
PHYSICAL REVIEW B 103, 085122 (2021)

Phase transitions of bosonic fractional quantum Hall effect in topological flat bands
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We study the phase transitions of bosonic ν = 1/2 fractional quantum Hall (FQH) effect in different topo-
logical lattice models under the interplay of onsite periodic potential and Hubbard repulsion. Through exact
diagonalization and density matrix renormalization group methods, we demonstrate that the many-body ground
state undergoes a continuous phase transition between bosonic FQH liquid and a trivial (Mott) insulator induced
by the periodic potential, characterized by the smooth crossover of energy and entanglement entropy. When the
Hubbard repulsion decreases, we claim that this bosonic FQH liquid would turn into a superfluid state with a
direct energy level crossing and a discontinuous leap of off-diagonal long-range order.
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I. INTRODUCTION

In the past several decades the emergence of topological
phases of matter beyond Landau’s paradigm opens up an
innovatory chapter in modern condensed matter physics [1].
One of the paramount topics is related to the phase tran-
sitions among these different topologically ordered phases
such as fractional quantum Hall (FQH) effect [2] and
spin liquid [3]. These topologically ordered phases, which
are characterized by long-range entanglement without Lan-
dau’s symmetry-breaking order parameters, usually host a
well-defined topological invariant [4], e.g., fractional Hall
conductance of the quantum Hall systems. Therefore the
phase transition between a topologically ordered phase and
a symmetry-broken phase is an intricate problem, which in-
spires much interest in its transition nature.

Indeed, a lot of theoretical studies on quantum Hall tran-
sitions between quantum Hall phases and topologically trivial
phases, which have enlarged the domain of phase transition
physics, are in bloom [5–10]. Generally, there exist two pos-
sible scenarios for phase transitions separating a topologically
ordered phase with another trivial phase by (i) a first-order
transition such as a transition between two distinct ground
states of an Ising quantum Hall ferromagnet [11], and (ii) a
second-order phase transition, for instance Landau-forbidden
transitions between a bosonic integer quantum Hall liquid
and trivial insulator in two dimensions [12,13] which are
also numerically examined in different topological models
[14,15]. Of particular interest, under the periodic chemical
potential, a continuous transition between a fractional quan-
tum Hall liquid at weak potentials and a Mott insulator at
strong potentials is claimed in Refs. [16–18] on the basis of
effective field theory. In contrast for disordered potentials, the
localization/delocalization transition between plateaux in the
fermionic integer quantum Hall system is shown to exhibit the
universality class [19,20]. Numerically, disorder-driven phase
transition from a fractional quantum Hall liquid to an Ander-
son insulator is shown to be continuous [21]. In the presence

of a spatial symmetry, it is argued that there may be a direct
continuous transition between the bosonic ν = 1/2 FQH liq-
uid and the bosonic superfluid [22,23], whereas numerically
the compressible-to-incompressible phase transitions in quan-
tum Hall systems [24] are likely to be of first-order nature.

However in lattice models, prior major interests are fo-
cused on the creation or implementation of Laughlin-like
bosonic FQH state [25–30], and much less knowledge has
been gathered about the phase transition picture of quantum
Hall physics against other phases. The topological flat bands
without magnetic fields have become a basic infrastructure
for studying the quantum Hall effect, with fractionalized
topological phases predicted at partial fillings, dubbed “frac-
tional Chern insulators” [31–36]. In cold atomic gases, the
topological Haldane-honeycomb lattice has been obtained in
periodically driven optical lattice [37], and the topological
Harper-Hofstadter Hamiltonian is obtained using either laser-
assisted tunneling in neutral 87Rb atoms [38–41] or synthetic
dimension in alkaline-earth-metal-like atoms with multiple
internal degrees of freedom [42,43]. Moreover in multilayer
systems, tunable Chern insulators under moiré superlattice
potential have been achieved [44,45]. In Ref. [46], the ex-
istence of fractionalized interacting phases is experimentally
confirmed, and the phase transitions between these quantized
phases are mapped out. Such continuous transitions between
different fractional quantum Hall states induced by periodic
potentials have been intensively discussed regarding different
Chern insulators in Ref. [47] with fascinating QED prop-
erties at the critical points. These experimental progresses
hold promise for exploring exotic phase transition physics in
fractional quantum Hall systems, such as the phase transi-
tion between FQH and other trivial phases in the interacting
Harper-Hofstadter model [48,49].

