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We discuss the temperature-dependent thermoelectric transport properties of semiconductor nanostructures
comprising a quantum dot coupled to quantum wires: the thermal dependence of the electrical conductance,
thermal conductance, and thermopower. We explore the universality of the thermoelectric properties in the
temperature range associated with the Kondo crossover. In this thermal range, general arguments indicate that
any equilibrium property’s temperature dependence should be a universal function of the ratio T ∗ = T/TK ,
where TK is the Kondo temperature. Considering the particle-hole symmetric, spin-degenerate Anderson model,
the zero-bias electrical conductance has already been shown to map linearly onto a universal conductance
through a quantum dot embedded or side-coupled to a quantum wire. Employing rigorous renormalization-group
arguments, we calculate universal thermoelectric transport coefficients that allow us to extend this result to the
thermopower and the thermal conductance. We present numerical renormalization-group results to illustrate
the physics in our findings. Applying the universal thermoelectric coefficients to recent experimental results
of the electrical conductance and thermovoltages versus Vgate, at different temperatures in the Kondo regime,
we calculate all the thermoelectric properties and obtain simple analytical fitting functions that can be used to
predict the experimental results of these properties. However, we cannot check all of them, due to the lack of
available experimental results over a broad temperature range.
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I. INTRODUCTION

The discovery of the Seebeck and Peltier effects in dif-
ferent metal junctions at the beginning of the 19th century
gave rise to a branch of physics called “thermoelectric” (TE)
[1]. Seebeck observed that when two different metals are
joined together (thermocouple) with the junctions maintained
at different temperatures, a voltage difference is generated
proportional to the temperature variation between the couple’s
ends. Some time later, Peltier observed that when an electric
current flows through the Seebeck device, heat is either ab-
sorbed or rejected, depending on the direction of the current
along the circuit. Today, the Peltier effect is the basis for many
TE refrigeration devices, and the Seebeck effect is the basis
for TE power generation devices [2].

Ioffe’s prediction in the fifties that doped semiconductors
could exhibit relatively large thermoelectric effects [3] had a
strong impact on the area of TE materials. It was followed step
by step by the discovery that a thermojunction between p-type
Bi2Te3 and bismuth exhibits a maximum temperature differ-
ence of 26◦C and 40◦C between p-type and n-type Bi2Te3

[4]. This compound has dominated the whole field of ther-
moelectric materials; more specifically, the alloys of Bi2Te3

with Sb2Te3 for p-type and Bi2Se3 for n-type compounds
have the highest ZT [see Eq. (7)] at around room temperature
compared to any other known material [5], and up until now,
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it is the working material for most Peltier cooling devices and
Seebeck thermoelectric generators.

Most state-of-the-art TE materials have their dimension-
less TE figure of merit, ZT , in the interval ZT � 1–2.5 (see
Fig. 2 in Ref. [6]), which is well below the Carnot effi-
ciency [7]. However, the advent of nanotechnology opens up
new possibilities for increasing ZT , mainly due to the level
quantization and the Coulomb interaction, leading to essen-
tial changes in the system’s thermoelectric properties. Some
promising compounds are topological insulators and Weyl and
Dirac’s semimetals, characterized by nontrivial topological
orders. The new characteristic of topological insulators is that,
besides the conventional semiconductor bulk band structure,
they also exhibit topological surface conduction states. Some
of the best TE materials are also three-dimensional topologi-
cal insulators, such as Bi2Te3, Bi2Se3, and Sb2Te3 [8,9].

Thermoelectric devices must have a ZT � 3 in order to
attain industrial and household spread; their efficiency has
improved over the years, but this was not attained until
now [6]. This is the reason why thermoelectric generators
or thermoelectric refrigerators are not part of our daily tech-
nology. They are used in particular fields like the satellite
and aerospace industry, where the advantages of not having
movable parts and not requiring maintenance overshadow the
low efficiency [6]. One example of this is the radioisotope
TE generator [10], a nuclear electric generator that exploits
a radioactive atom’s natural decay, usually plutonium dioxide
238PuO2, converting, via the Seebeck effect, the heat released
by the disintegrated atoms into electricity. Furthermore, in
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the context of today’s climate change, research on new TE
materials that improve thermal efficiency is essential as part
of our efforts to obtain environmentally clean sources of
energy.

In this investigation, we focus on studying the semiconduc-
tor single-electron transistor (SET), which is the experimental
realization of the single-impurity Anderson model (SIAM)
for a finite electronic correlation U . The SIAM was experi-
mentally realized by the Goldhaber-Gordon group [11], with
complete control over all of the model’s parameters. They
measured the electric conductance of a SET and showed its
universal character. Recently, interest in studying the ther-
moelectric properties of the SET has greatly increased and
has given rise to several papers that discuss it, both from
the theoretical side [12–20] and from the experimental one
[21–27]. A useful review can be found in Refs. [1,6,7].

