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Fractons from a liquid of singlet pairs
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Fracton phases of matter feature a variety of exciting phenomena stemming from the restricted mobility of
their quasiparticles. Here we consider a model of interacting electrons in one dimension that describes hopping
of spin-singlet pairs and obeys both charge and dipole conservation laws. The model contains Bethe ansatz
integrable sectors which allow us to solve the ground state and calculate the exact spin and single-electron
excitation gaps. We observe hallmarks of fractonic behavior, including localization of single-electron excitations
and propensity to clustering. Our results demonstrate the important role of the dipole moment conservation law
in a simple model of spin-1/2 fermions.
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I. INTRODUCTION

Fractons are quasiparticles which cannot move in isolation
but are allowed to move by forming certain bound states [1–7].
Fractonic behavior may arise from higher-moment conserved
charges, such as the dipole moment in tensor gauge theories
[3]. While the glassy dynamics of fractons [1] has drawn
interest as a potential platform for robust quantum information
storage [8–10], their fundamental properties have also led to
deep connections with a wide variety of concepts, ranging
from many-body localization [11–13] to gravity and holog-
raphy [14,15]. For a broad perspective on fracton phases of
matter, we refer the reader to the reviews in Refs. [16,17].

While the original studies focused on spin models in three
dimensions [1,2,8], the importance of searching for fracton
phenomenology in one dimension has recently been under-
scored [5,18]. The restriction to one spatial dimension opens
the possibility of employing exact analytical methods, such as
Bethe ansatz solutions for integrable models [19,20]. Note-
worthy examples of Bethe ansatz solvable models include
the Hubbard chain [21,22], the supersymmetric t-J model
[23,24], and some correlated hopping models [25,26]. Beyond
integrability, in one dimension one can also resort to powerful
numerical techniques to study static as well as dynamic prop-
erties [27]. In fact, the nonequilibrium dynamics governed by
kinetically constrained hopping of particles in one dimension
has received a great deal of attention in the context of weak er-
godicity breaking from quantum many-body scars [12,13,28–
30].

In this paper, we examine an interacting one-dimensional
model that describes a liquid of singlet pairs in which single
electrons behave as fractons. This singlet pair liquid bears a
resemblance to doped quantum dimer models which may be
relevant to the theory of high-Tc superconductors in higher
dimensions [31–33]. As a matter of fact, the origin of the
model traces back to the strong coupling limit of the Hubbard
model, as the pair-hopping Hamiltonian in Eq. (1) below

corresponds to the three-site term generated at the same order
in perturbation theory as the Heisenberg exchange interaction
[34–36]. The complete model including electron hopping with
amplitude t , the nearest-neighbor exchange interaction J , and
the pair-hopping term with coupling constant αJ has been
dubbed the t-J-α model [37,38]. The latter has been analyzed
using mean-field approximations [35], exact diagonalization
on small chains [37,39], and, more recently, density matrix
renormalization group techniques [38,40,41]. Remarkably,
Floquet engineering can be used to enhance the pair-hopping
term [38,41]. The pure singlet-pair hopping model in one
dimension was studied by Batista et al. [42], who, guided by
numerical solutions, calculated the exact ground-state energy
and found an energy spectrum characteristic of a Luther-
Emery liquid, i.e., a Luttinger liquid with a spin gap but no
charge gap [43].

We revisit the singlet-pair hopping model in the context of
fracton phases of matter. We extend previous work [42] by
providing a Bethe ansatz solution in integrable sectors that
include the ground state and spin-triplet excitations. In the
sector in which all electrons are bound into mobile singlets
with charge 2e, the gapless excitations are the bosonic charge
modes of the singlet-pair liquid. Triplet excitations are com-
pletely immobile and amount to impenetrable barriers for the
singlet pairs. By contrast, the sectors which contain isolated
electrons are not integrable. Our key contribution stems from
the observation that, besides the standard charge conservation
law, the Hamiltonian also commutes with a dipole-type oper-
ator. While electrons can move assisted by the hopping of an
adjacent singlet pair, the conservation of the dipole moment
implies that single-electron wave functions are localized even
in the absence of quenched disorder. Furthermore, we observe
a tendency toward clustering of electrons due to an effective
attractive interaction mediated by singlet pairs. We point out
that perturbations to the pure singlet-pair hopping model, such
as a magnetic field or a nearest-neighbor repulsive interac-
tion, can close the gap for spin or single-electron excitations,
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thereby driving transitions to yet unexplored phases with a
finite density of fractons.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model, discuss relevant conserved charges,
including the dipole operator, and provide a classification
for the elementary excitations. In Sec. III, we find the ex-
act ground state by Bethe ansatz techniques and derive the
low-energy effective theory describing a Luttinger liquid of
charge-2e particles. Spin and single-electron excitation gaps
are calculated in Sec. IV. In Sec. V, we continue to explore
single-electron excitations, laying emphasis on their localized
character. In Sec. VI, we consider the effects of a magnetic
field and a nearest-neighbor repulsion. We offer a summary
and concluding remarks in Sec. VII. Finally, the Appendix
contains an analysis of the role of single-particle hopping in
the two-electron problem.

II. MODEL AND CONSERVATION LAWS

We investigate a one-dimensional lattice model of interact-
ing electrons that describes hopping of spin-singlet pairs. We
also assume there is an infinite on-site repulsion that rules out
doubly occupied sites. The Hamiltonian is

H = −
∑

j

P (b†
j−1, jb j, j+1 + H.c.)P . (1)

Here bi j = 1√
2
(ci↓c j↑ − ci↑c j↓) is the operator that annihilates

a pair of electrons at sites i and j in a spin-singlet state and
P = ∏

j (1 − n j↑n j↓), with n jσ = c†
jσ c jσ for σ =↑,↓, is the

projection operator that implements the exclusion of double
occupancies at every site. Despite the simple-looking structure
of the Hamiltonian, we must be careful since the pair opera-
tors bi j do not obey canonical commutation relations. Rather,
when they overlap, we have the commutator

[bi j, b†
jl ] = δil

(
1 − n j

2

)
− 1

2

∑
σ

c†
lσ ciσ , (2)

where n j = n j↑ + n j↓. In terms of electron operators, the
Hamiltonian reads

H = −1

2

∑
j,σ

P (c†
j−1,σ c†

j,σ̄ c j,σ̄ c j+1,σ

− c†
j−1,σ c†

j,σ̄ c j,σ c j+1,σ̄ + H.c.)P, (3)

where σ̄ =↓,↑ for σ =↑,↓, respectively. This is precisely
the three-site term generated by perturbation theory in the
strong coupling limit of the Hubbard model with hopping
parameter t and on-site repulsion U � t [34–38]. In that case,
the operator in Eq. (1) is obtained with coupling constant αJ
with J = 4t2/U and α = 1/2. However, here we consider the
limit of the pure pair-hopping model and set the coupling
constant to unity.

The three-site correlated hopping processes are illustrated
in Fig. 1. In the first process, associated with the first term
in Eq. (3), an electron can hop to a next-nearest-neighbor site
if the intermediate site is occupied by another electron with
the opposite spin. In the second process, the second-neighbor
hopping is accompanied by a spin flip for both electrons.

FIG. 1. Correlated hopping processes that enable the motion of
a spin-singlet pair. The two processes amount to second-neighbor
hopping, with or without spin flip, conditioned to the presence of an
electron with opposite spin in the intermediate site.

