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Topological quantum liquids contain internal degrees of freedom that are coupled to geometric response.
Yet, an explicit and microscopic identification of the geometric response remains difficult. Here, taking notable
fractional quantum Hall (FQH) states as typical examples, we systematically investigate a promising protocol—
the Dehn-twist deformation on the torus geometry—to probe the geometric response of correlated topological
states and establish the relation between such response and universal properties of pertinent states. Based
on analytical derivations and numerical simulations, we find that the geometry-induced Berry phase encodes
features for a broad class of FQH states at the Laughlin, hierarchy, Halperin and non-Abelian Moore-Read
fillings. Our findings conclusively demonstrate that the adiabatic Dehn-twist deformation can faithfully capture
rich geometric and topological information, including the Hall viscosity and topological spin of the pertinent
FQH state and the chiral central charge of the underlying edge conformal field theory. Our approach provides a
powerful way to reveal topological orders of generic FQH states and address previously open questions.
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I. INTRODUCTION

Topological phases of matter [1] possess a variety of prop-
erties which are robust against external perturbations as long
as the topology of space where the system is defined is not
altered. As a celebrated example, the fractional quantum Hall
(FQH) effect [2] formed by two-dimensional interacting par-
ticles in strong magnetic fields has attracted broad interest
in the past decades. The topologically invariant properties
of FQH states, including the quantized electrical [3–5] and
thermal Hall conductances [6–8], topological ground-state
degeneracies [9], exotic anyonic quasiparticles [10–12], and
entanglement characteristics [13–15], have been extensively
studied from both theoretical and experimental sides.

Despite FQH states often being characterized by their topo-
logically invariant features, these states do have intriguing
response to variations of the ambient geometry even if these
variations preserve the underlying topology. Two represen-
tative examples are the intrinsic “orbital spin” [16–18] and
the Hall viscosity [17,19–21]. The former can be related to
intrinsic metrics which describe deformations of an FQH
droplet due to anisotropies in the background space (for in-
stance, those induced by tilted or spatially inhomogeneous
magnetic fields [22,23]), while the latter determines a Berry
phase caused by strains applied to the FQH droplet [19,20].
Moreover, transport coefficients of FQH states can also be
understood as a response to variations of spatial geometry
[24–27]. As the geometric response is closely related to the
internal topological structure of FQH liquids, it provides an
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ideal platform to study the interplay between geometry and
topology in FQH liquids.

Nevertheless, so far most studies about the geometric re-
sponse heavily relied on effective field theories [16,20,28–
38] and model wave functions [39–43]. A recent progress has
been made in microscopic models to connect the topological
contents of FQH states encoded in modular T -transformation
(or Dehn-twist) operation [44–46] to the momentum polariza-
tion via the entanglement spectra [47,48]. However, a direct
microscopic investigation of the evolution of generic FQH
wave functions themselves with variations of the ambient
geometry is still lacking.

In this work, we aim to fill in this blank by explicitly im-
plementing the Dehn twist on the torus, tracking the evolution
of FQH wave functions, and establishing the relation between
the geometric response of FQH states and their universal
(topological and geometric) properties. Instead of relying on
physical arguments, this relation is analytically derived under
a gauge-fixing scheme for model FQH wave functions and
can be readily confirmed by numerical simulations in micro-
scopic models for generic FQH states. Our main finding is
that, for a robust FQH phase with a set of degenerate ground
states evolving adiabatically during the Dehn twist, there is
an accumulated Berry phase in each ground state which con-
tains both topological and geometric information: the Hall
viscosity related to the guiding-center spin [18,20,41], the
sector-dependent topological spin [47,48], and the chiral cen-
tral charge of the underlying edge conformal field theory
(CFT). This information fully characterizes the underlying
topological order. By using extensive exact diagonalization
to track the evolution of ground-state wave functions and
calculate the accumulated Berry phase, we demonstrate the
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FIG. 1. Dehn-twist operation on the torus: (a) A twist operation
on the annulus (red) illustrates the self-homeomorphism of T trans-
formation. (b) The torus geometry is defined by two fundamental
vectors �L2 = L�τ and �L1 = L�ex , and the twist angle is θ . The Dehn
twist, i.e., the T transformation, sends �τ = τ1�ex + τ2�ey to its equiv-
alent geometry �τ + �ex , thus leaving the torus geometry unchanged.
The area of the torus does not change during the Dehn twist. This is
an example of the Dehn twist changing �τ from τ2�ey to �ex + τ2�ey, with
τ2 = |�L2(θ = π/2)|/|�L1|.

validity of this relation for various FQH states at the fermionic
and bosonic Laughlin, hierarchy, Halperin, and non-Abelian
Moore-Read fillings and successfully extract the topological
and geometric properties of both model wave functions and
Coulomb ground states. As a byproduct, we find that the
flow of energy spectra under geometric deformation plays
as a “smoking-gun” feature to justify the robustness of FQH
liquids. In this context, we demonstrate that the ground-state
degeneracy at ν = 5/2 under particle-hole symmetric inter-
actions is fragile, which challenges the identification of the
(anti-)Pfaffian state based on finite-size calculations.

II. GEOMETRIC BERRY PHASE FROM DEHN TWIST

We consider Np particles with charge e moving in two
spatial dimensions on the torus geometry subjected to a
perpendicular uniform magnetic field. The torus is spanned
by two vectors �L1 = L�ex and �L2 = L�τ [49], where �τ is
parametrized by the twist angle θ as �τ = τ1�ex + τ2�ey =
(cos θ �ex + sin θ �ey)|�L2|/|�L1| such that �L2 = �L2(θ ) depends on
θ (Fig. 1). Here, �ex and �ey are unit vectors in the x and y direc-
tions, respectively. After rephrasing the coordinate x�ex + y�ey

as L(X 1�ex + X 2�τ ) with X 1, X 2 ∈ [0, 1], we can express the
single-particle Hamiltonian as

H0(τ ) = 1

2
gab(τ )Da(A)Db(A) (1)

with

g(τ ) = 1

L2τ 2
2

(|τ |2 −τ1

−τ1 1

)
, (2)

where the vector potential A = −τ2LBX 2�ex, and the covari-
ant derivative Da(A) = −ih̄∂/∂X a + |e|Aa. The inverse-mass
matrix (also called Riemann metric) g(τ ) depends on the
shape of the torus, which plays the role of a geometric metric
[20,21,38,39,50–52]. The total number of fluxes Nφ penetrat-
ing the torus is given by the Landau-level degeneracy Nφ =

|�L1 × �L2|/(2π�2), where the magnetic length � = √
h̄/(|e|B)

is taken as the length unit. The filling factor is defined as
ν = Np/Nφ .

We focus on the continuous geometric deformation gen-
erated by the Dehn-twist operation on the torus, which
corresponds to the adiabatic process �τ → �τ + �ex as illustrated
in Fig. 1. Since the torus geometry after Dehn twist is equiv-
alent to the original one, the physics of a topological order
should be left unchanged [5]. As required by the principle
of gauge invariance, we expect that the nearly degenerate
ground-state manifold of a stable FQH phase should evolve
adiabatically in the whole process of the Dehn twist, and each
ground state should finally acquire a sector-dependent Berry
phase. One advantage of our choice of the Dehn twist is the
potentially rich information contained in these Berry phases.
First, the process of the Dehn-twist operation is equivalent to
shearing the torus geometry, which is similar to applying a
strain to a fluid. As a result, these Berry phases should reflect
the viscosity response of FQH states [19,20,39]. Second, the
Dehn-twist operation coincides with the T transformation in
the 1+1D CFT [44] describing the edge of the underlying
FQH state, thus we expect to extract the topological properties
of modular tensor category of the pertinent state from these
Berry phases [43,45,53,54]. Third, the adiabatic evolution of
the FQH ground-state manifold itself can be used as a criterion
for the robustness of FQH liquids, which so far has not been
confirmed by proof-of-principle numerical evidence.

A. Geometric phase

In order to explicitly illustrate the Dehn-twist-induced
Berry phase, we first consider the ν = 1/q Laughlin wave
function in the topological sector α on the torus [10,46]:

〈{zi}|
α; τ 〉 = N (τ )
∏
i< j

[
θ11(zi − z j |τ )

η(τ )

]q

× f α
c ({Z}|τ )eiπNφτ

∑
i[X2,i]2

, (3)

where zi = xi + iyi is the coordinate of the ith particle. α

labels the q degenerate Laughlin states, each of which cor-
responds to a fixed type of quasiparticle. The center-of-mass
part of the wave function is described by fc({Z}), the relative
part is captured by the Jacobi-theta function θ11(zi − z j |τ ),
and the normalization prefactor N (τ ) = N0[

√
τ2η

2(τ )]Nφ/2

with N0 a τ -independent constant and η the Dedekind’s func-
tion. The details of this wave function will be given in Sec. A3
in Appendix A.

For the Laughlin wave function Eq. (3), we can analytically
prove that, up to an Np-dependent term which can be removed
by a gauge transform, the Dehn-twist-induced Berry phase is

UT
α = −ηH L2 + 2πhα − 2π

c

24
, (4)

where ηH is the Hall viscosity [19,20], hα is the topological
spin characterizing the adiabatic self-rotation of quasiparticle
α [47,48], and c is the chiral central charge of the edge CFT
of the underlying FQH state. We will give the proof of Eq. (4)
in Secs. A4 and A5, in which we find that the Dehn-twist-
induced Berry phase for the general multicomponent Halperin
model wave functions [55] takes the same form. As we will
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discuss below, the first term in Eq. (4) comes from the stress
response to the deformation of torus, while the second and
third terms are results of the response to the modular trans-
form accompanying the Dehn twist.

