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Topological aspects of periodically driven non-Hermitian Su-Schrieffer-Heeger model
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A non-Hermitian generalization of the Su-Schrieffer-Heeger model driven by a periodic external potential is
investigated, and its topological features are explored. We find that the bi-orthonormal geometric phase acts as
a topological index, well capturing the presence/absence of the zero modes. The model is observed to display

trivial and nontrivial insulator phases and a topologically nontrivial Mobius metallic phase. The driving field
amplitude is shown to be a control parameter causing topological phase transitions in this model. While the
system displays zero modes in the metallic phase apart from the nontrivial insulator phase, the metallic zero
modes are not robust, as are the ones found in the insulating phase. We further find that zero modes’ energy
converges slowly to zero as a function of the number of dimers in the Mobius metallic phase compared to the

nontrivial insulating phase.
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I. INTRODUCTION

In the last few decades, the existence and consequences
of topological quantum numbers in condensed matter systems
have been a subject of great interest [1]. Unlike symmetry-
based Noether conservation laws, the nature and origin of
topological objects and corresponding invariants are funda-
mentally different. A macroscopic condensed matter system’s
physical state possessing a nontrivial topological invariant is,
by definition, found to be immune to disorder and external
perturbations [2]. There has been a lot of activity to exploit
this robustness for diverse quantum applications like lasing
and computation [3].

It is a well-known fact that the time evolution of a closed
quantum system is described by a Hermitian Hamiltonian,
which gives rise to a unitary time evolution. Nevertheless,
most quantum systems in practice interact with the external
environment, and hence their physics cannot always be cap-
tured by a closed system description [4]. However, solving
a macroscopic quantum system’s dynamics while employing
a general open system approach is usually daunting. In this
scenario, a prudent compromise is to use an effective non-
Hermitian Hamiltonian to describe the quantum system at
hand, wherein the non-Hermiticity captures, in essence, the
effects like dissipation arising due to the interaction with the
environment [5]. In any case, in reality, most quantum con-
densed matter systems are coupled to the measuring apparatus
in some way, which in turn can give rise to non-Hermiticity
in the system, as was shown in the case of the Kitaev chain
recently [6-8].

While the topological aspects of closed quantum sys-
tems have been the main focus for a long time [1,2], of
late, the study of topological properties of non-Hermitian
Hamiltonians has gained significant attention [3,9,10]. It is
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now understood that the topological structure of the non-
Hermitian system is much richer and diverse than their
Hermitian counterparts [11-14]. In this context, the concepts
of bulk-boundary correspondence, topological invariants, and
geometric phases have been a subject of scrutiny for a while
[6,14-22].

In condensed matter systems, the bedrock underneath the
topological aspects is a discrete spatial translational symmetry
in the system, giving rise to the Brillouin zone in the k space
[1,2]. The topological invariant like Chern number and the
geometric phase, e.g., the Pancharatnam-Zak phase [23], owe
their genesis to this framework. Interestingly, there is an in-
genious way of generalizing the same mathematical structure
in the temporal domain by driving the system externally by a
periodic potential [24,25]. Such driving can effectively add
another dimension to the spatially periodic lattice; thus, a
driven lattice system’s topological properties are fundamen-
tally different from the undriven case [26,27]. This feature is
seen in several studies on these systems, and various tech-
niques to correctly capture the topological aspects of such
systems, based on the Floquet analysis, have been developed
[28-34]. With the advent of precision cold atoms and quantum
materials experiments, topological aspects of such a driven
system have been explored in different experimental setups
[35-38].

As noted earlier, the non-Hermitian systems display a
richer topological structure than the Hermitian ones; one nat-
urally wonders what happens if such a system is periodically
driven. What is the proper topological invariant capturing the
topological phases of such a system? Can these phases of the
system all be probed by tuning the driving potential? These
are some questions that immediately arise. In this work, we
study the topological properties of a non-Hermitian extension
of the celebrated Su-Schrieffer-Heeger (SSH) model driven
by an external AC electromagnetic field and answer the above
queries.

We begin by investigating a non-Hermitian version of
the SSH model, possessing chiral invariance. Constructing a

©2021 American Physical Society
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FIG. 1. A schematic diagram of the driven non-Hermitian SSH
model. The red and green circles denote A and B sublattice sites,
respectively. The lattice constant is a, and two sites in a unit cell
are separated by distance b. The intracell hopping amplitude is v,
whereas the intercell amplitudes are we*® and we®A® respec-
tively for to and fro tunneling in the presence of a time-periodic
vector potential A(7) and a non-Hermiticity measure 6.

proper gauge-invariant geometric phase, viz., bi-orthonormal
generalization of the Pancharatnam-Zak phase, which is ac-
quired by a Bloch state as it traverses a circuit in the Brillouin
zone, we find that the system exhibits three distinct topolog-
ical phases: (a) trivial insulator, (b) nontrivial insulator, and
(c) Mobius metallic phase. In the two insulator phases, the
model displays a band gap in the energy spectrum’s real part.
The geometric phase is 0 and 7 for the trivial and nontrivial
insulator phases, respectively. When the model is considered
with an open boundary condition (OBC), it is found that the
nontrivial insulating phase displays doubly degenerate zero
modes, as in the Hermitian case. In the M6bius metallic phase,
we observe that the two bands of the energy spectrum’s real
part are merged into one, giving rise to a metallic behavior;
at the same time, the state space displays Mobius strip topol-
ogy, as explained later. Owing to this nontrivial topology, a
proper definition of the geometric phase requires the Bloch
state to traverse two circuits in the Brillouin zone, and the
bi-orthonormal geometric phase hence acquired is found to
be w. While the system in this metallic phase does display
the existence of doubly degenerate zero modes, as one would
expect, they, in turn, are found to be embedded in the band
continuum and hence are not robust. The lack of robust zero
modes in the M&bius metallic phase indicates that the topolog-
ical notion of bulk-boundary correspondence in this model, as
found in its Hermitian counterpart, is strictly speaking absent.

