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Competition of spinon Fermi surface and heavy Fermi liquid states from the periodic
Anderson to the Hubbard model
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We study a model of correlated electrons coupled by tunneling to a layer of itinerant metallic electrons,
which allows us to interpolate from a frustrated limit favorable to spin liquid states to a Kondo-lattice limit
favorable to interlayer coherent heavy metallic states. We study the competition of the spinon Fermi-surface
state and the interlayer coherent heavy Kondo metal that appears with increasing tunneling. Employing a slave
rotor mean-field approach, we obtain a phase diagram and describe two regimes where the spin liquid state is
destroyed by weak interlayer tunneling: (i) the Kondo limit in which the correlated electrons can be viewed
as localized spin moments and (ii) near the Mott metal-insulator transition where the spinon Fermi surface
transitions continuously into a Fermi liquid. We study the shape of local density of states (LDOS) spectra of
the putative spin liquid layer in the heavy Fermi-liquid phase and describe the temperature dependence of its
width arising from quasiparticle interactions and disorder effects throughout this phase diagram, in an effort to
understand recent scanning tunneling microscopy experiments of the candidate spin liquid 1T-TaSe2 residing on
metallic 1H-TaSe2. Comparison of the shape and temperature dependence of the theoretical and experimental
LDOS suggests that this system is either close to the localized Kondo limit or in an intermediate coupling regime
where the Kondo coupling and the Heisenberg exchange interaction are comparable.
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I. INTRODUCTION

Since the pioneering proposal by Anderson [1–3], there
has been an extensive quest to find quantum spin liquids
(QSL) in materials [4–6]. Recently, it has been suggested that
certain layered transition-metal dichalcogenide compounds
might harbor a QSL state [7,8]. In particular, 1T-TaS2, a
material that undergoes a commensurate charge density wave
transition around 200 K into a

√
13 × √

13 star of David
structure [9,10], remains insulating to the lowest temperatures
in spite of having an odd number of electrons per star of
David supercell, and yet shows no sign of any further conven-
tional ordering phase transition such as antiferromagnetism
that would double the unit cell, to the lowest measurable tem-
peratures [11]. A possible connection to Anderson’s proposal
of a spin liquid was actually made from the very beginning
[12], but somehow forgotten. The magnetic susceptibility of
this compound remains nearly constant at low temperatures
[13] and the material displays a finite linear in temperature
specific-heat coefficient [14] indicative of a finite density of
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states at low energies. Earlier experiments found no linear
in temperature heat conductivity [15], which was taken as
evidence against itinerant carriers. However, more recent ex-
periments have shown a delicate sensitivity of heat transport to
impurities [16], finding a finite linear in temperature heat con-
ductivity in the cleanest samples. This indicates the presence
of a finite density of states of itinerant carriers, as expected
for the spinon Fermi-surface state. Moreover, band-structure
analysis [17] showed that a single narrow band crosses the
Fermi energy and is separated from other bands, making it
very likely that the low-energy electronic behavior can be
described by a single band Hubbard model.

A closely related compound, 1T-TaSe2, which also un-
dergoes a commensurate charge density wave transition into
the star of David structure, is expected to display similar
phenomenology. While bulk 1T-TaSe2 is metallic [18], mono-
layer 1T-TaSe2 was studied by scanning tunneling microscopy
(STM) and found to be a Mott insulator [19]. Recently Ruan
et al. [20] extended their study by placing a monolayer of
1T-TaSe2 on top of a 1H-TaSe2 monolayer, which is metallic.
Surprisingly their experiment has found that a Kondo-like
resonance peak near the Fermi energy develops in the tun-
neling density of states. It is important to emphasize that in
these experiments the tunneling tip is coupled primarily to
the originally insulating top layer of 1T-TaSe2. Therefore,
taken at face value, the appearance of a tunneling density-
of-states peak near zero bias may imply the destruction of
the presumed spin liquid that would exist for 1T-TaSe2 in
isolation and the formation of a coherent metallic state by the
coupling with the substrate metallic 1H-TaSe2, as it would
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be expected for the classic problem of Kondo heavy metal
formation.

These experimental findings motivate us to consider a
model consisting of a layer of correlated electrons coupled
to a layer of noninteracting itinerant electrons via tunneling
to study the competition of spinon Fermi-surface states and
the heavy Kondo metals. There are two questions that we
would like to address. First, the experimentalists found an
excellent fit of the line shape and its temperature dependence
with that expected for the Kondo resonance of a single im-
purity Kondo problem [20]. On the other hand, the actual
system consists of a periodic array of local moments. Even
if these are in the Kondo limit, the low-temperature state is
expected to be a heavy fermion metal. Would the formation of
a narrow coherent band lead to observable changes in the local
density of states (LDOS)? Second, how does the Heisenberg
exchange coupling JH between the local moments compete
with the Kondo coupling JK that operates between the local
moments and the conducting substrate? This problem was
considered by Doniach [21] for the case when the Heisenberg
coupling leads to an antiferromagnetic state. His conclusion is
that the two relevant competing energy scales are the Kondo
temperature TK and the Heisenberg exchange scale JH . Note
that at weak coupling TK is exponential small in terms of the
Kondo coupling JK . This would suggest that a very weak JH is
sufficient to destroy the Kondo effect. If the experiment was
interpreted as being in the Kondo limit, this places a rather
small upper bound on JH of about 50 K, since the scale TK

is estimated to be about 50 K from the experimental fit [20].
With such a small Heisenberg coupling, the interpretation of
the monolayer 1T-TaSe2 as a spin liquid is brought into ques-
tion. We note that the situation may change when the coupling
becomes strong, and it may also change in frustrated spin
models where the spin liquid state may be favored over the
antiferromagnet. Notice that in the resonating valence bond
picture, the quantum spin liquid is viewed as the superposition
of a singlet formed between local moment pairs, while the
Kondo phenomenon arises from the singlet formation between
the local moment and the conduction-electron spin. The com-
petition between different ways of forming singlets may well
be different from the competition with an antiferromagnet
considered by Doniach. With this in mind, we will consider
a model that is sufficiently general to include the Hubbard
interaction (U ) for the correlated electrons that reside in the
putative spin liquid layer, which hop with an amplitude (td )
within this layer, and a tunneling amplitude (V ) to the itinerant
electrons residing in the putative metallic layer, which hop
with an amplitude (tc) within their own layer, as depicted in
Fig. 1. This model therefore interpolates naturally between
the periodic Anderson model (td → 0) where it would capture
the physics of the formation of the interlayer coherent heavy
Kondo metal [22,23] and the pure Hubbard limit (V → 0)
where it would capture the traditional scenario for the appear-
ance of the spinon Fermi-surface state near the Mott transition
[24–26]. We note in passing that this model has been recently
employed to understand angle-resolved photoemission spec-

V

td

tc

U

FIG. 1. Schematic of the model. The electrons in the top layer
(blue) are correlated, with nearest-neighbor hopping td and an on-site
Hubbard interaction U . The bottom layer (red) hosts itinerant elec-
trons with nearest-neighbor hopping tc. There is also an interlayer
tunneling V .

tra in PdCrO2 [27]; however, in this material the insulating
layers are believed to be strong Mott insulators with 120◦ spin
antiferromagnetic order.

One of the central quantities of our interest will be the
LDOS of the putative spin liquid layer, which is what has
been measured in the aforementioned STM experiments. We
are particularly interested in understanding the temperature
dependence of the width of the LDOS peak, which can be
used to try to learn about the microscopic parameters of the
putative spin liquid and its coupling to the metal, and can
guide us in determining where the system is likely to lie in the
parameter space of our Hubbard-Anderson periodic model.
Although an unambiguous quantitative description of the tem-
perature dependence is challenging because it is controlled by
the interplay of intrinsic quasiparticle lifetimes and extrinsic
effects such as disorder induced broadening, we believe that
our modeling is consistent with the system to be either close
to the periodic Anderson model limit or in an intermediate
coupling regime where the Kondo coupling and the Heisen-
berg exchange interaction are comparable, as we will discuss
in detail. In the latter case, we cannot extract a tight bound on
JH based on the experimental data.

Our paper is organized as follows: Sec. II sets up the model
and describes the mean-field slave rotor approach that we em-
ploy to tackle it. Section III presents the solution of this mean
field under a wide range of parameters, including not only the
interplay between spinon Fermi surface and heavy metal but
also the possibility of competing with Kondo insulating states.
Section IV is devoted to a detailed analysis of the LDOS spec-
tra and temperature dependence of the LDOS width and the
comparison with STM experiments. Section V summarizes
and further discusses our main findings. We have relegated
some of the technical details of the mean-field treatment to
Appendix A. In Appendix B we revisit the classic result of
the temperature dependence of the single impurity Anderson
model and give a more thorough derivation of the width of the
Kondo resonance.