Universal relations for the thermal dependence of the ther-
modynamic properties, in the Kondo regime, for the SIAM
are well known, and a didactic discussion can be found in
Hewson’s book [28]. Costi et al . [13,29] showed that in
the Kondo limit of the SIAM, the thermoelectric transport
coefficients (TTCs) are only functions of T ∗ = ( T

TK
), with

the temperature T normalized by the Kondo temperature
(TK ). For simplicity, we use ( T

TK
) only in the figures; in the

text, we use T ∗. They also showed that by employing the
numerical renormalization group (NRG), the electric con-
ductance, the temperature-normalized thermal conductance,
and the thermopower exhibit universal behavior in the Kondo
regime.

The universal behavior of G(T ∗) in semiconductor nanos-
tructures was studied in earlier papers [30,31]. The authors
derived an analytical expression that maps the thermal de-
pendence of G(T ∗) of a Kondo-asymmetric condition of the
SIAM to the universal conductance function GS (T ∗). The
corresponding TTC L0(T ∗) [Eq. (27)] was calculated by em-
ploying the NRG. This analytical mapping is parametrized by
TK and the ground-state phase shift δ = πnd

2 , which is related
to Friedel’s sum rule [28,32]. For brevity, we call this quantity
parameter δ. In this investigation, we derive similar analytical
expressions associated with the other TTCs, allowing us to
obtain both the thermopower and the thermal conductance in a
Kondo-asymmetric situation, employing only universal func-
tions derived from the thermal dependence of the symmetric
SIAM. Again, those analytical functions are parametrized by
the Kondo temperature and the parameter δ.

In Sec. II, we define the problem and the model employed
in the study of the SET. In Sec. III, we define the thermoelec-
tric properties and their relation with the TTCs. In Sec. IV,
we develop the calculations of a mapping between the thermal
dependence of the TTC coefficients in the symmetric limit and
the asymmetric condition in the quantum dot’s (QD’s) Kondo
regime. In Sec. V, we present the results of our research asso-
ciated with the TTCs and discuss their physical consequences.
In Sec. VI, we make a comparison between our results and the
available experimental one. In Sec. VII, we present a summary
and the conclusions of this investigation. In the Appendix, we
develop a methodology to apply universal TTCs to experimen-
tal TE properties; we obtain simple analytical fitting functions
that can be used to predict these properties’ observed behavior.
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FIG. 1. Schematic of a semiconductor electron transistor (SET):
a quantum dot embedded in conduction leads.

II. THE HAMILTONIAN FOR THE SET

In this investigation, we extend the previous results ob-
tained for the electrical conductance G(T ∗), associated with
the TTC L0(T ∗) [12,13,30], to all the other TTCs: L1(T ∗) and
L2(T ∗). We map the thermal dependence of the TTCs for a
Kondo-asymmetric situation as a function of the TTCs for
a Kondo-symmetric condition. These mappings are obtained
in terms of the renormalized Kondo temperature T ∗ and the
parameter δ.

The standard Hamiltonian for the SET studied in this in-
vestigation can be written as

H =
∑
k,σ

∑
α=L,R

Eα
k,σ cα†

k,σ cα
k,σ + (Ed nd + Und↑nd↓)

+
∑

α=L,R

∑
k,σ

Vα√
2N

(
c†

dσ
cα

k,σ + cα†
k,σ cdσ

)
, (1)

where the first term represents the left (α = L) and right
(α = R) leads, characterized by hot and cold free conduction
electron (c-electron) reservoirs, respectively. The quantum dot
is embedded in the leads as visually represented in Fig. 1. The
second term describes the QD characterized by the local dot
energy Ed , and U represents the on-site Coulomb repulsion
between the electrons of the QD [33–35]. The third term
corresponds to the tunneling between the immersed dot and
the left (L) and right (R) semi-infinite leads. The amplitude
Vα is responsible for the tunneling between the QD and the
lead α. For simplicity, we assume symmetric junctions (i.e.,
Vα = VL = VR = V ) and identical leads (i.e., EL

k,σ = ER
k,σ =

Ek,σ ) connecting the QD to the quantum wire. The L(R)
semi-infinite leads comprise N states cL

k,σ (cR
k,σ ) with energies

defined by the linear dispersion relation Ek,σ = (k − kF )vF

(0 � k � 2kF ) so that the bandwidth is 2D = 2vF kF , with D
being the half-width of the conduction band. In all the numer-
ical calculations, we consider the unit of energy to be D = 1.