Alternatively, we can think that the first electron hops to the
intermediate site while the second electron hops to the third
site. The interference between these two processes allows for
motion only if the electrons are in a singlet state, as made
explicit in Eq. (1). Thus, this Hamiltonian enables a singlet
pair to move, provided there is an adjacent empty site.

Let us now see what sort of conservation laws we may
have. First, it is clear that both the total number of electrons
N = ∑

j n j and total spin z-projection Sz = 1
2

∑
j (n j↑ − n j↓)

commute with the Hamiltonian and are thus good quantum
numbers. We shall use them to label eigenstates of the Hamil-
tonian according to the eigenvalue equation

H |ν; N, Sz〉 = Eν (N, Sz )|ν; N, Sz〉, (4)

where the index ν labels a particular state in the sector with
fixed eigenvalues of N and Sz. Due to the constraint of no
doubly occupied sites, the number of electrons obeys N � L,
where L is the number of sites. Note that for N = L the
Hamiltonian in Eq. (1) vanishes identically and the system
becomes a Mott insulator with a highly degenerate ground
state, equivalent to the atomic limit of the Hubbard model at
half filling.

The pair-hopping Hamiltonian also separately conserves
the number of electrons in distinct sublattices, namely, NA =∑

j∈A n j and NB = ∑
j∈B n j , where A and B denote the set of

odd and even sites, respectively. We are able to explicitly show
that [NA, H] = [NB, H] = 0 by using the identity

[ni, b j, j+1] = −(δi, j + δi, j+1)b j, j+1. (5)

However, to make contact with fracton physics, we need
to show that our Hamiltonian obeys a dipole conservation
law. Here it may seem that we run into trouble since the
pair-hopping Hamiltonian Eq. (1) does not conserve the or-
dinary dipole moment,

∑
j jn j . The solution to this issue was

provided by Sous and Pretko [5] and lies on the use of the
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FIG. 2. Three distinct types of particles in the two-electron
sector: (a) itinerant singlet pair, (b) two isolated electrons, and (c) lo-
calized triplet pair.

staggered charge density ñ j = n je
iπ

∑
l< j nl to define the dipole

operator

D =
∑

j

jñ j . (6)

The reason behind this choice is quite simple to check. Since
the Hamiltonian Eq. (1) only moves tightly bound pairs, the
magnitude of the dipole in Eq. (6) is always left unchanged
so [D, H] = 0. By the same token, the ordinary hopping of
a single electron would change the value of D and spoil the
conservation law.

The minimum number of electrons for which the sys-
tem has some dynamics is N = 2. In this sector, the ground
state has two electrons bound into a singlet pair, which can
then occupy the state with lowest kinetic energy. There are
two ways to break this singlet pair: We can either separate
the two electrons by at least one lattice site or change the
spin state of two nearest-neighbor electrons into a triplet
(see Fig. 2).

This observation implies that the separate numbers of
nearest-neighbor pairs and single electrons can be used to
further characterize the system for N > 2. We then introduce
the notation (M0, M1/2, M1) to designate a subspace with
M0 singlet pairs, M1/2 single electrons, and M1 triplet pairs.
Clearly, these three occupation numbers must satisfy the se-
lection rule N = 2M0 + M1/2 + 2M1. Strictly speaking, this
three-component classification is valid only asymptotically as
it refers to the local basis for well-separated particles. In fact,
when a singlet pair and a single electron occupy three adja-
cent sites, this occupation number basis is complete but not
orthonormal, as we will discuss in more detail in Sec. IV B.
Formally, in the many-body problem the occupation numbers
(M0, M1/2, M1) label sets of Krylov subspaces [30] of states
connected by repeated action of the Hamiltonian, constructed
starting from a product state where the different particles are
separated and the counting can be performed. This classifi-
cation will prove useful when studying low-lying excitations
above the ground state.

III. GROUND STATE AS A LIQUID OF SINGLET PAIRS

For even values of N � 2, the ground state is in the sub-
space (N/2, 0, 0), where all electrons form singlet pairs which
can gain kinetic energy. We will prove in Sec. IV that both
spin-triplet and single-electron excitations are gapped below
the half-filled, insulating regime. In this section, we present a
coordinate Bethe ansatz solution to the (N/2, 0, 0) subspace
that allows us to solve the ground state and deduce the cor-
responding low-energy theory. We show that the spectrum
contains gapless excitations corresponding to adding or re-
moving singlet pairs. Our exact solution cements previous
results [42] while bringing out an amusing connection with
exclusion models [44,45].

A. Bethe ansatz solution

We represent the quantum state vector of M singlet pairs in
the following form:

|�〉 =
∑

x1,...,xM

�(x1, . . . , xM )
M∏

j=1

b†
x j−1/2,x j+1/2|0〉, (7)

where |0〉 is the vacuum state. The half-integer variables
x1, . . . , xM are center-of-mass coordinates that label the sin-
glet bonds. We take them to be ordered as x1 < x2 < · · · < xM

since other arrangements follow from symmetry of the wave
function with respect to permutation of two singlet pairs.
Moreover, the no-double-occupancy constraint for electrons
imposes a no-nearest-neighbor condition for singlet pairs,
e.g.,

Pb†
j, j+1b†

j+1, j+2|0〉 = 0. (8)

Thus, we require the singlet bond positions to satisfy xi+1 >

xi + 1, for i = 1, . . . , M − 1.
At this point, we compactify our linear chain in Eq. (1) into

a ring with L sites by imposing periodic boundary conditions.
We then assume the following ansatz for the wave function:

�(x1, . . . , xM ) =
∑

P

A(P) exp

(
i

M∑
j=1

kP jx j

)
, (9)

where the summation runs over all permutations P of the
quasimomenta (k1, . . . , kM ) that specify the Bethe state. The
energy E and momentum Q of the state are set, respectively,
by the kinetic energy of well-separated pairs and by the eigen-
value upon translation by one lattice site. We have

E [k] = −2
M∑

j=1

cos k j, Q[k] =
M∑

j=1

k j, (10)

where we set the lattice spacing to unity. The amplitudes
A(P), on the other hand, are fixed by the two-body scatter-
ing amplitude. When two singlet pairs scatter, they exchange
their quasimomenta. If two permutations P and P′ differ only
by a pair of quasimomenta such that kP j = kP′ j+1 = k and
kP j+1 = kP′ j = k′, the matching conditions imply A(P)eik′ +
A(P′)eik = 0. As a result, we find that the singlet pair scatter-
ing matrix S(k, k′) ≡ A(P′)/A(P) is given by

S(k, k′) = −e−i(k−k′ ). (11)
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The periodicity of the wave function �(x2, . . . , xM , x1 +
L) = �(x1, x2, . . . , xM ) imposes a set of M quantization con-
ditions for the M quasimomenta, known as Bethe equations,

eik j L
M∏

l 
= j

S(k j, kl ) = 1, j = 1, 2, . . . , M. (12)

Taking the logarithm of these equations, we arrive at

k j (L − M + 1) +
∑
l 
= j

kl = 2π I j . (13)

Here the branch of the logarithm is parametrized by an integer
I j for odd M, or by a half-integer I j for even M. Alternatively,
one can replace the sum over quasimomenta in Eq. (13) by the
total momentum Q[k], obtaining

k j (L − M ) + Q[k] = 2π I j . (14)

The equation above makes touch with the quantization rela-
tion of exclusion models [44,45]. In such models, the extended
hard-core condition reduces the effective size of the chain by
a factor proportional to the number of particles. This simple
fact gives rise to Luttinger liquid behavior with a density-
dependent Luttinger parameter.

