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Destabilization of ferromagnetism by frustration and realization of a nonmagnetic Mott transition
in the quarter-filled two-orbital Hubbard model
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The two-orbital Hubbard model on a square lattice at quarter filling (electron number per site n = 1) is
investigated by the variational Monte Carlo method. For the variational wave function, we include short-range
doublon-holon binding factors. We find that the energy of this wave function is lower than that of the density-
density Jastrow wave function partially including long-range correlations used in a previous study. We introduce
frustration to the model by the next-nearest-neighbor hopping ¢’ in addition to the nearest-neighbor hopping .
For ' = 0, a ferromagnetic state with staggered orbital order occurs by increasing the Coulomb interaction U
before the Mott transition takes place. By increasing ¢', the region of this ferromagnetic phase shrinks, and the

Mott transition without magnetic order occurs.
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I. INTRODUCTION

The Mott transition is one of the most remarkable phenom-
ena emerging from electron correlation. According to band
theory, a system with an odd number of electrons per unit
cell is a metal since at least one band is partially filled when
we consider the spin degrees of freedom. However, there are
insulators in which the electron number per unit cell is odd,
e.g., MnO [1]. To explain these insulators, the importance of
the Coulomb interaction between electrons was suggested by
Mott and Peierls [2,3], and insulators in which the electron
correlation plays a crucial role for the realization of the insu-
lating state are called Mott insulators.

To investigate the transition to the Mott insulator, the Mott
transition, the single-orbital Hubbard model at half filling,
i.e., electron number per site n = 1, is a typical model. When
the on-site Coulomb interaction U is much smaller than the
bandwidth W, the system should be in a metallic state. On
the other hand, for U > W, most sites are occupied by a
single electron, and the electrons rarely move due to the large
Coulomb interaction. Then, the system is expected to be insu-
lating. Thus, the Mott transition should take place at U >~ W.
Howeyver, it is a hard task to describe the Mott transition
theoretically since it is a many-body problem.

To describe the electron correlation, Gutzwiller proposed
a variational wave function [the Gutzwiller wave function
(GWF)] [4] and an approximation (the Gutzwiller approxi-
mation) [5] to evaluate physical quantities in the GWF. By
applying the Gutzwiller approximation for n = 1, Brinkman
and Rice pointed out that the system becomes insulating at a
finite value of U [6]. The GWF for the single-orbital Hubbard
model is given by [ [,[1 — (1 — g)n.n. 1|P), where n, is the
electron number operator of spin o at site r and |®) is the
ground state wave function for U = 0. The Gutzwiller param-
eter g tunes the probability of double occupancy at each site.
If g = 0, the double occupancy is completely prohibited, and
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electrons cannot move at all; that is, the system is insulating.
Brinkman and Rice found that g becomes zero at a finite U by
employing the Gutzwiller approximation.

The complete suppression of double occupancy is an arti-
fact of the approximation. As long as U is finite, while the
frequency may be low, double occupancy should occur to re-
duce the kinetic energy. To avoid introducing approximations,
the variational Monte Carlo (VMC) method was applied to
the Hubbard model [7]. Then, a finite g was obtained even
for a large U. Moreover, the Mott transition disappeared in
the VMC calculation; that is, it was revealed that the GWF
cannot describe the Mott transition at least in one- and two-
dimensional lattices. The absence of the Mott transition in the
GWF was also shown analytically for the one-dimensional
case [8]. The reason can be understood as follows. In the
GWEF, when a pair of a doubly occupied site (doublon) and an
empty site (holon) is created, the wave function is multiplied
by the factor g. This factor does not change even when the
distance between the doublon and holon increases (top panels
in Fig. 1). In other words, the doublon and holon move freely
after they are created. For U < oo, the numbers of doublons
and holons are finite, and they can move freely; that is, the
system is metallic, within the GWF. Thus, the GWF cannot
describe the Mott insulating state.