III. THERMOELECTRIC PROPERTIES

We calculated the electrical conductance G(T ), the ther-
mal conductance κe(T ), and the thermopower S(T ) (Seebeck
effect) in terms of the transport coefficients, following the
standard textbook derivation [36,37], and the results are

G(T ) = e2Lo(T ), (2)

κe(T ) = 1

T

(
L2(T ) − L2

1 (T )

Lo(T )

)
, (3)

and

S =
(−1

eT

)
L1(T )

Lo(T )
. (4)
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To calculate the transport coefficients Lo(T ), L1(T ), and
L2(T ), we employed the results derived by Dong and Lei
[38]. They considered the particle current and thermal flux
formulas, through an interacting QD connected to the leads
at different temperatures, within the Keldysh nonequilibrium
Green’s function formalism. The electric and thermoelec-
tric transport coefficients were obtained in the presence of
the chemical potential and temperature gradients, with the
Onsager relation in the linear regime being automatically sat-
isfied. The transport coefficients are given by

Ln(T ) = 2

h

∫ (
−∂nF (ω, T )

∂ω

)
ωnτ (ω, T )dω, (5)

where nF (ε, T ) = 1/(1 + e(ε−μ)/kBT ) is the Fermi-Dirac dis-
tribution, with μ being the chemical potential, and the
transmittance τ (ω, T ) is given by

τ (ω, T ) = π�ρd (ω, T ), (6)

where ρd (ω, T ) is the spectral density of the QD, � =
πρc(μ = 0)V 2 is the Anderson parameter, which is a measure
of the d-level width, and ρc(ω) = 1

2D is the flat conduction
density of states of the leads.

A useful quantity that indicates the system performance is
the TE dimensionless figure of merit ZT [3], which is given
by

ZT = S2T G

κe
. (7)

IV. UNIVERSAL MAPPING: TRANSMISSION
COEFFICIENT AND THERMOELECTRIC COEFFICIENTS

Following Ref. [30], we introduce the normalized even
(ak,σ ) and odd (bk,σ ) operators, in order to exploit the inver-
sion symmetry of the system:

ak,σ = 1√
2

(
cL

k,σ + cR
k,σ

)
, (8)

bk,σ = 1√
2

(
cL

k,σ − cR
k,σ

)
. (9)

It is convenient to write the Hamiltonian, Eq. (1), on the
basis of the new operators (ak,σ and bk,σ ), to “split” it into
two decoupled pieces H = HA + HB, with

HA =
∑
k,σ

Ek,σ a†
k,σ ak,σ +

∑
σ

V ( f †
0 cd,σ + H.c.)

+ (Ed nd + Und↑nd↓), (10)

where f0 = ∑
k,σ ( ak,σ√

N
) is the traditional NRG shorthand no-

tation, and HB is given by

HB =
∑
k,σ

Ek,σ b†
k,σ bk,σ . (11)

The Hamiltonian HB is quadratic and can be exactly di-
agonalized and decoupled from the QD. On the contrary, the
Hamiltonian HA “carries” all the correlation effects of the QD
and the coupling between it and the conduction band. Due to
this, the Hamiltonian HA is the only one relevant for obtaining
the transmittance and the spectral density of states for the

quantum dot and can be written as [30]

ρd (ω, T ) = 1

f (ω, T )

∑
mn,σ

e−βEm

Z (T )

× |〈n|c†
d,σ

|m〉|2δ(Emn − h̄ω). (12)

Here |m〉 and |n〉 are the eigenstates of HA, with eigenvalues
Em and En, respectively, Emn = Em − En, and Z (T ) is the
partition function for Hamiltonian HA. Hamiltonian HB is not
dependent on cd,σ , [HB, cd,σ ] = 0, and only the eigenvalues
and eigenvectors of HA are required to obtain ρd (ω, T ). On
the other hand, to calculate the matrix elements 〈n|c†

d,σ
|m〉 in

Eq. (12), we evaluate the commutator [HA, aq,σ ],

[HA, aq,σ ] = Eq,σ a†
q,σ + V√

N
cd,σ , (13)

and performing the summation over q and σ we obtain

[HA, f †
0 ] = 1√

3
f †
1 + V c†

d , (14)

where

f1 =
√

3

N

∑
q

(
Eq

D

)
aq (15)

defines a new NRG shorthand notation operator.
Equation (14) permits us to relate the matrix elements

〈n|c†
d,σ

|m〉 in Eq. (12) with the same matrix elements of the
operators f0 and f1,

V 〈m|c†
d |n〉 = Emn〈m| f †

0 |n〉 −
√

3D〈m| f †
1 |n〉, (16)

and a Schrieffer-Wolff transformation of Hamiltonian HA al-
lows us to write it in the Kondo form [30],

HJ =
∑

k

Elg
†
l gl + JW

∑
μ,ν

�
†
0μσμν�0ν · S, (17)

where the gl operators are the eigenoperators of the fixed-
point Hamiltonian, associated with the unstable local moment
(LM) condition of the Anderson impurity model (see Ref. [30]
for details). Here, JW = 4D �U

π |Ed |(Ed +U ) cos2 δLM, where δLM is
the quantum scattering phase shift, associated with the LM
fixed point, and

�0 = 1√
N

∑
l

gl , (18)

where in the symmetric condition δLM = 0 and �0 = f0.
The second term in Eq. (17) is responsible, in the Kondo

regime, for the evolution from the LM fixed point to a Fermi
liquid fixed point, associated with an antiferromagnetic JW

coupling, characteristic of the Kondo effect. We can define
the operator

�1 =
√

3

N

∑
l

(
El

D

)
gl (19)

in a way analogous to the f1 operator’s definition [Eq. (15)].
In the symmetric condition �1 = f1, and something similar
happens with �0 = f0.