II. MODEL AND SLAVE ROTOR APPROACH

We consider a model of two-species of fermions resid-
ing in a triangular lattice that interpolates naturally between
the Hubbard model and the periodic Anderson model. The
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microscopic Hamiltonian of the system has the form

H = −td
∑

〈i, j〉,σ
d†

i,σ d j,σ +
∑

i

nd,i
(
ε

(0)
d − μF

)

− tc
∑

〈i, j〉,σ
c†

i,σ c j,σ +
∑

i

nc,i
(
ε (0)

c − μF
)

+ U

2

∑
i

(nd,i − 1)2 − V
∑
i,σ

(c†
i,σ di,σ + H.c.) (1)

Here the electrons created by c† are viewed as the “itinerant,”
and those created by d† as the correlated ones. A schematic
of the system is shown in Fig. 1. In the limit in which the
correlated electrons are localized, td = 0, this model reduces
to the periodic Anderson model, and in the limit in which the
two specifies are decoupled, V = 0, the Hamiltonian for the
correlated electrons reduces to the Hubbard model. We would
like to employ a formalism capable of handling the various
regimes of this model, and in particular the single occupancy
constraints that appear in the large U limit. For this purpose
we resort to the slave rotor mean-field approach. According
to the slave rotor method [24,28], the d electron can be repre-
sented by bosonic rotor θi and fermionic spinon fi,σ degrees
of freedom: di,σ ≡ eiθi fi,σ , with the constraint nθ,i + n f ,i = 1.
The Hamiltonian can be then written in terms of these partons
as follows:

H = − td
∑

〈i, j〉,σ
e−iθi eiθ j f †

i,σ f j,σ +
∑

i

n f ,i
(
ε

(0)
d − μF

)

− tc
∑

〈i, j〉,σ
c†

i,σ c j,σ +
∑

i

nc,i
(
ε (0)

c − μF
)

+ U

2

∑
i

n2
θ,i − V

∑
i,σ

(eiθi c†
i,σ fi,σ + H.c.). (2)

A. Mean-field theory

In the spirit of a mean-field theory we approximate the
ground state of Eq. (2) by a direct product of a rotor state
and a spinon state. The constraint on the rotor and spinon
occupation is satisfied on average:

〈nθ,i〉 + 〈n f ,i〉= 1. (3)

Since the rotor and spinon degrees of freedom are assumed to
be disentangled, we write the mean-field Hamiltonian as the
sum of a rotor part and a fermionic part, i.e., HMF = Hf + Hθ ,
with

Hf = −Tf

∑
〈i, j〉,σ

f †
i,σ f j,σ +

∑
i

n f ,i
(
ε

(0)
d + λ − μF

)

−tc
∑

〈i, j〉,σ
c†

i,σ c j,σ +
∑

i

nc,i
(
ε (0)

c − μF
)

−Vf

∑
i,σ

c†
i,σ fi,σ + H.c., (4a)

Hθ = −2
∑
〈i, j〉

Tθe−iθi eiθ j +
∑

i

U

2
n2

θ,i + λnθ,i − 4Vθ cos(θi),

(4b)

Tf = td〈e−iθi eiθ j 〉θ , (4c)

Vf = V 〈eiθi〉θ , (4d)

Tθ = td〈 f †
i,σ f j,σ 〉 f , (4e)

Vθ = V 〈c†
i,σ fi,σ 〉 f , (4f)

where a Lagrange multiplier λ is introduced to maintain the
constraint Eq. (3). The quasiparticle residue of the correlated
d electron is 〈eiθi〉≡ �. This can be regarded as the order
parameter for the metallic phase: when it is nonzero there will
be a coherent tunneling between the spinon and itinerant elec-
trons. In this paper, we will concentrate on the competition of
this correlated metallic state and a more exotic state, known
as the spinon Fermi-surface state, that arises when � = 0 and
the spinon, f , has a Fermi surface.

We expect that the essence of the competition between
these phases does not depend substantially on the details of
the fermion dispersions, and therefore, in order to simplify
analytical treatment, we will approximate the band structure
for spinons ( f ) and itinerant electrons (c) by simple parabolic
bands:

Hf =
∑
k,σ

f †
k,σ

fk,σ ε f ,k + c†
k,σ

ck,σ εc,k − Vf (c†
k,σ

fk,σ + H.c.),

(5a)

ε f ,k = 3

2
Tf

(
k2 − �2

2

)
+ λ − μF , (5b)

εc,k = 3

2
tc

(
k2 − ξ

�2

2

)
− μF , (5c)

where � is a cutoff on k space intended to mimic the finite size
of the Brillouin zone which can be determined by equaling
π�2 to the area of the triangular lattice’s Brillouin zone, and
the lattice constant a0 is taken to be 1. The dimensionless
parameter ξ in εc,k reflects the occupancy of c electrons when
c and f fermions are decoupled (since in such case λ = 0 and
μF = 0, see discussions in the following section): the number
of c electrons per site is ξ when the dispersion εc,k is particle-
like (tc > 0), and 2 − ξ with holelike dispersion (tc < 0). See
Fig. 2 for a schematic illustration.

B. Expectation values of the rotor operators

Notice that even after the mean-field decoupling, the rotor
Hamiltonian Hθ is still essentially a two-dimensional quantum
XY model with a transverse field which is not amenable to
analytic treatment. Therefore, one has to make further approx-
imations.

We are interested in solutions that respect time-reversal
and translational symmetry and that have no flux per unit
cell. Therefore we seek for self-consistent solutions where
� is uniform and real. To do so, we perform an additional
self-consistent mean-field treatment of Hθ by introducing an
effective single-site rotor Hamiltonian:

H (1)
θ = −Kθ (eiθ + e−iθ ) + U

2
n2

θ + λnθ , (6a)

Kθ = 2zTθ� + 2Vθ , (6b)

with z being the lattice coordination (z = 6 for the triangular
lattice). To lowest order in perturbation theory in Kθ /U [λ = 0
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FIG. 2. Schematic of the band dispersion. (a) Particle-particle
dispersion (with ξ > 1). Blue solid lines indicate the ε f ,k and εc,k in
the spin liquid phase; green dashed lines stand for the E1,k and E2,k

for small Vf , where both bands cross the Fermi level and there are
two Fermi surfaces; the orange dashed lines are for when Vf is large
such that the E2,k band is fully occupied and E1,k is partly occupied
to maintain the half filling of the spinon. (b) Particle-hole dispersion
(ξ < 1). For small Vf (green dashed line) only E1,k crosses the Fermi
level and has two Fermi surfaces while the E2,k is fully occupied;
when Vf is large enough (orange dashed lines) there is only one
Fermi surface.

since we are interested in the half-filled spinon and the con-
straint Eq. (3) leads to 〈nθ,i〉= 0] we have � = 4Kθ /U . On
the other hand, in the opposite limit in which Kθ /U � 1, we
have θ ≈ 0 and thus �= 〈eiθ 〉= 1. Moreover, since �= 〈eiθ 〉
is never greater than 1, we introduce the following natural
interpolation between these limits:

� = Kθ√
(U/4)2 + K2

θ

, (7)

or, equivalently,

Kθ = U

4

〈eiθ 〉√
1 − 〈eiθ 〉2

. (8)

Although the above mean-field treatment captures well the
behavior of the residue �, it ignores completely the nearest-
neighbor rotor correlations, which are essential in order to
obtain a dispersion for the spinon. To capture these, and since
Vθ is small near the metal to insulator phase transition, we
will approximate their value by performing a perturbative
calculation directly with the more complete rotor Hamiltonian
Hθ from Eq. (4b), which contains the U and Tθ terms only,

H̃θ = U

2

∑
i

n2
θ,i − 2Tθ

∑
〈i, j〉

e−iθi eiθ j , (9)

which leads to the following nearest-neighbor rotor correla-
tions:

〈e−iθi eiθ j 〉 ≈ 4Tθ

U
, (10)

where it should be noted that these nearest-neighbor rotor
correlations from Eq. (10) are needed to reproduce the spinon
bandwidth which is expected to be given by the Heisenberg
exchange coupling scale JH = 4t2

d /U . The expressions above
are all zero-temperature results. The finite temperature ver-
sions of these formulas are discussed in Appendix A.

