, the supersym-
metry here can be DF,T

8 or MF,T
16 .

We leave the generalization of this understanding on a
critical “gapless” intrinsically fermionic SPTs protected by
supersymmetry in higher-dimensions for future work.

I. Final comments and future directions

We conclude by enlisting some additional comments and
future directions.

(1) All intrinsically fermionic 1 + 1d SPT phases have
supersymmetric 0 + 1d boundaries. (a) In the present work,
especially in Sec. III and Sec. V, we have shown by examples
that when the number of layers of 1 + 1d Kitaev chains is
8N + 2 or 8N + 6 (namely the layer number is 2 mod 4),
then the 0 + 1d boundary theory exhibits at least an N = 2
supersymmetric quantum mechanics. In the sense that the
boundary energy spectrum always have bosonic energy eigen-
state |μ,+〉 and fermionic energy eigenstate |μ,−〉 paired
together for every eigenenergy Eμ.

(b) In a companion work [36], we prove that “all intrin-
sically fermionic 1 + 1d SPT phases have supersymmetric
0 + 1d boundaries.” Another way to rephrase this result in a
mathematically precise statement is the following:

Consider a 2d fermionic bordism group �
G f ,total

2 with a
total group G f ,total obtained from the extension of a nor-
mal subgroup of fermionic internal G f global symmetry,
and the d-dimensional space-time rotational symmetry [say
O(d )/SO(d ), etc.]26:

1 → G f → G f ,total → O(d ) → 1, with time-reversal symmetry;

or 1 → G f → G f ,total → SO(d ) → 1, without time-reversal symmetry. (7.18)

The fermionic internal G f contains the fermion parity ZF
2 and the bosonic internal Gb, via a central extension:

1 → ZF
2 → G f → Gb → 1. (7.19)

The intrinsically fermionic SPTs, corresponds to the cobordism invariants (representing some invertible TQFTs in field theory) of
�

G f ,total

2 , but those do not overlap with cobordism invariants of fermionic invertible topological order’s bordism group �
Spin
2 (pt ),

nor overlap with those of bosonic SPT’s bordism group �
Gb,total

2 . Here the Gb,total is obtained from

1 → Gb → Gb,total → O(d ) → 1, with time-reversal symmetry;

or 1 → Gb → Gb,total → SO(d ) → 1, without time-reversal symmetry. (7.20)

We can prove that the 0 + 1d boundary of these 1 + 1d cobor-
dism invariants (namely, the invertible TQFTs) of intrinsically
fermionic SPTs must be supersymmetric [36].

(2) Boundary supersymmetry and the symmetry exten-
sion. Various previous works pointed out the fractionalized

26The Spin/Pin group can be obtained via the ZF
2 -extension of O

and SO groups (see Appendix B 1).

boundary symmetry of fermionic SPTs may be related to
supersymmetry [34,71–75].27

27Naively Ref. [34] results look similar to ours, such as Gu’s su-
peralgebra mentioned in his equation (39). However, we can tell the
differences of our result and Gu’s Ref. [34] by comparing the com-
mutativity of time reversal T and fermion parity Pf . Ref. [34] shows
the commutative T Pf = +Pf T (which has no SUSY, in our defi-
nition). Our work shows the anticommutative T Pf = −Pf T which
implies the SUSY quantum mechanics.
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In the present work, we point out that on the boundary of
intrinsic fermionic SPTs, the noncommutative properties be-
tween fermion parity Pf and other symmetry generator (such
as time reversal T ) implies the boundary supersymmetry. (In a
companion work [36], we present a precise proof for this state-
ment.) We also provide a framework based on a generalization
of symmetry extension in terms of group extension [4], to the
case of an extended total group involving supersymmetry—
which we name it a supersymmetry extension.

(3) Quantum criticality and emergent supersymmetry. In
Sec. VII H, we point out a potential relation between the 0 +
1d boundary supersymmetric degenerate ground states can
be regarded as a 0 + 1d intrinsically gapless fermionic SPTs
(here gapless means degenerate in 0 + 1d), indeed also as a
0 + 1d critical theory on the boundary of the 1 + 1d trivial
class of SPTs (by tuning the 0 + 1d boundary Hamiltonian).
This result may be generalizable to other higher dimensions,
thus connecting to the literature [71–75] of quantum critical-
ity and supersymmetry on the boundary of fermionic SPTs.
Hopefully our approach can provide a more systematic and
mathematically precise framework.