Equations (13) and (16) show the universal character of
the product V 〈m|c†

d |n〉 at the symmetric point (remember
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�0 = f0 and �1 = f1 in this condition). In order to explore
what happens in the asymmetric condition, it is necessary to
relate the operators f0 and f1 to �0 and �1 (see Appendix A2
in Ref. [29]). Substituting Eq. (A21) from Ref. [29] in Eq. (16)
we obtain√

πρ�〈m|c†
d |n〉1 = α0〈m|�†

0|n〉 + α1〈m|�†
1|n〉. (20)

Performing the substitution of Eq. (20) in Eq. (12), we
obtain the localized QD spectral density ρd (ω, T ), which can
be written as

πρ�ρd (ω, T ) = α2
0ρ0(ω, T ) + α2

1ρ1(ω, T )

+α0α1ρ(01)(ω, T ), (21)

where ρ0(ω, T ), ρ1(ω, T ), and ρ(01)(ω, T ) are universal ex-
pressions of the Kondo regime and are given by

ρ j (ω, T ) =
∑
mn

e−βEm

Z (T ) f (ω, T )
|〈n|� j |m〉|2

×δ(Emn − h̄ω) ( j = 0, 1) (22)

and

ρ(01)(ω, T ) =
∑
mn

e−βEm

Z (T ) f (ω, T )
(〈n|�0|m〉

×〈n|�1|m〉 + c.c.)δ(Emn − h̄ω). (23)

Substituting Eq. (21) in Eq. (6), the transmittance at energy
ε = hω

2π
and temperature T is given by

τ (ω, T ) = α2
0

ρ
ρ0(ω, T ) + +α2

1

ρ
ρ1(ω, T ) + α0α1

ρ
ρ(01)(ω, T ).

(24)

The universal expressions ρ0(ω, T ), ρ1(ω, T ), and ρ(01)(ω, T )
“carry” the thermal dependence of τ (ω, T ). The important
point that should be stressed here is that the transmittance
is the key physical quantity that enters the calculations of all
the TE coefficients given by Eq. (5). All the dependence of
the parameters of the model is taken into account through the
coefficients α0 and α1, given by the reference [30]

α2
0 = cos2(δ), (25)

α2
1 = 6

π2
sin2(δ). (26)

Taking into account the result of Eqs. (5) and (24), it is
possible to compute the thermal dependence of the linear
TTCs as a function of (T ∗),

L0(T ∗) − 1

h
= −

(
LS

0 (T ∗) − 1

h

)
cos(2δ), (27)

where LS
0 (T ∗) is the universal coefficient L0 in the electron-

hole symmetric condition of the model, when Ed = −U
2 and

δ = πnd
2 , with nd = 1. All the thermal dependence of L0(T ∗)

is contained in the universal function LS
0 (T ∗). The function

cos(2δ) carries all the parameter dependence apart from tem-
perature T and is characteristic of the asymmetric conditions
for the model (δ 
= π

2 ).
Taking into account that G2(T ) = e2L0(T ), we can

write Eq. (27) in the same form as a result obtained in

Ref. [30],

G2(T ∗) − G2 = −(
GS

2 (T ∗) − G2
)

cos(2δ), (28)

where we also should observe that the ρ(01)(ω, T ) term in
Eq. (24), due to particle-hole symmetry arguments, makes
no contribution to the TE coefficients L0 [39] and L2 but
contributes to L1, as indicated in Eqs. (29) and (30).

The evaluation of the L1 coefficient, employing the result
for the transmission coefficient [Eq. (24)] in Eq. (5) (n = 1)
and taking into account the parity condition of the integrand
give us

L1(T ∗) = L(01)(T
∗) cos(δ) sin(δ), (29)

where

L(01)(T ) =
√

2π

hρ

∫ D

−D
ερ(01)(ε, T )

(
−∂ f (ε, T )

∂ε

)
dε, (30)

which is a universal function of (T ∗) in the symmetric Kondo
condition and contains all the thermal dependence of L1(T ∗).

Finally, employing the result for the transmittance
[Eq. (24)] in Eq. (5) (n = 2), we obtain the L2(T ∗) coefficient.
Again, we take into account the parity of the integrand,

L2(T ∗)( kBT
TK

)2 − π2

6
= − cos(2δ)

⎛
⎝LS

2 (T ∗)( kBT
TK

)2 − π2

6

⎞
⎠. (31)

The quantity LS
2 (T ∗ )

( kBT
Tk

)
2 is a universal function of (T ∗), obtained

in terms of LS
2 (T ), the coefficient for the symmetric condition

of the model. As in the previous cases, all the thermal depen-
dence of Eq. (31) in any asymmetric condition of the model is

contained in LS
2 (T ∗ )

( kBT
TK

)
2 , and all the dependence on the parameters

of the model is taken into account through the scattering phase
shift factor δ.