We further explore the scaling of zero-mode energy in the
open chains as a function of the number of dimers N in the
nontrivial insulating and Mobius metallic phases. We find that
the two phases display different scaling behavior as a function
of N when we correctly implement the OBC using a large-N
limit. The energy of zero modes converges slowly to zero with
N in the Mobius metallic phase compared to the nontrivial
insulating phase.

Subsequently, we study the driven non-Hermitian SSH
model, minimally coupled to an external time-periodic vector
potential (see Fig. 1). This model possesses two discrete trans-
lation symmetries respectively in space and time and hence
allows us to solve for the Floquet-Bloch states, the spatiotem-
poral generalization of Bloch states. Being mainly interested
in diabatic dynamics, we first consider the regime wherein
the driving frequency is much larger than the model’s hop-
ping parameters. Extending the notion of the bi-orthonormal
Pancharatnam-Zak geometric phase to this driven model, we
find that this geometric phase indeed captures the quintessen-

tial topological features in this case as well. Upon solving
the Floquet-Bloch eigenvalue problem in this large-frequency
regime, we find that the system, akin to the undriven model,
admits three distinct topological phases: the trivial insu-
lator, nontrivial insulator, and Mobius metallic phase. We
further support these phases’ appearances by showing the
presence/absence of zero-quasienergy modes in the real part
of the quasienergy spectra of the driven model with an OBC
using a large-N limit. We discover that the system’s topo-
logical phase can be entirely altered by the amplitude of the
driving potential, which plays as a control parameter (see
Fig. 4). In the opposite limit, wherein the driving frequency
is much smaller than hopping parameters, the system’s dy-
namics essentially is adiabatic. Then topological features of
the system do not get affected by external driving. Finally, we
present numerical results for the driven non-Hermitian SSH
model’s quasienergy spectra at an intermediate frequency.
These spectra show that both the nontrivial and the Mobius
metallic phases can reappear when the driving’s amplitude is
tuned.

II. NON-HERMITIAN SSH MODEL

We here consider a non-Hermitian generalization of the
SSH model, a one-dimensional nearest-neighbor tight-binding
model comprising two sublattice sites within the unit cell
[Fig. 1 with A(r) = 0]. In its generality, this model is de-
fined in terms of four complex numbers v; » and w; >, which
parametrize the system Hamiltonian [17]:

N
H =" (viln, B){n, Al + v, A)(n, B])
n=1
N—-1
+ Y (wiln+1,A)(n, Bl + waln, B)(n + 1, A])

n=1
+ [(w |1, A)(N, B| + wy|N, B)(1, A). ey

The state |n, A (B)) represents the localized state in the nth
unit cell with sublattice index A (B). Here, the lattice constant
is a, and the distance between the two sublattice sites A and
B in the unit cell is given by b. The parameter [ in the above
Hamiltonian is employed to ensure the validity of appropriate
boundary conditions. For example, the choice [ = 1 repre-
sents the periodic boundary condition (PBC) wherein the unit
cell translation operator T (a) commutes with H: [T (a), H] =
0. Evidently, for any other choice of /, such discrete translation
symmetry is absent. In the study of topological aspects, when
I = 0 is of particular interest, it represents the OBC [2]. For
any value of parameters v », w2, and /, this system possesses
chiral symmetry, which means that the Hamiltonian H anti-
commutes with the operator X, {3, H} = 0, where

N
r= Z (In, A)(n, A| — |n, B)(n, B|). @

n=1

This anticommutativity ensures that the spectrum of H, which
is in general complex, is such that for every eigenstate |ir)
with energy E, there exists another eigenstate X|y) with
energy —FE. It further indicates that a zero-energy eigenmode
is doubly degenerate.
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To understand the impact of non-Hermiticity on this
model’s topological aspects, we consider a special case in this
work, wherein v; = vy = v, w; = w, w, = we?, for all real
values of v, w, and 6 with v, w, 8 > 0. In this parametrization,
the value of 6 can be understood to measure the divergence of
the system from the Hermitian 6 = O case.

A. k-space analysis

When ! = 1, the existence of discrete translation symme-
try allows us to convert to k space, and work with states
|kj, A (B)) (with k; =2 j/Na and j =1,2,...,N), which
are the Fourier transform of localized states |n, A (B)). The
Hamiltonian (1) in the k space reads

H=3"(k;A), |k,-,B>>[H<k,,«>1(§’,§f]j:2:>, 3)
kj ’

where the non-Hermitian matrix H (k;) reads

Q we*i + v
wel K 4y 0 ’

H(kj) = ( )
We have assumed that the distance between the two sublattice
sites is vanishing (b = 0) and lattice constant a = 1 for sim-
plicity. We further set Planck constant 7z = 1. Notice that this
Hamiltonian displays k-space periodicity since H(k = 0) =
H(k =2m).

The complex energy spectrum arising from this k-space
Hamiltonian is given by E. (k) = £E (k), where

E(k) = v (wek + v)(wef—i* 4 v), 5)

which depicts two complex energy bands +F (k) in agreement
with the chiral symmetry of the system. The corresponding
left and right eigenvectors respectively are given by

ei)»(k) E)
q)i(k) = ﬁ [17 :l:(u)eﬁ—ik+v)]9 (6)
it 0) |
vy (k) = —[ E(k) ] @)
\/E + (weik+v)

Here, A(k) stands for some arbitrary function of k, not neces-
sarily respecting the periodicity in k. These two eigenvectors
are arranged to respect the bi-orthonormality conditions:
®y(k)-Wi(k)=1and ®(k)- Wi(k) = 0. This property of
bi-orthonormality is a natural generalization of the orthonor-
mality property displayed by eigenvectors of a Hermitian
matrix [17]. By employing this different orthonormaliza-
tion, we depart from the usual Dirac’s inner product and
normalization definition. The left and right Bloch eigen-
states of H are related to these eigenvectors respectively
as (Pr(k)| = Py 1(k)(k, Al + @1 2(k)(k, B| and |V (k)) =
W, (k)|k,A) + W, »(k)|k, B). Being the eigenstates of a
non-Hermitian operator, these states do not respect the
orthonormality, which follows from the Dirac inner prod-
uct definition: (W4 (k)|Wx(k)) # 0 and so on. As a result
we choose to work with the bi-orthonormality conditions:
(@1 (k)W (k)) = 0, and (P (k)| W+ (k) = 1.