(4) ’t Hooft anomalies on the boundary of worldsheet or
worldvolume in string theory. In a different language setting.
we can also apply our results to the fermionic SPTs living on
the 1 + 1d worldsheet of string theory. The 0 + 1d boundary
of worldsheet may have various ’t Hooft anomalies related
to the reflection, time-reversal T , and other symmetries.
These ’t Hooft anomalies impose the constraints on the
consistency of worldsheet and string theories [5,49,50,76,77].
The constraints are tightly connected to the string landscape
vs swampland program, where the cobordism conjecture
plays an important role to restrict the consistency of quantum
gravity [78].

(5) Higher-symmetry extension and fermionic symmetry
extension construction of symmetric gapped boundaries of
SPTs. The present work focus on the ordinary 0-form global
symmetry acting on bosonic and fermionic Hilbert spaces. We
can also attempt to include higher-form generalized global
symmetries [79]. In fact the symmetry extension method had
be generalized to a higher-symmetry extension [6,80–82],
also include fermionic symmetry extension [26,83,84]—these
methods are helpful to construct symmetric gapped bound-
aries of SPTs, as explained in Ref. [4]. By including the super-
symmetry extension, we hope to also construct more general
boundary theories of fermionic SPTs in higher dimensions.
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APPENDIX A: TANTIVASADAKARN-VISHWANATH
MODEL AND THE BASIS CHANGE

Here, we give details of how the model in Sec. IV was
arrived at. We start by writing down the model constructed
by Tantivasadakarn and Vishwanath in Ref. [35]. They start
with the Hilbert space of one fermion on odd sites (γ , γ̄ ), one
fermion on odd sites (η, η̄) and one qubit on even sites and the
following trivial Hamiltonian

H0 = −
∑
even j

σ x
j − i

∑
even j

η̄ jη j − i
∑
odd j

γ̄ jγ j . (A1)

The SPT Hamiltonian is obtained from H0 by a finite depth
quantum circuit W . Up to an inconsequential difference in
minus signs, we can write W considered by the authors of
Ref. [35] as a two-layer FDUC:

W = W2W1, (A2)

W1 =
∏

even j

[|0〉〈0| j + |1〉〈1| j i η̄ jξ j j+1γ j+1], (A3)

W2 =
∏

even j

[|0〉〈0| j + |1〉〈1| j iγ j−1η̄ j]. (A4)

Where |0/1〉 are the eigenstates of σ z with eigenvalues
(−1)0/1. The ξ j j+1 = ±1 are Z2 valued background fields that
denote the spin structure to be Ramond (periodic) or Neveu-
Schwarz (antiperiodic) depending on whether

∏
j ξ j j+1 = +1

or
∏

j ξ j j+1 = −1, respectively. The time-reversal symmetry
T is

T =
∏

even j

σ x
j K. (A5)

It can easily be checked that T does not commute with W1 or
W2. However, depending on the spin structure, T commutes
(Neveu-Schwarz) or anticommutes (Ramond) with W

T WT −1 = −
(∏

j

ξ j j+1

)
W. (A6)

Regardless of spin structure, the SPT Hamiltonian H =
W H0W † shown below commutes with T .

H = − i
∑
odd j

σ z
j−1γ̄ jγ jσ

z
j+1

+
∑
odd j

ξ j+1 j+2γ j (σ
z
j+1σ

x
j+1)γ j+2σ

z
j+3 − i

∑
even j

η̄ jη j .

(A7)

Notice that the term
∑

even j η̄ jη j remains unchanged from its
trivial form and only plays an intermediary role in defining
the FDUC, W . It is ignored in the final form by the authors
of [35]. However, we shall retain it. To get the form of the
Hamiltonian and symmetry presented in the main text, we
redefine the Hilbert space by considering both the fermions
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to live on the sites and qubits to live on the links with the
following relabeling:

(γ̄2k+1, γ2k+1) �→ (γ̄↓,k, γ↓,k ), (η̄2k+2, η2k+2) �→ (γ̄↑,k, γ↑,k ),

�σ2k+2 �→ �σk,k+1. (A8)

Finally, by performing a change-of-basis using W2, we get the
form of the Hamiltonian and symmetry operators used in the
main text.