C. Expectation values of the fermion operators

The fermionic mean-field Hamiltonian is free from interac-
tions and can be diagonalized exactly. Because we are already
accounting for spinon hopping in the spin liquid phase at
V = 0, the correlator 〈 f †

i,σ f j,σ 〉 is not expected to change much
during the spin liquid to heavy metal phase transition, so we
will simply approximate its value when c and f fermions are
decoupled from each other (Vf = 0 in the insulating phase):

〈 f †
i,σ f j,σ 〉 = 1

N

∑
k

ei
k·
δnF (ε f ,k ) ≡ χ0, (11)

where nF is the Fermi-Dirac distribution function nF (x) =
1/(eβx + 1), δ is the distance between sites i and j, and N
is the total number of lattice sites in Eq. (11). Thus Tθ = tdχ0.
As for the hybridization between the itinerant electrons and
spinons, one obtains

〈c†
i,σ fi,σ 〉 = Vf χc f , (12a)

χc f = − 1

2N

∑
k

nF (E1,k ) − nF (E2,k )√( ε f ,k−εc,k

2

)2 + V 2
f

. (12b)

It should be noted that Eq. (12a) is an exact result of solving
the free fermionic Hamiltonian Hf , although in the Vf → 0
limit the χc f reduces to the c- f hybridization susceptibility
of the c- f decoupled Hamiltonian. The quasiparticle energy
dispersions read (see Fig. 2)

E1/2,k = ε f ,k + εc,k

2
±

√(ε f ,k − εc,k

2

)2

+ V 2
f , (13)

and the occupancy of the spinon reads

〈 f †
i,σ fi,σ 〉 = 1

N

∑
k

cos2(αk )nF (E1,k ) + sin2(αk )nF (E2,k ),

(14a)

cos(2αk ) = ε f ,k − εc,k

2

/√(ε f ,k − εc,k

2

)2

+ V 2
f , (14b)

D. Self-consistent equations

Once the expressions for the expectation values of the rotor
and fermions are obtained, the self-consistent equations for
the order parameter � can be derived; from Eqs. (6b), (8), and
(12a), one can show that

�

8

(
1√

1 − �2
− 8z

td
U

χ0

)
= �

V 2

U
χc f . (15)

Therefore, one needs to solve Eq. (15) along with the con-
straint Eq. (3) and 〈n f ,i〉= 1. Equation (15) always has a trivial
solution �= 〈eiθi〉= 0, and the nontrivial solution of 〈eiθi〉
satisfies

1

8

(
1√

1 − �2
− 8z

td
U

χ0

)
= V 2

U
χc f . (16)

It should be noted that the “susceptibility” χc f also depends
on �, through its dependence on Vf in Eq. (12b), which in
turn depends on � via Eq. (4d).
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III. MEAN-FIELD PHASE DIAGRAM AND MEAN-FIELD
PROPERTIES

To explore the phase transition between the spin liquid
and heavy metal phases, it is important to distinguish the
cases with the band dispersions of the d electron and itinerant
electrons being particle-particle like (td > 0 and tc > 0) and
particle-hole like (td > 0 and tc < 0). Here we discuss in detail
the behavior when the itinerant fermion has higher density
(larger Fermi-surface area) than the spinon, which is most
relevant to the recent experiments 1T-TaS2 and 1T-TaSe2.
Namely, we will take the parameter ξ , that controls the den-
sity of the itinerant electrons in Eq. (5c), to have a range of
1� ξ < 2 for the particle-particle case and 0� ξ < 1 for the
particle-hole case (this leads to nc � n f in the insulating phase;
see Fig. 2 for an illustration).

A. Particle-particle dispersion

In this section we discuss the situation for particle-
particle-like dispersions. As mentioned before, there are two
competing phases in our phase diagram: the spin liquid phase
and the heavy metal phase (see Fig. 5 for an example of the
phase diagram). The phases are determined by whether order
parameter � is finite (heavy metal) or zero (spin liquid). When
td ∼ 0, the model reduces to a periodic Anderson model and
the transition from spin liquid to heavy metal is of the form
of a weak-coupling instability. On the other hand, for larger
td/U ∼ 1/8 and V = 0, the system exhibits a metal-insulator
(Mott) transition, as one expects from a Hubbard model. The
goal of the next section is to determine how the phase bound-
ary evolves between these two regimes.

1. Phase boundary

The phase boundary is obtained when �= 0 is a solution
of Eq. (16). According to the constraint from Eq. (3) and
〈n f ,i〉= 1, we have that 〈nθ,i〉= 0. This leads to a value λ = 0
for the Lagrange multiplier in Eq. (4b). Thus one just needs
to self-consistently adjust the chemical potential μF such that
the spinon is half filled. Along the phase boundary, since c
and f fermions are decoupled, this can be satisfied by setting
μF = 0, which leads to n f ,i = 1 and nc,i = ξ , which corre-
sponds to two Fermi surfaces from the two bands with Fermi
momentum kF, f = �/

√
2 and kF,c = �

√
ξ/2. In this case the

susceptibility of c- f coupling from Eq. (12b) reduces to

χ
(0)
c f = − 1

N

∑
k

nF (ε f ,k ) − nF (εc,k )

ε f ,k − εc,k

= 1

�2

2

3

1

Tf − tc
ln

(Tf

tc

)
. (17)

It is interesting to notice that the χ
(0)
c f is independent of ξ ,

in other words, the density of itinerant electrons. This im-
plies that the phase boundary is insensitive to the c electron’s
density within the parabolic band approximation. The critical
value at which the residue � and the hybridization between
the itinerant and correlated electron, Vf , become simultane-

FIG. 3. (a) Phase boundary between spin liquid (below blue
curve) and heavy metal with particle-particle dispersion and ξ = 1.2.
As td → 0, the critical coupling V 2

c /U is suppressed logarithmically
with td/U ; when V = 0 (horizontal axis), the metal-insulator transi-
tion occurs at td/U ∼ 1/8. Near this critical point, the V 2

c /U has a
linear dependence on td/U . (b) Plot of the χc f with Tf = 0.1tc. χc f

saturates at small Vf , while for Vf >V ∗
f , it is a decreasing function

of Vf .

ously nonzero is given by

V 2
c

Utc
= 1

8

(
1 − 8z

td
U

χ0

)(
4t2

d χ0

Utc
− 1

) 3
2�2

ln
( 4t2

d χ0

tcU

) . (18)

A plot of the phase boundary in this case can be found
in Fig. 3(a). As it approaches the Anderson (td → 0) limit,
the critical V 2

c /U has a logarithmic dependence on td/U .
This means that in the local moment limit, the heavy Fermi-
liquid phase is destabilized by a weak Heisenberg coupling,
JH ∼ t2

d /U , comparable to the Kondo scale, TK ∼ ρ−1e−1/JK ρ

(with JK ∼V 2/U and ρ−1 ∼ tc). This is responsible for the
sharp narrowing of the region of the heavy Fermi-liquid phase
in the local moment limit V 2  tcU , and td U , as shown in
Fig. 3(a). Around the axis V = 0 we recover the physics of
the spin liquid to metal (Mott) transition in the conventional
Hubbard model with the spin liquid to metal transition (see
[24]) occurring at td/U = 1/(8zχ0), which in the case of the
triangular lattice corresponds to td/U ∼ 1/8 and is in line with
previous cluster mean-field calculation [28].

2. Turning on of the heavy fermion phase

As one enters the heavy fermion metallic phase (� be-
comes finite), both the E1,k and E2,k bands cross the Fermi
level [as indicated by the green dashed lines in Fig. 2(a)].
According to Eq. (14a), the spinon density in this case is

〈 f †
i,σ fi,σ 〉 = k2

F1 + k2
F2

2�2
+

∑
α=c, f εα,kF1 + εα,kF2

3�2(tc − Tf )
, (19)

and by requiring this to be 1/2 one can obtain μF = 0 (with
λ = 0). It can be shown that in this case the susceptibility is
simply a constant:

χc f = 2

3

1

tc�2

1
4t2

d χ0

Utc
− 1

ln

(
4t2

d χ0

Utc

)
. (20)

Notice that χc f is independent of Vf (or �), which is a
consequence of the parabolic model. Physically χc f should
be a monotonically decreasing function of Vf for a general
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band dispersion, but we conclude from the above that it is
weakly dependent on these parameters whenever the bands
can be approximated by parabolas. Nevertheless, Eq. (20)
still unveils an important effect of the correlated fermion
hopping td , which is to set a “cutoff” to χc f , as depicted in
Fig. 3(b). Such cutoff would otherwise be absent in the pure
periodic Anderson model (td → 0) and we would have that
χc f → ∞ as Vf → 0. This divergence is responsible for the
weak-coupling (Kondo) instability of the periodic Anderson
model that leads to the formation of the heavy Fermi-liquid
state.