V. RESULTS AND DISCUSSION: UNIVERSAL MAPPING

In previous papers [30,31,39,40] one of us (L.N.O.) argued
that it is possible to employ experimental data on electrical
conductance G(T ∗) to obtain the parameter δ and, with it,
”check” the validity of Eq. (27) for the SET. Computations for
the case of a side-coupled QD were also considered in Refs.
[31,39,40], including a comparison with experimental results
[39]. In all those previous papers, the numerical calculations
were done employing the NRG, including computation of the
parameter δ.

The NRG logarithmic discretization parameter employed
in the simulations in this work was � = 2.25 and the chemical
potential, μ = 0.0D. The Kondo temperature, TK , in each
case was obtained by computing the value of the temperature,
where the electrical conductance attains the value G(TK ) =
Go
2 = e2

h [41].
Figure 2 shows the results obtained for the electrical con-

ductance G(T ) vs T ∗, in units of Go = 2e2

h , in an asymmetric
situation employing the results of the symmetrical limit as
shown in Fig. 11 in the Appendix. We plot results corre-
sponding to the Kondo regime, employing the parameters
E f = −5.0D and U = 30.0D, with the Kondo temperature
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FIG. 2. The electrical conductance G(T ) vs T ∗, corresponding
to the Kondo regime. Inset: Another situation, closer to the crossover
between the Kondo and the intermediate valence regime.

being TK = 9.422.10−4D. The agreement between the calcu-
lated NRG asymmetric results and those obtained employing
the NRG symmetric one, Eq. (27), is notable. The param-
eter δ computed by the NRG for the asymmetric case is
δ = 0.9490 π

2 , which confirms the validity of Eq. (27) for the
SET, previously obtained in Ref. [30]. In the inset in Fig. 2,
we plot a situation closer to the crossover transition between
the Kondo and the intermediate valence regime, with U =
50.0D, E f = −2.5D, TK = 1.883 × 10−2D, and δ = 0.882 π

2 .
The agreement obtained is notable for temperatures below
T � 10TK , but for temperatures above this value, the results
show a small departure from each other, due to the rising of
charge fluctuations not being well described by the present
treatment.

In Fig. 3 we show the results for ( L1
T ) vs T ∗ for the

asymmetric Kondo limit, with EQD = −10.0D, U = 30.0D,
and TK = 1.517 × 10−5D. The direct NRG computations are
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FIG. 3. Universal thermoelectric coefficient ( L1
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e2 units, vs T ∗ for the asymmetric Kondo limit. Inset: The same

results for an asymmetric case, in the crossover from an intermediate
valence situation to the Kondo limit.
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crossover’s results from the intermediate valence to the Kondo
regime.

shown by the solid red line, whereas the results obtained
when employing the NRG calculations for the particle-hole
symmetric case of the SIAM and Eq. (29) are shown by the
black curve. Again, the parameter δ was computed follow-
ing the procedure described in the Appendix. We obtained
an excellent agreement for a large range of temperatures,
10−4TK � T � 103TK . In the inset in Fig. 3, we show the
same results, but now for a set of parameters closer to the
crossover transition region, between the Kondo and the in-
termediate valence regimes, with EQD = −5.0D, U = 30.0D,
and TK = 9.422 × 10−4D.

In Fig. 4, we plot the thermopower S(T ∗) vs T ∗ for EQD =
−10.0D, U = 30.0D, and TK = 1.517 × 10−5D. Employing
Eqs. (4), (27), and (29) (red curve), we obtain an excel-
lent agreement between the asymmetric direct NRG results
(black curve) and those employing the symmetric universal
TTCs. The minimum at the Kondo temperature manifests
the Kondo effect on the thermopower S(T ) [13]. There is
excellent agreement between both curves up to T � 102TK ,
when charge fluctuations dominate the process. In the inset
in Fig. 4, we represent a crossover from the intermediate
valence to the Kondo regime EQD = −5.0D, U = 30.0D, and
TK = 9.422 × 10−4D. Below T � TK , the agreement between
the two curves is excellent, but above TK , there is a visible
difference between the two results at higher temperatures. We
attribute this difference to the intermediate valence region’s
proximity, because the present treatment does not describe
charge fluctuations well.

In Fig. 5, we plot the results for the universal thermoelec-
tric coefficient for the asymmetric Kondo limit, ( L2

T 2 ) vs T ∗

in GoLN units, where LN = ( π2

3 )( kB
e )2 is the Lorenz number,

with EQD = −5.0D, U = 30.0D, and TK = 9.422 × 10−4D.
Again, the agreement obtained between the direct asym-
metric NRG results and those obtained employing Eq. (31)
and particle-hole symmetric NRG results (fitting presented
in Fig. 13) is excellent. In the inset in Fig. 5, we show the
temperature-normalized electronic contribution to the thermal
conductance ( κ

T ) vs T ∗. In this case, some small differences
appear above T � 30.0TK , which is a manifestation of the
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FIG. 5. Universal thermoelectric coefficient ( L2
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T ) vs T ∗.

charge fluctuation process, present in this range of tempera-
tures.

