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Comment on “Spin-orbit interaction and spin selectivity for tunneling electron transfer in DNA”
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The observation of chiral-induced spin selectivity (CISS) in biological molecules still awaits a full theoretical
explanation. In a recent Rapid Communication, Varela et al. [Phys. Rev. B 101, 241410(R) (2020)] presented a
model for electron transport in biological molecules by tunneling in the presence of spin-orbit interactions. They
then claimed that their model produces a strong spin asymmetry due to the intrinsic atomic spin-orbit strength.
As their Hamiltonian is time-reversal symmetric, this result contradicts a theorem by Bardarson [J. Phys. A:
Math. Theor. 41, 405203 (2008)], which states that such a Hamiltonian cannot generate a spin asymmetry for
tunneling between two terminals (in which there are only a spin-up and a spin-down channel). Here we solve
the model proposed by Varela et al. and show that it does not yield any spin asymmetry, and therefore cannot
explain the observed CISS effect.
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In spite of many theoretical papers, the observation of a
large spin filtering in chiral molecules [1], termed “chiral
induced spin selectivity (CISS)” still awaits a full explanation,
which is accepted by everyone. In a recent Rapid Communica-
tion, Varela et al. [2] followed a series of their earlier papers,
and mapped the detailed tunneling electron transfer through
the molecule onto an effective one-dimensional continuum
model, which mimics the molecule by a region with a barrier
potential and a Rashba spin-orbit interaction (SOI). Using
a scattering solution of this model, they concluded that the
molecule causes spin splitting of the scattered electrons, thus
explaining the CISS experiments.

Since the Rashba SOI obeys time-reversal symmetry, the
above result contradicts a general theorem by Bardarson [3],
which states that a time-reversal symmetric Hamiltonian can-
not generate a spin asymmetry for tunneling between two
terminals (in which there are only a spin-up and a spin-down
channel) [4]. Indeed, this led several groups to propose mod-
els which effectively break time-reversal symmetry without a
magnetic field for two-terminal systems [6], or to increase the
number of channels [7]. Below we solve the model of Ref. [2]
explicitly, and show that indeed it does not generate any spin
splitting, thus obeying the Bardarson theorem.

After several mappings, Ref. [2] ends up with a one-
dimensional Hamiltonian for the electronic spinors on the
molecule, Eq. (5) in that paper,

H =
[

p2
x

2m
+ V0

]
1 + ασy px for 0 < x < a, (1)

where a is the molecule’s length, σy is the Pauli spin matrix,
1 is the 2 × 2 unit matrix, α represents the strength of the
spin-orbit interaction, and V0 represents an energy barrier on
the molecule. For x < 0 and a < x Ref. [2] has V0 = 0 and
α = 0, and therefore the Hamiltonian in those regions is that
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of free electrons p2
x/(2m), with arbitrary spinors, with a spatial

wave function e±ikx, and energy E = h̄2k2/(2m).
It is convenient to choose as a basis of the spin Hilbert

space the eigenspinors of σy, σy|μ〉 = μ|μ〉, with μ = ±1,
and write the solutions as |�μ(x)〉 = ψμ(x)|μ〉. Applying H
to each of these states yields

H|�μ(x)〉 =
[

p2
x

2m
+ V0 + αμpx

]
|�μ(x)〉. (2)

In the chosen basis, the Hamiltonian is diagonal, and this
equation separates into two scalar equations. In the range
0 < x < a these are[

p2
x

2m
+ V0 + αμpx

]
ψμ(x) = Eψμ(x). (3)

Assuming a solution of the form ψμ(x) ∝ eiQμx, we find that
Qμ must obey the quadratic equation

E = h̄2[(Qμ + kSOμ)2 − k2
so]

2m
+ V0, (4)

where mα/h̄ = kso is the strength of the SOI in units of inverse
length. This equation has two solutions,

Q±
μ = −ksoμ ± q , with q =

√
k2 + k2

SO − q2
0, (5)

where q2
0 = 2mV0/h̄2.