B. Ground-state properties

The ground state for M = N/2 singlet pairs corresponds to
picking the mode numbers

I j =
{
−M − 1

2
,−M − 3

2
, . . . ,

M − 1

2

}
. (15)

Notice that this choice already takes into account the fact that
I j is integer or half integer, depending on the parity of M.
Substituting the quasimomenta back into Eqs. (10), we find
that the ground state has zero momentum and energy:

Eg(N ) = −2 csc

(
2π

2L − N

)
sin

( πN

2L − N

)
. (16)

If we now take the thermodynamic limit, L → ∞ with fixed
n ≡ N/L, we obtain the ground-state energy density:

Eg/L = −
(

2 − n

π

)
sin

( πn

2 − n

)
. (17)

Figure 3 shows the dependence of the ground-state energy on
the electron density. We see that, unlike the exclusion model
of spinless fermions [45], the energy minimum for the singlet-
pair liquid occurs at an incommensurate filling n  0.602.

Having found the solution for (M, 0, 0) subspaces, we are
now in a position to compute the two-particle excitation gap.
The latter is defined as the difference between the chemical
potentials to add and to remove two particles from the system,
namely,

�2p = Eg(N + 2) − 2Eg(N ) + Eg(N − 2), (18)

where Eg(N ) denotes the ground-state energy for N electrons.
Evaluating this gap in the large system size limit (L � 1)
yields

�2p = π

L

16

(2 − n)3 sin
( πn

2 − n

)
+ O(1/L2). (19)

FIG. 3. Ground-state energy density as a function of the elec-
tronic filling n.

This shows that the two-particle gap scales as �2p ∼ 1/L and
vanishes in the thermodynamic limit.

We can also capture the effects of an external magnetic flux
	 threading the ring by modifying the Hamiltonian in Eq. (1)
to

H = −
L∑

j=1

P (b†
j−1, jb j, j+1e2iθ + H.c.)P, (20)

where θ = 	/L is the Peierls phase. Note the factor of 2 in the
phase, associated with the charge 2e of the singlet pairs. Since
the Hamiltonian remains translation invariant, we can repeat
the previous steps in the derivation of the Bethe equations.
This lead us to the following modification in the ground-state
energy density:

Eg/L = −
(

2 − n

π

)
sin

( πn

2 − n
− 2θ

)
. (21)

In the presence of a magnetic flux, the ground state acquires a
nonzero expectation value of the current operator

J = −2i
L∑

j=1

P (b†
j−1, jb j, j+1 − b†

j, j+1b j−1, j )P, (22)

defined from Eq. (20) according to J = (∂H/∂θ )θ=0. It fol-
lows that the singlet pair liquid shows metallic behavior in the
sense of nonvanishing charge transport at low energies.

C. Low-energy theory

The vanishing of the two-particle gap, �2p ∼ 1/L for L →
∞, suggests that the low-energy physics of the model corre-
sponds to a Luttinger liquid of singlet pairs. Quite generally,
the low-energy spectrum of interacting one-dimensional sys-
tems in the Luttinger liquid universality class is described by
the effective Hamiltonian [46,47]:

HLL =
∑
q 
=0

vS|q|a†
qaq + πvN

2L
(�N̂ )2 + πvJ

2L
Ĵ2. (23)

Here aq annihilates a bosonic mode, with quantized mo-
mentum q = 2πm/L with m � 1 for periodic boundary
conditions, that propagates with the sound velocity vS . The
operators �N̂ and Ĵ count the number of charge and current
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excitations, respectively, with associated velocity parameters
vN and vJ . In our case, the gapless bosonic modes must be
identified with collective charge fluctuations of the singlet-
pair liquid. In Sec. IV, we will show that charge-e and spin
excitations are gapped. In this sense, the effective theory
is analogous to a Luther-Emery liquid [43]. However, in a
conventional Luther-Emery liquid the gapped modes are de-
scribed as mobile kinks in a sine-Gordon model. In Sec. V, we
shall see that the single-electron excitations of the singlet-pair
liquid depart from this behavior in that they have localized
wave functions as a consequence of the dipole moment con-
servation law.

The velocities that characterize the low-lying excitations
in the Luttinger liquid can be obtained from our previous
equations. They are given by

vN = L

π

(
∂2Eg

∂N2

)
= 4

(2 − n)3
sin

( πn

2 − n

)
,

vJ = π

4L

(
∂2Eg

∂θ2

)
= (2 − n) sin

( πn

2 − n

)
, (24)

vS = √
vNvJ = 2

2 − n
sin

( πn

2 − n

)
.

Note that to use Eq. (21), we need to introduce a factor of
4 in the expression for vJ since Ĵ is defined with respect to
single electron excitations. Our results are similar to those
found in the study of exclusion models [44,45], with important
differences arising from the composite nature of the singlet
pairs. Using the relation K2

ρ = vJ/vN , we can also obtain the
Luttinger parameter Kρ = 1

2 (2 − n)2, which determines the
exponents in the power-law decay of correlation functions for
spin-0 operators. For instance, in the continuum limit the pair
annihilation operator is represented by the bosonized form

b j, j+1 ∼ e−i
√

2π/Kρ( j), where

(x) =
∑
q 
=0

1√
2|q|L (aqeiqx + a†

qe−iqx ). (25)

As a result, the singlet-pair Green’s function decays at large
distances as 〈b†

0,1br,r+1〉 ∼ r−1/Kρ .
The Luttinger parameter characterizes the effective interac-

tions in the liquid. For low electronic densities, n < 2 − √
2 

0.59, we get Kρ > 1. In a conventional fermionic Luttinger
liquid, as obtained for instance by bosonizing the Hubbard
model [47], one obtains Kρ > 1 in the regime of attractive
electron-electron interactions. In this case, superconducting
correlations are dominant in the sense that they decay more
slowly than other correlations. As pointed out by Batista et al.
[42], in the dilute limit the physics of the singlet-pair liquid fits
the simple picture of a system of hardcore bosons valid in the
strong coupling limit of the attractive Hubbard model. On the
other hand, for n > 2 − √

2, we obtain Kρ < 1, characteristic
of a fermionic system with repulsive interactions. In particu-
lar, Kρ → 1/2 as we approach half filling, n → 1. This regime
is dominated by charge-density-wave correlations, related to
the staggered part of the density operator for the particles in
the liquid. Interestingly, the density operator for singlet pairs
corresponds to the Heisenberg operator,

b†
j, j+1b j, j+1 = 1

4 n jn j+1 − S j · S j+1, (26)

FIG. 4. One-particle (�1p), two-particle (�2p), and spin (�s)
excitation gaps as a function of the electronic density n.

where S j = 1
2

∑
αβ c†

jα (σ)αβc jβ is the local spin operator. The
staggered part of the two-spin operator in Eq. (26) is the
order parameter for spin dimerization [48,49]. This tendency
to dimerization (without true long-range order) is reminiscent
of doped valence bond crystals [31,32].

IV. SPIN AND SINGLE PARTICLE EXCITATIONS

In this section, we derive the energy gaps for spin-triplet
and single-electron excitations. A quick summary of our re-
sults is available in Fig. 4, where we plot the energy gaps in
the thermodynamic limit.

A. Spin excitations

We are now interested in the spin excitations above the
singlet-pair ground state. To this end, we need to inspect the
(M, 0, 1) sectors of the model, which correspond to the sub-
spaces with an arbitrary number of singlet pairs and just one
nearest-neighbor triplet pair. Given the SU(2) spin-rotation
symmetry of the model, we can choose to analyze the triplet
pair with two spin-up electrons, i.e., the Sz = 1 sector.