W2HW †
2 = − i

∑
j

[
σ z

j, j+1(γ̄↑, jγ↑, j + γ̄↓, j+1γ↓, j+1)

+ σ x
j, j+1γ̄↑, jγ↓, j+1

]
, (A9)

W2T W †
2 =

∏
j

( iγ↓, j γ̄↑, j )σ
x
j, j+1 K. (A10)

APPENDIX B: APPENDICES FOR SEC. VI

1. Group extension: formal setup

Below we illuminate further the group extension used
throughout our work:

1 → N → G̃ → G → 1. (B1)

We will later include also the continuous space-time symme-
try SO(d ) in the continuum limit28 in terms of

1 → N → G̃Tot → GTot → 1, (B2)

where G̃Tot and GTot can be written in terms of the space-time-
internal symmetry group form of Gspace-time�Ginternal

Nshared
. In Table IV,

Table V, and discussions below, we shorthand the short exact
sequences in Eq. (B1) and Eq. (B2) as N → G̃ → G and N →
G̃Tot → GTot for simplicity.

To precisely specify an extended group

G̃ = N �ρ,ϕ G (B3)

in of Eq. (B1), we need the following data: (1) the normal
subgroup N and the quotient group Q. (2) ρ : G → Aut(N ).
If and only if a nontrivial ρ implies a noncentral extension
Eq. (B1). (3) A 2-cocycle ϕ ∈ H2(BG, N ) in the cohomology
group with the classifying space BG mapping to values in
N (usually defined for an Abelian group) is solved from the
cocycle condition, in the additive form,

0 = δϕ(g1, g2, g3) = (ρ(g1).ϕ(g2, g3)) − ϕ(g1g2, g3)

+ϕ(g1, g2g3) − ϕ(g1, g2)

or in the multiplicative form δϕ(g1, g2, g3) =
(ρ(g1 ).ϕ(g2,g3 ))ϕ(g1,g2g3 )

ϕ(g1g2,g3 )ϕ(g1,g2 ) .

28By the continuous space-time symmetry, we mean the Lorentz
symmetry SO(d − 1, 1) or Euclidean rotational symmetry SO(d )
in the continuum limit. In the condensed matter system with a
discretized lattice, the space-time symmetry, such as continuous ro-
tations, is not usually manifested. We may regard this continuous
space-time symmetry as an emergent symmetry at an intermediate
energy scale of some effective field theories, below the ultraviolet
(UV) high-energy lattice cutoff, but above the infrared (IR) low-
energy field theory. In this work, we mainly do d = 2 or 1 + 1d,
however we will also discuss general d in Sec. VII.

With two group elements in G̃ specified by a doublet
(n1, g1) and (n2, g2) ∈ (N, G), we have the group law

(n1, g1)(n2, g2) = (n1 + ρ(g1).n2 + ϕ(g1, g2), g1 · g2).

Here we use the addition + for the group operation in N , and
the product · for the group operation in G. Here the 2-cocycle
ϕ(g1, g2) specifies how much the group extension is twisted.
We illustrate the precise G̃ = N �ρ,ϕ G for the examples of
Table IV in a footnote.29

2. Bosonic, fermionic, time-reversal, space-time
symmetries and group extensions

We start from elaborating the familiar groups: the con-
tinuous rotation SO(d ),30 the reflection ZTE

2 or time-reversal
ZT

2 , and the fermion parity ZF
2 (See useful discussions in

Refs. [25,86]). Then we can write down the short exact se-
quences relating the familiar groups to O(d ), Spin(d ), and
Pin±(d ), by symmetry group extension along the horizontal
and vertical directions of

.