On the other hand, there is a further phase transition that
appears within the heavy Fermi-liquid state, associated with
the disappearance of one of the Fermi surfaces while preserv-
ing the net Luttinger volume, at large Vf . This occurs when Vf

is larger than some critical value V ∗
f = 3

2
�2

2

√
Tf tc(2 − ξ ), for

which we have that E2,� < 0, so the E2,k band is fully occupied
and there is only one Fermi surface associated with the band
E1,k [see yellow dashed lines in Fig. 2(a)]. In this case, the
density of the spinon reads

〈 f †
i,σ fi,σ 〉 = k2

F1 + �2

2�2

+
ε f ,kF1 + εc,kF1 +

√
(ε f ,� − εc,�)2 + 4V 2

f

3�2(tc − Tf )
, (21)

and the μF can be determined by requiring 〈 f †
i,σ fi,σ 〉= 1/2.

In this case the susceptibility χc f is no longer independent of
Vf (we do not show the explicit expression here since it is too
lengthy). Figure 3(b) shows a plot of the χc f as a function
of Vf for a specific parametrization. As mentioned before, a
finite td sets a cutoff to the χc f ; moreover, the critical V ∗

f will
also decrease as td decreases. This role of td as a cutoff of the
χc f susceptibility leads to an increasing value of the critical
V as td increases at extremely small values of td , as shown in
Fig. 3(a). In other words, the larger the value of td the smaller
the susceptibility to induce the mixing between the itinerant
and correlated fermions.

However, the physical role of td is not exclusively to cut
off χc f . It is clear from Fig. 3(a) that at sufficiently large
td the critical V starts to decrease as td increases. The other
physical role of td can be understood from the self-consistent
equation for the residue �, Eq. (16), where we see that the
hopping of correlated electrons td appears not only inside χc f ,
but also on the left-hand side of the equation, arising from the
coupling between nearest-neighbor rotors in Hθ (td e−iθi eiθ j ).
This term competes with the interaction part (≈ Un2

θ,i) and
tends to “lock” the angles of nearby rotors; therefore, in this
second role, td tends to enhance the appearance of a residue
and therefore favors the destruction of the spin liquid in favor
of the appearance of the finite � leading to a metallic state.

To illustrate more concretely these contrasting roles of td
we compare the solution of � as a function of V 2/U for dif-
ferent types of modified self-consistent equations. As shown
by the dashed curves in Fig. 4, when the susceptibility χc f is
replaced by one which diverges logarithmically at small Vf

(dashed lines), there is always a weak-coupling instability to
the heavy fermion phase, while for the exact χc f (solid lines)
one has to reach a finite critical value of V for the occurrence

FIG. 4. Solution of � for different types of self-consistent equa-
tions. The orange lines stand for the self-consistent equation with the
linear td (nearest-neighbor coupling) term while the blue lines are
for the case without the linear td term. The solid lines are for the
case with the exact form of χc f with a cutoff while the dashed curves
stand for the case with a (logarithmically) diverging χc f at small Vf .
The logarithmically diverging χc f always supports a weak-coupling
instability to the heavy metal phase while for the exact χc f there is a
threshold of V for the onset metallic phase. The linear td term in the
left-hand side of the self-consistent equation will also help boost the
heavy fermion phase, as expected.

of the heavy metal phase. Moreover, when the linear td term
from the left-hand side of Eq. (16) is removed (blue lines), the
heavy metal phase is also suppressed and one needs a larger
V to get a nonzero �.

From the analysis above, one can see that either a very
large td (nearby rotors lock strongly) or a very small td
(susceptibility of the c- f coupling diverges) will enhance
the tendency towards heavy Fermi-liquid order and suppress
the tendency towards the spin liquid insulating phase. This
conclusion is further confirmed by the (zero-temperature)
phase diagram Fig. 5 obtained by explicitly solving the self-
consistent equation [the boundary in this phase diagram is the
same previously shown in Fig. 3(a)]. As can be seen from
Fig. 5, the insulating spin liquid phase has a dome shape in
the phase diagram, which will be suppressed by very small or
large td . The gray dashed line indicates the critical value of V ,
above which the E2 band is fully occupied and the metallic
phase has a single Fermi surface. The orange dashed line
marks the boundary where the two heavy fermion bands start
to develop an indirect gap, which occurs for parameters above
such orange line (see further discussion in Sec. IV).

B. Particle-hole dispersion

In this section we discuss the results for the case where
itinerant electrons are holelike which can be accounted for
by simply changing tc → −tc in their energy dispersion
[Eq. (5c)].

1. Phase boundary

When the metallic electron’s band structure is holelike, the
susceptibility χc f will have a stronger ξ dependence compared
to the particle-particle case. It can be shown that within the
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FIG. 5. Phase diagram with ξ = 1.2 (density plot of �). The
vertical scale is proportional to the Kondo coupling scale JK ∼V 2/U
while the horizontal scale is proportional to the hopping between
the correlated electrons. The dark blue region is the spin liquid with
� = 0 and the light blue and red region stand for the heavy metal
phase. The gray dashed curve is the critical value of V where the
number of Fermi surfaces of the system changes from 2 (below) to 1
(above) and the χc f changes from a constant plateau to a monoton-
ically decreasing function of Vf [see Fig. 3(b)]. The orange dashed
curve indicates where the two heavy quasiparticle bands develop an
indirect band gap. Dotted lines and symbols indicate where detailed
LDOS spectra are calculated as a guiding reference for subsequent
Figs. 11–14.

spin liquid phase (Vf = 0) it is given by

χ
(0)
c f = 2

3�2(Tf + tc)
ln

(
(Tf /tc + ξ )(Tf /tc + 2 − ξ )

Tf /tc(1 − ξ )2

)
.

(22)

Thus for ξ = 1, i.e., when both the itinerant electrons and
spinons are at half filling, the two bands are perfectly nested,
and the band structure leads to a divergent susceptibility χc f

for all values of td , which indicates that the spin liquid is
unstable against a transition into the Kondo insulating phase
at arbitrarily small V . Figure 6(a) shows the phase bound-
ary between the spin liquid and the heavy fermion metallic
phase. Similar to the particle-particle case, as td → 0, the
critical value of JK ∼V 2/U decreases logarithmically with td .
Moreover, for the particle-hole case, the phase boundary now
also has a ξ dependence, as expected from the ξ dependence
of χ

(0)
c f . As ξ → 1, the spin liquid phase is suppressed, and

when ξ = 1 it only exists along the V = 0 line [Fig. 6(a)]. It
should be noted that at V = 0, the critical td/U for the Mott
transition is always the same “universal” value around 1/8;
this is because the d and c electrons are decoupled in this case
and the problem reduces to the metal to insulator transition for
the triangular lattice Hubbard model.

FIG. 6. (a) Phase boundary for particle-hole dispersion at various
filling of the metallic electrons. As ξ → 1, the spin liquid phase gets
suppressed and at exactly half filling of the metal it can exist only
within the V = 0 line. (b) χc f as a function of Vf for the particle-hole
dispersion with ξ = 0.6, Tf = 0.1tc. Similar to the particle-particle
case, χc f is a decreasing function of Vf .

2. Turning on of the heavy fermion phase

For the case with ξ < 1, weakly inside the heavy fermion
metallic phase, where the quasiparticles’ energy dispersions
E1,k and E2,k have the Mexican-hat shape, it turns out that in
order to maintain the half-filling constraint of the spinon, we
find that the E2,k band is fully filled while the E1,k band is
partially occupied and features two Fermi surfaces, as shown
by the green dashed lines in Fig. 2(b). The μF can be solved
from 〈 f †

i,σ fi,σ 〉= 1/2 and the χc f as a function of Vf can be
obtained accordingly. Similar to the particle-particle case, at
finite td , χc f tends to saturate as Vf → 0 and it is diverging in
the atomic limit (td → 0). For rather large Vf , E1,� becomes
smaller than zero and there is only one Fermi surface for the
system [see the orange dashed lines in Fig. 2(b)]. A plot of χc f

at ξ = 0.6 is shown in Fig. 6(b); as expected, it is a decreasing
function of Vf . The phase diagram for this case is shown in
Fig. 7.