The quantum state vector for M singlet pairs and one triplet
pair with Sz = 1 takes the form

|�〉 =
∑

x0

∑
x1,...,xM

�(x0; x1, . . . , xM )c†
x0−1/2,↑c†

x0+1/2,↑

×b†
x1−1/2,x1+1/2 . . . b†

xM−1/2,xM+1/2|0〉. (27)

The bond coordinates x0 for the triplet and x1, . . . , xM for
the singlet pairs run through half-integer values, and we will
assume that r1 < r2 < · · · < rM for ri = xi − x0. To find the
solution, we first separate the motion of the singlet pairs
relative to the position of the triplet pair. That is, we write

�(x0; x1, . . . , xM ) = eiQx0 f (x1 − x0, . . . , xM − x0), (28)

where Q is the total momentum and

f (r1, . . . , rM ) =
∑

P

A(P) exp

(
i

M∑
j=1

kP jr j

)
. (29)
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FIG. 5. Spin-triplet-pair excitation in the singlet-pair liquid. The
localized triplet acts as a hard wall for itinerant singlet pairs.

Here, different from the ansatz employed in Sec. III, the
sum must run over all permutations and also negations of
(k1, . . . , kM ) [50].

Substituting the state into the eigenvalue equation H |ψ〉 =
E |ψ〉, we find that the energy of such a state is set by the
kinetic energy of well-separated pairs as in Eqs. (10). The
scattering matrix between two singlet pairs is still the same
as Eq. (11). The difference from Sec. III is that now the triplet
sits at the boundaries of the interval, so the wave function must
satisfy

f (1, r2, . . . , rM ) = f (r1, r2, . . . , L − 1) = 0. (30)

Here we see that the interaction with the triplet pair simply
enforces hard wall boundary conditions for the singlet pairs.
These equations imply that the k modes are perfectly reflected
at the boundaries of the interval. Thus, if two permutations P
and P′ differ only by kP1 = −kP′1 = k, the boundary condition
at r1 = 1 gives

s1(−k, k) ≡ A(P)/A(P′) = −e−2ik . (31)

Likewise, if P and P′ differ only by kPM = −kP′M = k, we
obtain from the boundary at rM = L − 1:

sL−1(k,−k) ≡ A(P′)/A(P) = −e2ik(L−1). (32)

The M quasimomenta k j are determined by solving the
eigenvalue equation Tj = 1, where Tj is the translation opera-
tor that swipes the entire interval:

Tj = S(k j, k j+1) . . . S(k j, kM )sL−1(k j,−k j )

× S(kM ,−k j ) . . . S(k j+1,−k j )S(k j−1,−k j ) . . .

× S(k1,−k j )s1(−k j, k j )S(k1, k j ) . . . S(k j−1, k j ). (33)

Hence, by using that S(k, q)S(q,−k) = e−2ik , the quantiza-
tion equation is simplified to e2ik j (L−M−1) = 1. Taking the
logarithm of this expression, we arrive at the desired Bethe
equations,

k j (L − M − 1) = π I j, (34)

where I j is an integer with 1 � I j � L − M − 2.
This solution shows that triplet pairs just play the role of

hard walls for the itinerant singlet pairs (see Fig. 5). There-
fore, their sole effect is to change boundary conditions. The
energy levels on the ring are degenerate with respect to the
total momentum Q or, equivalently, to the position of the
triplet pair. The lowest energy configuration in the (M, 0, 1)
subspace corresponds to picking the mode numbers:

I j = {1, 2, . . . , M}. (35)

We then compute the energy by substituting the corre-
sponding quasimomenta into Eq. (10). The result is

Eg(N, Sz = 1) = 1 − csc
( π

2L − N

)
sin

[
π (N − 1)

2L − N

]
, (36)

where N = 2M + 2 is the total number of electrons, and
Eg(N, Sz ) designates the ground-state energy for N electrons
and total spin z-polarization Sz.

The spin gap is defined as the excitation energy from the
singlet ground state to the lowest-lying triplet state:

�s = Eg(N, Sz = 1) − Eg(N, Sz = 0). (37)

Using Eqs. (16) and (36), we find

�s = 1 + cos
( πn

2 − n

)
+ O(1/L) (38)

in the large system size limit, L � 1. As shown in Fig. 4,
the spin gap �s only closes at the insulating point n = 1. For
n → 1, the spin gap displays a quadratic dependence on the
deviation from half filling:

�s = 2π2(1 − n)2 + O(1 − n)3. (39)

Our results agree with Batista et al. [42], who found this
energy gap by adding a triplet in the middle of an open chain
with a finite density of singlet pairs.

The case with more triplet pairs can be treated in a sim-
ilar fashion. In such subspaces, the infinitely heavy triplet
pairs create an effective disordered landscape for the singlets
and we need to consider several partitions on the ring. This
situation resembles a quantum disentangled liquid [51,52], a
fluid made out of two species of particles with a large mass
ratio. We also note that the hard-wall nature of the triplet
pair generalizes to larger clusters of m > 2 electrons occu-
pying neighboring sites with maximum total spin S = m/2.
The reason is that the singlet-pair hopping Hamiltonian can-
not generate any dynamics when applied to a state which is
completely symmetrized with respect to the spin degree of
freedom. Our triplet pairs are analogous to the frozen states
discussed for the spin-1 chain model in Ref. [12].

B. Single-electron excitations

We now consider the (M, 1, 0) subspace, in which all elec-
trons but one are bound into singlet pairs. However, in contrast
with the other subspaces considered so far, the (M, 1, 0) sub-
space is not amenable to the Bethe ansatz and we have not
found general solutions in this case. Without a general so-
lution, we begin by treating the case with only one singlet
pair in addition to the single electron, i.e., we first consider
the (1,1,0) subspace. Despite obvious limitations, this exact
solution will serve as a valuable source of insight into the
many-body problem. Fortuitously, it will be enough to identify
the lowest-energy configuration that allow us to compute the
associated energy gap for an open chain at finite density of
singlet pairs.

In the (1,1,0) subspace, the quantum states can be written
as

|ψ〉 =
∑

j,x

ψ ( j; x)c†
jσ b†

x|0〉. (40)
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FIG. 6. Scattering state with a right-moving singlet pair. From
top to bottom, the electron jumps two sites to the left when the singlet
pair is transmitted.

The basis consists of states specified by the position j of the
single electron and x of the singlet bond, with |x − j| > 1/2.
The eigenfunctions ψ ( j; x) of the Hamiltonian in Eq. (1) must
obey the lattice Schrödinger equation. First, for x < j − 3/2,
only the singlet pair moves, and we have

Eψ ( j; x) = −ψ ( j; x − 1) − ψ ( j; x + 1). (41)

Then, when the singlet pair and the electron meet, i.e., for
|x − j| = 3/2, we get

Eψ ( j; j − 3/2) = −ψ ( j; j − 5/2)

+γψ ( j − 2; j + 1/2),

Eψ ( j; j + 3/2) = −ψ ( j; j + 5/2) (42)

+γψ ( j + 2; j − 1/2),

where we have introduced a dimensionless constant γ = 1/2
for notational convenience. Equations (42) show that the elec-
tron can move by two sites when a singlet pair is transmitted
across it (see Fig. 6). Finally, when x > j + 3/2, the singlet
pair is once again well separated from the electron and we
recover Eq. (41).