(B4)
Some remarks about these symmetry groups. (1) The

SO(d ) is a spatial rotation group. The general linear group

29Here let us illustrate the mathematically precise G̃ = N �ρ,ϕ

G for the examples in Table IV: (1) ZT
4 × ZF

2 = Z2 �0,ϕ (ZT
2 ×

ZF
2 ) has no ρ but a nontrivial ϕ ∈ H2(BZT

2 ,Z2) = Z2. We may
denote this generator ϕ = w2

T with wT can be regarded as a time-
reversal background field as a generator from H1(BZT

2 ,Z2) = Z2.
(2) DF,T

8 = Z2 �0,ϕ (ZT
2 × ZF

2 ) has no ρ but a nontrivial ϕ =
wT AF ∈ H2(B(ZT

2 × ZF
2 ),Z2) = Z3

2 with AF can be regarded as a
fermion-parity background field as a generator from H1(BZF

2 ,Z2) =
Z2. However, for DF,T

8 = ZT
4 �ρ,0 ZF

2 , it has a nontrivial ρ : Z2 →
Aut(Z4) = Z2 thus not a central extension, but no φ. (3) MF,T

16 =
Z4 �0,ϕ ZT F

4 has no ρ : Z4 → Aut(Z4) = Z2 and a nontrivial odd
class ϕ ∈ H2(BZT F

4 ,Z4) = Z4. (4) Other groups in Table IV ob-
tained by adding extra U(1) and SU(2) in group extension twisted
by (ρ, ϕ) are similar in the spirit as the previous examples. We
can also use the information below to specify the group laws for
g̃1 = (n1, g1) ∈ G̃ and g̃2 = (n2, g2) ∈ G̃, with ni ∈ N and gi ∈ G as
g̃1g̃2 = (n1, g1)(n2, g2) = (n1 + ρ(g1).n2 + ϕ(g1, g2), g1 + g2).

30The major part of our paper focus on d = 2 or 1 + 1d, but now
we keep the general d notation in order to generalize our approach to
higher dimensions in Sec. VII.
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GL(d,R) is the group of the rank-d invertible matrix with all
the entry with R coefficients as group elements, together with
the operation of ordinary matrix multiplication. The special
linear group SL(d,R) is the subgroup of GL(d,R), then

SO(d ) = {
gSO(d ) ∈ SL(d,R)

∣∣ gSO(d )g
T
SO(d )

= gT
SO(d )gSO(d ) = 1

}
, (B5)

with the transpose operation T and its determinant
det(gSO(d ) ) = 1.

(2) The Spin(d ) = ZF
2 � SO(d ) is from the spatial rotation

SO(d ) extended/graded by the fermion parity ZF
2 . For d > 2,

Spin(d ) is double cover of SO(d ) and simply-connected, thus
the (unique) universal cover of SO(d ). So its first homotopy
group is π1(Spin(d )) = 0. The centers of Spin(d ) and SO(d )
for d � 2 are:

Z (Spin(d )) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Z2

2, d = 0 mod 4
Z2, d = 1 mod 4
Z4, d = 2 mod 4
Z2, d = 3 mod 4

,

Z (SO(d )) =
{
Z2, d = 0 mod 2
1, d = 1 mod 2

. (B6)

(3) The O(d ) = SO(d ) � ZTE
2 is

O(d ) = {
gO(d ) ∈ GL(d,R)

∣∣ gO(d )g
T
O(d ) = gT

O(d )gO(d ) = 1
}

(B7)
from the time reversal ZTE

2 extended by the spatial rotation
SO(d ):

O(d ) ∼=
{

SO(d ) � ZTE
2 , d ∈ even

SO(d ) × ZTE
2 , d ∈ odd

. (B8)

When d is odd, the ZTE
2 = {+1,−1} along the diagonal ele-

ment, exactly matches the determinant map det(gO(d ) ) = ±1.
The center of O(d ) for d � 2 is: Z (O(d )) = ZTE

2 .

(4) The Pin±(d ) = ZF
2 � O(d ) are double covers of O(d ).

For physics purpose, we need to interpret the space-time sym-
metry in the Lorentzian signature (i.e., Minkowski signature).
Let us clarify the notations of groups in Euclidean signature
(time reversal TE) and Lorentzian signature (time reversal
T ):31

Pin+(d ) ∼= Spin(d ) � ZTE
2 , T 2

E = +1 or T 2 = (−1)F ,(B9)

ZTE
2 × ZF

2 or ZT F
4 for discrete subgroups;

Pin−(d ) ∼= Spin(d ) � ZTEF
4

ZF
2

, T 2
E = (−1)F or T 2 = +1,

ZTEF
4 or ZT

2 × ZF
2 for discrete subgroups.