As for the special case when ξ = 1, as explained before,
because the spinon and the itinerant electron bands are nested
in this case, the susceptibility χc f diverges as Vf → 0. As a
result, one expects a weak-coupling instability from the spin
liquid state to that with heavy electrons. Notice, however, that
this state is not a metal but a Kondo insulator, since the Fermi
surfaces are completely gapped out by the hybridization due
to the perfect nesting. As can be seen from Fig. 8, the Kondo
insulating phase turns on more rapidly for larger td/U . The
phase diagram for this case is shown in Fig. 9.

IV. TUNNELING DOS

In the recent experiment by Ruan et al. [20], a monolayer
1T-TaSe2, which is originally an insulator, is placed on top
of a metallic monolayer 1H-TaSe2. The system was studied
by STM, where the tip is primarily coupled to the top layer
(1T-TaSe2). Surprisingly, a narrow peak around zero bias was
found. It was found that this coherent peak can be broadened
by increasing temperature and the temperature dependence of
its width can be fitted to a form [see Eq. (28)] which describes
the Kondo resonance for the single impurity Kondo problem
[as shown in Fig. 2(c) of [20]]. This observation was then
taken as an indication of the existence of the local magnetic
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FIG. 7. Phase diagram for the particle-hole case with ξ = 0.6.
The spin liquid phase has a dome shape and the phase boundary has
qualitatively the same behavior as the particle-particle case.

moment in the 1T-TaSe2 layer, which couples to the metal-
lic substrate (the 1H layer). Combining this with the further
observation of a real-space modulation of the electronic struc-
ture, it was suggested that the pristine 1T-TaSe2 monolayer is
likely to host the QSL phase.

This motivates us to study if this behavior could also appear
in our theoretical model, e.g., in certain regimes of the heavy
metal phase. In this section, we discuss the behavior of the
LDOS of the correlated d electrons in the metallic phase,
which is the quantity reflected by the STM dI/dV curve. The
thermal Green function of the d electron can be written as

Gd (τ, r) = −〈Tτ dR+r(τ )d†
R(0)〉

= G f (τ, r)Gθ (τ, r), (23)

FIG. 8. � as a function of V 2/U for ξ = 1 at different values of
td/U . As expected, the metallic phase turns on in the form of a weak-
coupling instability with V .

FIG. 9. Phase diagram for the particle-hole case with perfect
nesting (ξ = 1). The system is Kondo insulating at any finite V since
the Fermi surfaces of the heavy electrons are fully gapped out, and
the spin liquid phase exists strictly only at the V = 0 line.

where G f (τ, r) and Gθ (τ, r) are Green functions of the spinon
and rotor, with the definition

G f (τ, r) = −〈Tτ fR+r(τ ) f †
R(0)〉, (24a)

Gθ (τ, r) = 〈Tτ eiθR+r (τ )e−iθR (0)〉. (24b)

As pointed out from previous studies [24,28], the Mat-
subara Green function of d electrons can be separated into
a coherent part and an incoherent part:

Gd (iωn, r) = Gcoh
d (iωn, r) + Ginc

d (iωn, r), (25a)

Gcoh
d (iωn, r) = �2G f (iωn, r). (25b)

The coherent part is mainly peaked at ω ∼ 0 while the inco-
herent part captures features at larger energy scales ω ∼U . In
this paper, we are mainly interested in the feature of LDOS
near ω = 0 and we will focus on the coherent part. From
the slave rotor mean-field theory, since the fermionic part of
the Hamiltonian is noninteracting, it can be shown that the
Matsubara Green function of the spinon has the form

G f (iωn, k) = cos2(αk )G1(iωn, k) + sin2(αk )G2(iωn, k),
(26)

where G1/2(iωn, k) = 1/(iωn − E1/2,k ) is the Green function
of the self-consistent band-diagonal quasiparticles that result
from the coherent mixing of the correlated and the itinerant
electron. By analytical continuation, the spectral function of
the spinons can be obtained:

A f (ω, k) = − 1

π
Im G f (ω + i0+, k)

= cos2(αk )δ(ω − E1,k ) + sin2(αk )δ(ω − E2,k ),
(27)
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FIG. 10. Mean-field LDOS without disorder and quasiparti-
cle lifetime broadening effects for the case of (a) td/U = 0,
(b) td/U = 0.04, (c) td/U = 0.08, and (d) td/U = 0.1. Within each
case, the Kondo coupling JK ∼V 2/U is increased gradually (along
the black dotted lines in Fig. 5). In the Anderson limit, it is clear
that within the heavy metal phase, there is a coherent gap opened
below the Fermi level. On the other hand, when td/U is finite, the
spinon band is dispersive with a finite bandwidth. So for small JK ,
the band dispersions of heavy quasiparticles are still overlapping
with each other [see the green dashed lines in Fig. 2(a)], and lead
to a plateaulike LDOS at small ω. When JK is large and above the
orange dashed line in the phase diagram (see Fig. 5), the two heavy
quasiparticle bands are fully separated in energy and the LDOS
exhibits a gap between the two peaks.

and the LDOS for the spinon ρ f (ω) = 1
N

∑
k A f (ω, k) can be

obtained accordingly.

A. Zero-temperature mean-field LDOS

We are particularly interested in understanding the tunnel-
ing density of states for experiments in 1T-TaSe2 where the
dispersion of the itinerant electron is likely to be particlelike.
Here we explored in detail the particle-particle case and we
take the bare band filling of the itinerant electrons to be
ξ = 1.2 (this value is taken arbitrarily as the physics should
not be very sensitive to the detailed value of ξ ). We are mainly
focused on three regimes: (i) the Anderson limit with td = 0,
(ii) moderate td along the orange dashed line in Fig. 5, and
(iii) large td near the metal-insulator transition of the Hubbard
model.

Figure 10 shows the zero-temperature mean-field LDOS
of correlated d electrons at different regimes of the phase
diagram, as indicated by the black dotted lines in Fig. 5. In
the Anderson limit [see Fig. 10(a)], the mean-field LDOS
opens a coherent band gap enhanced by increasing the Kondo
coupling JK , which is the expected behavior for the periodic
Anderson model. When td/U is finite [see Figs. 10(b)–10(d)],

the spinon acquires a band dispersion. Consequently, when
� is small at small JK , the quasiparticle bands are still over-
lapping with each other in energy [see green dashed line
in Fig. 2(a)] and the LDOS shows a plateaulike peak near
ω ∼ 0. The width of the plateau is given mainly by the spinon
bandwidth. As JK becomes larger, the overlap between the two
bands decreases and the width of the flat peak is reduced. At
some intermediate scale marked by the orange dashed line
in Fig. 5, the Kondo coupling and the Heisenberg exchange
interaction compete, resulting in a narrow peak the width of
which is much less than JK or JH individually. Finally, when
JK is greater than a critical value indicated by the orange
dashed line in Fig. 5, the two quasiparticle bands become fully
separated and the LDOS behaves similarly to the Anderson
limit with a finite gap sandwiched by two peaks. As can be
seen clearly, near the metal-insulator transition of the Hubbard
model, the LDOS peak is much broader than in the small
td/U limit. It should be noted that the perfect flatness of the
peak is an artifact of parabolic band dispersion adopted in our
paper, and a more realistic tight-binding model would give
rise to a dispersive peak. Below we will describe how these
LDOS features are broadened by temperature and by extrinsic
disorder effects.

B. Broadening due to finite temperature and disorder

At finite temperature the tunneling conductance is given
by the LDOS convolved with the thermal broadening due to
the thermal distribution of electrons in the lead. This effect
has been removed in the experiment [29] and we also do not
include it in our theory. After removing this, it is notable that
the experiment shows a single peak which can be fitted with a
Lorentzian with a temperature-dependent half-maximum half
width:

�exp =
√

2T 2
K + π2T 2. (28)

This form of the width was found in an earlier experiment
that detected the Kondo peak in a single impurity and has
been considered a signature of the single impurity Kondo
problem [29]. The low-temperature width therefore allows us
to extract TK from experiments. Furthermore, at large temper-
atures compared to TK the width scales approximately as π T ,
which places a constraint on the theory. We have reexamined
the theoretical basis of Eq. (28) and came to the conclusion
that while the derivation given in [29] is not well justified
and there is a small correction to the width from Eq. (28) at
low temperatures, it does provide a correct value of the slope
of the �-T curve at high temperatures, which is π . Details
are given in Appendix B. In this paper we do not fit the
experimental data to the single impurity Kondo problem, but
rather to the periodic Anderson-Hubbard model. As we shall
see below, by introducing a Fermi-liquid-type quasiparticle
lifetime together with a disorder induced width, it is possible
to fit the data in certain parameter ranges.