Before we move on, a cautionary remark is in order. As the
reader may well have noticed, Eqs. (42) are not Hermitian.
However, this is nothing but an artifact of our basis choice
Eq. (40), which is complete, but not orthonormal. In fact, this
issue only appears when a pair and a single electron occupy
three adjacent sites, as the inner product between the states
c†

j−1σ b†
j, j+1|0〉 and b†

j−1, jc
†
j+1σ |0〉 reveals

〈0|c j+1σ b j−1, jc
†
j−1σ b†

j, j+1|0〉 = −1/2. (43)

A possible way to circumvent this matter is by adopting the
following normalized orthogonal operators:

v
†
j,1 = c†

j−1σ b†
j, j+1 + b†

j−1, jc
†
j+1σ ,

v
†
j,2 = 1√

3
(c†

j−1σ b†
j, j+1 − b†

j−1, jc
†
j+1σ ). (44)

In terms of these operators, the quantum state Eq. (40) may be
recast as

|ψ ′〉 =
∑

j

[ ∑
x< j−3/2

ψ ( j; x)c†
jσ b†

x + υ1( j)v†
j,1

+υ2( j)v†
j,2 +

∑
x> j+3/2

ψ ( j; x)c†
jσ b†

x

]
|0〉, (45)

where the old nonorthonormal amplitudes are related to the
new orthonormal ones according to

ψ ( j − 1; j + 1/2) = 1

2
υ1( j) +

√
3

2
υ2( j),

ψ ( j + 1; j − 1/2) = 1

2
υ1( j) −

√
3

2
υ2( j). (46)

As a matter of fact, by employing these relations, one can
make Eqs. (42) manifestly Hermitian.

Up to this point, we have not explored the perks that come
with the conservation of the dipole operator D in Eq. (6). To
take full advantage of the latter, we now turn to chains with
open boundary conditions. In the infinite line, the solution
takes the form of singlet pair scattering states. For clarity,
we write right- and left-moving components separately. For
instance, the right-moving scattering state illustrated in Fig. 6
is given by

|ψ+〉 =
∑
x< j

(eikx + Rj+1e−ikx )c†
j+1,σ b†

x|0〉

+
∑
x> j

Tj−1eikxc†
j−1,σ b†

x|0〉. (47)

Reflection and transmission amplitudes are fixed by Eqs. (42)
to be

Rj+1 = −eik(2 j+1)

(
1 − γ 2

1 − γ 2e4ik

)
,

Tj−1 = −γ e−ik

(
1 − e4ik

1 − γ 2e4ik

)
. (48)

As a check, note that these amplitudes satisfy the conser-
vation of probability, |Rj+1|2 + |Tj−1|2 = 1. Likewise, the
left-moving singlet takes the form

|ψ−〉 =
∑
x< j

T̃j+1e−ikxc†
j+1,σ b†

x|0〉

+
∑
x> j

(e−ikx + R̃ j−1eikx )c†
j+1,σ b†

x|0〉, (49)

where R̃ j−1 = Rj+1e−4ik j and T̃j+1 = Tj−1. Thus, the most
general form of the solution is |ψ〉 = A+|ψ+〉 + A−|ψ−〉,
where A± are the corresponding amplitudes.

If we now put our system in an open chain with finite length
L, the hard-wall boundary conditions require that eigensolu-
tions be a particular superposition of right- and left-moving
scattering states. On the one hand, the condition ψ ( j; 1/2) =
0 yields A+/A− = −Tj−1/(eik + Rj+1). On the other hand,
ψ ( j; L + 1/2) = 0 imposes the quasimomentum k to be a
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FIG. 7. Ground-state energy in the (1,1,0) subspace as a function
of the dipole moment D. The numerical data was obtained for an
open chain with L = 81 sites.

solution of

sin (kD) sin [k(L + 1 − D)]

= γ 2 sin [k(D − 2)] sin [k(L − 1 − D)], (50)

where D takes integer values from 2 to L − 1.
We can now solve Eq. (50) numerically for fixed values of

the chain length L and the conserved dipole moment D. The
energy of the scattering state is simply E = −2 cos k for an
allowed value of k. In Fig. 7, we plot the minimum energy as a
function of D for L = 81. The minimum energy is obtained for
D = 2 and D = L − 1, corresponding to the electron sitting
at one of the boundaries. The energy has a peak for D at the
center of the chain. (We note in passing that the same behavior
is observed for an open chain in the subspace with one singlet
pair and one triplet pair.) We also plot in Fig. 8 the electron
probability density defined as |φ( j)|2 ≡ ∑

x |ψ ( j; x)|2. Note
that in the (1,1,0) subspace the single-electron wave function
can be nonzero only at two sites, fixed by the value of D. By
comparing the two nonzero amplitudes, we can see that the
electron probability density bends toward the nearest bound-
ary. The asymmetry increases as D deviates from the center
of the chain. When placed right at one of the boundaries,

FIG. 8. Single-electron probability density in the (1,1,0) space at
various values of D. The numerical data was obtained for a wire with
L = 31 sites.

FIG. 9. Schematic representation of an open chain with two
electrons and one singlet pair. The first and second electrons can
occupy the positions d1 ± 1 and d2 ± 1, respectively, depending on
the position of the singlet pair.

the electron becomes completely trapped at the boundary site
because the singlet pair can no longer be transmitted across
it. Indeed, for D = 2 or D = L − 1, the right-hand side of
Eq. (50) vanishes and the quantization condition becomes the
one of a free itinerant singlet in a chain with L − 1 sites.

Clearly, the single electron at the boundary remains locked
even if we add an arbitrary number of singlet pairs in the
chain. This means that we can compute the energy of such
a (M, 1, 0) state by solving the problem of M pairs on a chain
with L − 1 sites. The result can be read off from Eq. (34), the
quantization condition for M pairs in a chain with L − 2 sites.
With this piece of information, we are able to determine the
one-particle excitation gap �1p, defined as the difference be-
tween the first electron affinity and the first ionization energies
[53],

�1p = Eg(N + 1) − 2Eg(N ) + Eg(N − 1). (51)

Proceeding this way, we find in the large L limit:

�1p = 4

(
1 − n

2 − n

)
cos

( πn

2 − n

)

+ 2

π
sin

( πn

2 − n

)
+ O(1/L). (52)

Therefore, there is a finite gap for single-electron excitations
in the pair liquid for all n < 1. This gap closes very smoothly
with cubic behavior near n = 1:

�1p = 16π2

3
(1 − n)3 + O(1 − n)4. (53)

This behavior is illustrated in Fig. 4.
We have also explored the exact solution for a system with

one singlet pair and two well-separated electrons in an open
chain. In this case, we parametrize the scattering states by d1

and d2, which represent the average positions of the electrons
as shown in Fig. 9. Note that the electrons can hop between
the sites d1,2 ± 1 as the singlet pair moves across them. The
conserved dipole moment is D = d2 − d1 − 1. In Fig. 10, we
show the lowest energy for a chain with L = 81 sites where
we fix the center of mass of the electrons to be (d1 + d2)/2 =
(L + 1)/2 and vary the distance r = d2 − d1 = D + 1. We see
that for r < L/3, the single electrons feel a mutual attrac-
tion as the energy decreases with decreasing distance. The
interaction energy is of order 1/L in this (1,2,0) subspace.
Eventually, for large enough distance, r > L/3, the electrons
become closer to the boundaries than to each other, and the
attraction to the boundary prevails. We interpret this result as
a tendency of fractons to cluster together [4,17] by exchanging
singlet pairs. However, it remains to be seen whether this
attraction is manifest in the finite density regime.
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FIG. 10. Ground-state energy as a function of the relative dis-
tance r = d2 − d1 between the two electrons in the presence of an
itinerant singlet pair. The center of mass coordinate is fixed at the
center of the chain, d1 + d2 = L + 1. Here we set L = 81.