(B10)

In Euclidean signature, the ZTE
2 is generated by a reflection TE.

The reflection TE ∈ O(d ) has T 2
E = +1. The pullback from

31Follow Eq. (3.31), for 1 → ZF
2 → G̃ → ZT

2 → 1, we have two
possible extended G̃ = ZT F

4 or ZT
2 × ZF

2 . We can also replace T to
TE so G̃ = ZTEF

4 or ZTE
2 × ZF

2 .

TE ∈ O(d ) to TE ∈ Pin±(d ) via the ZF
2 extension shows that

T 2
E = +1 for Pin+(d ) and T 2

E = (−1)F for Pin−(d ).
In Lorentzian signature, the reflection TE becomes the

time-reversal T by a Wick rotation [23]. The Wick rotation
introduces the imaginary i sign to the Dirac gamma matrix
γE → γ0 = iγE of the temporal component in order to fit
the Lorentzian version of Clifford algebra (γ0)2 = −(γE)2,
so T 2 = ( iTE)2 = −T 2

E , which suggests that T 2 = (−1)F for
Pin+(d ) and T 2 = 1 for Pin−(d ).

The centers of Pin+(d ) and Pin−(d ) for d � 2 are

Z (Pin+(d )) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Z2, d = 0 mod 4
Z2

2, d = 1 mod 4
Z2, d = 2 mod 4
Z4, d = 3 mod 4

,

Z (Pin−(d )) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Z2, d = 0 mod 4
Z4, d = 1 mod 4
Z2, d = 2 mod 4
Z2

2, d = 3 mod 4

. (B11)

(5) When d is an odd integer, because of O(d ) = SO(d ) ×
ZTE

2 , we can simplify Eq. (B9) and Eq. (B10), in the Euclidean
or Lorentzian signatures (with time coordinates TE and T ,
respectively), to

Pin+(d ) ∼=
{

Spin(d ) × ZTE
2 , d = +1 (mod 4)(

Spin(d ) × ZTEF
4

)
/ZF

2 , d = +3 (mod 4)
;

(B12)

Pin−(d ) ∼=
{(

Spin(d ) × ZTEF
4

)
/ZF

2 , d = +1 (mod 4)

Spin(d ) × ZTE
2 , d = +3 (mod 4)

.

(B13)

These forms match the center of Pin± groups in Eq. (B11).
Furthermore, we can still find in these expressions, Pin+(d )
and Pin−(d ) contain the discrete subgroups ZTE

2 × ZF
2 and

ZTEF
4 , respectively.
(6) The E(d ) is defined in Refs. [24,48,82] which is a

subgroup of O(d ) × Z4, described by

E(d ) = {(M, j) ∈ (O(d ),Z4) | det M = j2} (B14)

in our interpretations, we take Z4 = ZT B
4 which is from 1 →

ZB
2 → ZT B

4 → ZT
2 → 1.32 The E(d ) sits at the following ex-

tensions: 1 → ZB
2 → E(d ) → O(d ) → 1 and 1 → SO(d ) →

E(d ) → ZT B
4 → 1 [82].

For the later convenience, we will specify two
species of fermions F−, F+, and their boson bound
states B = F+F−; their time-reversal T and space-time

32For bosonic case, we can identify the Lorentz and Euclidean time-
reversal symmetries directly (without extra −1 sign), thus ZT B

4 =
ZTEB

4 and ZT
2 = ZTE

2 .
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symmetries in the continuum correspond to

fermion F− : T 2 = +1, T 2
E = −1,

(
ZF−

2 � SO(d )
)

� ZTE
2 = Spin(d ) � ZTE

2 = Pin−(d ), (B15)

fermion F+ : T 2 = −1, T 2
E = +1,

(
ZF+

2 � SO(d )
)

� ZTE
2 = Spin(d ) � ZTEF

4

ZF
2

= Pin+(d ), (B16)

boson B : T 2 = −1, T 2
E = −1,

(
SO(d ) × ZB

2

)
� ZTE

2 = SO(d ) � ZTEB
4 = E(d ). (B17)
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