In this work, we focus on the phase transition physics
for soft-core bosons in concrete topological lattice mod-
els at filling factor ν = 1/2 under the interplay of periodic
potential and Hubbard repulsion. For strong Hubbard repul-
sion, Laughlin-like fractional quantum Hall effect is believed
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FIG. 1. The schematic plot of (a) the π -flux checkerboard lattice
model in Eq. (1) and (b) the Haldane-honeycomb lattice model in
Eq. (2). The arrow directions present the signs of the phases φ in
the hopping terms. Sublattice A (B) is labeled by blue (red) filled
circles. The arrow link shows the hopping direction carrying chiral
flux φr′r. For the checkerboard lattice, the next-nearest-neighbor
hopping amplitudes are t ′

r,r′ = ±t ′ along the solid (dotted) lines.
ex,y indicate the real-space lattice translational vectors. The magenta
dotted box depicts the enlarged unit cell with periodic potentials
μA = 0, μA′ = μB = μB′ = μ.

to emerge [35]. Upon the addition of periodic potential
or the softening of Hubbard repulsion, we elucidate the
phase transition nature between different competing phases
through state-of-the-art density-matrix renormalization group
(DMRG) and exact diagonalization (ED) simulations.

The rest of this paper is organized as follows. In Sec. II, we
give a description of the Bose-Hubbard model Hamiltonian
with periodic potential in different topological lattice mod-
els, such as π -flux checkerboard and Haldane-honeycomb
lattices. In Sec. III, we present the numerical results for
the FQH-insulator transition induced by periodic potential.
Further in Sec. IV, we present the numerical results for the
FQH-superfluid transition when the Hubbard repulsion is de-
creased. Finally, in Sec. V, we summarize our results and
discuss the prospect of investigating such phase transitions in
flat band systems.

II. MODELS AND METHODS

We begin with the following noninteracting tight-binding
Hamiltonian in two typical topological lattice models, as
shown in Figs. 1(a) and 1(b),

H0
CB = −t

∑
〈r,r′〉

[b†
r′br exp(iφr′r ) + H.c.]

−
∑

〈〈r,r′〉〉
t ′
r,r′b†

r′br − t ′′ ∑
〈〈〈r,r′〉〉〉

b†
r′br + H.c.,

H0
HC = −t ′ ∑

〈〈r,r′〉〉
[b†

r′br exp(iφr′r ) + H.c.]

− t
∑
〈r,r′〉

b†
r′br − t ′′ ∑

〈〈〈r,r′〉〉〉
b†

r′br + H.c.,

where H0
CB denotes the π -flux checkerboard (CB) lattice and

H0
HC the Haldane-honeycomb (HC) lattice. Here b†

r (br ) is
the particle creation (annihilation) operator at site r, and
〈. . .〉, 〈〈. . .〉〉, and 〈〈〈. . .〉〉〉 denote the nearest-neighbor, the

next-nearest-neighbor, and the next-next-nearest-neighbor
pairs of sites, respectively. In the flat band parameters, we
choose t ′ = 0.3t, t ′′ = −0.2t, φ = π/4 for checkerboard lat-
tice, and t ′ = 0.6t, t ′′ = −0.58t, φ = 2π/5 for honeycomb
lattice, as in Refs. [35,50].

Further we take the Bose-Hubbard repulsion as Vint =
U/2

∑
r nr(nr − 1), where U is the onsite interaction strength

and nr = b†
rbr is the particle number operator at site r. In

what follows, we will numerically address the many-body
ground states of interacting bosons in the presence of periodic
potentials, and the full Hamiltonian is written as

HCB = H0
CB + U

2

∑
r

nr(nr − 1) +
∑

r

μrnr, (1)

HHC = H0
HC + U

2

∑
r

nr(nr − 1) +
∑

r

μrnr, (2)

where periodic potential μr is chosen with commensurate
period two: μr = 0 for A sites while μr = μ for B, A′, B′ sites
within each unit cell, as shown in Figs. 1(a) and 1(b).