B. Hall viscosity response

The first term in Eq. (4) depends on the Hall viscosity
ηH and the length L of the twist path. This term comes
from the stress response, which is generally nonzero for
time-reversal symmetry-breaking Hall liquids [20,21,38,50–
52]. For an FQH state at filling ν = p/q, we can calculate the
Berry connection resulting from the deformation of a torus
during the Dehn twist as (see Sec. A5, where we use p and
q to represent the numerator and denominator of filling factor
ν = p/q):

Aτ = i〈
; τ̄ |∂τ |
; τ 〉 = −qNp

8τ2
, (5)

which is α-independent and gives an accumulated Berry phase
[19]∫ 1

0
Aτ1 dτ1 =

∫ 1

0
(Aτ + Aτ̄ ) dτ1 = −qNp

4τ2
= −h̄−1ηH L2.

(6)
Microscopic studies of the FQH physics often project the

whole system to the single partially filled Landau level for
high numerical efficiency. In this case, ηH in the Berry phase
should be replaced by ηg, the so-called guiding-center vis-
cosity [17]. ηg is related to the guiding-center spin s of the
underlying FQH state via ηg = − h̄

4π�2
s
q , where s describes an

emergent geometric response of a correlated composite boson
(with p particles in consecutive q orbitals) and can be used as
a topological quantum number to distinguish different FQH
states [18,20,41] (see more details in Appendix D).

C. Modular response

Apart from tilting the torus, the Dehn twist, equivalently,
the T transformation, is expected to encode topological in-
formation of the modular group on the torus [45,46]. Starting
from Eq. (3), we can prove (see details in Sec. A4)

〈{zi}|
α; τ + 1〉 = 〈{zi}|
α; τ 〉e2π i(hα− c
24 )ei

πqN2
p

12 , (7)

which leads to a Berry phase 2π (hα − c
24 ) + πqN2

p

12 in addition
to the one purely caused by the torus deformation [Eq. (6)].
The matrix representation of T under the basis of initial states
is thus

〈
β ; τ |T |
α; τ 〉 = 〈
β ; τ |
α; τ + 1〉 = Tαβeiγ (8)

with

Tαβ = δαβei2π (hα− c
24 ), (9)

which recovers the modular T -matrix, indicating that the over-
lap between microscopic ground-state wave functions before
and after the Dehn twist can characterize the underlying topo-
logical phase [45,53,54]. Note that we have properly fixed
the gauge in |
α; τ 〉 and |
α; τ + 1〉 to derive Eq. (8) (see
Sec. A4).

Beside the universal topological information 2π (hα − c
24 ),

there is an extra system-size-dependent phase factor

γ = πqN2
p

12
(10)

in Eq. (8), which was overlooked in earlier studies [47]. How-
ever, it is necessary to isolate this nonuniversal term from the
universal ones if we want to determine the topological spin
and central charge from the microscopic simulation of the
Dehn twist [56].

III. MICROSCOPIC MODEL

We aim to simulate the Dehn-twist-driven evolution of an
FQH system with a translation-invariant two-body interaction
projected to the lowest Landau level (LLL). The system is
described by the Hamiltonian

H (τ ) = 1

2L1L2 sin θ

∑
q

Vq : ρ̂−qρ̂q :, (11)

where Vq is the Fourier transform of the interaction potential
and ρ̂q is the LLL-projected density operator. The standard
second quantization procedure gives

ρ̂q =
∫

dr e−iq·r ∑
j1, j2

ψ∗
j1 (r)ψ j2 (r)a†

j1
a j2 , (12)

where a†
j creates a particle in LLL orbital j ( j =

0, 1, . . . , Nφ − 1), with wave function ψ j (x, y) =
( 1
π1/2L�

)
1/2 ∑

k e
2π ( j+kNφ ) x+iy

L +i πτ
Nφ

( j+kNφ )2

e− y2

2�2 . In the following,
we choose the Coulomb interaction with Vq = 2π

|q| or
Haldane’s pseudopotentials [57]. At filling ν = p/q with
coprime p and q, the full many-body symmetry can
be factorized into a center-of-mass and a relative part
[58,59], thus each eigenstate of Eq. (11) can be labeled
by a two-dimensional momentum K = (K1, K2) with
K1,2 = 0, 1, . . . , Nφ/q − 1 [equivalently, by k = (k1, k2) with
k1 = 2πK1/Nφ and k2 = 2πK2/(Nφ/q)] in the irreducible
Brillouin zone.

A. Dehn-twist simulation

To simulate the Dehn twist, we parametrize the whole
process in Fig. 1(b) by the twist angle θ of the torus which
varies from π/2 to tan−1[|�L2(θ = π/2)|/|�L1|]. We divide the
path of θ into M evenly spaced steps and use exact diago-
nalization in the Fock basis of LLL orbitals to calculate the
energy spectrum and eigenstates of Eq. (11) at each step. The
accumulated Berry phase in topological sector a can then be
evaluated by the discretized formula [39,40]

eiUT
a 	 〈
a(0)|Ûg|
a(M − 1)〉

M−2∏
j=0

〈
a( j + 1)|
a( j)〉,

(13)

where |
a( j)〉 is the ground state in topological sector a at
step j, and j = 0 and j = M correspond to θ = π/2 and θ =
tan−1(|�L2(θ = π/2)|/|�L1|), respectively. Note that the final
state |
a(M )〉 in Eq. (13) is not calculated by diagonalizing
the Hamiltonian, but is directly transformed from the initial
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state |
a(0)〉 by |
a(M )〉 = Û †
g |
a(0)〉, where Ûg is a unitary

operator accounting for the gauge transform between the LLL
orbital bases before and after the Dehn twist (this unitary
operator Ûg will be defined in Sec. III B). This is for guaran-
teeing that the global phases randomly returned by numerical
diagonalization are automatically canceled in Eq. (13), so that
the obtained Berry phase is indeed gauge invariant. More-
over, when deciding the number of steps M, we require the
wave-function overlap for two adjacent steps of the Dehn
twist satisfying |〈
a( j + 1)|
a( j)〉| > 0.99 to ensure that the
deformation of the torus is performed adiabatically.

B. Gauge transformation

Now we derive the unitary operator Ûg in Eq. (13),
which connects the LLL orbital bases before and after the
Dehn twist. Before the Dehn twist, the two elementary mag-
netic translational operators t̂1 = t̂ ( �L1

Nφ
) and t̂2 = t̂ ( �L2

Nφ
) on the

rectangular torus satisfy t̂1t̂2 = t̂2t̂1e
i

2πNp
Nφ and act on the single-

particle orbital basis as [58,59]

t̂1|m〉 = e
i 2πm

Nφ |m〉, t̂2|m〉 = |m + 1〉, (14)

where m = 0, 1, . . . , Nφ − 1 and t̂ (�r) is the general mag-
netic translational operator. After the Dehn twist, i.e., the T
transformation, the orbital basis should be the same as the
initial one up to a gauge phase γm, i.e., T |m〉 = |m〉 = eiγm |m〉,
where |m〉 stands for the basis after the T transformation and
satisfies

t̂1|m〉 = e
i 2πm

Nφ |m〉, t̂

( �L1 + �L2

Nφ

)
|m〉 = |m + 1〉. (15)

A combination of Eqs. (14) and (15) leads to γm+1 − γm =
(2m + 1) π

Nφ
. Assuming γm = Am2 + Bm + C, we get

γm = π
m2

Nφ

+ C. (16)

In the many-body level, the total gauge transform between the
two equivalent orbital-basis Fock states before and after the
Dehn twist is then simply given by

Ûg =
∏

m∈occupied

e−iγm |m〉〈m̄|, (17)

where the sum is over all occupied orbitals [60].
An analytical derivation based on the real-space wave func-

tion of the orbital basis gives C = 0 in Eq. (16) (see Sec. A2).
However, we set C = γ /Np with γ given by Eq. (10), which
is equivalent to a gauge transform |
α; τ + 1〉 → eiγ |
α; τ +
1〉. This choice is particularly convenient for numerical extrac-
tions of Hall viscosity, topological spin, and central charge
from the Dehn twist, because the nonuniversal part in the
modular phase Eq. (8) is canceled by CNp such that the Berry
phase Eq. (13) returned by numerical simulations contains
only the pure geometric and topological terms.

IV. RESULTS

A. Flow of energy spectra

As an isolated ground-state manifold in the whole process
of the geometric deformation is a requisite for a well-defined
Berry phase, we first investigate the evolution of the low-
energy spectra during the Dehn twist. Such an examination
can reflect the stability of the FQH phase under the geometric
deformation. Due to the relevance with realistic systems, we
consider Coulomb interacting particles in what follows.

Remarkably, we observe an impressive robustness of
Abelian FQH states against the Dehn twist. A typical example
of ν = 1/2 bosons is displayed in Fig. 2(a). Here, we choose
a geometric path from a rectangular to its equivalent one
(as shown in Fig. 1). In this case, there is always a single
ground state in the (K1, K2) = (0, 0) momentum sector, which
we confirm has a large overlap with the Laughlin state and
never mixes with other excited levels as the twist angle θ

of the torus changes during the Dehn twist. For each system
size, the energy gap separating the ground state and excited
states is almost constant during the Dehn twist even for the
generic Coulomb interaction [Fig. 2(a)]. A finite-size scaling
of the minimal energy gap � in the process of the Dehn
twist suggests that the gap is very likely to survive in the
thermodynamic limit [Fig. 2(c)]. In addition, the minimum
of the magnetoroton mode [at the bottom of excited levels in
Fig. 2(a)] changes only a little with θ , indicating that not only
the ground state but also the low-energy excitations are stable
against the Dehn twist.