V. LOCALIZED ELECTRON WAVE FUNCTIONS

In this section, we consider the wave function for a single
electron immersed in the liquid with an arbitrary number
of singlet pairs. While this sector is not integrable, we put
forward an approximation that provides a simple physical
picture for the electron as a type of dynamic boundary which
moves every time a singlet pair tunnels across it. Moreover,
the approximation captures the localization of the electron
wave function, a property protected by the conservation of the
dipole moment.

A. Constraint on single-electron position

Let �(X ; x1, . . . , xM ) be the wave function of M singlet
pairs and one single electron in an open chain, associated with
the quantum state

|�〉 =
∑

X

∑
x1,...,xM

�(X ; x1, . . . , xM )c†
X,σ

× b†
x1−1/2,x1+1/2 . . . b†

xM−1/2,xM+1/2|0〉. (54)

We assume the singlet-pair coordinates are ordered so x1 <

· · · < xM .
Crucially, the allowed values of X for which the wave

function is nonzero are constrained by the number of singlet
pairs and the conservation of the dipole moment. The dipole
moment is given by

D = X + M − 2m, (55)

where m is the number of pairs to the left of the electron. In
a sector with fixed D and M, Eq. (55) implies X = X (m) =
D − M + 2m. Since 0 � m � M, we obtain the constraint

D − M � X � D + M. (56)

Since the electron moves by two sites when a singlet pair
is transmitted from one side to the other, for M pairs there
are M + 1 allowed values of X . This means that, rather than
extending over the entire chain, the electron wave function is
bounded as illustrated in Fig. 11.

In the following, it will be convenient to treat the number
of pairs to the left of the electron as a function of the electron

FIG. 11. Constrained dynamics of a single electron immersed in
the singlet-pair liquid. Here we show a schematic picture of a state in
the (4,1,0) subspace. The electron can only hop between the red sites
inside the shaded area.

position, m = m(X ) = (X − D + M )/2. Using a Schmidt de-
composition, we can write a state in the subspace with fixed
D and M as

|�〉 =
∑

X

|X 〉 ⊗
∑

ν

φν (X )|ψνL; X 〉 ⊗ |ψνR; X 〉, (57)

where |X 〉 is the state with a single electron at site X ,
{|ψνL; X 〉} is a complete orthonormal basis for the Hilbert
space with m(X ) singlet pairs in the region to the left of site
X , and {|ψνR; X 〉} is the basis for the Hilbert space with M −
m(X ) singlet pairs on the right. The left and right partitions
contain X − 1 and L − X sites, respectively. The coefficients
φν (X ) can be interpreted as the corresponding single-electron
wave functions.

B. Adiabatic approximation

So far, all the manipulations have been exact. To make
progress, we note that the single electron can be considered
as a slow parameter since it only acquires dynamics from the
surrounding pairs. Motivated by this observation, we aim for a
Born-Oppenheimer-type approximation and factorize the total
wave function as

�(X ; x1, . . . , xM ) = φ(X )	(x1, . . . , xM |X ), (58)

where 	(x1, . . . , xM |X ) is a product of two wave functions:

	(x1, . . . , xm, xm+1, . . . , xM |X )

= fL(x1, . . . , xm|X ) fR(xm+1, . . . , xM |X ).
(59)

Here fL and fR correspond, respectively, to the wave function
for singlet pairs to the left and to the right of the single
electron. Due to the open boundary conditions and the no-
double-occupancy constraint, these functions must satisfy

fL(1/2, . . . , xm|X ) = fL(x1, . . . , X − 1/2|X ) = 0 (60)

and

fR(X + 1/2, . . . , xM |X ) = fR(xm+1, . . . , L + 1/2|X ) = 0.

(61)
The integrable (M, 0, 0) subspace of the theory provides

us with a complete basis of states in which the functions
fL and fR can be expanded. We now introduce our de facto
approximation scheme. Motivated by the adiabatic theorem,
we replace fL and fR by the lowest-energy states in each
Hilbert space. The idea is that the state of the singlet-pair
liquid on either side adjusts adiabatically to the position of
the single electron as depicted in Fig. 12. In practice, we take

fL(x1, . . . , xm|X )

= NL det
(
sin

[
ki(x j − j + 1/2)

])
, (62)

085101-9



HERNAN B. XAVIER AND RODRIGO G. PEREIRA PHYSICAL REVIEW B 103, 085101 (2021)

FIG. 12. Sketch of the adiabatic approximation scheme. At each
position of the single electron, the chain is subdivided into two
smaller chains. Our ansatz is then constructed by taking the ground-
state wave function of the singlet-pair liquid in each box. The
effective length and the number of singlet pairs for each box change
when a singlet pair tunnels across the single electron.

where NL is a normalization factor and ki are quasimomenta
given by

k j = π

D − M + m
Ij, I j = 1, . . . , m. (63)

Likewise, the wave function for the right chain is

fR(xm+1, . . . , xM |X )

= NR det
(
sin

[
qi(xm+ j − X − j + 1/2)

])
, (64)

with quasimomenta qi given by

q j = π

L − D − m + 1
I j, I j = 1, . . . , M − m. (65)

In particular, the adiabatic approximation becomes exact for
the ground state in the (M, 1, 0) subspace, since in this case
the electron sits at one of the boundaries (such that D =
M + 1 or D = L − M) and decouples from the dynamics of
the singlet pairs moving in the remaining sites.

C. Effective Hamiltonian for the single electron

Our goal now is to determine the single-electron wave
function φ(X ) within the adiabatic approximation. For this
purpose, we substitute our ansatz given by Eqs. (58), (59),
(62) and (64) into the Schrödinger equation and sum out the
singlet-pair degrees of freedom. The analog of Eqs. (42) in
this case is an inhomogeneous tight-binding Hamiltonian,

[E − u(X )]φ(X ) = t−(X )φ(X − 2) + t+(X )φ(X + 2), (66)

with boundary conditions φ(D + M + 2) = φ(D + M − 2) =
0. The effective hopping parameters t+ and t− depend on
the overlap between singlet-pair wave functions for different
electron positions:

t±(X ) = γ
∑
{xi}

′	∗(x1, . . . , xm = X ± 3/2, . . . , xM |X )

×	(x1, . . . , xm = X ∓ 1/2, . . . , xM |X ± 2). (67)

Here γ = 1/2 and the primed sum is performed over all al-
lowed values of x j , with the exception of xm, which is kept
fixed. The on-site potential term u(X ) appearing in Eq. (66)

FIG. 13. Single-electron probability density calculated in the
adiabatic approximation for a system with M = 6 singlet pairs in a
chain with L = 31 sites. The different curves correspond to different
values of the dipole moment D.

is the sum of the ground-state energies for the disconnected
chains,

u(X ) = Eg(m; X − 1) + Eg(M − m; L − X ), (68)

where Eg(M; L) is the ground-state energy for M pairs on a
chain with L sites:

Eg(M; L) = 1 − csc
( π

2L − 2M + 2

)
sin

[
π (2M + 1)

2L − 2M + 2

]
.

(69)

We then solve the system of Eq. (66) numerically for a
fixed choice of parameters M, D, and L. In Fig. 13, we plot the
probability density |φ( j)|2 corresponding to the ground state
of the effective Hamiltonian for a single electron interacting
with M = 6 singlet pairs in a chain with L = 31 sites. We can
see that the single electron becomes restricted to a few sites
and the probability density is skewed to the nearest boundary.
This shows that the same effects observed before for just one
singlet pair (see Figs. 7 and 8) remain true for a larger number
of pairs.