As it is well known from the theory of single Kondo
impurity and Kondo lattice problems [30–33], the fluc-
tuations around the mean-field configuration which give
rise to quasiparticle interactions lead to a characteristic
temperature- and frequency-dependent quasiparticle lifetime.
In order to account for these effects, we add the following
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semiphenomenological imaginary part to the quasiparticle
self-energy [34]:

�FL(ω, T ) = −i
1

2πE0
[ω2 + (πkBT )2]. (29)

In addition to this intrinsic quasiparticle interaction lifetime,
disorder is another important agent in broadening the density
of states in experiments, and we account for this by adding a
constant impurity scattering rate γ0 into the imaginary part of
the self-energy, as follows:

G1/2(ω + i0+, k) = 1

ω − E1/2,k − �(ω, T )
, (30a)

�(ω, T ) = −iγ0 + �FL(ω, T ). (30b)

It should be noted that the energy scale E0 controlling the
quasiparticle interaction effects in Eq. (29) is usually of the
order of the bandwidth for a normal Fermi liquid (large td ),
while for a Kondo lattice (td = 0), it is of the order of the
Kondo temperature TK ∼ 2V 2

f /Dc with Dc being the half band-
width of itinerant electrons. In order to capture both regimes,
we use a phenomenological expression of E0 that interpolates
between these two limits, as follows:

E0 =
√

T 2
K + W 2

sp, (31)

with Wsp being the spinon bandwidth.
As mentioned above, in the Anderson limit, the mean-field

LDOS will have two peaks separated by the gap. However,
once the self-energy is included, the mean-field spectral func-
tion will be broadened and it is possible to obtain a single-peak
behavior. This can be seen clearly from Fig. 11, which shows
the case of td/U = 0, V 2/U = 0.5tc (as indicated by the � in
Fig. 5). By including only the �FL [see Fig. 11(a)], at very
low temperatures, the LDOS has two peaks separated by a
band gap. When a finite impurity scattering rate (here we take
γ0 = 0.05 tc) is taken into account, the LDOS is broadened into
a single peak, as shown in Fig. 11(b). We further calculated
the half-maximum half width of LDOS at different tempera-
tures and compare it with the experimental results. We fit our
theoretical data with a function of the form

� =
√

(�0)2 + aπ2(kBT )2, (32)

which is expected for the single-impurity Anderson model
[35,36]. Previous theoretical works find that the experimental
data can be well fitted with a ≈ 1. According to our theoretical
calculation, for the case with V 2/U = 0.5 tc and γ0 = 0.05 tc,
the data can be well fitted with a ≈ 0.85, as can be seen from
Fig. 11(c), where all quantities are presented in unit of tc.
Nevertheless, once we take tc = 105 meV so that the lowest-
temperature width matches with the experimental one, we also
find quantitatively good fit to the experimental result. In other
words, the experimental data can be described by a periodic
Anderson model with a finite impurity scattering rate.

When td is finite, as shown in the mean-field results above,
one expects to see either a plateaulike peak (with small JK )
or a finite gap sandwiched by two peaks (rather large JK )
in the LDOS. In any case, the inclusion of a finite imag-
inary self-energy can broaden the curve. Along the orange
line, since the two mean-field bands of heavy quasiparticles

FIG. 11. LDOS for the particle-particle case (ξ = 1.2) with
td/U = 0,V 2/U = 0.5 tc (indicated by � in Fig. 5). (a) LDOS with
the self-energy being �FL(ω, T ) only. It is clear that in the low-
temperature limit, the spectral function has the two-peak behavior
at ω ∼ 0, which is due to the opening of a band gap in the dispersion
of heavy quasiparticles. This is the signature of a coherent heavy
fermion band in the Kondo lattice problem. At higher temperature,
there is only a single peak around ω ∼ 0 due to the broadening
effects in �FL(ω, T ). (b) LDOS for self-energy from Eq. (30b) with
γ0 = 0.05 tc. In this case the disorder effect (γ0 term) is able to
broaden the LDOS and changes it into a single peak. (c) Width in
units of tc. (d) Fitting to experimental data (extracted from [20])
with tc = 105 meV. The experimental data can be well fitted by the
theoretical result.

are about to separate, the LDOS of the spinon should have
only a single peak around ω ∼ 0. Figures 12(a)–12(c) and
13(a)–13(c) show two points close to the line: td/U = 0.04,
V 2/U = 0.35 tc and td/U = 0.08, V 2/U = 0.65 tc (indicated
by � and �, respectively, in Fig. 5); it is clear that the LDOS
has only a single peak at ω ∼ 0. We find that the width as a
function of temperature can also be relatively well fitted by
Eq. (32). To compare with the experimental data, as we did
for the Anderson limit, one can tune tc so that at the lowest
temperatures the width is consistent with the experimental
one. Figures 12(c) and 13(c) show the comparison of the width
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FIG. 12. LDOS at td/U = 0.04. (a)–(c) With V 2/U = 0.35 tc (indicated by � in Fig. 5). (a), (b) LDOS without/with γ0 in the self-energy.
(c) Width fitted to the experiment with tc = 120 meV. The experimental data can be relatively well fitted by this case. (d)–(f) With V 2/U = 0.8 tc

(indicated by � in Fig. 5). (d), (e) LDOS without/with impurity scattering in the self-energy. (f) Fitting of the width to experiment with
tc = 60 meV. This case is much above the orange dashed line in Fig. 5 and the two quasiparticle bands are separated from each other.

FIG. 13. LDOS at td/U = 0.08. (a)–(c) With V 2/U = 0.65 tc (indicated by � in Fig. 5). (a), (b) LDOS without/with γ0 in the self-energy.
(c) Fitting of the width to experiment with tc = 75 meV. In this case the theory lies below the data because the slope a is becoming too small.
(d)–(f) With V 2/U = 0.3 tc (indicated by � in Fig. 5). (d), (e) LDOS without/with impurity scattering in the self-energy. (f) Fitting of the width
to experiment with tc = 110 meV. This case is below the orange dashed line and the two quasiparticle bands overlap.
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FIG. 14. LDOS at td/U = 0.11. (a)–(c) With V 2/U = 0.1 tc (indicated by � in Fig. 5). (a), (b) LDOS without/with impurity scattering in
the self-energy. (c) Fitting of the width to experiment with tc = 90 meV. The slope of the theoretical data is too small to fit the experimental
data. (d)–(f) With V 2/U = 0.3 tc (indicated by � in Fig. 5). (d), (e) LDOS without/with impurity scattering in the self-energy. (f) Fitting of the
width to experiment with tc = 90 meV. Similar to the previous case, the slope of the theoretical data is too small to fit the experimental data.

between the theoretical and experimental results. tc is taken
to be 120 and 75 meV separately. We can see that the small
spinon hopping case td/U = 0.04 can give rise to a good fit
to the experimental data. For the larger td case (td/U = 0.08)
the fit deteriorates because the coefficient a is becoming too
small.

We also checked cases with moderate td/U but
being farther away from the orange dashed line:
td/U = 0.04, V 2/U = 0.8 and td/U = 0.08, V 2/U = 0.3
(indicated by ♦ and �, respectively, in Fig. 5). Figures 12(d)
and 12(e) show the LDOS for the first case without and with
γ0 included in the self-energy, and the LDOS for the latter
case (without and with γ0 in the self-energy) are presented
in Figs. 13(d) and 13(e). The first case is above the orange
dashed line in Fig. 5 with a large JK , and the two quasiparticle
bands are separated in energy. So the LDOS [Fig. 12(d)] has
a gap sandwiched by two peaks. In the latter case, which is
below the orange dashed line, the two quasiparticle bands
overlap with each other and there is a flat peak in LDOS
[see Fig. 13(d)]. Once γ0 is introduced for both cases, the
LDOS changes into a single-peak behavior for both cases
[Figs. 12(e) and 13(e)]. The fittings of LDOS width to the
experimental data for these two cases are shown in Figs.
12(f) and 13(f). One can see that while the parameter a for
td/U = 0.04 still gives a reasonable fit, the value of a for
td/U = 0.08, V 2/U = 0.3 is too small and the width cannot
be well fitted by Eq. (32). We conclude that as td/U increases
the fit deteriorates, especially away from the orange dashed
line.