We observe similar robustness of the ground-state manifold
for other bosonic and fermionic Coulomb ground states at
ν = 1/4, 1/3, 2/3, and 2/5, which correspond to the Abelian
Laughlin, hierarchy, and Halperin states (see Appendix B). In
all of these cases, the single ground state in the irreducible
Brillouin zone evolves adiabatically and never mixes with
excited levels during the Dehn twist. The energy gap is also
expected to be finite, as indicated by the finite-size scaling of
the minimal gap during the Dehn twist [Fig. 2(c)].

For non-Abelian FQH states, there are multiple ground
states in the irreducible Brillouin zone, which makes the spec-
tral flow more complicated. To pursue small finite-size effects
in the Coulomb ground states, we focus on bosons at ν = 1,
where it has been confirmed that the Coulomb ground states
are in the Moore-Read phase [61]. In this case, we again find
remarkable robustness against the Dehn twist. Although the
ground state in the (K1, K2) sector evolves into the one in the
(K1, K1 + K2) sector after the Dehn twist, the three ground
states are always approximately degenerate and well separated
from other excited levels by a finite energy gap [Fig. 2(c)] in
the whole spectra flow [Fig. 2(b)].

B. Berry phase and Hall viscosity

Let us now turn to discuss the accumulated Berry phase un-
der the Dehn-twist operation. For specific Np, ν, Nφ = Np/ν,
and topological sector a, we first numerically calculate the
Dehn-twist-induced Berry phase at a fixed length L = |�L1|
of the torus. We then vary L around the square torus limit
L = √

2πNφ to investigate the dependence of the Berry phase
on L. We do these procedures in each topological sector a.

085103-4



MICROSCOPIC DIAGNOSIS OF UNIVERSAL GEOMETRIC … PHYSICAL REVIEW B 103, 085103 (2021)

FIG. 2. Flow of low-energy spectra: The low-energy spectra of the Coulomb interaction as a function of the twist angle θ for (a) bosons at
ν = 1/2 with Np = 8 and (b) bosons at ν = 1 with Np = 12. The initial geometric conditions before the Dehn twist are chosen as |�L1| = |�L2| in
(a) and |�L1| = 1.23|�L2| in (b), with θ = π/2. The spectra are calculated in the irreducible Brillouin zone (K1, K2) with K1,2 = 0, 1, . . . , Nφ/q −
1. (c) Finite-size scaling of the minimal energy gap � during the Dehn twist for the ν = 1/2, 1/3, 1/4 Laughlin states, ν = 2/5, 2/3 hierarchy
states, and ν = 1 Moore-Read state. The arrows in (a) and (b) indicate the minimal gap during the Dehn twist.

Note that the torus area |�L1 × �L2| = 2πNφ is unchanged when
we tune L.

Remarkably, for various Abelian and non-Abelian FQH
states that we have studied, the numerically obtained Berry
phase UT

a in each topological sector a behaves nicely as a
linear function of L2 in the window of L stated above (Fig. 3),
which is consistent with the prediction of Eq. (4). Thus we
expect that the slope of the linear function UT

a (L2) is given
by the sector-independent guiding center Hall viscosity ηg (as
we have projected the Hamiltonian into a single Landau level,
only the guiding-center part can be captured; see Appendix
D), from which we can extract the guiding-center spin s of
the underlying phase. On the other hand, the sector-dependent

FIG. 3. Accumulated Berry phase under Dehn twist �τ → �τ + �ex:
Data are numerically calculated for Coulomb interacting bosons at
(a) ν = 1/2 and (b) ν = 1, with Np = 12 in both cases. Different
topological sectors, with notations given in this paper, are distin-
guished using colors. Fitting each curve into Eq. (4) allows us to
extract the guiding-center spin and topological spin in different topo-
logical sectors.

topological spin ha, describing the phase obtained by quasi-
particle a spinned by 2π , and the chiral central charge c are
expected to be encoded in the intercept of UT

a (L2) in the limit
of L → 0. In particular, the difference between the intercepts
of UT

a (L2) and UT
b (L2) should give us the topological spin

difference ha − hb between sectors a and b.
For Abelian states, the ground states in different topologi-

cal sectors can be distinguished by their momenta (K1, K2),
thus we straightforwardly have |
a〉 = |
(K1, K2)〉, where
|
(K1, K2)〉 is the ground state from numerical exact diago-
nalization. Based on this, we calculate the Berry phase UT

a ,
and indeed extract guiding center spin and sector-dependent
topological spin that are very close to their theoretical values
in pertinent FQH phases. For instance, we get s ≈ −0.4997
for the two degenerate Coulomb ground states of bosons
at ν = 1/2, and the intercept difference gives �h ≈ 0.2500
[Fig. 3(a)]. This matches the ν = 1/2 bosonic Laughlin
state, which carries s = −1/2 and has two types of quasi-
particles with h0 = 0 (a = 0 vacuum) and hs = 1/4 (a = s
semion), respectively [41,53,62]. We have also explored other
Abelian FQH states corresponding to the Laughlin states at
ν = 1/3, 1/4, hierarchy states at ν = 2/5, 2/3, and Halperin
states at ν = 2/3, 2/5 (see Appendix B). We summarize these
results in Table I, where all of the numerically extracted
guiding center spin and topological spin are consistent with
theoretical predictions based on Jack polynomials or model
wave-function calculations [41].

For non-Abelian states, we need to appropriately super-
pose the ground states |
(K1, K2)〉 obtained from numerical
exact diagonalization to construct the state |
a〉 in a specific
topological sector a. Here, we take the ν = 1 Coulomb in-
teracting bosons in the Moore-Read phase as an example.
In this case, the three numerical ground states are in the
(k1, k2) = (π, 0), (0, π ), and (π, π ) momentum sectors. The
Moore-Read phase has three types of quasiparticles: the vac-
uum a = 0, the fermionic anyon a = f , and the Ising anyon
a = σ . In particular, the Ising anyon σ carries non-Abelian
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TABLE I. Our numerical results compared with theoretical predictions. s is the guiding-center spin, related to the guiding-center Hall
viscosity by ηg = h̄

4π�2
−s
q . ha is the sector-dependent topological spin. See Appendix B for detailed information about the topological sectors of

each FQH phase. Quantities with and without the superscript “cal” stand for numerically calculated results and theoretical values, respectively.
Parent Hamiltonians are used for the (221) and (332) Halperin states, otherwise the Coulomb interaction is used. N/A means no theoretical
prediction on hand.

Laughlin Laughlin Laughlin Hierarchy Hierarchy Moore-Read Halperin (221) Halperin (332)
ν = p

q
1
2

1
3

1
4

2
5

2
3

2
2

2
3

2
5

s − 1
2 −1 − 3

2 −3 −2 −1 −1 −2

scal −0.4997 −0.9964 −1.4469 −2.9552 −2.0840 −1.0320, −1.0246 −1.0499 −2.0033

ha − h0
1
4

1
3

1
8 , 1

2 N/A N/A 1
2 , 3

16
1
3

1
5 , 2

5

hcal
a − hcal

0 0.2500 0.3333 0.1250,0.5000 0.2000,0.4000 0.3333 0.5000,0.1873 0.3333 0.2000,0.4000

braiding statistics which can lead to potential applications in
topological quantum computation [63,64]. Based on the sym-
metry analysis, |
a〉 and |
(K1, K2)〉 are related via |
σ 〉 =
|
(0, π )〉 and |
0, f 〉 = 1√

2
[|
(π, π )〉 ± eiϕ |
(π, 0)〉], where

ϕ is chosen to guarantee that |
0〉 and |
 f 〉 are minimally
entangled states [45,53,54] with respect to the bipartition
of all Nφ Landau-level orbitals (see Appendix E). Similar
to the Abelian cases, we find that the Dehn-twist-induced
Berry phase of each such constructed |
a〉 also matches a
linear dependence on L2 for L around the square torus limit
[Fig. 3(b)]. The extracted guiding center spin is s ≈ −1.0320
and −1.0246 for |
σ 〉 and |
0, f 〉, respectively, which is
almost sector-independent and very close to the theoretical
value s = −1 in the Moore-Read phase. The topological
spins of f and σ are, respectively, determined by h f − h0 ≈
0.5000 and hσ − h0 ≈ 0.1873, being consistent with expected
“fermionic” and “Ising” statistics of quasiparticle f and σ

[65,66].

C. Chiral central charge and edge physics

In the vacuum sector a = 0, the topological spin ha = 0
such that the intercept of UT

a=0(L2) is solely contributed by
the chiral central charge c. In this case, we can investigate
the edge structure of an FQH state which is determined by c.
As notable examples, we first consider the fermionic model
Laughlin state at ν = 1/3 and its particle-hole conjugate at
ν = 2/3. Working in the vacuum sector, we extract the central
charge of the ν = 1/3 model Laughlin state as c ≈ 1.01595
(Fig. 4), which is close to the theoretical value c = 1 (see
Appendix B for details). Physically, c = 1 means that the edge
state is a single chiral bosonic field, being consistent with the
well-known edge structure of the ν = 1/3 Laughlin state.

By contrast, there are multiple scenarios of the edge
physics for the particle-hole conjugate of the ν = 1/3 Laugh-
lin state at ν = 2/3. One possibility is that the edge current is
carried by two chiral ν = 1/3 edge modes [67,68]. However,
it has been debated that the ν = 2/3 state should harbor two
counterpropagating ν = 1 and ν = 1/3 edge modes and edge
reconstruction could occur in this hole-conjugate FQH state
[69]. The difference between the two scenarios above is that
the former hosts c = 2, while the latter has c = 0 due to the
counterpropagating nature. As shown in Fig. 4, we obtain
c ≈ 0.0159 at ν = 2/3 within very high accuracy. This re-
sult unambiguously points to the counterpropagating picture

[69] and is also consistent with the recent shot noise mea-
surements and other experiments [6,70,71]. In addition, we
identify c = 1 for the model Halperin (333) state at ν = 1/3,
which suggests its effective edge theory to be equivalent to
the Laughlin ν = 1/3 state. In this sense, our approach offers
a guide to explore the edge physics of existing FQH effects.