In the ED study, we study a finite system of Nx × Ny unit
cells (the total number of sites is Ns = 2 × Nx × Ny). The total
filling of the lowest Chern band is ν = N/(NxNy) with global
U (1) symmetry. With the translational symmetry, the energy
states are labeled by the total momentum K = (Kx, Ky) in
units of (2π/Nx, 2π/Ny) in the Brillouin zone. While the ED
calculations on the periodic lattice are limited to a small sys-
tem, we exploit infinite DMRG for larger systems on cylinder
geometry with open boundary conditions in the x direction
and periodic boundary conditions in the y direction. We keep
the bond dimension up to 3600 to obtain accurate results for
different system sizes.

III. NUMERICAL RESULTS FOR FQH-INSULATOR
TRANSITION

In this section, we present our numerical results for the
transition between a FQH liquid and a Mott insulator induced
by periodic potential μ at a given filling ν = 1/2 for bosons.
For strong Hubbard repulsion the system is known to fall
into the ν = 1/2 FQH phase at μ = 0, as demonstrated in
Ref. [35]. When μ increases, the ν = 1/2 FQH would be
overwhelmed by a trivial insulator where the particles are
localized at strong μ/t � 1. In the following parts, we will
discuss this phase transition from several aspects including
ground state degenerate manifold and entanglement entropy.

A. ED results

We first present an ED study of the ground state prop-
erties in Eqs. (1) and (2) with hardcore limit U/t = ∞. In
Figs. 2(a) and 2(b), we plot the low-energy spectrum as a
function of onsite periodic potential μ for various system
sizes in different topological lattices. For weak potentials,
there always exist two nearly-degenerate ground states with
a large gap separated from higher excited levels, which
is the hallmark characteristic of ν = 1/2 FQH liquid. The
question of whether or not these ground states are FQH
states against other competing trivial phases like charge-
density-wave phases can be answered by their topological
invariants, i.e., the Chern numbers. In the presence of periodic
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FIG. 2. Numerical ED results for the low energy spectrum of
Bose-Hubbard system ν = 1/2,U = ∞ as a function of periodic po-
tential μ on two typical topological lattices: (a) π -flux checkerboard
and (b) Haldane-honeycomb lattices, respectively. In the presence of
periodic potential μ, the unit cell is doubled with four inequivalent
lattice sites A, B, A′, B′, and the twofold degenerate FQH ground
states fall into the same momentum sector.

potential, these twofold ground states are coupled with each
other in the same momentum sector within the reduced
Brillouin zone. With twisted boundary conditions [51–53],
ψ (r + Nxêx ) = eiθx ψ (r), ψ (r + Nŷey) = eiθyψ (r) where θx,y

are the twisted angle, the Chern number is given by C =∫∫
dθxdθyFxy/2π where the Berry curvature is given by Fxy =

Im(〈∂θx ψ |∂θyψ〉 − 〈∂θyψ∂θx ψ〉). We plot the low energy spec-
tral flow in Fig. 3. For μ < μc, the lowest two ground states
in the same momentum sector K = (0, 0) are strongly coupled
under the insertion of flux quantum. Meanwhile by calculating
the smooth Berry curvatures shown in Fig. 4(a), we obtain
a well-quantized total Chern number

∑2
i=1 Ci = 1 for two

gapped ground states at μ < μc. By tuning μ from weak to
strong, the ground states do not undergo the level crossing
with excited levels for different system sizes, signaling a
continuous phase transition nature. Across a threshold value
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FIG. 3. Numerical ED results for the low energy spectral flow
of hardcore bosonic systems ν = 1/2, Ns = 2 × 4 × 4 in topological
checkerboard lattice under the insertion of flux quantum θy = θ for:
(a) μ < μc, (b) μ > μc.
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FIG. 4. Numerical ED results for Berry curvatures
Fxy�θx�θy/2π in hardcore bosonic systems ν = 1/2, Ns =
2 × 4 × 4 for: (a) the K = (0, 0) two ground states at μ < μc,
(b) the K = (0, 0) unique ground state at μ > μc.