It can be checked that these Bloch eigenstates indeed
obey the Bloch condition of periodicity modulo an overall
phase: T'(a)|W.(k)) = | W, (k)). The nontrivial content of
the Bloch states is contained in the cell periodic Bloch states

2
1 L
>
m ------- — — —
5 0 < ZtEtEe=-=z DT T >
(D
-1 '
,
-m/a m/a

-m/a 0 m/a

FIG. 2. Plot of real and imaginary parts of energy eigenvalues
E. (k) as a function of k. Here, the red continuous and dot-dash
curves respectively denote the real and imaginary part of the upper
band’s energy, whereas the blue dotted and dashed curves respec-
tively indicate the real and imaginary part of the lower band’s energy.
(a)Forv=1,0 =0.5,and w = —0.1 4+ ¢~’. Topologically the band
structure is like a cylinder with the curves +E (k) defining the edges.
(b) Forv =1,6 = 0.5, and w = 0.1 + ¢~?. Topologically the band
structure is like a Mobius strip with the curve E (k) defining the edge.

lus(k)) [= T (a)lus(k))], that can be readily found from the
Bloch states by applying the momentum translation operator
T (—k), which in this case reads

lus(k)) = W,1(k)[0, A) + W= 2(k)|0, B), ®

(iix (k)| = P+.1(k)(0, Al + P+ 2(k)(0, B. €))

Evidently the above right and left cell periodic Bloch
states solve the eigenvalue problem for the Hamiltonian
H, = T(—k)HT (k), so that H |uy(k)) = £E(k)|u+(k)), and
(it (k)| Hy = £E (k) ({its (k)|

The fact that the matrix H (k) is periodic in k space may
lead one to naively believe that the energy spectrum and the
average (ii+ (k)|O|u+ (k)) of some generic operator O respect-
ing PBC are always a periodic function of k, and hence return
to their initial value after 27 circuits in the k space. However,
this is generally not true and happens only in the region x > 1
ork < e~ where x = w/v. In this region, the energy E (k) is
an analytic function of k, and the band structure of the system
is generically given by Fig. 2(a). While the energy is in general
complex, we can infer that the non-Hermitian system behaves
as a band insulator owing to a gap in the energy spectrum’s
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real part. Further, the eigenvectors |W. (k 4+ 27)|? = | W (k)|?
and |®.(k + 27)|? = | (k)| in this region. Therefore, the
band structure as well as the state space of the system have a
cylinder topology when k > 1 ork < e™%.

From the pioneering work of Pancharatnam [23,39,40], we
now understand that the notion of geometric phase can be
purely defined kinematically in terms of a cyclic overlap of
states. In the case of the lattice model, the geometric phase
referred to as Pancharatnam-Zak phase v can be defined cor-
responding to a given band in terms of (Dirac normalized) cell
periodic Bloch states |u;) = |u(k;)):

A = (ug|uy ) {un|uy—1) - - - {uz|ug ) {ur luo),

with v = Arg A. It is evident that v is a phase acquired by the
Bloch state as it completes a circuit in the Brillouin zone.

While the above definition of the geometric phase properly
holds in the case of Hermitian models, it is not satisfactory
for the present non-Hermitian case. The main reason for this
is that the Bloch states living in different bands are not orthog-
onal regarding Dirac’s definition of the inner product.

Given this scenario, we here generalize the above definition
of the Pancharatnam-Zak phase to the bi-orthonormal setup,
which is given by y where y = Arg D with

D = (iiglun ) (fiy|un—1) - - - {fiauy) ity |uo) .

In the continuum limit, this phase for both of the bands takes
the form

y+(@2m) = Arg [(ii+(0)|u+(27))]

2w
+ i/ dk (i1 (k)| 0k lus (k). (10)
0

By a careful choice of function A(k) (which amounts to fixing
a gauge), the argument term can be made to vanish, in which
case, this Pancharatnam-Zak phase becomes the so called
complex geometric phase studied in the literature [17,41]. It
must be mentioned that unlike the complex geometric phase,
this geometric phase is a proper geometric construct, is gauge
invariant [which implies its insensitivity to any choice of
A(k)], and hence immune to any gauge redefinitions of the
type |ux(k)) — eMOlus(k)), (ax(k)| = e Oy k), for
some function A (k).

The above gauge-invariant definition of the bi-orthonormal
geometric phase allows us to extend the results obtained in
Ref. [17] for the complex geometric phase. It is known that
owing to the chiral symmetry, the complex geometric phase
is real and is quantized in the units of 7. On evaluating (10)
using (8) and (9), we immediately find that

y+(2r)=m, when « >1,

=0, when « < e .