V. DISCUSSION

Apart from extracting geometric and topological quantum
numbers of the underlying FQH state, our Dehn-twist ap-
proach also provides a distinctive viewpoint to inspect the
stability of an FQH phase. In some cases such stability can-
not be guaranteed by studying only finite-size samples with
a fixed torus shape. Here, we use the energy spectral flow
under the Dehn twist as a criterion. As required by the gauge
transformation, such an energy spectral flow is expected to

FIG. 4. Chiral central charge: Linear extrapolation of the Berry
phase UT

a=0(L2) towards L = 0 for the model Laughlin state at ν =
1/3 and its particle-hole conjugate at ν = 2/3 in the vacuum sector
a = 0. The intercept gives the chiral central charge c ≈ 1.0159 for
the model ν = 1/3 Laughlin state and c ≈ 0.0159 for its particle-
hole conjugate at ν = 2/3. Similarly, we identify c ≈ 0.9818 for the
model Halperin (333) state.
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FIG. 5. Energy spectra at ν = 5/2: The low-energy spectra of
(a) the three-body parent Hamiltonian of the Pf state and (b) the two-
body Coulomb interaction at ν = 1/2 in the second Landau level as
a function of the twist angle θ for Np = 12 electrons. The lowest
energy levels living in momentum sector (0, π ), (π, 0), (π, π ) are
labeled with colors. The insets show the energy spectra at θ = π/2
as a function of |K|.

maintain the ground-state degeneracy without level crossings
with excited levels if the underlying FQH phase is really
robust [5]. The results shown in Figs. 2(a) and 2(b) satisfy this
requirement. However, we also notice a striking counterexam-
ple for Coulomb interacting electrons at ν = 5/2 (ν = 1/2 in
the second Landau level). In this case, while the nature of the
ground state is still under debate, there is one possibility that
the ground-state manifold consists of the non-Abelian Pfaffian
(Pf) and anti-Pfaffian (aPf) states that are degenerate in the
thermodynamic limit [12,72–78]. As both the Pf and aPf states
are threefold degenerate in the irreducible Brillouin zone on
the torus, the total ground-state degeneracy in the irreducible
Brillouin zone is expected to be sixfold in this case. Some
numerical attempts indeed reported the observation of six
low-lying states at ν = 5/2 on the special shape torus [77,78].
However, we find that this feature is not stable under the Dehn
twist. As shown in Fig. 5(b), while there are six low-lying
states on the rectangular torus [77], three of them evolve into
the higher-energy spectrum during the Dehn twist, making the
Pf-aPf interpretation questionable. It is in sharp contrast to
the case of the particle-hole symmetry-breaking three-body
parent Hamiltonian of the (anti-)Pfaffian state, for which the
(anti-)Pfaffian state is always the zero-energy ground state
regardless of the torus shape [Fig. 5(a)]. Moreover, Ref. [78]
claimed that a quantum-well model with a finite layer width
could stabilize Pf and aPf states. Unfortunately, we observe
similar level crossing with excited levels in the spectral flow
of that model also. Thus, our calculations suggest that com-
pelling evidence on the torus geometry for Pf and aPf states at
ν = 5/2 is still far from conclusive (see discussion in Sec. B5
in Appendix B).

VI. CONCLUSION AND OUTLOOK

In this work, we present a systematic scheme based on the
Dehn-twist deformation on the torus geometry to identify the
topological orders of fractional quantum Hall (FQH) liquids.
With a gauge-fixing procedure, we analytically derive the
formula of the total Berry phase accumulated during the Dehn
twist. This formula explicitly relates the geometric response

of FQH liquids to their universal properties, such as the Hall
viscosity, the topological spin, and the central charge of the
edge conformal field theory. We then verify this formula in
various microscopic models of Abelian and non-Abelian FQH
liquids beyond model wave functions, demonstrating the po-
tential of our scheme as a diagnosis of the topological order in
a generic FQH state without prior knowledge. Motivated by
the requirement of a well-defined geometric Berry phase, we
also suggest a separated ground-state manifold from excited
levels in the whole process of geometric deformation as an in-
dispensable criterion to justify the stability of an FQH phase.

Our approach opens up several future directions deserving
further exploration. We mostly focus on FQH states in the
lowest Landau level in this work. Considering that a series
of FQH effects are also observed in higher Landau levels, we
believe that our Dehn-twist protocol can shed light on the
stability of those FQH states and their difference from the
lowest-Landau-level FQH states from the aspect of geometric
response. Moreover, in order to deepen our understanding of
the interplay between topology and geometry, it is instructive
to investigate how the geometric response of FQH liquids is
affected by the breaking of the rotational invariance, such as in
the cases of anisotropic FQH states [18,22] and FQH nematic
phases [79,80]. Furthermore, it would be interesting to adjust
our Dehn-twist protocol to lattice systems, such that it can be
applied to the broad class of lattice topological states such as
fractional Chern insulators [81–83].
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APPENDIX A: DERIVATION OF THE DEHN-TWIST
BERRY PHASE FOR ABELIAN FQH STATES

In this Appendix, we show a detailed derivation of the
Dehn-twist-induced Berry phase shown in the main text.

1. Lowest-Landau-level wave functions on the torus

The Hamiltonian of a charged particle on the torus spanned
by �L1 = L�ex and �L2 = L�τ with a uniform perpendicular mag-
netic field can be written as

H0(A, τ ) = 1

2
gab(τ )Da(A)Db(A), (A1)

where

g(τ ) = 1

L2τ 2
2

(|τ |2 −τ1

−τ1 1

)
, (A2)
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and Da(A) = −ih̄∂/∂X a + |e|Aa and A = (−τ2L2BX 2, 0) are
the covariant derivative and vector potential, respectively. The
lowest-Landau-level (LLL) orbitals of Eq. (A1) are


m(X 1, X 2|τ ) = 1√
π1/2L�

eiπNφτ [X 2]2
θ m

Nφ

(Nφz/L|Nφτ ) (A3)

with m = 0, 1, . . . , Nφ − 1, where Nφ = �L1×�L2
2π�2 = τ2L2

2π�2 is the
total flux through the torus, � = √

h̄/|e|B is the magnetic
length, z = x + iy = L(X 1 + τX 2) is the complex coordinate
of electron, and θm(z|τ ) is the theta function defined as

θα (z|τ ) =
∑
n∈Z

exp [iπτ (n + α)2 + i2π (n + α)z]. (A4)

2. Dehn-twist transform of the LLL wave functions

Let us consider how the LLL wave functions evolve under
the Dehn-twist transformation τ → τ + 1. After the Dehn
twist, the coordinate z = L(X 1 + τX 2) can be rewritten as
z = L[X ′1 + (τ + 1)X ′2]. Thus we express the single-particle
Hamiltonian in terms of (X ′1, X ′2) as

H0(A′, τ + 1) = 1

2
gab(τ + 1)D′

a(A′)D′
b(A′) (A5)

with

g(τ + 1) = 1

L2τ 2
2

(|τ + 1|2 −τ1 − 1
−τ1 − 1 1

)
, (A6)

and the LLL wave function takes the form of


m(X ′1, X ′2|τ + 1) = 1√
π1/2L�

eiπNφ (τ+1)[X ′2]2

× θ m
Nφ

[Nφz/L|Nφ (τ + 1)], (A7)

where D′
a(A′) = −ih̄∂/∂X ′a + |e|A′

a and A′ =
(−τ2L2BX ′2, 0) are the covariant derivative and vector
potential in (X ′1, X ′2), respectively. To compare Eq. (A7)
with Eq. (A3), we need to write them in the same coordinate
frame. Therefore, H0(A′, τ + 1) should be rewritten in
(X 1, X 2). By using relations

g(τ + 1) = 1

L2τ 2
2

(
1 −1
0 1

)
g(τ )

(
1 0

−1 1

)
(A8)

and (
D1(Ã)

D2(Ã)

)
=

(
1 0

−1 1

)(
D′

1(A′)

D′
2(A′)

)
(A9)

with Ã = (−τ2L2BX ′2, τ2L2BX ′2) = (−τ2L2BX 2, τ2L2BX 2),
we find

H0(A′, τ + 1) = H0(Ã, τ ) = 1

2
gab(τ )Da(Ã)Db(Ã) (A10)

with Da(Ã) = −ih̄∂/∂X a + |e|Ãa. Because Da(A) and Da(Ã)
can be related by a gauge transformation Û = e−iπNφ [X 2]2

[46],
i.e.,

Da(A) = Û†Da(Ã)Û , (A11)

we get

H0(A, τ ) = Û†H0(Ã, τ )Û . (A12)

Now we can see that the LLL wave function after the Dehn
twist, when written in (X 1, X 2), is

Û
m(X ′1, X ′2|τ + 1) = e
iπ m2

Nφ 
m(X 1, X 2|τ ), (A13)

where we have used

θ m
Nφ

[Nφz|Nφ (τ + 1)]

=
∑

n

e
iπNφτ (n+ m

Nφ
)2+i2π (n+ m

Nφ
)Nφz+iπNφ (n+ m

Nφ
)2

= e
iπ m2

Nφ

∑
n

(−1)nNφ e
iπNφτ (n+ m

Nφ
)2+i2π (n+ m

Nφ
)Nφz

= e
iπ m2

Nφ θ m
Nφ

(Nφz|Nφτ ). (A14)

Therefore, a phase factor e
iπ m2

Nφ is gained in the mth LLL
orbital after the Dehn twist. Note that Eq. (A13) is consistent
with Eq. (16).