Finally, for large td/U (here we take td/U = 0.11) close
to the critical value for the metal-insulator transition in the
isolated Hubbard model, the LDOS for V 2/U = 0.1 tc and
0.3 tc (indicated by � and � separately in Fig. 5) are shown
in Figs. 14(a)–14(c) and 14(d)–14(f). As expected, the LDOS
has a flat top near ω ∼ 0 without the inclusion of γ0 in the
self-energy [Figs. 14(a) and 14(d)], and will be broadened
once γ0 is introduced [Figs. 14(b) and 14(e)]. Figures 14(c)
and 14(f) show the width for these cases and we see that the
experimental data cannot be fitted by the theoretical results in
this regime because the theoretical slope is too small.

To summarize, by including a Fermi-liquid type of (imag-
inary) self-energy into heavy quasiparticles’ Green function,
it is possible to obtain a single-peak behavior for the LDOS
even in the Anderson limit. By modifying the value of γ0, the
width of LDOS can be well fitted by Eq. (32), which is the
formula for a single impurity Kondo problem, as illustrated
in Fig. 11(d). Moreover, adjusting tc to fit the experimental
width value at the lowest temperature, our theory suggests
that the experimental situation may be in or close to the
Anderson limit of the model. On the other hand, for interme-
diate td/U a reasonable fit can be obtained when the Kondo
scale JK and the Heisenberg scale JH compete, resulting in
a low-temperature width which is smaller than JK or JH ,
as illustrated in Fig. 12(c). In addition, our theory predicts
a ∼ 0.3 if the hopping of the d electrons is close to the critical
value for the metal-insulator transition in the isolated Hubbard
model, a value which does not fit the experimental data.
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V. SUMMARY AND DISCUSSIONS

We have studied a model of coupled correlated and
itinerant electrons which naturally interpolates between the
periodic Anderson model and the Hubbard model. Using a
slave rotor mean-field approach we have obtained a phase
diagram that summarizes the competition between a spinon
Fermi-surface state weakly coupled to a metal and an inter-
layer coherent heavy Fermi-liquid metallic state (illustrated in
Figs. 5, 6, and 8). In the localized or atomic limit where our
model reduces to the periodic Anderson model, the Kondo
coupling needed to destroy the spin liquid in favor of the
metal, JK ∼V 2/U , has a logarithmic dependence on the hop-
ping of the correlated electrons in the putative spin liquid
layer td/U , reflecting that the emergent scales determining
the competition are the Kondo temperature TK ∼ ρ−1e−1/JK ρ

(ρ ∼ t−1
c ) and Heisenberg coupling JH ∼ t2

d /U . Therefore, al-
though technically in such limit the spin liquid is destabilized
via a weak-coupling instability, the critical Kondo coupling
needed to destabilize the spin liquid grows rather fast with
the Heisenberg coupling, giving rise to the rapid rise of the
boundary between the spin liquid and the heavy metal at small
td/U seen in Figs. 5, 6, and 8. In this limit one can use the
measured saturation width TK to place an upper bound on
the Heisenberg coupling JH , resulting in a rather small bound
of about 5 meV from the experiments of [20]. On the other
hand, at larger values of td/U ∼ 0.1 when the spin liquid has a
sizable bandwidth, the critical JK is comparable to td/U , and
near the Mott transition the critical Kondo coupling needed to
destabilize the spin liquid vanishes linearly with the distance
of td/U away from the critical value associated with the Mott
metal-insulator transition, at mean-field level. However, we
find that generically the peak width is dominated by the spinon
bandwidth, leading to a width that is too broad and with too
weak a temperature dependence to explain the data. The ex-
ception is when the system happens to fall near the crossover
line indicated in orange in Fig. 5, where a reasonable fit to the
data can also be obtained. In this case, the Kondo scale JK and
the Heisenberg scale JH compete, giving rise to a narrow peak
with a width which is smaller than either scale at low tempera-
ture. As a result, in this case the low-temperature width cannot
be used as a bound for either scale, and it is possible that JH

is much larger than the 5-meV bound mentioned previously.
The above conclusion was reached by studying the LDOS

of the heavy metal throughout this phase diagram, which can
be directly accessed via STM experiments [20]. In the local
moment periodic Anderson limit of the model the coherent
hybridization of correlated and itinerant electrons in the heavy
metal leads to the bare LDOS acquiring a two-peak struc-
ture due to the opening of a direct optical band gap. On
the other hand, near the Mott metal-insulator transition the
LDOS features a rather flat shape due to a relatively large
spinon bandwidth. The measured LDOS is, however, further
broadened by the intrinsic lifetime of the heavy quasiparticles
arising from their interactions and also by disorder, leading
to a smearing of the double-peak structure in the periodic
Anderson model limit. We have argued that including these
effects renders the double-peak structure effectively into a
single peak, and we have found good agreement with the
shape and temperature dependence of the peak reported in

recent STM experiments [20], as illustrated in Fig. 11(d). We
also find reasonable fit to the data at intermediate td/U in the
vicinity of the orange line in Fig. 5, as illustrated in Fig. 12(c).

We note that in the localized limit of small td/U the Hub-
bard model in the triangular lattice is expected not to form a
spinon Fermi-surface state, but to order into a conventional
120◦ AFM phase. This piece of physics is not captured in our
slave rotor mean-field theory, which favors spin disordered
ground states. Therefore, our results pose a challenge for
the interpretation of the behavior of the standalone putative
1T-TaSe2 as a quantum spin liquid: if indeed the system
is near the Anderson limit, this raises the possibility that it
could be instead composed of localized moments that are
rather weakly coupled and might ultimately weakly order
at yet lower temperatures in cleaner samples. We, however,
caution that we cannot definitely rule out that the putative spin
liquid layer is at an intermediate coupling strength td/U that
brings the system closer to the Mott transition, where also a
small interlayer tunneling can destabilize the spin liquid. An
additional consideration is that the actual 1T-TaSe2 system
involves multiple bands and is probably not described by a
single band Mott-Hubbard model. While the spin liquid is
stabilized only near the Mott transition in a single band model
[25], it is possible that a multiband description can extend the
spin liquid to lower effective td .

Additionally, to reiterate the potential uncertainties, we
wish to note that the parameter a in Eq. (32) that we used
near the Mott transition has a Fermi-liquid form but it can be
changed by tuning the value of γ0 and E0, which are, respec-
tively, controlled by disorder and quasiparticle interactions,
and hence are inherently difficult scales to estimate accurately.

We want also to point out that in our calculation, we con-
sidered the metallic electrons to have the same lattice constant
and Brillouin zone as the correlated electrons. In doing so,
we are imagining that in a more microscopic description one
would be folding the Brillouin of the metallic 1H-TaSe2,
which does match with the smaller Brillouin zone of the star
of David structure of 1T-TaSe2, and that after this one is
only including one of the folded bands of itinerant electrons.
However, the hybridization with electrons at higher-energy
scales (coming from other folded bands) could also play an
important role in determining the phase boundary and the
form of LDOS, but such details lie beyond the scope of the
considerations that we have explored in the present paper.
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APPENDIX A: FINITE TEMPERATURE ROTOR
MEAN-FIELD APPROACH

As mentioned in the main text, for the order pa-
rameter of the metallic phase, �= 〈eiθ 〉, we estimate its
value by taking the average with respect to a single site
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Hamiltonian:

H (1)
θ = −Kθ (eiθ + e−iθ ) + U

2
n2

θ (A1)

= HK + HU , (A2)

where HK = −Kθ (eiθ + e−iθ ) and HU = U
2 n2

θ . We have taken
λ = 0 to fulfill the constraint Eq. (3) and the half filling of
the spinon. Because we are interested in the large U limit of
the model (td/U � 1/8), it is reasonable to use a first-order
perturbation (in HK ) to estimate the expectation value:

〈eiθ 〉 = Tr(e−β(HU +HK )eiθ )

Tr(e−β(HU +HK ) )

≈ −
∫ β

0
dτTr(e−βHU eτHU HK e−τHU eiθ )/Tr(e−βHU ),

(A3)

where one can take the trace with the eigenbasis of angu-
lar momentum nθ , {|n〉}, which satisfies nθ |m〉= m|m〉 and
eiθ |n〉= |n + 1〉, and we will denote the eigenvalue of HU by
En = U

2 n2. It is straightforward to obtain

−
∫ β

0
dτTr(e−βHU eτHU HK e−τHU eiθ )

= Kθ

∑
n

∫ β

0
dτe−βEn e−βEn eτ (En−En+1 )

= Kθ

∑
n

e−βEn+1 − e−βEn

En − En+1
, (A4a)

Tr(e−βHU ) =
∑

n

e−βEn , (A4b)

so one finally arrives at

〈eiθ 〉 ≈ χθ,1Kθ , (A5)

χθ,1 =
∑

n

e−βEn+1 − e−βEn

En − En+1

/∑
n

e−βEn . (A6)

By taking the zero-temperature limit, one can recover the
zero-temperature result given by

lim
β→∞

χθ,1(β ) = 4/U . (A7)

Next, we extrapolate the expression above, which is valid only
for small Kθ , with the phenomenological formula

〈eiθ 〉 = Kθ√
χ−2

θ,1 + K2
θ

, (A8)

which recovers the behavior from Eq. (A5) at small Kθ and
also the approach of 〈eiθ 〉 → 1, which is expected at large Kθ

(it is also consistent with the constraint that 〈eiθ 〉 � 1).
For 〈e−iθi eiθ j 〉, one can perform same kind of calculation.