We stress that the disorder-free localization of single elec-
trons encountered here is a direct consequence of the dipole
conservation law. The latter introduces constraints, such as the
one illustrated in Fig. 11, that decouple distinct subspaces and
lead to an extensive fragmentation of the Hilbert space. This
mechanism—known as Krylov fragmentation [28,29]—has
been identified in other dipole conserving models [12] and
can give rise to quantum scarred subspaces that violate the
eigenstate thermalization hypothesis [13,30]. Therefore, the
singlet pair liquid with a finite density of single electrons
provides another setting for studies of ergodicity breaking in
translation-invariant systems [54–56].

VI. PERTURBATIONS

In this section, we ask what sort of couplings can be
switched on to close energy gaps and induce quantum phase
transitions in the singlet-pair hopping model. Here we have
chosen to study the effects of a magnetic field and a nearest-
neighbor repulsion. Our particular choice has been made with
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FIG. 14. Phase diagram for the model with an external magnetic
field. Above the critical point, h > hc, an island of polarized electrons
emerges in the ground state.

two conditions in mind. First, both interactions commute with
the dipole operator in Eq. (6), preserving fracton physics.
Second, they do not couple spaces with distinct occupation
numbers in the classification of Sec. II, such that we can
solve everything in the same way as before. Single-particle
hopping, which does not fulfill any of our conditions, is briefly
discussed in the Appendix.

A. Magnetic field

Given that Hamiltonian Eq. (1) commutes with Sz, cou-
pling the system to an external magnetic field h in the z
direction is the simplest way to close the spin gap. Let us then
consider the modified Hamiltonian

H = P
[

−
∑

j

(b†
j−1, jb j, j+1 + H.c.) − h

∑
j

Sz
j

]
P, (70)

where we assume h > 0. All eigenstates remain the same as
before. The only effect is a shift on the eigenenergies accord-
ing to

E (N, Sz ) → E (N, Sz ) − hSz, (71)

where E (N, Sz ) is an eigenenergy of Hamiltonian Eq. (1) with
N electrons and total spin z-projection Sz. As a consequence,
the spin gap closes when there is a level crossing at the critical
magnetic field hc given by [see Eq. (38)]

hc = 1 + cos
( πn

2 − n

)
. (72)

For h > hc, we expect phase separation with the formation
of electronic islands as illustrated in Fig. 14. The mechanism
behind these polarized electronic clusters can be understood
as follows. Slightly above the critical field, the ground state
with a fixed number of electrons in a finite chain changes from
Sz = 0 to Sz = 1 by turning a singlet pair into a triplet pair.
The latter then acts as a hard wall for the remaining singlet
pairs. If we increase the field further, any new excitations
become attracted to the triplet pair as suggested by Figs. 7, 8,
10, and 13. To make this idea more concrete, we can compare
the energies of two states in the Sz = 2 sector. In the first
state, we put the triplet pairs together, forming a four-electron
cluster. In the second state, we place the two triplet pairs at
a maximum distance from each other inside the finite-length
ring. This problem is equivalent to considering one and two
interval partitions of the ring, respectively. Calculating the
energy difference between the two states, we determine the
energy necessary to separate the triplet pairs:

�E = 1 + 2

π
sin

( πn

2 − n

)

−
(

2 − 3n

2 − n

)
cos

( πn

2 − n

)
+ O(1/L). (73)

Thus, there is a finite energy gap for breaking the cluster. This
supports the reasoning that for h > hc the ground state on the
ring contains a cluster of polarized electrons surrounded by a
liquid of singlet pairs.

B. Nearest-neighbor repulsion

One route to closing the one-particle excitation gap is to
penalize singlet pairs by introducing a nearest-neighbor re-
pulsive interaction. In this scenario, the Hamiltonian takes the
form

H = P
[

−
∑

j

(b†
j−1, jb j, j+1 + H.c.) + V

∑
j

n jn j+1

]
P,

(74)
with V > 0. Unlike the magnetic field considered in
Sec. VI A, the nearest-neighbor interaction does not commute
with pair hopping and we need to find new solutions to
Eq. (74). Fortunately, the new term preserves the integrability
of the (M, 0, 0) subspaces and the resulting Bethe equations
are analogous to those for the anisotropic (XXZ) spin-1/2
chain [20,50].

In the (M, 0, 0) subspace, we try the following wave func-
tion for M singlet pairs:

�(x1, . . . , xM ) =
∑

P

A(P) exp

(
i

M∑
j=1

kP jx j

)
, (75)

where the summation P runs over all permutations and nega-
tions of the momenta (k1, . . . , kM ). The energy of such a state
is given by

E [k] = MV − 2
M∑

j=1

cos k j . (76)

The singlet pair scattering matrix is modified to

S(k, k′) = −e−i(k−k′ )+iϑ (k,k′ ), (77)

where ϑ (k, k′) is the two-body scattering phase shift due to
the interaction potential V :

ϑ (k, k′) = −iln

[
1 + ei(k+k′ ) + Veik′

1 + ei(k+k′ ) + Veik

]
. (78)

The quantization condition for an open chain with L sites
takes the form

1 = S(k j, k j+1) . . . S(k j, kM )sL+1/2(k j,−k j )S(kM,−k j )

× . . . S(k j+1,−k j )S(k j−1,−k j ) . . . S(k1,−k j )

× s1/2(−k j, k j )S(k1, k j ) . . . S(k j−1, k j ), (79)

where sx(k,−k) = −e2ikx denotes the scattering amplitude at
reflective boundaries as defined in Eqs. (31) and (32). Using
S(k, q)S(q,−k) = e−2ik+i[ϑ (k,q)−ϑ (q,−k)], we obtain the Bethe
equations

2k j (L − M + 1) +
∑
j 
=l

[ϑ (k j, kl ) − ϑ (kl ,−k j )] = 2π I j,

(80)
where I j is an integer that parametrizes the branch of the
logarithm. Within the (M, 0, 0) sector, the nearest-neighbor
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FIG. 15. Critical repulsion Vc as a function of electronic filling
n. For n > 2/3, the nearest-neighbor interaction does not modify the
one-particle excitation gap.

repulsion renormalizes the Luttinger parameter for the singlet-
pair liquid, in analogy with the effect of the exchange
anisotropy in the XXZ spin chain [20].

We now turn to the solution in the (M, 1, 0) subspace. As
discussed in Sec. IV B, to find the ground state in this sector
we just place a single electron at one of the boundaries, say
j = L. The presence of the single electron changes the effec-
tive length of the chain, and the scattering amplitude becomes

sL−1/2(k,−k) = −eik(2L−1)+iϕ(k), (81)

where ϕ(k) is the contribution from the interaction potential
to the scattering phase shift between a singlet pair and the
electron:

ϕ(k) = −iln

(
1 + Ve−ik

1 + Veik

)
. (82)

Hence, we find the Bethe equations in this subspace:

2k j (L − M ) + ϕ(k j ) +
∑
j 
=l

[ϑ (k j, kl ) − ϑ (kl ,−k j )] = 2π I j .