3. FQH wave functions

We consider a multicomponent FQH state whose wave
function on the torus can be expressed in terms of the
theta function [40,46] (the single-component case can
be reached by setting the number of component equal
to one):


α
({

zI
i

}|τ) = N (τ ) fc
({

ZI
})

fr
({

zI
i

})
× exp

[
iπτNφ

∑
I,i

(
yI

i

Lτ2

)2
]
, (A15)

where I is the index of component, α is the vector labeling
degenerate states, zI

i = L(X I1
i + τX I2

i ) is the coordinate of the
ith particle in the Ith component, and ZI = ∑

i zI
i is the center-

of-mass coordinate of the Ith component. The relative part of
the wave function is

fr
({

zI
i

}|τ) =
{∏

I<J

∏
i, j

η−KIJ (τ )θKIJ
11

(
zI

i /L − zJ
j /L|τ)}

×
{∏

I

∏
i< j

η−KII (τ )θKII
11

(
zI

i /L − zI
j/L|τ)}

,

(A16)

where KIJ is the underlying K matrix with di-
mension dim(K ) = κ and diagonal elements κ =
(K11, K22, . . . , Kκκ )T , and

θ11(z|τ ) =
∑
n∈Z

exp

{
iπτ

(
n + 1

2

)2

+ i2π

(
n + 1

2

)(
z + 1

2

)}
(A17)

is the odd Jacobi-theta function satisfying θ11(−z|τ ) =
−θ11(z|τ ). The center-of-mass part of the wave function is

fc({ZI}|τ ) = η−κ (τ ) f (α,η)(Z/L|τ ) (A18)
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with

f (α,η)(Z|τ ) =
∑
n∈Zκ

exp {iπ (n + α + η)T Kτ (n + α + η)}

× exp {2π i(n + α + η)T K (Z − η)}, (A19)

where η = K−1κ/2 for fermions and η = 0 for bosons, and
Z = (Z1, Z2, . . . , Zκ )T . The normalization factor is

N (τ ) = N0[
√

τ2η(τ )2]
1
2 κT N, (A20)

where

η(τ ) = q1/24
∞∏

n=1

(1 − qn)|q=ei2πτ (A21)

is the τ -dependent Dedekind’s η-function, N =
(N1, N2, . . . , Nκ )T with NI is the number of particles in
the Ith component, and N0 is an area-dependent constant.

Now let us demonstrate how to get the vector α in
Eq. (A15). Note that Kα is the coset lattice Zκ/KZκ with
only | det(K )| independent vectors, indicating | det(K )|-fold
degenerate on the torus [9,40,84]. For the Laughlin ν =
1/q state, its K matrix is K = q with coset lattice Z/KZ =
{Kα|0, 1, . . . , q − 1}, corresponding to the q degenerate
states. For the Halperin (mmn) state, its K matrix is

K =
(

m n
n m

)
, (A22)

and its coset lattice is enclosed by the parallelogram
spanned by two vectors (m, n) and (n, m), thus the num-
ber of independent vectors is equal to the area of the
parallelogram, i.e., | det (K )| = m2 − n2. For instance, the
coset lattice of the Halperin (332) state is Z2/KZ2 =
{Kα|(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)}. Once we get the coset
lattice vector Kα, the vector α can be obtained by act-
ing K−1 on the left-hand side of Kα. In this way, we
have {α|0, 1/q, . . . , (q − 1)/q} for the Laughlin ν = 1/q state
and {α|(0, 0), (1/5, 1/5), (2/5, 2/5), (3/5, 3/5), (4/5, 4/5)}
for the Halperin (332) state.

4. Dehn twist and modular information

Similar to the single-particle case, we introduce a many-
body gauge transformation

Ûg = exp

{
iπNφ

∑
I,i

(
yI

i

Lτ2

)2
}

(A23)

to relate the many-body wave functions before and after the
modular transformation {T :τ → τ + 1}. Using Eqs. (A15)–
(A23), we can get

Ûg

α
({

zI
i

}|τ + 1
) = ÛgN (τ + 1) fc({ZI}|τ + 1) fr ({zI

i }|τ + 1)e−iπNφ (τ+1)
∑

I,i (yI
i /Lτ2 )2

= N (τ ) fc({ZI}|τ ) fr
({

zI
i

}|τ)
eiπNφτ

∑
I,i (yI

i /Lτ2 )2

e
1

12 iπ (NT KN−κ )ei2πhα

= 
α
({

X 1
I,i, X 2

I,i

}|τ)
e

1
12 iπ (NT KN−κ )ei2πhα , (A24)

where we have used the following useful relations (here we
assume the total flux Nφ through torus is even):

η(τ + 1) = eiπ/12η(τ ),

θ11(z|τ + 1) = eiπ/4θ11(z|τ ),

f (α,0)(Z|τ + 1) = eiπαT Kα f (α,0)(Z|τ ), (A25)

f (α,K−1κ/2)(Z|τ+1)= eiπ (α+ 1
2 K−1κ)T K (α+ 1

2 K−1κ) f (α,K−1κ/2)(Z|τ ).

Equation (A24) immediately gives the matrix representation
of the T transform as

〈
β; τ |T |
α; τ 〉 = δαβei2π (hα− c
24 )e

1
12 iπNT KN, (A26)

where c = κ is the chiral central charge of the underlying edge
CFT and hα is the topological spin of the topological sector α

satisfying

hα = 1

2
αT Kα(mod 1) for bosons,

hα = 1

2
(α + K−1κ)T K (α + K−1κ/2)(mod 1) for fermions.

(A27)

5. Hall viscosity and geometric phase

Let us denote the wave function in
Eq. (A15) as 1√

Z (τ,τ̄ )
|�; τ 〉, where 〈{zI

j}|�; τ 〉 =

N0η(τ )κ
T N fc({ZI}|τ ) fr ({zI

i }|τ )eiπNφτ
∑

I,i (
yI
i

Lτ2
)
2

, and Z (τ, τ̄ ) ≡
〈�; τ |�; τ 〉 = τ

− 1
2 κT N

2 = ( τ−τ̄
2i )−

1
2 κT N is a pure real part. Then

we can calculate the Berry connection induced by the T
deformation of the torus as [20,40]

Aτ = i〈
; τ̄ | 1√
Z

∂τ

1√
Z

|
; τ 〉 = i
√

Z∂τ

1√
Z

+ i

Z
∂τ Z

= i

2
∂τ ln Z = −κT N

8τ2
,

Aτ̄ = i〈
; τ̄ | 1√
Z

∂τ̄

1√
Z

|
; τ 〉 = i
√

Z∂τ

1√
Z

= − i

2
∂τ̄ ln Z = −κT N

8τ2
. (A28)

We can also rewrite Eq. (A28) in terms of Aτ1 and Aτ2 :

Aτ1 = Aτ + Aτ̄ = −κT N
4τ2

,

Aτ2 = iAτ − iAτ̄ = 0.

(A29)
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FIG. 6. Numerical data for Coulomb interacting bosons at ν = 1/2: (a) The low-energy spectrum for geometric parameter θ = π/2 and
system size Np = 8. (b) Flow of energy spectra with varying geometric parameter θ . The energy gap (indicated by the arrow) is defined by
the minimal difference between ground states and excited states in the whole Dehn-twist process. (c) Berry phase accumulated during the
Dehn twist for the ground state |
a〉 of Np = 12 in topological sector a = 0, 1. Here, topological sectors are distinguished by their fractional
quasiparticle charges Q = a/2 (in unit of e). Through the linear fitting against L2, the obtained guiding center spin and topological spin are
s ≈ −0.4997 and h1 − h0 = 0.2500, respectively. The inset shows the intercept in the a = 0 sector, which returns the chiral central charge
as c ≈ 0.9997 (the yellow dashed line is −1/12). (d) Chiral central charge c for various system sizes Np. The interaction in (d) is either the
pseudopotential parent Hamiltonian of the ν = 1/2 Laughlin state (blue circles) or the Coulomb potential (yellow triangles). The horizontal
dashed line is c = 1.

So the corresponding Berry phase due to the geometric defor-
mation of torus is [40,47]∫ 1

0
Aτ1 dτ1 = −κT N

4τ2
= −h̄−1ηH |L|2. (A30)

APPENDIX B: MORE NUMERICAL RESULTS

In this section, we present more numerical results at vari-
ous filling factors which are not shown in the main text. The
path of the Dehn twist is given in Fig. 1.

1. Laughlin state

We first consider ν = 1/2 bosons interacting via the
Coulomb potential. In this case, the ground state should be
described by the ν = 1/2 Laughlin state. In Fig. 6(a) we
show the low-energy spectrum as a function of momentum

K =
√

K2
1 + K2

2 for fixed geometric parameters θ = π/2 and
τ2 = 1 (symmetric rectangular). There is a single ground state
in momentum sector (0,0), which is separated from the ex-
cited levels by a finite energy gap. Considering the twofold
center-of-mass degeneracy at ν = p/q = 1/2, we recover the
twofold ground-state degeneracy for the Laughlin ν = 1/2
state. The magneto-roton branch above the ground state, rep-
resenting the collective mode of quasiparticle-quasihole pair,
can also be clearly seen in momentum sectors K > 1. We
then vary the geometric parameter θ for a fixed system area
|�L1 × �L2|. The ground state with momentum (0,0) evolves adi-
abatically and never crosses with higher energy levels in the
spectral flow [Fig. 6(b)]. By collecting the total Berry phase
accumulated in the Dehn twist (τ → τ + 1) for different L,
we get the plot of UT versus L2, as shown in Fig. 6(c). Fitting
the numerically obtained UT into the relation Eq. (4), we
get the guiding center spin as s ≈ −0.4997 and topological
spin as h1 − h0 = 0.2500 within machine precision, which

are consistent with the theoretical predictions s = −1/2 [41]
and h1 − h0 = 1/4 [46] for the Laughlin ν = 1/2 state. In
particular, the topological spin h1 − h0 = 1/4 signals that the
elemental quasiparticle satisfies semionic statistics in which
a semion goes back to itself by a self-rotation 8π . The chiral
central charge extracted in the vacuum sector converges to the
theoretical value c = 1 with the increasing of the system size
[Fig. 6(d)].