Later, it became clear that inclusion of intersite correla-
tions improves the situation [9,10]. Here, we consider the
wave function including the doublon-holon binding factors
[doublon-holon binding wave function (DHWF)] [11,12]. In
the DHWF, the wave function is multiplied by additional
factors when a doublon and a holon separate from nearest-
neighboring sites (bottom panels of Fig. 1). It was shown that
by an effect of these factors, the DHWF can describe the Mott
transition [9].

Another important issue of the Mott transition is the
competition with magnetism. In the single-orbital Hubbard
model for n = 1 with only the nearest-neighbor hopping ¢,
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FIG. 1. Correlation factors for the GWF and DHWF. Here, we
show them for the single-orbital model for simplicity. When a pair
of a doublon and a holon is created, the factor g appears (middle
panels). In the GWF, the doublon and holon move freely without a
change in the factor (top right panel). In the DHWF, the factors &
and &;, appear when the pair separates (bottom right panel), where
0 and 1 denote the holon and doublon states, respectively. In this
figure, we have considered only the nearest-neighbor doublon-holon
binding factors for clarity.

the ground state is expected to be the antiferromagnetically
ordered state for U > 0 due to the perfect nesting of the
Fermi surface. The unit cell contains two sites in the antifer-
romagnetic (AF) state; that is, there are two electrons per unit
cell. Then, the AF state can be regarded as a band insulator.
To realize the Mott insulating state without ambiguity, it is
necessary to destabilize the antiferromagnetism. A plausible
way is to introduce frustration [13-22]. For example, it is
found that the region of the AF phase shrinks by increasing the
next-nearest-neighbor hopping #’, and the nonmagnetic Mott
insulating phase appears [13,17,20,21,23].

In this paper, based on the above developments in the
single-orbital model, we extend the research on the Mott tran-
sition to the two-orbital model. We apply the VMC method
to the two-orbital Hubbard model by employing the DHWEF.
The interplay of the spin and orbital degrees of freedoms
leads to intriguing phenomena such as orbital ordering and
itinerant ferromagnetism, and many theoretical studies have
been conducted using this model. To investigate the Mott
transition, we consider integer values of n. For n = 1 without
t', the ground state changes from the paramagnetic (PM) state
to a ferromagnetic (FM) state with staggered orbital order by
increasing the Coulomb interaction [24—34]. It was found that
partially spin polarized states are hard to realize [28-31,34],
and in the following, we consider only the completely spin
polarized state, in which only the majority-spin states are
occupied, as the FM state. For n = 2 without ¢/, the ground
state is the AF state without orbital order [28,31,34]. In both
ordered phases, the electron number per unit cell is an even
number, and these phases can be regarded as band insulating
phases.

The Mott transition has also been investigated for the two-
orbital and multiorbital Hubbard models [34—42] by assuming
the PM phase. In these studies, the models with only the
nearest-neighbor hopping are employed. Then, if we allow
for magnetic states, the nonmagnetic Mott insulating phase
disappears [34]. Thus, we need to introduce frustration.

In the case of n = 2, the magnetic phase to be destabilized
to realize the nonmagnetic Mott transition is the AF phase,
and the situation may be similar to the single-orbital model.
In addition, the electron number per site is even, and the dis-
tinction between the band insulator and Mott insulator would
be unclear. Thus, in this study, we concentrate on the case
of quarter filling n = 1. If an insulating state appears in the
PM phase for n = 1, it is a Mott insulator without ambiguity.
We expect that by introducing frustration, we can destabilize
the FM phase since this ferromagnetism is supported by the
staggered ordering of the orbital degrees of freedom. Frustra-
tion usually destroys an AF state, and the destabilization of
the ferromagnetism by frustration is not so trivial and worth
investigating.