Our Eq. (5) differs from Eq. (7) of Ref. [2], which in our
notation would be

Q±
μ (Varela) = ±(kSOμ + q). (6)

Clearly, these values do not obey Eq. (5) of Ref. [2] [and
our Eq. (4)]. We suspect that this discrepancy led to the spin
splitting found there. Explicitly, one faces a simple scattering
problem [8]

ψμ = [eikx + rμe−ikx], x < 0

ψμ = e−ikSOμx[Cμeiqx + Dμe−iqx], 0 < x < a

ψμ = tμeikx, a < x. (7)
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The prefactor in the middle region is nothing but the
Aharonov-Casher phase factor [9] due to the spin-orbit inter-
action. The SOI adds opposite phases to the two spin states.

Generally, the conjugate velocity is given by v =
∂H/(∂ px ). For each of the four solutions in Eq. (5),
the corresponding gauge-covariant velocities inside the
molecule are v±

μ = h̄(Q±
μ + kSOμ)/m = ±h̄q/m. For E >

V0 − (h̄kSO)2/(2m), q is real, and the solution on the molecule
has waves propagating to the right and to the left. For E <

V0 − (h̄kSO)2/(2m), q is imaginary, and the waves become
evanescent. The continuity conditions at x = 0 and a yield
four equations for the four unknowns Cμ, Dμ, rμ, and tμ:

1 + rμ = Cμ + Dμ,

k(1 − rμ) = q[Cμ − Dμ],

tμeika = e−iksoμa[Cμeiqa + Dμe−iqa],

ktμeika = qe−iksoμa[Cμeiqa − Dμe−iqa]. (8)

Replacing tμ by t̃μ = tμeikSOμa yields equations which are
independent of μ, and therefore the solutions for rμ and t̃μ
are independent of μ. Since the transmission and reflection
probabilities are Tμ = |tμ|2 = |t̃μ|2 and R = |rμ|2, it is clear
that the reflection and transmission matrices R and T are
proportional to the 2 × 2 unit matrix, and therefore there is
no spin selection, in accordance with the Bardarson theorem
[3]. The model of Ref. [2] does not generate any asymmetry
in the outgoing spin currents.

Specifically, the solutions are

rμ = k2 − q2

q2 + k2 + 2ikq cot(qa)
,

tμ = 2e−ia(kSOμ+k)kq

2kq cos(qa) − i(k2 + q2) sin(qa)
(9)

and thus

Tμ = |tμ|2 = 4k2q2

4k2q2 + (k2 − q2)2 sin2(qa)
, (10)

independent of μ! It is also straightforward to check unitarity,
Rμ + Tμ = 1. This result also holds when q is purely imagi-
nary. Solving the same equations with the Q’s used in Ref. [2],

Eq. (6), indeed yields different velocities for the two spins,
ending up with spin-dependent reflection and transmission.

An alternative way to derive the scattering amplitude is to
first apply a gauge transformation (related to the Aharonov-
Casher phase factor [9])

|�(x)〉 = U (x)|�̃(x)〉, U (x) = e−ikSOxσy , (11)

so that

H̃ = U (x)†HU (x) = p2
x − (h̄kSO)2

2m
+ V0. (12)

This is a spin-independent Hermitian Hamiltonian, whose
eigenstate in the “molecule” region has the form

ψ̃ (x) = C̃eiqx|+〉 + D̃e−iqx|−〉, (13)

with the same q =
√

k2 + k2
SO − q2

0 given in Eq. (5). The
boundary conditions for ψ̃ are the same as for spinless par-
ticles, hence, the transmission amplitude is

t̃ = 2e−iakkq

2kq cos(qa) − i(k2 + q2) sin(qa)
. (14)

From Eq. (11), |�(a)〉 = U †(a)|�̃(a)〉. Noting that
U (x)|±〉 = e∓ikSOx|±〉, it follows that tμ = e−iakSOμ̃tμ, repro-
ducing Eq. (9) and the spin independence of the transmission
probability. In fact, the gauge transformation simply shifts the
covariant momentum p̃x = px + h̄kSOμ onto the momentum
px, which is also seen directly from Eq. (4). This results in
a simple Aharonov-Casher phase shift in the transmission
amplitude, and does not affect the transmission probability.
The reflection and transmission probabilities are invariant
under the gauge transformation, and therefore remain spin
independent.

In conclusion, one cannot generate spin splitting with only
spin-orbit interactions, as done in Eq. (5) of Ref. [2], and
the chiral-induced spin selectivity effect still awaits a full
theoretical explanation.
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