The same analysis can be applied to Coulomb interact-
ing bosons at ν = 1/4, as shown in Fig. 7. In this case,
there are four topologically distinct ground states captured
by the ν = 1/4 Laughlin states, labeled by their quasiparticle
charges Q = a/4 (in unit of e) with a = 0, 1, 2, 3. The dif-
ferent ground states can be distinguished by their topological
spins, which we numerically extract as h1(3) − h0 = 0.1250
and h2 − h0 = 0.5000. These results indeed match the theo-
retical predictions for the ν = 1/4 Laughlin state. Combining
the ν = 1/2 and 1/4 results, we conclude that the quasiparti-
cle a in the bosonic Laughlin ν = 1/q state (q even integer)
carries topological spin ha − h0 = a2

2q (mod1). This expression
is consistent with Eq. (A27).

For Coulomb interacting fermions at ν = 1/3 whose
ground state is described by the ν = 1/3 Laughlin state, we
get very similar results, as shown in Fig. 8. The obtained
guiding center spin is s ≈ −0.9964, which is very close to
the theoretical prediction s = −1 from the Jack polynomial
calculation for the ν = 1/3 Laughlin state [41]. According to
Eq. (A27) and Ref. [46], the theoretical value of the topologi-
cal spin of the ν = 1/3 Laughlin state is ha = (a+q/2)2

2q (mod1)
in topological sector a with quasiparticle charge Q = a/3
(a = 0, 1, 2), leading to h0 = 1/24 + 1/3 = 3/8, h1 = h2 =
1/24. Indeed, we numerically obtain h0 − h1 = h0 − h2 ≈
0.3333 = 1/3 within machine precision. However, the Jack
polynomial calculation in Ref. [41] on the cylinder geometry
predicts h1 − h0 = h2 − h0 = 1/6. This discrepancy is due
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FIG. 7. Numerical data for Coulomb interacting bosons at ν = 1/4: (a) The low-energy spectrum of Np = 8 for fixed geometric parameters
θ = π

2 and τ2 = 1 (symmetric rectangular). The ground state is located in momentum sector (0,0). (b) Flow of energy spectra with varying
geometric parameter θ for Np = 8. (c) Berry phase accumulated during the Dehn twist for the ground state |
a〉 of Np = 9 in topological
sector a = 0, 1, 2, 3. |
1〉 and |
3〉 are equivalent. The obtained guiding center spin and topological spin are s = −1.4469 and h1(3) − h0 =
0.1250, h2 − h0 = 0.5000, respectively. The inset shows that the central charge c has not converged for the largest system size Np = 9 that we
can reach. (d) Chiral central charge c for various system sizes Np. The interaction in (d) is either the pseudopotential parent Hamiltonian of the
ν = 1/4 Laughlin state (blue circles) or the Coulomb potential (yellow triangles). The horizontal dashed line is c = 1.

to the additional π Berry phase for fermions on the torus
geometry which we adopt, as noticed in Ref. [47].

2. Halperin state

Now we consider the two-component Halperin (m, m, m −
1) states at ν = 2/(2m − 1) = p/q [55]. For the fermionic
(332) state, there are | det (K )| = 5 degenerate ground states
with {α|(0, 0), (1/5, 1/5), (2/5, 2/5), (3/5, 3/5), (4/5, 4/5)}
(see Sec. A 3) [40,84]. Using Eq. (A27) we can obtain the
theoretical values of the topological spin as h0,0 = h2,2 =
9/20, h3,3 = h4,4 = 1/20, h1,1 = 1/4, where the subscripts of
h correspond to the Kα values. Similarly, for the bosonic

(221) state, there are | det (K )| = 3 degenerate ground states
with {α|(0, 0), (1/3, 1/3), (2/3, 2/3)}, and the corresponding
topological spins are h0,0 = 0, h1,1 = h2,2 = 1/3. Both the
(332) and (221) states should have chiral central charge c = 2
because of their two-component nature. We numerically ex-
tract these topological indices of both the (332) and (221)
states by diagonalizing their parent Hamiltonians, and the ob-
tained numerical values indeed match theoretical predictions
(Fig. 9).

3. Fermionic ν = 2/3 state

Now we consider the particle-hole conjugate of the ν =
1/3 Laughlin state, obtained by diagonalizing the parent

FIG. 8. Numerical data for Coulomb interacting fermions at ν = 1/3: (a) The low-energy spectrum of Np = 10 for fixed geometric
parameters θ = π

2 and τ2 = 1 (symmetric rectangular). The ground state is located in momentum sector (0,0). (b) Flow of energy spectra
with varying geometric parameter θ for Np = 10. (c) Berry phase accumulated during the Dehn twist for the ground state |
a〉 of Np = 12
in topological sector a = 0, 1, 2. |
1〉 and |
2〉 are equivalent. The obtained guiding center spin and topological spin are s ≈ −0.9964 and
h0 − h1(2) ≈ 0.3333, respectively. The inset shows that intercept in the a = 1(2) sector, which returns the chiral central charge as c ≈ 1.0699
(the yellow dashed line is −1/12). (d) Chiral central charge c for various system sizes Np. The interaction in (d) is either the pseudopotential
parent Hamiltonian of the ν = 1/3 Laughlin state (blue circles) or the Coulomb potential (yellow triangles). The horizontal dashed line is
c = 1.
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FIG. 9. Numerical data for model Halperin states: (a) Flow of energy spectra of the parent (332) Hamiltonian with varying geometric
parameter θ for Np = 8 fermions. (b) Berry phase accumulated during the Dehn twist for the model (332) state |
a,a〉 of Np = 8 in topological
sector a = 0, 1, 3. The obtained guiding center spin and topological spin are s ≈ −2.0033 and h0,0 − h1,1 = h2,2 − h1,1 = 0.2000, h1,1 −
h3,3 = h1,1 − h4,4 = 0.2000, respectively. The inset shows the intercept in the a = 3 sector, which returns the chiral central charge c ≈ 1.9678
(the yellow dashed line is −1/6). (c) Flow of energy spectra of the parent (221) Hamiltonian with varying geometric parameter θ for Np = 8
bosons. (d) Berry phase accumulated during the Dehn twist for the model (221) state |
a,a〉 of Np = 8 in topological sector a = 0, 1. The
obtained guiding center spin and topological spin are s ≈ −0.9986 and h1,1 − h0,0 = h2,2 − h0,0 = 0.3333, respectively. The inset shows that
intercept in the a = 0 sector, which returns the chiral central charge c ≈ 2.0080 (the yellow dashed line is −1/6).

Hamiltonian of the ν = 1/3 Laughlin state, i.e., the first Hal-
dane’s pseudopotential [57]. The K matrix of this state is [1]

K =
(

1 1
1 −2

)
, (B1)

thus the degeneracy is three. According to Eq. (12) in
Ref. [16], the theoretically predicted guiding center spin and
topological spins of this state are s = 1 and h0 = −1/4, h1 =
h2 = 1/12, respectively. Here, the subscript of h corre-
sponds to the topological sector with quasiparticle charge
Q = a/3 (a = 0, 1, 2). Indeed, we obtain numerical results
s ≈ −0.9990 and h1(2) − h0 ≈ 0.3333, in excellent agreement
with theoretical predictions (Fig. 10). Moreover, we extract
the chiral central charge c ≈ 0.0160 [Figs. 10(c) and 10(d)],

which points to the counterpropagating edge modes. This is
helpful for resolving the debate [67–69] about the edge struc-
ture of the ν = 2/3 state (see the main text).