In the parameter region e’ < k < 1, we find that the en-

ergy eigenvalue E (k) as a function of k is not analytic/single
valued, but rather becomes double valued, that has been stud-
ied for a while in various systems [11,13,14]. As a result we
observe that the two limits do not agree: E(k — w) # E(k —
—m). We readily see thatin such acase, E_(k + 27w) = E, (k),
and E_(k + 4m) = E_(k). This fact is neatly brought out in
Fig. 2(b). If we were to follow the trajectory of the complex

energy in this figure starting from the lower band, then it is
evident that after one circuit in k space, we reach the upper
band. It is only after yet another circuit that we return to
the initial starting point. This is clear evidence of the double
valued nature of the energy eigenvalues. Since the energy
eigenvalues change from lower to upper band after complet-
ing a circuit in k space, it also follows that the eigenvectors
must follow the same route: |V (k + 2m)|* = |\IJ¢(k)|2 and
W, (k + 4m)|> = |Wo(k)|>. These results indicate that the
state space of right eigenvectors is like a Mobius strip, with
the edge of the Mobius strip being the states W (k).

Physically, the two bands are not distinct or disjoint, but in
fact are connected/merged into one another in a sense that the
system can be continuously changed to go from one band to
another. Thus, the system in this regime behaves as a metal,
and the band indices +1 are redundant since the bands are
merged together. Owing to the Mobius strip nature, we need
to extend the notion of circuit in k space as a loop from k = 0
to k = 4. In fact after one 27 circuit, we have W (2r) =
W, (0), so that & (0) - ¥4 (2) = 0. As a result, we cannot
define geometric phase using relation (10) since the initial and
final states are orthogonal. Instead, we are required to consider
47 circuit geometric phase:

y (4r) = Arg [(i+(0)|u+ (47))]
4
+ i/ dk (i1 (k)| lug (k). (11)
0

We find from explicit calculation y (47) = 7 throughout this
region of e < k < 1. This result indicates that although the
system is a gapless metal it is in a topologically nontrivial
phase in this parameter region.

B. Real-space analysis

It is a well known fact that in the presence of PBC, when
the Hermitian SSH model displays nontrivial value of geomet-
ric phase, the same in the presence of OBC displays doubly
degenerate zero-energy modes protected from the band gap.
Such a result is often referred to as the bulk-boundary cor-
respondence, and in the non-Hermitian lattice systems this
concept has of late generated a lot of interest [14,16,18,20].

In order to investigate whether such a correspondence
exists in the model at hand, let us consider the real-space
Hamiltonian (1) without assuming anything about the form
of /. The right eigenvalue problem for this Hamiltonian is
expressible as

H\Ye) = E¢|Yre), (12)

where the eigenvalues and eigenvectors are indexed by
quantum number ¢. This eigenvalue problem can also be
alternatively viewed as a matrix eigenvalue problem:

N

D (nsIHW, ) S 1Y) = Ec(n,sly),  (13)

s'=A,B;n'=1

where we use the completeness property of localized states
|n, s), with site index n =1, 2, ..., N, and sublattice index
s = A, B. Alternatively this can be written as
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v 0 0 0

v 0 we 0 0
0 w 0 v 0
lwe? 0 A A 0 v

Evidently the trace of H is 0, which can be understood to arise
from the chiral symmetry of the model. The determinant of H
can be readily found from the above matrix, and it reads

DetH = (=DYWY + (=DM 11N

x [N + (DN 1w (15)

This expression, which holds for any value of / and N, is
obtained from mathematical induction and can be straight
away checked using symbolic computation.

Let us consider the Hermitian case (¢ = 0) for a moment. It
is a well known fact that the determinant of a matrix is a prod-
uct of its eigenvalues. In the PBC case, we analytically know
that the system admits two eigenvalue bands. In the OBC case
with [ = 0, it is known that the system admits, apart from the
two bands, two midgap states with energy close to zero. In
order to pull out the behavior of these energy levels near zero
energy, we study the ratio of two determinants respectively of
the system with OBC made up of N + 1 dimers, and PBC with
N dimers:

_ DetH|opc,n+1

. (16)
Det H|ppc.n

The ratio r is thus

r = E+,0E7’0, (17)

where E, (o are the two energy levels closest to zero. It is
evident that when the system does not admit any zero-energy
modes, this ratio will be equal to —1, and if zero-energy
modes exists then the ratio must tend to 0 as N — oo. It
is clear that when k < 1, the power " converges to 0 as
N — oo. Thus the ratio r - —1 when N — oo while k < 1.
On the other hand when « > 1 the object k" becomes larger
and larger as N grows; thus the ratio can now be written as an
exponential r >~ —« 2V This is in agreement with the earlier
known results [2].

Extending the above treatment to the non-Hermitian sys-
tem (6 # 0), considering N to be odd and v = 1 for specificity
but without losing generality, we immediately see from (15)
and (16) that the ratio reads

1
TN+ (ke

As observed earlier, when « > 1, this ratio displays the ex-

ponential drop r ~ —e N2V in the large-N limit. When

e ? <k < 1, we find that the ratio reads

(18)

NO N (19)

r>~ —e

The ratio in this case also shows an exponential drop albeit
slower than the insulator case, viz., >~ —e %, 2N Interest-
ingly we see that while the zero modes exist in both nontrivial

T T (1, Ale) (1, Al
0 || (1.BlIY.) (1. Bly)
011 2 Al | =E | (2 A1¥:) (14)
o | L. Blve) (N. Blyr)

(

insulating and metallic phases, their scaling as a function of
system size has a characteristic difference: the drop is sharper
in the insulating phase in comparison to the metallic phase.

We notice that the scaling of zero-mode energies r as
a function of N is explicitly dependent upon the non-
Hermiticity parameter 6. As a result, the drop in the
zero-mode energies is not uniform, and systems with different
6 values show different scaling behavior. This dependence of
zero-mode energy scaling, being an explicit function of 6,
is an unpleasant feature. We wonder if we can get a better
understanding of this scaling phenomenon. Often in several
condensed matter systems, the technique of large-N expan-
sion is employed to understand better the underlying physics
[42,43]. In particular, this technique has found immense ap-
plications in the study of quantum phase transitions [44] and
is known to be a nonperturbative technique.