(83)

We have solved Eqs. (80) and (83) numerically for a chain
with L = 75 sites. This way, we are able to determine the crit-
ical interaction strength Vc required to close the one-particle
gap �1p. The result is shown in Fig. 15. For electronic fillings
n < 2/3, we find a finite value of Vc separating the singlet-
pair liquid phase, with gapped single-electron excitations,
from a phase with a finite density of fractons. Lacking exact
solutions, we cannot ascertain the nature of the phase for
V > Vc. However, we speculate that the interplay between
nearest-neighbor repulsion and long-range attraction between
electrons may stabilize a crystalline phase with periodic ar-
rangement of fractons within a cluster. Finally, for n > 2/3 we
find that the nearest-neighbor interaction does not modify the
one-particle gap. In fact, at the commensurate filling n = 2/3,
due to relevant Umklapp scattering interactions, we anticipate
that an infinitesimal V > 0 turns the singlet pair liquid into an
insulating valence bond crystal. The situation is similar to the
charge density wave instability of hardcore spinless fermions
[44].

VII. CONCLUSIONS

We investigated a liquid of singlet pairs in which single-
electron excitations behave as fractons. Our results were
established in a one-dimensional model of interacting elec-
trons that describes hopping of spin-singlet pairs. We showed
that the model obeys a dipole moment conservation law and
explored its Bethe ansatz integrable subspaces to obtain sev-
eral exact results. We introduced an adiabatic approximation
that allowed us to capture the essential physics of the localized
wave function of the single electron immersed in the pair
liquid. We also studied two perturbations that are able to close
the gaps for spin and single-particle excitations, observing
the important role played by the effective attraction between
fractons in the resulting phases.

Future directions include investigating the out-of-
equilibrium properties of the system. One advantage of
our model in comparison with spinless fermion models is
that single electrons immersed in the singlet pair liquid
could be detected by measuring the expectation value
of the local spin projection. Thus, one could probe the
magnetization dynamics which should be characterized by
the absence of spin diffusion. Moreover, it may be possible
to extend the low-energy field theory approach to study
the single-electron dynamics as a kinetically constrained
quantum impurity problem directly in the thermodynamic
limit. This would allow us to investigate the disorder-free
localization beyond the adiabatic approximation. It would also
be worth investigating the relation between the emergence
of correlated hopping and the strong-coupling limit of gauge
theories coupled to matter fields [57]. In particular, it has been
shown that a one-dimensional model of spinless fermions that
includes pair-hopping terms can host topological edge modes
[58], which might lead to a connection between topological
and fractonic behavior even in one spatial dimension. Given
the simple microscopic mechanism behind the singlet-pair
hopping Hamiltonian, mixed-dimensional Mott insulators
[59] and Floquet enginnering in optical lattices [38,41]
may open the possibility to simulate such models in the
future. Furthermore, since the three-site correlated hopping
promotes an electronic pairing similar to the one expected
from Cooper pairs, one may wonder about its role in the onset
of superconductivity in higher dimensions.
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APPENDIX A: SINGLE PARTICLE HOPPING

Single-particle hopping manifestly breaks the dipole mo-
ment Eq. (6) conservation law, indicating a departure from
fracton physics. It is unclear whether some sort of approxi-
mate fracton behavior can still persist for perturbatively small
single particle-hopping amplitudes. However, the existence
of singlet-pair bound states separated from a continuum of
scattering states can be demonstrated by directly solving the
two-electron problem on the lattice.
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If we switch on single-particle hopping, Hamiltonian
Eq. (1) will become

H = P
[

−
∑

j

(b†
j−1, jb j, j+1 + H.c.)

− t
∑

jσ

(c†
j,σ c j+1,σ + H.c.)

]
P, (A1)

where we assume t > 0. Two-electron eigenstates take the
form

|ψ〉 =
∑
σ1,σ2

∑
x1,x2

ψ (x1σ1, x2σ2)c†
x1σ1

c†
x2σ2

|0〉, (A2)

where the wave function is totally antisymmetric
ψ (x1σ1, x2σ2) = −ψ (x2σ2, x1σ1).

We now look for solutions of the Schrödinger equation for
the two-body problem. When electrons are well separated,
|x1 − x2| > 1, we have

Eψ (x1, x2) = −tψ (x1 + 1, x2) − tψ (x1 − 1, x2)

− tψ (x1, x2 + 1) − tψ (x1, x2 − 1). (A3)

On the other hand, when the electrons meet, there is also the
possibility to pair them up:

Eψ (x, x + 1) = −tψ (x − 1, x + 1) − tψ (x, x + 2)

− 1
2 (1 − �)[ψ (x, x − 1) + ψ (x + 2, x + 1)],

Eψ (x, x − 1) = −tψ (x + 1, x − 1) − tψ (x, x − 2)

− 1
2 (1 − �)[ψ (x − 2, x − 1) + ψ (x, x + 1)].

(A4)

Here we omit spin variables for brevity and have introduced
the operator � that interchanges spin variables, i.e.,

�ψ (x1σ1, x2σ2) = ψ (x1σ2, x2σ1). (A5)

In the most general form, the spin wave function of
ψ (x1, x2; σ1, σ2) is written as a linear combination of the spin
singlet state

ϕ0(σ1, σ2) = δσ1,↑δσ2,↓ − δσ1,↓δσ2,↑ (A6)

and the spin triplet states:

ϕ1(σ1, σ2) =
⎧⎨
⎩

δσ1,↑δσ2,↑, Sz = 1
δσ1,↑δσ2,↓ + δσ1,↓δσ2,↑, Sz = 0
δσ1,↓δσ2,↓, Sz = −1.

(A7)

The spin singlet state is antisymmetric in the spin variables
and symmetric in the electron coordinates, while the situation
is reversed for the spin triplet states. Moreover, the spin triplet
states do not couple to the singlet-pair hopping term and the
problem becomes identical to free spinless fermions. In view
of that, we search for bound states restricting the analysis to
the spin singlet state. As usual, we may separate center of
mass and relative coordinates as

ψ (x1σ1, x2σ2) = ϕ0(σ1, σ2)eiP(x1+x2 )/2 f (x1 − x2), (A8)

where P is the total momentum and f (r) is an even function
so f (−r) = f (r). Plugging Eq. (A8) into the set of Eqs. (A3)

FIG. 16. Two-particle continuum and bound state bands in the
spectrum of two-body problem including single-particle hopping t
as a perturbation. Here we set t = 0.1 in units of the pair hopping
amplitude.

and (A4) yields

E f (r) = −2t cos(P/2)[ f (r + 1) + f (r − 1)] (A9)

when the electrons are separated and

E f (1) = −2t cos(P/2) f (2) − 2 cos(P) f (−1) (A10)

when they meet. Bound states correspond to solutions of the
form f (r) = e−κ|r| with real κ > 0. Equation (A9) determines
the energy:

E = −4t cos(P/2) cosh(κ ). (A11)

On the other hand, Eq. (A10) determines κ as a function of
the total momentum:

e−κ = t

(
cos P/2

cos P

)
. (A12)

Thus, given that both κ and t are real and positive, we find
two possibilities: (i) if t < 1, there is a bound state with
momentum near P = 0 and an antibound state near P = π ; (ii)
if t > 1, there is only an anti-bound state centered at P = π .
In Fig. 16, we plot the solution for case (i). The dispersion
relation for this two-particle bound state is given by

E = −2

[
1 + t2

(
cos P/2

cos P

)2
]

cos P. (A13)

As a check, note that in the limit t → 0, for P 
= ±π/2, we re-
cover E = −2 cos P, which is the solution for one singlet pair
with momentum P. This solution of the two-electron problem
suggests that the binding of electrons into singlet pairs may
persist in the ground state of the model with small t . However,
the conservation of the dipole moment is immediately broken
for any t 
= 0. In this case, we expect the single-electron wave
functions to become extended.
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