4. Hierarchy state

Starting from the Laughlin ν = 1/q state, quasiparticles
can condensate into successive Laughlin states and generate a
hierarchy of incompressible states. The most prominent state
appears at ν = 2

5 for fermions and at ν = 2
3 for bosons, whose

guiding center spins are s = −3 and s = −2, respectively.
Our numerical simulation gives s ≈ −2.0840 for Coulomb

interacting bosons at ν = 2/3 and s ≈ −2.9552 for Coulomb
interacting fermions at ν = 2/5, both of which match the
above expected values (Fig. 11). Moreover, we also estimate

FIG. 10. Numerical data for ν = 2/3 fermions, interacting via the first Haldane’s pseudopotential: (a) The low-energy spectrum of Np = 20
for fixed geometric parameters θ = π

2 and τ2 = 1 (symmetric rectangular). The ground state is located in momentum sector (0,0). (b) Flow of
energy spectra with varying geometric parameter θ for Np = 20. (c) Berry phase accumulated during the Dehn twist for the ground state |
a〉
of Np = 24 in topological sector a = 0, 1. The obtained guiding center spin and topological spin are s ≈ −0.9990 and h1(2) − h0 ≈ 0.3333,
respectively. The inset shows the intercept in the a = 0 sector, which returns the chiral central charge as c ≈ 0.0160 (the yellow dashed line
is 0). (d) Chiral central charge c for various system sizes Np. The interaction in (d) is either the pseudopotential parent Hamiltonian of the
ν = 1/3 Laughlin state (blue circles) or the Coulomb potential (yellow triangles). The horizontal dashed line is c = 0.
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FIG. 11. Numerical data for Coulomb interacting fermions at ν = 2/5 and Coulomb interacting bosons at ν = 2/3: (a) Flow of energy
spectra of Np = 12 fermions at ν = 2/5 with varying geometric parameter θ . (b) Berry phase accumulated during the Dehn twist for the
ground state |
a〉 of Np = 12 fermions at ν = 2/5 in topological sector a = 0, 1, 2, 3, 4. The obtained guiding center spin and topological
spin are s ≈ −2.9552 and h1(4) − h0 = 0.2000, h2(3) − h0 = 0.4000, respectively. (c) Flow of energy spectra Np = 12 bosons at ν = 2/3 with
varying geometric parameter θ . (d) Berry phase accumulated during the Dehn twist for the ground state |
a〉 of Np = 12 bosons at ν = 2/3 in
topological sector a = 0, 1, 2. The obtained guiding center spin and topological spin are s ≈ −2.0840 and h1(2) − h0 = 0.3333, respectively.

the topological spins of elementary quasiparticles as h1(2) −
h0 ≈ 0.3333 = 1/3 for ν = 2/3 bosons and h1(4) − h0 ≈
0.2 = 1/5, h2(3) − h0 ≈ 0.4 = 2/5 for ν = 2/5 fermions. The
subscript a of h labels the topological sector with quasiparticle
charge Q = a/(2p + 1) at ν = p/(2p + 1) for fermions and
Q = a/(p + 1) at ν = p/(p + 1) for bosons.

5. Fermionic Moore-Read state

Despite that the FQH states at ν = p/q with odd q can
be understood using Laughlin’s paradigm and further hier-
archy theory or with Jain’s composite fermion theory, the
finding of even denominator ν = 5/2 FQH state challenges
our theoretical understanding of the FQH effect. Among mul-
tiple candidates, the Pfaffian or anti-Pfaffian wave function
proposed by Moore and Read [12,72,75] seems a promising
candidate to describe the enigmatic nature of the ν = 5/2
FQH effect. Although much efforts have been devoted to
this long-standing issue [73,74,76–78,85], solid numerical ev-
idence of topological ground-state degeneracy on the torus
is still lacking. In the main text, we have shown that the
quasidegenerate ground states of pure Coulomb interaction
are not stable against the Dehn-twist transformation in finite
systems. We notice that Ref. [78] proposed that the modified
Coulomb interaction with a finite-layer width correction may
enhance the Moore-Read signature in some range of the aspect
ratio of the torus. Here, we investigate this possibility by using
the modified Coulomb potential

V (k) = 2π

k

3kd + 8π2

kd − 32π4(1−e−kd )
k2d2(k2d2+4π2 )

k2d2 + 4π2
(B2)

in an infinite square-well potential, where d stands for the
effective layer-width of the experimental GaAs quantum well
structures. In our calculation, we set d = 4� according to the
discussion in Ref. [78]. The low-energy spectrum at rectangu-
lar geometry is shown in Fig. 12(a), which exactly repeats the
result in Fig. 4 of Ref. [78]. The plausible six quasidegenerate
ground states are labeled by red circles. However, under the
Dehn-twist deformation, the six quasidegenerate states evolve

into higher levels, as shown in Fig. 12(b). Due to such level
mixing, we cannot get the Hall viscosity and topological spin
for the ν = 5/2 Coulomb state even with a finite d . Here,
our analysis based on geometric deformation suggests that
numerical signature of the fermionic ν = 5/2 Moore-Read
state on the torus geometry is still questionable.

How should we understand our results on the ν = 5/2
FQH state? One possible understanding is that the Coulomb
ground states at ν = 5/2 lie on the marginal boundary be-
tween Pfaffian and anti-Pfaffian states since the particle-hole
symmetry cannot be broken by translational invariant two-
body interactions on the torus [77]. The recent progresses
of discovering non-Abelian statistics of the ν = 5/2 FQH
state on cylinder and sphere geometries may shed some light
on this issue, where the particle-hole symmetry is broken
spontaneously or explicitly [15,85,86]. In addition, recent
thermal Hall measurement brings other possibilities to our
attention. For example, the particle-hole symmetric Pfaffian
state is proposed as a viable possibility [87]. The particle-hole
Pfaffian state should host threefold ground-state degeneracy
(excluding the center-of-mass degeneracy). Unfortunately, in
our extensive calculations (see Fig. 12), we did not observe
any signal for the threefold ground-state degeneracy either.
In a word, our results call for further studies on the ν = 5/2
problem on the torus geometry.

6. Bosonic Moore-Read state

In the main text, we have studied the Dehn twist of
Coulomb interacting bosons at ν = 1, whose ground state is
described by the ν = 1 bosonic Moore-Read state. Here, we
do a similar study using the three-body parent Hamiltonian
of the ν = 1 bosonic Moore-Read state [88]. As shown in
Fig. 13(a), the three degenerate ν = 1 bosonic Moore-Read
model states are the zero-energy ground states of this Hamil-
tonian. According to theoretical predictions, these three states
correspond to three topological sectors: one with Abelian
quasiparticle with topological spin h1 = 0, one with Abelian
quasiparticle with h f = 1

2 , and one with non-Abelian quasi-
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FIG. 12. (a) The low-energy spectrum of Np = 12 fermions at ν = 5/2 for θ = π

2 and τ−1
2 = 0.99 [78]. The model contains a finite-layer

width correction d = 4� to the pure Coulomb interaction. The six quasidegenerate ground states in momentum sectors (π, 0), (0, π ), (π, π )
are indicated with red circles. (b) Flow of low-energy spectra with changing θ . The ground states in momentum sectors (π, π ), (π, 0), (0, π )
are labeled with blue circles, yellow squares, and green rhombi, respectively. (c) The low-energy spectrum of Np = 12 fermions at ν = 5/2
with the pure Coulomb interaction. (d) The low-energy spectrum of Np = 12 fermions at ν = 5/2 with the three-body parent Hamiltonian of
the ν = 5/2 fermionic Pfaffian state.

particle (Ising anyon) with hσ = 3
16 = 0.1875; and all of these

three sectors should have the same guiding center spin s =
−1. Indeed, in numerics we find guiding center spin and
topological spins in good agreement with theoretical values
[Fig. 13(c)]. In addition, the sector-averaged chiral central
charge is determined to be c ≈ 1.5359, close to the theoretical
prediction c = 3/2. These facts form a compete diagnosis of
the non-Abelian nature of the bosonic Moore-Read state at
ν = 1.

APPENDIX C: GEOMETRIC PATH DEPENDENCE

The topological information encoded in the Berry phase
during the Dehn twist (see Sec. II C) is an intrinsic property of

the underlying state, which should not depend on the specific
Dehn-twist scheme that we choose. In the main text, we have
considered the Dehn twist from the rectangular torus to its
equivalent one [Fig. 1(a)]. In the following, we will examine
another Dehn-twist scheme, in which we deform the torus
from a hexagon-like geometry to its equivalent one, i.e., θ is
changed from 2π/3 to π/3 [Fig. 14(a)].

The results of this different Dehn-twist scheme are shown
in Fig. 14 for ν = 1/3 Coulomb interacting fermions. On
the initial symmetric hexagon geometry, the ground state
is located in momentum sector (0,0), being separated from
higher energy levels by a gap [Fig. 14(b)]. We also observe
the magnetoroton mode above the ground state [Fig. 14(b)].
When the torus twist angle θ is changed from 2π/3 to π/3,

FIG. 13. Numerical data for the model bosonic Moore-Read state at ν = 1: (a) The low-energy spectrum of the three-body parent
Hamiltonian for Np = 12, θ = π

2 , and τ2 = 1.25. The three degenerate ground states in momentum sectors (π, 0), (0, π ), (π, π ) are indicated
with red circles. (b) Flow of the low-energy spectra with changing θ . The ground states in momentum sectors (π, π ), (π, 0), (0, π ) are labeled
with blue circles, yellow squares, and green rhombi, respectively. (c) Berry phase accumulated during the Dehn twist for the ground state
|
a〉 of Np = 14 in topological sector a = 1, f , σ . The obtained guiding center spin is s ≈ −1.0039(−0.9898) for |
σ 〉(|
1〉). The obtained
topological spin is hf − h1 ≈ 0.5000, hσ − h1 ≈ 0.1885. The inset shows the intercepts in a = 1 and a = σ sectors, leading to chiral central
charge c ≈ 1.4276 (the green dashed line is − 1

8 + 3
8 = 1

4 ) for a = σ and c ≈ 1.6441 (the red dashed line is − 1
8 ) for a = 1. The average c over

these two sectors is c ≈ 1.5359.
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FIG. 14. (a) The Dehn-twist scheme used here is to deform the torus from a hexagon-like geometry to its equivalent one, i.e., θ is changed
from 2π/3 to π/3. (b) The low-energy spectrum for Np = 8 Coulomb-interacting fermions at ν = 1/3 on the symmetrical hexagonal geometry
(θ = π

3 and τ2 = 1). The ground state is located in the momentum sector (0,0). (c) Flow of energy spectra with varying geometric parameter
θ . (d) Berry phase accumulated during the Dehn twist for the ground state |
a〉, where |
a〉 is labeled by the fractional quasiparticle charge
Q = a/3 (in unit of e) in topological sector a = 0, 1, 2. |
1〉 and |
2〉 are equivalent. Here, L is changed by fixing L = √

2πNφ/ sin(2π/3)
for each system size and then increasing Nφ . The obtained guiding-center spin and topological spin are s ≈ −1.0119 and h1,2 − h0 ≈ 0.3333,
respectively.

the energy gap isolating the ground state from excited levels
keeps open [Fig. 14(c)]. We then calculate the Berry phase UT

a
accumulated in the ground state of topological sector a during
the geometric deformation. When analyzing the dependence
of UT

a on L2, we use a different method from the one in the
main text. Instead of focusing only on a single system size
(the largest one we can reach numerically) and tuning L near
the square torus limit for this specific system size, here we
consider various system sizes and fix L – the length of L1 as
L = √

2πNφ/ sin(2π/3) for each system size. Then we can
change L and extract the dependence of UT

a on L2 by in-
creasing the system size Nφ . In Fig. 14(d), we show the Berry
phase UT for system sizes Np = 4, 6, 8, 10, 12. Remarkably,
the Berry phase again can be fitted into a linear function of
L2, which returns the guiding center spin as s ≈ −1.0119 and
the topological spin as h1,2 − h0 ≈ 0.3333. These values are
consistent with the theoretical predictions and the previous
numerical results obtained in Sec. B 1. Hence, we observe the
same physics in two different schemes of Dehn twist and by
two different methods of extracting the L2-dependence in UT

a .