II. MODEL AND WAVE FUNCTIONS

The two-orbital Hubbard model is given by

H = Z chzt(,ckra +U anranr,L

k,t,0 rt

/ Tt
+U E nengg +J E Cr16Cr20'Crla’ Cr2o
r

r,o,0’

+J' Y el e, (1)

rT#t

where ¢ is the creation operator of the electron with orbital
T (=1 or 2) and spin o (=1 or |) at site r, n.;, = cj'wc,m,
and 1y =) Ny sz is the Fourier transform of ch. U
and U’ are intraorbital and interorbital Coulomb interactions,
respectively. J is the Hund’s rule coupling, and J' denotes
the pair-hopping interaction. We use the relations U = U’ +
J +J' and J = J’, which hold in many orbitally degenerate
systems [43].

We consider the nearest-neighbor hopping ¢ and the next-
nearest-neighbor hopping ¢’ on a square lattice. Then, the

kinetic energy is written as
€x = —2t(cosk, + cosky) — 4¢' cos k, cos ky, 2)

where we have set the lattice constant as unity. We can assume
t > 0 without loss of generality since the sign of ¢ can be
changed by the transformation ¢,;, — €¢7¢,o [Q = (7, 7)]
without changing the other terms of the model. Then, the
bandwidth is W = 47 + 4 max(z, 2|t']).

The sign of t' changes physical quantities in the PM phase
except for the electron-hole symmetric case n = 2 [20]. Pre-
liminary calculations on an 8 x 8 lattice for n = 1 indicate
that the FM state is stable against ¢ < 0 in comparison with
t" > 0. The completely spin-polarized FM state at n = 1 has
electron-hole symmetry, and its energy does not depend on
the sign of #’. On the other hand, the energy of the PM state
depends on the sign. As inferred from the kinetic energy at
k = (0,0), ex—0.0) = —4t — 4t', the energy for ¢’ > 0 is lower
than that for ' < O at least for a weak Coulomb interaction
with |¢t'] <t at low electron filling. Thus, the PM solution
may become advantageous for #' > 0. In the following, we
consider only 7 > 0 to destabilize the FM state.

Concerning the variational wave functions, we discuss
three types: The GWF, the DHWF, and the wave function
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with the density-density Jastrow factor used in a previous
study [34].

The GWF for the two-orbital model [30,31,35,44-47] is
given by

|Wowe) = P6|®), 3

where |®) is a one-electron wave function which we will give
below. The Gutzwiller projection operator is defined as

Po=[]01——g)Py, )

ry

where y denotes one of the 16 on-site states, P, is the pro-
jection operator onto state y at site r, and g, is a variational
parameter. In the following, y = 0 denotes the holon state,
i.e., empty state. Since the overall factor to the wave function
is arbitrary, we can omit one variational parameter. In addi-
tion, by using the conservation of the number of electrons for
each spin and orbital and symmetry of the system, we can
reduce the number of g, to be optimized to 5 in the PM state
without ferro-orbital order. Note that similar consideration
reduces the number of Gutzwiller parameters to one in the
single-orbital Hubbard model. There are four on-site states in
the single-orbital model, but one parameter can be omitted by
considering the overall factor to the wave function, and two
further parameters are omitted due to the conservation of the
up- and down-spin electrons.
The DHWF is given by

2
(Wpiwe) = [ [ Py Py Pol ®). )

i=1

P;l) is defined as

Pd(l) = l_[ [1 — (1 - g}gl))Pry l_[(l _Pr+a0)]a (6)

ryeD

where D denotes the set of doublon states, i.e., on-site states
with two electrons, and a denotes the vectors connecting
nearest-neighbor sites. P\" gives the factor ¢§! when site r
is in the doublon state y and there is no holon at nearest-
neighbor sites r + a. Similarly, P\" is defined as

PV =T] [1 —(1=¢" )P0 [T —P,W)}. ™

r ayeD

The factor {él) appears when a holon exists without a nearest-
neighboring doublon. By considering symmetry, four ¢{" are
independent in the PM state without ferro-orbital order. In this
study, we also consider the next-nearest-neighbor hopping,
and we should include doublon-holon binding factors for the
next-nearest-neighbor sites. They are represented by Pf) and
P}EZ) and are defined similarly to Ptgl) and P}fl), respectively, by
regarding a as the vectors connecting next-nearest-neighbor
sites and replacing (1) with (2) in Egs. (6) and (7).