We estimate it by taking the expectation value with respect to
the Hamiltonian:

H̃θ = U

2

∑
i

n2
θ,i − 2Tθ

∑
〈i, j〉

(e−iθi eiθ j + H.c.), (A9)

and taking the Tθ term as a perturbation, after some algebra,
one obtains that

〈e−iθi eiθ j 〉 ≈ χθ,2Tθ , (A10)

χθ,2 = 2

⎛
⎝ ∑

ni �=n j+1

e−β(Eni−1+En j +1 ) − e−β(Eni +En j )

Eni + Enj − (
Eni−1 + Enj+1

)

+
∑

n

βe−β(En+En−1 )

)/(∑
n

e−βEn

)2

, (A11)

and for the zero-temperature limit one recovers the value
χθ,2 = 4/U . Because we are interested in the small td limit
(remember that Tθ = tdχ0), we simply use Eq. (A10) through-
out our calculations.

It should be noted that the current mean field would
predict an artificial second-order phase transition for any
low-temperature phase with finite 〈eiθ 〉 to a high-temperature
phase with 〈eiθ 〉= 0, similar to the case of slave boson descrip-
tions at mean-field level [32]. In reality, there is no such phase
transition as a function of temperature but only a crossover
[37,38], and the expectation value of 〈eiθ 〉 is always finite at
nonzero temperatures. However, the zero-temperature transi-
tions which are the focus of the main paper are allowed to be
sharp second-order phase transitions in principle [39,40].

APPENDIX B: TUNNELING DOS OF THE SINGLE
IMPURITY ANDERSON MODEL

In this section, we briefly review the theory of tunneling
DOS for a single impurity Anderson model and give a more
thorough derivation on the fitting of STM results expanding
on the previous studies by Nagaoka et al. [29].

For a single impurity Anderson model, one can calculate
the tunneling DOS of the local electron using perturbation
theory since there is no phase transition as the on-site inter-
action U increases [23]. Early theoretical calculations [35,36]
showed that the (retarded) Green function of the local electron
for the particle-hole symmetric case reads (valid at small ω

and T )

Gd (ω, T ) = 1

ω − εd − Re �(ω) + i� − i Im �(ω, T )

= Z

ω − ε̃d + iZ[� − Im �(ω, T )]
, (B1)

where

ε̃d = εd + Re �(0) ≈ 0, (B2a)

Im �(ω, T ) = −�

2
α2

[( ω

TK

)2
+ π2

( T

TK

)2]
, (B2b)

where α is a number of order unity and equals π/4. In the sec-
ond line of Eq. (B1) we follow standard practice and expand
Re �(ω) to linear order in ω near the pole with

Z = 1

1 − ∂ω Re �(ω)|ω=0
= TK

α�
. (B3)

085128-14



COMPETITION OF SPINON FERMI SURFACE AND HEAVY … PHYSICAL REVIEW B 103, 085128 (2021)

Then it is straightforward to obtain the spectral function:

ρd (ω) = Z2

π

[� − Im �(ω)]

ω2 + Z2[� − Im �(ω)]2

= Z2�

π

1 + 1
2α2

(
ω2

T 2
K

+ π2T 2

T 2
K

)
ω2 + Z2�2

[
1 + 1

2α2
(

ω2

T 2
K

+ π2T 2

T 2
K

)]2

= 1

π�

1
ω2/(Z�)2

1+ 1
2 α2

(
ω2

T 2
K

+ π2T 2

T 2
K

) + 1 + 1
2α2

(
ω2

T 2
K

+ π2T 2

T 2
K

)

= 1

π�

1
α2ω2/T 2

K

1+ 1
2 α2

(
ω2

T 2
K

+ π2T 2

T 2
K

) + 1 + 1
2α2

(
ω2

T 2
K

+ π2T 2

T 2
K

) . (B4)

In the previous work by Nagaoka et al. [29], they did not
include the expansion near the pole, which amounts to setting
Z = 1. With this and setting α = 1, they argued that the ω term
in the denominator of Eq. (B1) can be dropped and they arrive
at the incorrect result that ρd ∝ 1/ Im �(ω, T ), i.e.,

ρd (ω) = 1

π�

1

1 + 1
2

(
ω2

T 2
K

+ π2T 2

T 2
K

) (B5)

with the prediction that the width reads

�exp =
√

2T 2
K + π2T 2, (B6)

which suggests the slope of � with respect to T is approxi-
mately π for T � TK

However, as we can see from the second line in Eq. (B1),
due to the fact that Z ≈ TK/�  1, ω cannot be dropped.
This is seen explicitly in Eq. (B4), where the first term in
the denominator dropped by Nagaoka et al. [29] is clearly of
the same order as the rest and should be kept. Nevertheless,
we shall show below that the conclusion that the slope of
� with respect to T is approximately π at relatively high
temperature is actually valid. The more complete Eq. (B4)
implies that the line shape is not a simple Lorentzian. Instead,
we calculate the half width at half height by requiring � to
satisfy ρd (�) = ρd (0)/2, which leads to

α2

(
�

TK

)2

=
[

1 + 1

2
α2

(πT

TK

)2]2

−
[

1

2
α2

(
�

TK

)2]2

, (B7)

and after some algebra one can show that

� =
√

2

α

⎡
⎣

√
T 4

K +
(

T 2
K + 1

2
α2π2T 2

)2

− T 2
K

⎤
⎦

1/2

. (B8)

In the low-temperature limit, the width can be approximated
as

� ≈
√

2(
√

2 − 1)

α2
T 2

K + 1√
2
π2T 2, (B9)

but on the other hand, for large T such that T � TK , � can be
approximated as

� ≈ πT . (B10)

FIG. 15. Plot of the LDOS width � with respect to the temper-
ature T based on Fermi-liquid theory. The blue solid line stands
for the exact result Eq. (B8), the orange dashed line indicates the
low-temperature expanded form Eq. (B9), and the red dashed line
shows the high-temperature approximated form Eq. (B10).

Going back to Eq. (B4), we see that in the large T limit the
first term in the denominator becomes a nonzero constant. It
affects the effective definition of the zero-temperature width
in terms of TK , but does not affect the high-temperature limit
of the linewidth. Although the low-temperature expansion Eq.
(B9) seems to suggest that the slope of the �-T curve would
saturate to π/21/4 at relatively large temperatures (see the
orange dashed line in Fig. 15), the slope derived from Eq. (B8)
actually saturates to π at higher temperatures, as indicated by
the blue line in Fig. 15.

According to Eq. (B8), the zero-temperature width should
be �(T = 0) = [2(

√
2 − 1)]

1
2 /α ≈ 1.16TK , while Eq. (B6)

predicts �exp(T = 0) = √
2TK . Therefore, with a given set of

experimental data of � versus T , the extracted TK using
Eq. (B6) would be slightly smaller than the one predicted from
Eq. (B8). On the other hand, both expressions suggest that �

has an approximately linear dependence on T for T ∼ TK with
a π slope.

Finally, comparing the Fermi-liquid theory presented
above and the more exact numerical renormalization-group
(NRG) calculation, one can see that both theories imply that
the LDOS is not a simple Lorentzian form. The Fermi-liquid
theory suggests �(T = 0) ≈ 1.16TK while the NRG suggests
�(T = 0) = TK . The NRG LDOS curve can be quantitatively
well fitted by a phenomenological expression suggested by
Frota and Oliveira [41] and Frota [42]:

ρ f (ω) = 2

π�A
Re

[(
ω + i�K

i�K

)−1/2]

= 2

π�A

(
1 +

√
1 + (ω/�K )2

2[1 + (ω/�K )2]

)1/2

, (B11)

with �A and �K being fitting parameters. However, it should
be noted that this formula is a phenomenological parametriza-
tion of the model and is not able to predict the temperature
dependence of LDOS and its width [42].
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