μ = μc, these twofold ground states split and a unique ground
state is left in the Mott insulator for μ > μc. We find that this
gapped unique ground state does not mix with other energy
levels under the insertion of flux quantum and hosts a zero
Chern number C = 0 at μ > μc, as indicated by the vanishing
Berry curvatures in Fig. 4(b).

Next, we examine the change of single-particle entan-
glement entropy for interacting N-particle systems as a
function of onsite periodic potential μ. Here we diagonalize
the reduced single-particle density matrix ρ̂r,r′ = 〈ψ |b†

rbr′ |ψ〉
with Ns × Ns elements and obtain single-particle eigenstates
ρ̂|φ j〉 = n j |φ j〉 where |φ j〉 ( j = 1, . . . , Ns) are the natural or-
bitals and n j (n1 � . . . � nNs ) are interpreted as occupations.
The single-particle entanglement entropy is defined as

S(N ) = −
Ns∑
j=1

n j ln n j . (3)

For ν = 1/2 FQH liquid, the particles uniformly occupy the
lowest Chern band with the occupations nj � 1/2 for j �
Ns/2 and n j � 1 for j > Ns/2. Thus S(N ) becomes a univer-
sal constant N × ln 2. However, increasing periodic potential
μ leads to the splitting of the lowest band into two subbands,
and the particles tend to occupy the lower subband with nj �
1 for j � N = Ns/4 and n j � 1 for j > N , in order to mini-
mize the total energy. For the Mott insulator, the N particles
are localized at certain N sites, and S(N ) tends to zero for
strong μ/t � 1. As shown in Fig. 5(a), the single-particle
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FIG. 5. Numerical ED results for the FQH-insulator transition
at ν = 1/2,U = ∞ in the CB lattice as periodic potential μ is
increased from weak to strong for different sizes: (a) single-particle
entanglement entropy S(N ) and (b) charge-hole gap �c.
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entanglement entropy S(N ) evolves smoothly from weak μ

to strong μ, which serves as another signature of continuous
FQH-insulator transition.

Moreover we continue to discuss the insulating behavior
against particle excitations across the FQH-insulator tran-
sition. As is well known, both ν = 1/2 FQH liquid and
Mott insulator are incompressible phases characterized by the
presence of the charge-hole gap. Here we calculate the charge-
hole gap �c(μ) = [EN+1(μ) + EN−1(μ) − 2EN (μ)]/2 where
EN (μ) is the ground energy for interacting N-particle systems.
As shown in Fig. 5(b), �c shrinks as μ increases from zero to
μc, implying the softening of ν = 1/2 FQH liquid, while it
tends to dilate for strong μ > μc, which scales as �c(μ) ∝ μ

when the particle excitation is controlled by the periodic po-
tential. Nevertheless, �c(μ) hosts a nonzero minimum cusp at
the threshold point μ = μc for different system sizes, indicat-
ing the continuous transition. However, one should be careful
to extract the excitation information in the thermodynamic
limit. According to the construction of effective QED3-Chern-
Simons theory [47], this critical point should be described by
one Dirac fermion coupled to a gauge field and the gap closing
should happen at certain high symmetry momentum point like
the 
 point K = (0, 0) in the Brillouin zone as indicated in
Fig. 2 for all system sizes. Thus we expect the excitation gap
in Figs. 2 and 5(b), due to finite size effect, would collapse at
the critical point μ = μc in the thermodynamic limit, which
is beyond the current scope of our computability.

B. DMRG results

Following the last section, we move on to discuss the
continuous transition between ν = 1/2 FQH liquid and Mott
insulator from the perspective of DMRG simulation. Here we
exploit an unbiased DMRG approach for larger system sizes,
using a cylindrical geometry up to a maximum width Ny = 8.
For topologically ordered phases like ν = 1/2 FQH liquid,
they host nonlocal anyons with long-range entanglement in
the ground state, reflected in the topological entanglement
entropy. As pointed out in Refs. [54,55], the entanglement
entropy SL of a partitioned subsystem of a gapped two-
dimensional system satisfies the volume area

SL(�) = α� − γ + · · · , (4)

where � is the boundary length of the subsystem. The topolog-
ical entanglement entropy γ = ln(D) is a universal constant
with D the total quantum dimension, i.e., D = √

2 for Laugh-
lin ν = 1/2 FQH liquid. In our infinite DMRG, we divide the
cylinder into left and right parts along the x direction [56] and
calculate the entanglement entropy of the left part as SL(�)
with the boundary length � = 2Ny.