We will compare some of our results with a previous study
using the density-density Jastrow wave function [34]:

[Wiastrow) = Pr|P), (8)

with

1 ,
P; = exp <_§ Z v nnnrrrf>. 9)

rr'tt’

There are only two parameters for any distance, v)! = v2% and

v)2 = v2l, unless we consider ferro-orbital order. However,
this Jastrow wave function partially includes the long-range
correlations. On the other hand, the GWF and DHWF include
only short-range correlations but carefully treat them.
Without orbital order, the one-electron part of the wave
function |®) is constructed by filling electrons inside the
Fermi surface defined by €. For an antiferro-orbital ordered
state with ordering vector Q = (m, ), we consider an effec-
tive Hamiltonian:
_Af>, (10)

— €k
Hie = (_Ar €k+Q

where A; = A,(6;1 — 8:2). We construct |®) by filling
electrons from the bottom of the energy of this effective
Hamiltonian. A, is a variational parameter. |®) is reduced to
that without orbital order for A, = 0. As mentioned in the
Introduction, at least for #' = 0, it is difficult to realize a par-
tially spin polarized FM state [28-31,34]. Thus, we consider
only the majority-spin electrons in the FM state.

We optimize the variational parameters in each wave func-
tion to reduce the expectation value of the energy evaluated
by the Monte Carlo method. Physical quantities are also cal-
culated by the Monte Carlo method for the variational wave
functions with the optimized variational parameters.

III. RESULTS

In the following, we show the calculated results for an
L x L square lattice of L = 12 with antiperiodic-periodic
boundary conditions. To examine the finite-size effect, we also
show some results for L = 10 and 14. The number of electrons
per site is fixed as n = 1, i.e., quarter filling. We searched
for the antiferro-orbital order in the PM phase, but we could
not find it. Thus, we show results only for the PM state
without orbital order and the FM state with antiferro-orbital
order in the following. Some results for ¢ = 0 are compared
with a previous study using the density-density Jastrow wave
function [34] for the same lattice size with the same boundary
conditions.

First, we compare the energy of the PM state for t' =0
in the Jastrow wave function [34] and the DHWF (Fig. 2).
The energy of the DHWF is lower than that of the Jastrow
wave function in the entire range. The lower energy indicates
that the careful treatment of the short-range correlations is
more important than the partial inclusion of the long-range
correlations, at least for n = 1. In addition, the DHWF in-
cludes the spin-dependent correlations; for example, doublons
with parallel and antiparallel spin configurations correspond
to different variational parameters. On the other hand, the
density-density Jastrow wave function does not include such
spin dependence, and the energy difference between these
wave functions becomes larger as the Hund’s rule coupling
J increases.
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FIG. 2. Energy E per site as a function of U for the Jastrow wave
function (Ref. [34], open symbols) and for the DHWF (solid sym-
bols) for Hund’s rule coupling J = 0 (squares), J = 0.1U (circles),
and J = 0.2U (triangles). The next-nearest-neighbor hopping ¢’ is set
to zero.

Figure 3 shows the energy of the PM state without orbital
order and of the FM state with antiferro-orbital order for the
three kinds of wave functions for / = 0.1U. For the PM
state, the GWF has much higher energy than those of the
Jastrow wave function and DHWF. That is, the inclusion of
the intersite correlations brings a marked improvement in the
PM state. Between the wave functions with the intersite cor-
relations, as already mentioned above, the DHWF has lower
energy than the Jastrow wave function. For the FM state, the
values of energy of these three wave functions are very close.
This closeness means that the intersite correlations are not
very important for the ordered phase in comparison with the
PM phase. For a large U, U 2 16, the GWF has slightly
higher energy than the other wave functions. For a smaller