Now we implement the OBC in our problem by employing
the large-N technique, and we consider /N = constant (= 1)
in which case the determinant at hand reads

1
DetH = (—1)N(vN + (—I)N_lﬁeNewN)

1
N -1 N—-1_"_ N , 20
(v + (=1 i (20)
and the ratio now reads (for non-zero but small # and w around
1)
(1= 41— 4]
(1 4+ ML+ (ke?)N]

When « > 1, which corresponds to the nontrivial insulator
phase, both the exponentials k" and (ke’ )V grow indefinitely
as N — oo, and so the ratio can be approximated as

ey

r~ —

(= we)[=m&e] _ 1
r~— =——. (22)
(k™M)[(ke”)V] N?
This shows that the zero-mode energies are real and they fall
as zlv’ that is, Ey o = % and E_y = —Zi\,. We note that unlike

the usual OBC condition / = 0, here the fall of zero-mode
energies is primarily independent of the non-Hermiticity pa-
rameter 0 or k.

When the system is in the metallic phase, which means
e < k < 1, we find that the exponential «" converges to 0
as N — oo, while the exponential (ke’)Y grows indefinitely.

As a result, the ratio can be written as
L= geH' 1
1+ (ke )NV

= —. 23
N (23)
The above implies that the zero-mode energies are imaginary,
and they fall as LN, that is, E; o = \;W and E_y = _\;W'
Thus, the zero-mode energies in the metallic phase converge
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PBC, 6 =0.5
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[ww]

K

FIG. 3. Plots showing an agreement between analytically ob-
tained energy spectrum with PBC (top) and numerically obtained
energy spectrum for N = 300 with OBC (bottom). The real part of
energy is plotted as a function of x for 8 = 0.5. Apart from the zero
modes, the two spectra closely match.

to zero slower as \/Lﬁ rather than the % in the insulator phase,
but once again the scaling property is independent of the
Hamiltonian parameters. The imaginary energy of zero modes
as well as their slower convergence to zero with system size in
the metallic phase further indicate the nonrobustness of these
modes there.

The different scaling of zero-mode energy as a function of
N in the two topological phases displays a kind of universality
since the scaling property is sensitive only to the topology
and not the actual values of the Hamiltonian parameters. Ap-
parently this scaling behavior is not specific to the choice of
Hamiltonian parameters as vi = v, = v, w; = W, Wy = we?,
but rather is a feature displayed by the general non-Hermitian
chiral Hamiltonian (1) for any complex choices of v; » and
w2, as is shown in the Appendix.

The above discussion shows that the implementation of
OBC employing a large-N limit captures the topological
features of the model, the zero-energy modes, which begin
right from the metallic Mobius phase itself and extend to the
nontrivial insulator phase as well: ¥ > e¢~?. Nevertheless, the
physical significance of zero modes, which are embedded in
the gapless continuum of energy levels in the metallic phase,
is diminished in the Mobius region. The physical reason is that
there is no gap to distinguish these modes from the other in-
finitesimally close-by levels. As a result, these modes are not
robust compared to the zero modes in the nontrivial insulator

region. The plots in Fig. 3 of the real part of the spectrum
for both PBC and OBC show a close agreement, modulo
the zero modes, validating the above-presented analysis. The
above treatment also shows that the topological properties of
the system with OBC manifested as zero-energy modes are
well captured by the nontrivial value of the bi-orthonormal
geometric phase in both insulator and metallic phases. The
topological phase structure of this model can be summarized
as follows:

(A) Trivial insulator phase: k < e~?, wherein y (27) = 0.
The bands have cylinder topology.

(B) Nontrivial insulator phase: ¥ > 1, wherein y(2r) =
7. The bands have cylinder topology, and robust zero modes
exist.

(C) Mobius metallic phase: e ? <« < 1, y(27) is not
defined, but y(4m) = . The bands are merged into M&bius
strip topology, and zero modes exist but are not robust.

The above analysis further indicates that there is an absence
of bulk-boundary correspondence in the non-Hermitian SSH
model, when we consider the M6bius metallic phase as topo-
logically nontrivial, but the zero modes there are not robust.

III. DRIVEN NON-HERMITIAN SSH MODEL

We now discuss a scenario wherein the non-Hermitian SSH
model, defined by (1), is driven by an external electromagnetic
field represented by a vector potential A(t). The minimal
Hamiltonian that depicts such a driven model can be written
as [24]

N
Hp(t)= " (vln, B)(n, A| + vin, A)(n, B])
n=1
N-1
+ Z(we’A(’)m +1,A)(n, B

n=1
+ we A BY(n+1,A)])

+ [(we™D|1, AY(N, B + we’ 7AO|N, B)(1, A]).
(24)

In this discussion, we shall assume that the external elec-
tromagnetic field is sinusoidally varying in time: A(f) =
A sin Qt, with a period T = %’, where Ag is the amplitude
of the vector potential and €2 is its frequency. This provides
us with an interesting physical setup wherein the system
possesses two independent discrete translational symmetries

(assuming the PBC):

[Hp(1), T(a)] =0, and [Hp(r), U(T)]=0.

Here, U(T) represents the discrete time translation operator
for time period T: |p(t + T)) = U(T)|¢p(t)), where |¢(t)) is
some generic state.

Owing to the fact that the system at hand is periodically
driven in time, we wish to find the analogs of Bloch eigen-
states in this case, albeit which solve the time-dependent
Schrodinger equation as also respecting the Bloch property
spatially and temporally when the PBC is imposed in both
real space and time. The states obeying the Bloch property
in the temporal domain are well studied in the literature and
are referred to as Floquet states [24,25,45]. Let us denote the
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Floquet states obeying the spatial Bloch property as |Y, (k, t))
which are defined as

[Hp(t) — id,1|Yy (k, 1)) = 0, (25)
T(a)|Yy(k, 1)) = ¥V, (k, 1)), (26)
U(T)Yy(k, 1)) = e DTy, (k, 1)). 27

Here, the quasienergy &, (k) is the temporal analog of wave
vector k, and « is the band index. Akin to the wave vector,
the quasienergy is also ambiguous up to an addition of integer
multiples of €2 [45].