We calculate the entanglement entropy SL for three differ-
ent widths Ny = 4, 6, 8, which varies smoothly as μ increases.
In the Mott insulator, there is no fractionalization of anyons,
and the topological entanglement entropy γ = 0. As shown in
Fig. 6(a), the first-order derivative of SL as function of μ for
different cylinder widths exhibits a local minimum at μ = μc

which persists to a nonvanishing finite value as the cylinder
width increases, indicating a continuous phase transition even
in the thermodynamic limit [21,57,58].
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FIG. 6. Numerical DMRG results for the FQH-insulator transi-
tion at ν = 1/2,U = ∞ in the CB lattice as periodic potential μ is
increased from weak to strong: (a) first-order derivative of entangle-
ment entropy and (b) topological entanglement entropy γ . The lattice
geometry is taken with finite cylinder width Ny and infinite cylinder
length Nx = ∞. The upper inset plots the finite scaling of critical
periodic potential μc as the cylinder width increases. The lower inset
plots the typical extraction of topological entanglement entropy γ

using the finite area-law scaling of entanglement entropy at given
potential μ = 0.42t .

Meanwhile, we scale SL as a function of Ny and obtain the
topological entanglement entropy γ for a given μ. As shown
in Fig. 6(b), for μ < μc, γ remains close to the theoretical
value ln(

√
2), consistent with the prediction of ν = 1/2 FQH

liquid. However for μ > μc, γ decreases monotonically down
to zero as μ increases. Together with SL, the analytic behavior
of γ demonstrates the continuous quantum phase transition
from ν = 1/2 FQH liquid to a Mott insulator.

IV. NUMERICAL RESULTS FOR FQH-SUPERFLUID
TRANSITION

In this section, we now turn to discuss the numerical re-
sults for the transition between a FQH liquid and bosonic
superfluid induced by the softening of Hubbard repulsion U
at a given filling ν = 1/2 for bosons. For weak Hubbard
repulsion U/t � 1, the ν = 1/2 FQH liquid should be de-
stroyed and the weakly interacting bosons would condense
into the lowest single-particle kinetic orbital, where the sys-
tem becomes a gapless superfluid. In the following parts,
we will discuss quantum phase transition from several as-
pects including ground state degenerate manifold and the
off-diagonal long-range order 〈b†

rbr′ 〉. Here to bypass the nu-
merical difficulty, we take the maximum particle occupation
per site Nmax = 2 for Bose-Hubbard model in Eqs. (1) and (2),
which is a very good approximation for the low lattice filling
N/Ns = 1/4 � 1.

As indicated in Figs. 7(a) and 7(b) for different system
sizes, we plot the low energy evolution at ν = 1/2 on topo-
logical π -flux checkerboard lattice as a function of Hubbard
repulsion U . When U decreases, the energy gap protecting the

085122-4



PHASE TRANSITIONS OF BOSONIC FRACTIONAL … PHYSICAL REVIEW B 103, 085122 (2021)

FIG. 7. Numerical ED results for the low energy spectrum of
Bose-Hubbard system ν = 1/2, μ = 0 as a function of Hubbard
repulsion U on topological π -flux checkerboard lattice for different
system sizes (a) Ns = 2 × 3 × 4 and (b) Ns = 2 × 4 × 4, respec-
tively. The black dashed line indicates the level-crossing point of the
lowest ground state. The insets shows the zoom-in scan of the low
energy spectrum near the transition point.

twofold ground state degeneracy diminishes, and finally near
the transition point U � Uc these two ground states undergo
the direct level crossing with the third excited level, signaling
a first-order phase transition nature. Moreover the momentum
sector of the lowest ground state remains unchanged across
the phase transition. Across the transition point U < Uc, there
are many low-lying excited energy levels and the system
enters into a bosonic superfluid. Similarly, we also confirm
that the level crossing is observed on topological Haldane-
honeycomb lattice with a smaller Uc, regardless of detailed
lattice geometry.