0
-0.2
-0.4
R
-0.6 |
o
08t Jastrow —a— @ oa--
DHWF —e— -
]
-1 . . . . .
8 10 12 14 16 18 20
uit

FIG. 3. Energy E per site as a function of U in the PM (solid
symbols) and FM (open symbols) states of the GWF (squares), of
the Jastrow wave function (Ref. [34], triangles), and of the DHWF
(circles) for J = 0.1U. The next-nearest-neighbor hopping ¢’ is set
to zero.
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t’'=0

E/t
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FIG. 4. Energy E per site as a function of U in the PM (solid
symbols) and FM (open symbols) states for L = 10 (squares), for
L = 12 (circles), and for L = 14 (triangles) for J/ = 0.1U. The next-
nearest-neighbor hopping ¢’ is set to zero.

U, U < 10t, the Jastrow wave function has slightly lower
energy than the other wave functions. For a smaller-U case,
since electrons can move easily in comparison with a larger-U
case, the long-range correlations play roles, and the Jastrow
wave function has an advantage. We determine the FM transi-
tion point Ugy by comparing the energy of the PM and FM
states. For J = 0.1U with ' = 0, the FM transition occurs
at Upy ~ 13¢ in the DHWE. In the Jastrow wave function,
Upm/t = 12.5 £ 0.5 was reported [34]. Since the values of
energy for the DHWF and the Jastrow wave function are close
around the transition point, these wave functions give close
values of Ugy.

In the rest of this section, we show the results obtained with
the DHWEF.

To examine the finite-size effect, we show the energy of
PM and FM states for L = 10, 12, and 14 as a function of U
forJ = 0.1U in Fig. 4. The finite-size effect on energy is very
weak, and as a result, the size dependence of Upy is weak.

Figure 5 shows the momentum distribution function
n(k) = (¢} __ckeo) for U = 12¢,J = 0, and ' = 0 in the PM
phase, where (- --) denotes the expectation value in the op-
timized wave function. This quantity does not depend on
the orbital and spin in the PM phase. Due to the correlation
effect, the jump at the Fermi momentum is reduced from unity.
We define the renormalization factor Z by this jump along
(r, )-(0,0). Z is inversely proportional to the effective mass,
and in an insulating state Z = 0. To estimate Z in a finite-size
lattice, we extrapolate n(k) from above and below the Fermi
momentum, as shown in Fig. 5.

In Fig. 6, we show the U dependence of Z for #' = 0 and
J = 0 in the PM phase. Z is reduced from unity by increas-
ing U and seems to vanish at U =~ 14¢. From the evaluation
procedure of Z, it is difficult to determine Z accurately for a
finite-size lattice when Z is small. The number of data points
available to determine Z is O(L) for an L x L lattice, and it
may be difficult to determine Z smaller than 1/L. Indeed, we
observe the size dependence of Z for U =~ 14¢. Thus, here,
we determine the metal-insulator transition point Upr by
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FIG. 5. Momentum distribution function n(k) = (c‘;mckm) for
U =12t,J =0, and t' = 0 in the PM phase. The renormalization
factor Z is estimated by extrapolating n(k) from above and below
the Fermi momentum along (i, 7)-(0,0) (dashed lines). Due to the
antiperiodic boundary condition for the x direction, we shift k, by
/L (L = 12); for example, (7, 7) denoted in this figure actually
means the point (x — 7 /L, 7).

linearly extrapolating data with Z > 0.1 to Z = 0, as shown
in Fig. 6. By using different initial variational parameters, we
estimate errors in Z as §Z < 0.01 for Z >~ 0.1 in the present
calculation. Then, the error in Uyt due to the extrapolation
is estimated to be Uyt < 0.1¢. Note that the error from the
finite-size effect would be larger. To evaluate the value of
Upmir more accurately, we should carefully check the lattice-
size dependence by using larger lattices. It is outside the
scope of this study. In the density-density Jastrow wave func-
tion, the transition point was estimated as Upyr/t = 13 & 1
[34].