As observed earlier in the undriven SSH model, the geo-
metric phase and the topological aspects associated with the
system are captured by the cell periodic Bloch states. Here,
we can correspondingly define the cell periodic Floquet-Bloch
states |uq (k, 1)) as |Yy(k, 1)) = e @ T (k) uy(k, t)), which
solve the eigenvalue problem:

[T(=k)Hp(t)T (k) — id]lug (k, 1)) = ea(k)|ug (k, 1)), (28)

and obey T (a)luy(k,t)) = |ug(k,t)), and U(T)|uq(k, 1)) =
|ue (K, 1)).

This eigenvalue problem can be well tackled by going
over to the temporal domain Fourier space, by invoking
the completeness properties of the Fourier modes |m) =
e~ and using the Sambe inner product: ({(A, m|B, m')) =
1 fOT dt ") (A|B) [45]. This allows us to write the above

eigenvalue problem as

Z (| Hi()lm)) ((mlug (k, 1)) = e (k){(mlua (k, 1)),
T 29)
where the Floquet-Bloch operator Hi(t) =

[T(=k)Hp(¢)T (k) —id,]. This problem can be further
simplified by going over to the k space, in which case the
matrix elements of the Floquet-Bloch operator H;(t) can
be straight away evaluated and expressed using the Bessel
functions J,,(x) to read

(G [Ha0)lm)) = (10, 4), |o,B>)mm/,m(k>](§8:2:),

where
[Hm’,m(k)] =
—m’ng’,m v+ weik-lmfm’(AO) (30)
v+ we 0T, (Ag) —m' Q8 m .

So by going over to the spatial and temporal Fourier do-
main, the problem of finding the quasienergy spectrum for the
Floquet-Bloch problem (28) is now reduced to diagonalizing
the infinite-dimensional matrix [H,, ., (k)].

In general, in the absence of any other symmetries, ana-
lytical diagonalization of [H,, ,,(k)] for arbitrary values of
parameters is an arduous task. As a result, we are forced
to work with a judicious approximation, which renders this
diagonalization possible and maximally captures the accurate
quasienergy spectrum.

High-frequency driving. We note that the matrix [H,,, , (k)]
is dominated by the diagonal elements in the Fourier space
so long as Q> v, w, ¢, Jo(Ap). To the leading order in
this limit, we can approximate this matrix as being di-
agonal, neglecting the off-diagonal terms in the Fourier
space [24]:

[Hm’,m(k)] >~ _m/Q(Sm’,m + HO(k), (31)
where
_ 0 v+ weJy(Ag)
7'[O(k) - (U 4 we*ikJré}Jo(AO) 0 . (32)

This shows that the dynamics of each Fourier block is es-
sentially governed by the same nontrivial matrix Hy(k) while
only the diagonal part changes albeit inconsequentially since
the quasienergy is ambiguous up to addition of term m'Q2. As
a result, the essential dynamics of the system in this regime is
captured by the non-Hermitian matrix Ho(k).

Remarkably, we see that the structure of the matrix Ho(k)
is identical to that of H(k), encountered in (4), which
governs the dynamics of the undriven model. The matrix
Ho(k) is indeed H(k), albeit with a redefinition w — o =
wJy(Ap). With this identification, we have solved the eigen-
value problem for Hy(k), to find that the quasienergy band
structure is

e1(k) = £/ (et + v)(wef ik + v). (33)

Owing to the similarity with the energy band spectrum E (k)
of the undriven non-Hermitian SSH model, we can immedi-
ately infer that the quasienergy spectrum &4 (k) also realizes
distinct phases depending upon the value of ¥ = @w/v. In
particular, the quasienergy band merger takes place when
e % < & < 1, and the system becomes Mébius metallic in this
region, whereas in the other regions the quasienergy spectrum
displays a band gap and behaves as an insulator (see Fig. 1).
It is interesting to note that the parameter ¥ is a function of
driving potential amplitude Ay through the Bessel function
Jo(Ag), which is an oscillating function of Ay. Due to the
nonmonotonic dependence of ¥ on Ay, the system makes back
and forth transitions between the metallic and insulator phases
as Ap is increased monotonically. The last feature is neatly
brought out in Figs. 5 and 6.

The left and right eigenstates of Ho(k) are also respec-
tively the same as &1 and Wy in Egs. (6) and (7), with the
replacement w — . This allows us to apply the definition of
the bi-orthonormal geometric phase (10) in this driven case as
well, which reads

y+(@2m) =Arg [@+(0) - W1 (27)]

2
+ i/ dk @4 (k) - Wy (k). (34)
0

We note that the Pancharatnam-Zak phase is also quantized
in the units of 7 in the insulator phases of the driven non-
Hermitian SSH model. Upon explicit calculation, we find
that the ratio & separates the trivial and nontrivial insulat-
ing phase of the driven model. When & > 1, the system is
in a nontrivial insulating phase characterized by y+(27w) =
7. For 0 <& <e?, the system behaves as a trivial band
insulator, wherein yL(27) = 0. In the metallic phase, we
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FIG. 4. Geometric phase y in a driven non-Hermitian SSH
model as a function of vector potential’s amplitude (Ay) and ratio
k (=w/v) for non-Hermiticity parameter 0 = 0.75 (a), and the same
as a function of Ay and 6 for x = 1.5 (b). Here the blue region
represents the trivial insulating phase [y (27r) = 0], while the yellow
region indicates the nontrivial insulating phase [y(27) = w]. The
green region denotes the Mobius metallic phase [y (4m) = 7].

deduce that the two-circuit Pancharatnam-Zak phase y. (47)
is the proper geometric invariant with the value m. In
Fig. 4, we plot the geometric phase as a function of Ay,
0, and k, bringing out the phase diagram of the driven
non-Hermitian system.