APPENDIX D: OTHER TOPOLOGICAL QUANTITIES OF
FQH STATES

In our calculations, the total Hall viscosity is replaced by
the guiding center Hall viscosity since we are working on the
LLL-projected Hamiltonian. In fact, the total Hall viscosity
of an FQH system should include two parts: the guiding
center Hall viscosity ηg and the Landau orbital Hall viscosity
ηo. The guiding-center Hall viscosity ηg describes an emer-

gent geometric response of the correlated electrons, while
the Landau-orbital Hall viscosity ηo directly comes from the
Landau-orbital form factor. The Landau-orbital Hall viscosity
can be expressed in terms of the Landau-orbital spin s̃ [19] as

ηo = h̄

4π�2
ν s̃, (D1)

where the Landau-orbital spin s̃ = n + 1
2 for the nth Landau

level. s̃ describes that, as the Landau level index increases,
the orbital angular momentum carried by the cyclotron motion
also increases. For a given filling factor ν, both the Landau-
orbital spin and Landau-orbit Hall viscosity are constant. Note
that the Landau-orbital Hall viscosity exists even when the
particles are noninteracting.

Combining the the Landau-orbital and guiding-center Hall
viscosities, we reach the total Hall viscosity

ηH = ηo + ηg = h̄

4π�2

(
ν s̃ − s

q

)
= h̄ν

8π�2
(2s). (D2)

Here, we recover the so-called mean “orbital spin” defined
by s = s̃ − s

p , which was first derived by Wen and Zee [16],
and later by Read and Rezayi [20]. s can be further related
to the topological shift S via S = 2s [20]. For a given FQH
state, S is a topological number depending on the genus of
the surface hosting the state. It always vanishes on the torus,
but may take a nonzero value on the sphere. In the presence
of S , the number of particles and the number of flux is related
by Nφ = Np/ν − S . Here, we see that S can be measured by
the Dehn twist once we extract the guiding center spin s, even
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though the topological shift itself does not directly appear on
the torus.

We close this Appendix by illustrating some examples. For
the ν = p/q = 1/q Laughlin state, the guiding center spin is
s = 1

2 (1 − q). The mean orbital spin is then s = s̃ − s/p =
q
2 , where we choose s̃ = 1/2 for the lowest Landau level.
Therefore, the topological shift S = 2s = q. The same pro-
cedure can be easily adapted to obtain S = 4 for the ν = 2/5
fermionic hierarchy state, S = 3 for the ν = 2/3 bosonic hi-
erarchy state, and S = 2 for the ν = 1 bosonic Moore-Read
state.

APPENDIX E: MINIMALLY ENTANGLED STATE IN THE
ν = 1 BOSONIC MOORE-READ MANIFOLD

We give a symmetry analysis of the ν = 1 bosonic Moore-
Read state based on its one-dimensional thin-torus limit. Due
to Np = Nφ , the center-of-mass degeneracy is 1. The thin-
torus limit of the ν = 1 bosonic Moore-Read state has no more
than two bosons in two consecutive LLL orbitals, thus there
are three different thin-torus configurations [89]:

[20], [02], [11],

each of which can be adiabatically connected to the Moore-
Read state with a definite type of quasiparticle (i.e., in a
definite topological sector) when the torus deforms from
the thin-torus limit to the two-dimensional limit. We label
the corresponding Moore-Read quasiparticle eigenstates as
|20〉, |02〉, and |11〉, which have different momenta: |20〉 and
|02〉 have K1 = 1%2 (or k1 = π ), while |11〉 has K1 = 0%2
(or k1 = 0).

Following the analysis in Ref. [59], we relate the quasipar-
ticle eigenstates to the ground states |k1, k2〉 in the momentum
sector (K1, K2) by

|02〉 = 1√
2

(|k1 = π, k2 = π〉 + |k1 = π, k2 = 0〉),

|20〉 = 1√
2

(|k1 = π, k2 = π〉 − |k1 = π, k2 = 0〉),

|11〉 = |k1 = 0, k2 = π〉. (E1)

To see that Eq. (E1) really represents the quasiparticle eigen-
states, we provide two different proves here. One is that we
can construct the modular S matrix based on Eq. (E1). The
other one is that we can numerically prove that Eq. (E1) are
the minimally entangled states in the Moore-Read manifold,
which should be a faithful representation of quasiparticle
eigenstates.

First, we relabel the quasiparticle eigenstates as |�x
1〉 =

|02〉, |�x
2〉 = |20〉 and |�x

3〉 = |11〉, and suppose that they are

given by Eq. (E1). Under the S transformation, coordinates
change according to x → y and y → −x. In this case, the new
set of quasiparticle eigenstates is

∣∣�y
1

〉 = 1√
2

(|k1 = π, k2 = π〉 + |k1 = 0, k2 = π〉)

= 1√
2

[
1√
2

(|02〉 + |20〉) + |11〉
]
,

∣∣�y
2

〉 = 1√
2

(|k1 = π, k2 = π〉 − |k1 = 0, k2 = π〉)

= 1√
2

[
1√
2

(|02〉 + |20〉) − |11〉
]
,

∣∣�y
3

〉 = |k1 = π, k2 = 0〉 = 1√
2

[|02〉 − |20〉],

since we apply a π/2 rotation

|k1 = π, k2 = π〉 → |k1 = π, k2 = π〉,
|k1 = 0, k2 = π〉 → |k1 = π, k2 = 0〉,
|k1 = π, k2 = 0〉 → |k1 = 0, k2 = π〉

on the ground states. Finally, we can get the modular S matrix
as

S = 〈
�x

i

∣∣�y
j

〉 = 1

2

⎛
⎝ 1 1

√
2

1 1 −√
2√

2 −√
2 0

⎞
⎠,

which is exactly the theoretical prediction for the ν = 1
bosonic Moore-Read state. Hence Eq. (E1) indeed gives the
quasiparticle eigenstates.

In practice, since numerical diagonalization adds an ad-
ditional phase to each |k1, k2〉, we must be careful when
using Eq. (E1). Supposing that the numerically obtained
ground state in the momentum sector (k1, k2) for a fixed τ

is |k1, k2, τ 〉′, we express the quasiparticle eigenstates as

∣∣�x
1, τ

〉 = 1√
2

(|k1 = π, k2 = π, τ 〉′

+ eiϕ |k1 = π, k2 = 0, τ 〉′),∣∣�x
2, τ

〉 = 1√
2

(|k1 = π, k2 = π, τ 〉′

− eiϕ |k1 = π, k2 = 0, τ 〉′),∣∣�x
3, τ

〉 = |k1 = 0, k2 = π, τ 〉′,
where ϕ depends on τ and is determined by minimizing the
entanglement entropy for a half-half orbital bipartition of the
whole system.

[1] X.-G. Wen, Quantum field theory of many-body systems: from
the origin of sound to an origin of light and electrons (Oxford
University Press, New York, 2004).

[2] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett.
48, 1559 (1982).

[3] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

[4] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[5] Q. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31, 3372
(1985).

[6] A. Bid, N. Ofek, H. Inoue, M. Heiblum, C. Kane, V. Umansky,
and D. Mahalu, Nature (London) 466, 585 (2010).

085103-16

https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1038/nature09277


MICROSCOPIC DIAGNOSIS OF UNIVERSAL GEOMETRIC … PHYSICAL REVIEW B 103, 085103 (2021)

[7] M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D. E.
Feldman, A. Stern, and V. Umansky, Nature (London) 545, 75
(2017).

[8] M. Banerjee, M. Heiblum, V. Umansky, D. E. Feldman, Y.
Oreg, and A. Stern, Nature (London) 559, 205 (2018).

[9] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).
[10] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[11] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev. Lett. 53,

722 (1984).
[12] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[13] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
[14] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
[15] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504

(2008).
[16] X. G. Wen and A. Zee, Phys. Rev. Lett. 69, 953 (1992).
[17] F. Haldane, arXiv:0906.1854 (2009).
[18] F. D. M. Haldane, Phys. Rev. Lett. 107, 116801 (2011).
[19] J. E. Avron, R. Seiler, and P. G. Zograf, Phys. Rev. Lett. 75, 697

(1995).
[20] N. Read, Phys. Rev. B 79, 045308 (2009).
[21] C. Hoyos and D. T. Son, Phys. Rev. Lett. 108, 066805 (2012).
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