Figure 6 shows the thermal dependence of the universal
quantities in the symmetric limit of the SIAM, employing
the parameters U = 30.0D, E f = −15.0D. We plot the
temperature-normalized electronic contribution to the thermal
conductance ( κ (T )

T ) and the electric conductance G(T ) vs T ∗.
The striking similarity of both curves at low temperatures
is associated with the Fermi liquid character of the system
and the validity of the Wiedemann-Franz law in this tempera-
ture range [12,13], which leads to the relation κ (T )

T = G(T ).
However, besides the relative closeness of the curves well
below and above the Kondo temperature, the two properties
are not equal once the Kondo temperature rules the electrical
conductance, whereas the thermal conductance is ruled by a
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FIG. 6. Thermal dependence of universal quantities in the sym-
metric limit. Temperature-normalized electronic contribution to the
thermal conductance κ (T )/T and the electric conductance G(T ) vs
T ∗.

different Kondo scale T θ
K , as defined in Ref. [13],

κ
(
T = T θ

K

)
T θ

K

= α̃

2
, (32)

where

α̃ = lim
T →0

κ (T )

T
. (33)

VI. COMPARISON WITH EXPERIMENTAL RESULTS

In this section, we discuss how to use the methodology
employing the universal TTCs to calculate the TE proper-
ties from experimental measurements. In the Appendix, we
present a discussion and some examples of applying the uni-
versal TTC methodology to experimental thermoelectric data.

Unfortunately, we did not find experimental SET works in
the literature that performed measurements of the electric and
thermal conductances and the thermopower in a broad range
of temperatures. On the other hand, several papers measured
the gate dependence Vgate = V of some of these properties for
a fixed temperature, T [23,25,27,42,43]. We focus on applying
the universal TTC methodology to the experimental results of
the Svilans et al. paper [25], because they performed several
high-quality TE measurements of Kondo correlated QDs,
both below and above the Kondo temperature. They measured
the electric conductance G(T ), thermocurrent ITh normalized
by �T (under closed-circuit conditions), and thermovoltage
Vth (under open-circuit conditions) as a function of the gate
voltage V for a fixed temperature.

Considering an ohmic dependence between the thermo-
voltage and the thermocurrent in an experimental device, the
relation SG = α ITh

�T is valid, where �T is the difference in
temperatures associated with the Seebeck effect and where
α must be a dimensionless constant for a fixed Vgate, but
it can be a temperature function. If we assume that at low
temperatures α = ηT , with η being a constant that has the

FIG. 7. G(T ∗) vs GS (T ∗), where experimental data were ob-
tained from the Svilans et al. experimental paper [25] with Vgate =
1.044 V [see Eq. (28)].
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FIG. 8. G(T ∗) vs GS (T ∗), where experimental data were ob-
tained from the Svilans et al. experimental paper [25] with Vgate =
1.054 V [see Eq. (28)].

inverse of temperature units, we expected that

ITh

�T
� SG

T
. (34)

To explore the validity of our predictions, we employed the
following results from the Svilans et al. paper [25]: the data
from Figs. 2(b), 3(a) and 3(b), for the electrical conductance
G(T ) at different gate voltages Vgate, and Figs. 2(c) and 4(a),
which present the results for ITh

�T as a function of Vgate at
different temperatures.

In Figs. 7 and 8, we show the results for the slope and the
intercept of the linear figures corresponding to the electrical
conductance G(T ) of the Svilans et al. [25] experimental
data. We obtained δ = 0.895 012π/2 and TK = 1.1905 K for
Vgate = 1.044 V and δ = 0.937 832π/2 and TK = 1.0 K for
Vgate = 1.054 V. These Kondo temperatures agree well with
the experimental results indicated in Fig. 3(b) of Ref. [25].
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FIG. 9. Thermoelectric properties as a function of the temper-
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Svilans et al. experimental paper [25] with Vgate = 1.044 V.
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Employing the δ and TK values obtained, the universal
relations for the Onsager coefficients [Eqs. (27)–(31)], and
Eqs. (2)–(4), we compute the thermal dependence of the
TE properties: G(T ), S(T ), κ

T , and GS/T . In Fig. 9, we
show the results of these properties, corresponding to Vgate =
1.044 V. Initially, we adjust the universal electrical conduc-
tance GUniversal to the corresponding experimental one, G −
Exp., and we compute SG

T and compare it with the experi-
mental data on ITh

�T . Unfortunately, the number of experimental
data for the ITh

�T in the Svilans et al. paper is limited, but the
agreement of both properties with the available experimental
data is excellent. Although there are no available experimental
results for the temperature-normalized thermal conductance
κ/T or the thermopower S(T ), we calculated these proper-
ties and obtained fair, reliable results: κ/T exhibits behavior
similar to that in Fig. 6, and S(t ) goes to 0 at low temper-
atures, indicating that the experimental measurements were
performed in a Kondo situation nearer the symmetric limit.