The above analysis of the driven non-Hermitian SSH
model was performed while committing to PBC. Neverthe-
less, we wonder if the nontrivial insulating phase has a
manifestation in zero-quasienergy eigenmodes in the OBC
case of this driven model. To investigate this possibility, we
consider the Hamiltonian in (24), where we correctly im-
plement the OBC by employing a large-N limit as / = 1/N.
Akin to the real-space analysis of the undriven SSH model,
we now discuss the Floquet eigenvalue problem of the above
Hamiltonian in real space:

[HD(t) - lat]"pu) = S/Lw/p) (35)

Using the completeness property of the Fourier modes |m)
and the localized states |n, s), and employing the Sambe inner
product, this Floquet problem reads

> (ml{n, sIUHD () — id 11, ) lm ) (o' |, |9,)

= &, ((m|(n, s|Yu)). (36)

Similarly to the real-space analysis of the undriven model, the

object {(m|{n, s|[Hp(t) — id,]|n’, s')|m’)) can be expressed in
the form of a matrix, keeping only a finite number of Fourier
modes (called M), and then be numerically diagonalized to
yield the quasienergy spectrum.

In Fig. 5, we compare the quasienergy spectrum ob-
tained using the above procedure for the driven Hermitian
(6 = 0) and non-Hermitian (6 7% 0) SSH model. While the
quasienergy spectrum is real for the Hermitian model, it is
complex for the non-Hermitian model. Thus, we plot the real
part of the quasienergy spectrum for the driven non-Hermitian
SSH model. The Mdbius strip phase appears and reappears
only in the driven non-Hermitian model, and it is absent in
the driven Hermitian SSH model. In Fig. 6, we then com-
pare the above quasienergy spectrum with the one obtained
analytically from approximate description of (33) using PBC,
considering a lattice of N = 70 and number of Fourier modes

OBC, N =70, M =61,Q = 10,v/w = 0.5, = 0

o 7=
o o o

Quasienergy
|
o o
t o

|
—
o

I
=
o

=70, M =61,Q =10,v/w =0.5,0 = 0.5

= =N

o w o
=
—

Y
I
i
'"uuumumuu""
I
i
L

|
e
Tt o w»

g

S

H

H

:

:
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1114 |
—1.04i ml":g
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|
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o
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=

|
N
o

1 2 3 4 5 6
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FIG. 5. Quasienergy spectrum versus amplitude of vector po-
tential (Ap) of a driven Hermitian SSH model (top) and a driven
non-Hermitian SSH model (bottom) at high-frequency driving and
with OBC. The Mobius strip phase appears and reappears only in

the driven non-Hermitian model. All parameters are shown at the
headings.

M = 61. Apart from the zero modes for the spectrum obtained
with OBC, we observe a good agreement between the spectra
in the two cases. The phase diagrams in Fig. 4 show that the
topological features of the OBC spectra found in Figs. 5 and
6 are well captured by the geometric phase relations obtained
using PBC earlier.

Low-frequency driving. In the above discussion, it is
assumed that the driving frequency €2 is much larger
than the other parameters in the model. In the opposite
limit, if the driving frequency 2 <« v, w, then it im-
plies that the rate of change of Hamiltonian 0,Hp(?) =
Q0,Hp(¢) (where dimensionless variable ¢ = Qt) is much
smaller than unity. It is known that in such a sce-
nario, the dynamics is adiabatic [41] and the system
evolves through the instantaneous Bloch states |V, (k, A(p))),
such that Hp(p)|W+(k, A(9))) = E+(k, A(9))|VL(k, A(p)))
where |W.(k, A(@))) = [Wo(k + A(p))) and E.(k, A(p)) =
E,i(k+ A(¢)). The corresponding cell periodic instanta-
neous Bloch states are then given by |ui(k,A(p))) =
T(—k)|WL(k,A(p))), which solve the right eigenvalue
problem: Hy () lus (k, A(9))) = Ex(k, A(p)lus(k, A(@))),
where

Hioag = (10,4), 10, B)IH (K +A<¢)>](§O g:) (37)
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PBC, v/w =0.5,6 =

Real part of quasienergy

OBC, N =70, M =61,Q =10,v/w = 05,0 = 1

PRI T
55 :::::;' :::.'- N
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FIG. 6. Plots showing an agreement between analytically ob-
tained quasienergy spectrum with PBC (top) and numerically
obtained quasienergy spectrum with OBC (bottom). The real part of
quasienergy is plotted as a function of amplitude of vector potential
(Ay) for a driven non-Hermitian SSH model at high-frequency driv-
ing. Apart from the zero modes for the spectrum with OBC, the two
spectra closely match. All parameters are shown at the headings.

and H(k + A(p)) reads

0 welk+HA@1 4y
Hk+A(p)) = (weg .

ilk+A(p)] +v 0
(38)

From here it is evident that given an initial state with a
fixed wave vector say ko, the net effect of time evolu-
tion due to A(g) is the same as changing ko to ko + A(p).
Thus the state of the system at any instant of time is ex-
pressible as |ux(ko, A(@))) = |us(ko + A(p))) [23,46]. As
the parameter ¢ changes, the state effectively sweeps the k
space so as to acquire the geometric phase yL solely de-
pending upon the ratio «, as shown in the earlier section.
Thus, we see that the driving potential, in this case, is un-
able to alter the system’s topological structure as in the
high-frequency case.