In order to demonstrate the first-order transition, we in-
vestigate the change behavior of the off-diagonal long-range
order (ODLRO) related to bosonic superfluid. For finite sys-
tem sizes, we define ODLRO as 〈b†

0bs〉 where s = |r|max is
the most remote distance relative to the original point r =
0 in the periodic lattice. As shown in Fig. 8(a), when U
weakens, bosonic phase coherence is enhanced and a dis-
continuous jump of ODLRO appears at the transition point
U = Uc, consistent with the level crossing in Fig. 7(b). Fur-
ther, we calculate the charge-hole gap �c(U ) = [EN+1(U ) +
EN−1(U ) − 2EN (U )]/2 which serves as a characterization
tool between incompressible and compressible liquids. �c

decreases monotonously in the FQH region as U is tuned
down to Uc, and then for U < Uc, �c hosts a very small value,
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FIG. 8. Numerical results for the FQH-superfluid transition at
ν = 1/2, μ = 0 on topological π -flux checkerboard lattice as Hub-
bard repulsion U is decreased from strong to weak for different
system sizes: (a) Ns = 2 × 4 × 4 in ED and (b) Ns = 2 × 12 × 4 in
DMRG. The black dashed line labels the discontinuous transition
point Uc of key physical quantities, including off-diagonal long-range
order (ODLRO), first derivative of ground state energy per particle
∂E (U )/(N∂U ), and half-cylinder entanglement entropy SL . The in-
set cartoon depicts the measurement of ODLRO in the middle regime
of finite cylinder, in order to eliminate the open boundary effect at
two ends [the blue (red) filled circles label sublattice A (B)]. Here
finite DMRG is used with the maximal bond dimension 2420.

i.e., of the order 0.01t limited by our finite system size. Due to
the level crossing, the nonanalytic behavior of �c at U = Uc

is also consistent with the first-order transition.
For a larger finite cylinder system, we also confirm the

first-order transition nature, as evidenced by multiple mea-
sures through DMRG simulation. As indicated in Fig. 8(b),
first, the first-order derivative of the ground state energy hosts
a small jump near the transition point Uc, in support of the
level-crossing picture in ED. Second, when the ODLRO is
measured inside the cylinder, it manifests a discontinuous
jump at U = Uc, as it is. Third, the half-cylinder entanglement
entropy SL is also nonanalytic with a leap in the slope at
U = Uc, in sharp contrast to that in the FQH-insulator tran-
sition. Note that in Figs. 7 and 8, as the system size increases,
the transition point is shifted towards a slightly bigger value,
implying the existence of phase transition driven by Hubbard
repulsion in the thermodynamic limit.

Finally we remark that our complementary ED and DMRG
calculations in various detailed lattice models give a contrary
deduction to the conclusion drawn by Ref. [22] where instead
an effective continuous transition is derived. In the thermo-
dynamic limit, it may be likely that the weakly first-order
transition is smeared by other perturbations like disorder in
realistic experimental environments, and a continuous transi-
tion may intervene since disorder would couple the two states
in the same momentum sector with a level repulsion left.
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V. SUMMARY AND DISCUSSIONS

In summary, we have studied different competing phases
under the interplay of interaction and periodic potential. We
show that the continuous phase transition between bosonic
ν = 1/2 FQH liquid and a featureless (Mott) insulator is in-
duced by the periodic potential, characterized by the smooth
crossover of ground state energy and entanglement entropy.
In contrast as the Hubbard repulsion decreases, we find that
this bosonic FQH liquid would undergo a weakly first-order
transition into a gapless superfluid with a sudden change
of off-diagonal long-range order. Our soft-core bosonic flat
band models would be generalized to a larger class of in-
teracting Hamiltonian featuring ν = 1/2 FQH effect, such
as interacting Harper-Hofstadter models, which is of suffi-
cient feasibility to be realized for current experiments in cold

atoms [59]. We emphasize that actually the phase transitions
between ν = 1/2 FQH liquid and other competing phases
tuned by periodic potential in interacting Harper-Hofstadter
models [48] are of the same nature as these in our flat
band models, regardless of any details in lattice structure,
demonstrating the universal physical picture in these phase
transitions.
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