In Fig. 10, we show the same results as in Fig. 9, corre-
sponding to Vgate = 1.054 V, and the results show the same
overall behavior as the previous ones.

VII. CONCLUSIONS

In the present investigation, we employ the NRG treatment
to compute the thermal dependence of the TTCs in the Kondo
regime. From Eqs. (27)–(31), we can obtain the thermal de-
pendence of the thermoelectric transport coefficients L0, L1,
and L2 under asymmetric conditions in terms of the Kondo
temperature and the parameter δ. All of the thermal depen-
dence is “carried” through the symmetric TE coefficients’
universal functions of T ∗, and all of the dependence on the
parameters of the model is taken into account through the
parameter δ. We also derived simple universal fitting formulas
for the TTCs, given by Eqs. (A3), (A4), and (A5), discussed in
the Appendix, which can be used to predict the TE properties.

In practical terms, knowledge of the experimental results
of the electrical conductance or the thermopower in the Kondo
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regime at temperature function {G(Ti ), Ti} or {S(Ti, Ti} allows
the determination of the Kondo temperature TK and the pa-
rameter δ, and employing the TTCs, we can calculate all the
other thermoelectric properties.

The ideal situation to “check” our procedure is to obtain all
the TE properties from the experimental measurements, but
this requires a consistent and complete set of experimental
data for G(T ), S(T ), and κ (T ), over a broad temperature
range below and above the Kondo temperature, for the same
Vgate. Unfortunately, we did not find such experimental mea-
surements in the literature, but several papers have measured
the gate dependence Vgate = V of these properties for a fixed
temperature, T [23,25,27,42,43].

We focused on applying the universal TTC methodology to
the experimental results of the Svilans et al. paper [25], which
measured the electric conductance G(T ), thermocurrent ITh

normalized by �T , and thermovoltage Vth as a function of the
gate voltage V for a fixed temperature. We adjusted the exper-
imental results for G(T ) and ITh/�T employing the universal
TTCs, obtaining excellent agreement. Although the Svilans
group did not measure the temperature-normalized thermal
conductance κ/T or the thermopower S(T ), we calculated
these properties, obtaining reliable results.

We expect that this investigation will motivate researchers
to carry out experimental work in this direction, in order
to compare the procedure expounded here to experimental
testing.
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APPENDIX: APPLICATION OF THE UNIVERSAL TTC
METHODOLOGY TO EXPERIMENTAL DATA

Some earlier papers [30,31,39,40] have discussed how to
employ experimental data on the thermal dependence of the
electric conductance G(T ) to calculate the parameter δ to
check the validity of Eq. (27). In particular, an almost-perfect
fit of G(T ) with experimental results was found in Ref. [44].
From the theoretical point of view, it is possible to adjust the
experimental results by employing the TTCs in the symmet-
rical limit of the SIAM obtained from the NRG calculations.
Nevertheless, for practical purposes, we can also employ the
fitting formulas obtained in Eqs. (A3), (A4), and (A5).

Essentially, the procedure is the following: Given a set of
experimental data [Gi(Ti ), Ti], choose a trial Kondo temper-
ature TK and a new data set, [Gi(T ∗

i ), T ∗
i ] with T ∗

i = Ti
TK

, is
generated. Since the universal curve for the electric conduc-
tance in the symmetric limit of the SIAM, GS (T ∗) vs T ∗, is
known for the fitting of Eq. (A3) (Fig. 11), it is possible to ob-
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FIG. 11. NRG universal electrical conductance GS (Go) in the
symmetrical limit of the SIAM vs (T ∗) and its fit to Eq. (A3).

tain the value GS
i (T ∗

i ) for each experimental data set of T ∗
i and

plot Gi(T ∗
i ) vs GS

i (T ∗
i ). If the plot follows a straight line, the

correct Kondo temperature value TK is attained, and the corre-
sponding parameter δ can be obtained from the slope and the
intercept of the straight line [see Eq. (28) and Figs. 7 and 8].
On the contrary, if the obtained plot does not follow a straight
line, a new trial Kondo temperature TK must be employed,
until a straight line is obtained. Employing Eq. (27) and the fit
shown in Eq. (A3), it is also possible to compute L0(T ∗).