Intermediate-frequency driving. Finally, we here discuss
the intermediate frequency of driving when 2 ~ v, w. In this
regime, the exact analytical solution of the eigenvalue prob-
lem in (28) is intractable, and the approximate approaches
employed in the earlier two frequency regimes fail. This is
because the matrix [H,, (k)] as defined in (30) does not
get simplified, since different Fourier blocks in [H,y (k)]
get strongly coupled to each other in the intermediate-
frequency regime. Nevertheless, we can numerically study the

quasienergy spectrum of the driven SSH model in this regime
applying PBC and OBC with [ = 1/N.

In Fig. 7, we plot the quasienergy spectrum of the driven
Hermitian SSH model for PBC and OBC. We immediately no-
tice crossing and avoided crossing of two quasienergy modes
within the band gap in the PBC case. We further observe
that these modes manifest as zero-quasienergy edge modes
in the OBC case. The occurrence of such a phenomenon is
well known in the literature, albeit in the context of higher-
dimensional lattice models having nontrivial topology, e.g.,
the Qi-Wu-Zhang (QWZ) model, which are well explored
[47]. The above features of higher-dimensional models are
found to survive and get altered in the presence of non-
Hermiticity at the intermediate frequency of driving, which
we display in Fig. 8. While the size of the bulk band gap and
the number of crossing and avoided crossing of quasienergy
modes inside a bulk band gap increase with higher non-
Hermiticity, the overlap of quasienergy bands indicating the
Mobius metallic-like phase is also clearly visible in the non-
Hermitian model. The above observations suggest that the
topological phases in this intermediate regime, as captured
by the level crossings and edge modes, are different from
those found in high- and low-frequency regimes. From the
study of higher-dimensional lattice models, it is well estab-
lished that such topological features are not described by
geometric phase as defined in (10), but are rather captured
by higher-dimensional topological invariants like the Chern
number [2,47,48].

IV. OUTLOOK

In this paper, the topological aspects of a non-Hermitian
generalization of the SSH model periodically driven by an
external electromagnetic field are studied. A bi-orthonormal
conception of the Pancharatnam-Zak geometric phase is con-
structed for the undriven model in the PBC framework. We
have found that this geometric phase correctly captures the
model’s topological phase structure, which comprises triv-
ial and nontrivial insulating phases and an exotic Mobius
metallic phase. We also see the zero-energy modes when
the model is investigated with OBC. We note that imple-
menting an OBC in this model requires care, and when
implemented using the large-N limit, consistent results are
obtained. We further discover that while the metallic phase
is a topologically nontrivial phase, it does not support robust
zero-energy modes, as displayed by the nontrivial insulating
phase.

Subsequently, the topological phase structure of the driven
non-Hermitian SSH model is studied using the Floquet ap-
proach. It is found that this model also admits trivial and
nontrivial insulator phases and the Mobius metallic phase.
Interestingly, the driving potential’s strength acts as a control
parameter guiding the system through the various topological
phases. We observe that the bi-orthogonal geometric phase
corresponding to the Floquet-Bloch states, in this case, acts
as a topological index characterizing the different topological
phases at high- and low-frequency driving. Nevertheless, we
could not resolve the nature of the topological phases at the
intermediate-frequency driving, which might require a further
generalization of the bi-orthogonal geometric phase to higher
dimensions.
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FIG. 7. Quasienergy spectrum versus amplitude of vector potential (Ay) of a driven Hermitian SSH model at intermediate-frequency
driving with PBC (top) and OBC (bottom). Two quasienergy modes display crossing and avoided crossing with Ay within a bulk band gap in

the PBC case. All parameters are shown at the headings.

The present work unifies and extends the earlier works
on Hermitian geometric phases due to Pancharatnam [39],
Zak [46], and the results on the non-Hermitian geometric
phase of Garrison and Wright [41] and others [17]. Although
several earlier studies define various topological invariants,
which can capture and classify the topological phase struc-
ture of the driven non-Hermitian model, the bi-orthonormal
geometric phase considered here is a straightforward
elementary construction accomplishing this task. There have
been earlier works dealing with topological aspects of driven
non-Hermitian lattice models, wherein different kinds of
non-Hermiticity and driving mechanisms were employed
[16,18,25,49-51]. We hope that the approach presented
here will shed light on topological aspects in such models
as well.
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APPENDIX

For the general non-Hermitian Hamiltonian, wherein no
assumption is made about the choice of parameters v, and
wy 2, it is straightforward to see that the determinant of H
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FIG. 8. Real part of quasienergy spectrum versus amplitude of vector potential (A,) of a driven non-Hermitian SSH model at intermediate-
frequency driving with PBC (top) and OBC (bottom). While the size of the bulk band gap and the number of crossing and avoided-crossing
quasienergy modes inside the bulk gap increase with higher non-Hermiticity, the overlap of quasienergy bands is also clearly visible for the

non-Hermitian model. All parameters are shown at the headings.

[defined in (1)] reads
Det H = (—D"[v) + (=D" 1w ][v) + (- DV 1w}].
(AD)
The ratio r for the general case is then given by
_ DetHlopent _ (v) = ywd) () — yuy) (A2)

DetHlpgen (o) +wd) (o) + wb)
Here, we have assumed N to be odd for specificity, and it
can be checked that the end results are not affected by this
assumption. Further analysis can be simpliﬁed by working

with real parameters p; » and ¢ », defined as & = = p1e'® and

12 = pye'. The ratio r now reads

(1= more™) (1 = yore™®)
(1 pleon) (15 pfiee)
This expression for » immediately shows the phase diagram
of this general model and the zero-mode energy scaling. It is
clear that the system depending upon the Hamiltonian param-
eters exhibits three different phases classified as follows:
(a) Trivial insulator phase: when p; < 1 and p, < 1, no
zero mode exists.
(b) Nontrivial insulator phase: when p; > 1 and p; > 1,
zero modes exist, and their energies fall as ﬁ
(b) Metallic phase: when p; < 1 and p; > 1 or when p; >
1 and p, < 1, zero modes exist, and their energies fall as %

(A3)

N
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