By determining Ugy and Uyt for each ¢/, we construct
phase diagrams. For J = 0 [Fig. 7(a)], we obtain Uy =~ 14¢
for#" = 0 in the PM phase (see Fig. 6), but the PM-FM transi-
tion already occurs at Upy >~ 12¢. Thus, the nonmagnetic Mott
transition does not occur for #' = 0. By increasing frustration
t', the staggered order of the orbital would be destabilized.
Indeed, we find that the FM insulating phase with orbital

0.8 |
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0.4}

0.2

uit

FIG. 6. Renormalization factor Z as a function of U for J =0
and ¢’ = 0 in the PM phase for L = 10 (squares), for L = 12 (cir-
cles), and for L = 14 (triangles). Here, we estimate Uyt by linearly
extrapolating Z to zero from data of Z > 0.1 for L = 12.
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FIG. 7. Phase diagrams for the two-orbital Hubbard model with
the next-nearest-neighbor hopping ¢’ (a) for / = 0 and (b) for J =
0.05U. The open circles with the dashed lines indicate the metal-
insulator transition in the PM phase when we ignore the FM state.

order shrinks, and the nonmagnetic Mott transition emerges
at ' 2 0.3¢. For J = 0.05U [Fig. 7(b)], the phase diagram
is similar to that for J/ =0 at t' < 0.3¢. By an effect of the
Hund’s rule coupling, which is expected to stabilize magnetic
phases, the region of the FM phase is extended, in particular,
for ¢’ 2> 0.3¢.

For J = 0, antiferro-orbital order without ferromagnetism
may be expected, but we could not find such a phase. Instead,
we found the FM state with antiferro-orbital order even for
J = 0. In this state, each orbital state is ferromagnetic due
to the strong correlation effect within each orbital. Note that
this result does not mean the realization of a FM state in the
single-orbital Hubbard model for n = 0.5. The realization of
the ferromagnetism in the two-orbital Hubbard model is sup-
ported by the antiferro-orbital order. For J = 0, this FM state
is equivalent to an antiferro-orbital ordered state in which the
T = | orbital states are occupied with only up-spin electrons
and the T = 2 orbital states are occupied with only down-spin
electrons. For a finite J, this state should have higher energy
than the FM state.

IV. SUMMARY

We have investigated the quarter-filled two-orbital Hub-
bard model on a square lattice with next-nearest-neighbor
hopping ¢’ using the VMC method.

In the variational wave function DHWF, we have
considered the nearest-neighbor and next-nearest-neighbor
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doublon-holon binding factors. We have found that the energy
for the PM state of the DHWF is lower than that of the
density-density Jastrow wave function used in a previous
study [34]. This result means that a careful treatment of the
short-range correlations is more important than partial inclu-
sion of the long-range correlations, at least for n = 1.

In the ordinary two-orbital Hubbard model with the only
nearest-neighbor hopping ¢, the FM transition with staggered
orbital order occurs before the Mott transition when we in-
crease the Coulomb interaction U. To realize the nonmagnetic
Mott transition, it is necessary to suppress the FM phase. For
this purpose, we have introduced frustration to the model by
the next-nearest-neighbor hopping #’, which is expected to
destabilize the staggered orbital order supporting the FM state.
We have found that the region of the FM phase is, indeed,

shrunk by ¢’ and the nonmagnetic Mott transition occurs.
Thus, it is revealed that the realization of the nonmagnetic
Mott transition is not limited to the simple single-orbital case
and the research field of Mott physics can be extended to
multiorbital systems.

We also searched for the antiferro-orbital order in the PM
phase, but we could not find it, while it was reported when
using a dynamical mean-field theory [33]. It is interesting
to realize such a pure orbital order by improving the model
and/or the wave function for a finite-dimensional lattice. In
particular, if such a phase were to appear between the PM
insulator (Mott insulator) and the FM insulator with orbital
order, the microscopic description of successive transitions
between these phases would be intriguing. This phase is an
important future problem.
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