The same procedure can be performed using the ther-
mopower. Employing Eqs. (4), (27), and (29), it is possible
to write the thermopower S as

e

h
S(T ∗) = sin(2δ)

( LS
01
T

)
(T ∗)

−4 cos2(δ) + 2h cos(2δ)LS
0 (T ∗)

, (A1)

which is equivalent to the equation

h

e

( LS
01
T

)
(T ∗)

S(T ∗)
= −2 cot(δ) + 2h cot(2δ)LS

0 (T ∗). (A2)

Given a set of temperatures and a thermopower experimen-
tal data set Ti and S(Ti ) (i = 1, . . . , N) ([S(Ti ), Ti]), we can
choose a tentative Kondo temperature TK , compute T ∗

i , and
obtain [Si(T ∗

i ), T ∗
i ]. Since we know the universal functions

LS
0 (T ∗

i ) [fitting of GS
0(T ∗

i ), Eq. (A3), associated with Fig. 11]

and LS
01
T (T ∗

i ), it is then a simple matter to compute the fraction
on the left-hand side and plot it as a function of LS

0 (T ∗
i ). If

the plot is a straight line, the Kondo temperature has been
found. If not, we continue the process until the correct value
is attained.

Once the correct parameters δ and TK are obtained, it is
possible to compute L1

T (T ∗) employing the universal function
L(10)

T (T ∗) given by Eq. (29) or the adjusted Eq. (A4) of the re-
sults shown in Fig. 12. Additionally, it is possible to compute
the quantity L2(T ∗ )

(kBT ∗ )2 by employing Eq. (31) or the fit [Eq. (A5)]
of the results shown in Fig. 13. Finally, using Eqs. (2)– (4), we
can calculate G(T ∗), S(T ∗), and κ (T ∗) and, with these, other
quantities, such as ZT and the Wiedemann-Franz law.
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T ∗, in the symmetric limit of the SIAM, and its fit to Eq. (A4).

In Fig. 11, we plot the NRG universal result [29] for the
electrical conductance in the symmetrical limit of the Kondo
regime GS (T ∗), employing the following parameters: U =
30.0D and E f = −15.0D. The red line is the fit of the NRG
data using a one-parameter equation employed in Ref. [41],

G(T ∗) = Go

[(T ∗)2(21/ξ − 1) + 1]ξ
, (A3)

to adjust the electrical conductance. The parameter ξ de-
termines the steepness of the decrease in conductance with
increasing temperature and provides a good fit to the NRG
results for the Kondo regime. In our case, ξ = 0.226 022 and
the correlation coefficient equals 0.999 986. The agreement
achieved is excellent. Equation (A3), associated with this fit,
allows us to compute the universal TTC LS

0 (T ∗) for any T ∗
value in the range of temperatures presented.

In Fig. 12, we show the thermal dependence of the univer-
sal function ( L(01)

T )(T ∗) vs T ∗ in the symmetric limit of the
SIAM, employing the following parameters: U = 30.0D and
E f = −15.0D. We obtain a good agreement with the universal
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FIG. 13. The universal quantity
LS

2 (T ∗ )

(
kBT
TK

)
2 vs T ∗, obtained by the

NRG, and its fit to Eq. (A5).
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FIG. 14. Electrical and thermal conductances and thermopower
vs temperature (in kelvins) for a side-coupled SET, obtained from
the experimental electrical conductance at TK = 0.85 K [45].

TTC ( L(01)

T )(T ∗) (red line), employing a three-parameter fit
expression similar to Eq. (A3),

(
L(01)

T

)
(T ∗) = A0

(
(T ∗)

A1
ξ

(T ∗)2
[
A1/ξ

2 − 1
] + 1

)ξ

, (A4)

where A0 = 11.945 007, A1 = 0.860 404, A2 = 63.2865, and
ξ = 0.674 506.

In Fig. 13, we plot the NRG universal results obtained for

the TTC LS
2 (T ∗ )

(kBT ∗ )2 in the symmetric limit of the SIAM, employ-
ing the following parameters: U = 30.0D and E f = −15.0D.
The red line is the fit of the NRG numerical data to Eq. (A5);
the agreement achieved is excellent. Again, the expression
associated with this fit has a form similar to that of Eq. (A3),

LS
2

(T ∗)2
= A0

[(T ∗)2(21/ξ + A1) + 1]ξ
, (A5)

where A0 = 3.297 76, ξ = 0.238 365, and A1 = 43.6995.
This formula reduces to Eq. (A3) if A0 = G0 and A1 = −1.0.
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FIG. 15. Electrical and thermal conductances and thermopower
vs temperature (kelvins) for a side-coupled SET, obtained from the
experimental electrical conductance at TK = 1.23 K [45].
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It also permits computation of LS
2 (T ∗ )

(kBT ∗ )2 for any T ∗ value in the
temperature range indicated in Fig. 13.

For completeness, we also repeat earlier calculations em-
ployed in [39], which obtained the electrical conductance
and the Kondo temperature using the experimental results of

the electrical conductance SET in a side-coupled geometry
[45]. We show the results of those calculations in Figs. 14
and 15. The fit of the electrical conductance is excellent. We
also calculate S(T ) and κ (T )/T , but we cannot check the
reliability of these results, due to the absence of experimental
measurements.
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