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Josephson junctions in two-dimensional topological insulators with embedded magnetic domains can host a
number of topological phases, in particular, Jackiw-Rebbi solitons and Majorana zero modes. These different
nontrivial phases appear in such junctions for multiple-domain magnetic islands, showing a rich multigap
structure. Features related to the interplay between superconductivity and magnetism in these systems cannot be
easily discerned looking at behavior of the Andreev spectrum and the concomitant dc Josephson effect. Instead,
the thermal conductance is very sensitive to the nature of the junction and the domain structure of the magnetic
island. We present a detailed analysis of these properties in the case of a topological Josephson junction with
a single- and two-domain magnetic island. Configurations hosting soliton magnetic modes lead to a peculiar
behavior of the thermal conductance relative to the thermal quantum, characterized by a negative slope as a
function of the temperature, just above the superconducting critical temperature. At low temperatures, these
junctions also show characteristic coherence patterns in the behavior of the thermal conductance as a function of
the Josephson phase bias and the angle between the magnetizations of the domains.
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I. INTRODUCTION

Heterostructures based on two-dimensional topological in-
sulators (2DTIs) have received a great deal of attention in
the last years for their interesting physics and promising
applications [1–4]. The edge states defining helical one-
dimensional conducting channels offer a large variety of
quantum phenomena in combination with nanomagnets [5–7]
and superconductors [8–13].

A prominent example is the platform for topological super-
conductivity proposed by Fu and Kane [14], which consists of
a Josephson junction made of a Kramers pair of helical edge
states in close proximity to an s-wave superconductor and a
magnet embedded in the junction. For a magnetic moment
having a component perpendicular to the natural quantization
axis of the 2DTI, Majorana bound states are formed. The con-
comitant signatures in the behavior of the Josephson current
have been investigated in several works [14–27].

The key role played by a magnetic island placed inside the
2DTI is to introduce a boundary with a backscattering process
in the Dirac system constituted by the helical edge states.
Without the superconducting ingredient, this phenomenon
leads to interesting effects in the electron transport [28–33]
and in thermoelectric [34–36] properties. The fact that the
magnetic island may have multiple domains further extends
the scenario to interesting topological structures. The sim-
plest of such situations corresponds to two domains with
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opposite orientations of the magnetic moments, which is a
realization of the so-called Jackiw-Rebbi (JR) model of a
one-dimensional Dirac system with a space-dependent soliton
mass [37,38]. Similarly to the discrete Hamiltonian by Su-
Schrieffer-Heeger [39] (SSH), this model is known to host
topologically protected modes within the spectral gap. The
high thermoelectric response generated as a consequence of
these modes was recently pointed out in Ref. [35]. JR physics
on junctions with embedded superconductors was recently
addressed also in Refs. [40,41], while the emergence of other
states with fractional charges in helical edge states with many-
body interactions has been also studied [42–44].

Thermal and thermoelectric effects in 2DTIs in contact
with superconductors have recently attracted significant inter-
est [45–54]. It is remarkable that topological properties, which
typically have associated spectral features close to zero energy
may also have an impact on the thermal response. In this
sense, interference patterns in topological Josephson junctions
were studied in Refs. [45,50]. The aim of the present work is
to analyze the thermal conductance of a topological Josephson
junction with an embedded magnetic island. A sketch of the
device is shown in Fig. 1, which consists of a Josephson
junction constructed by the proximity effect to a 2DTI with
a magnetic island contacting the two states of the Kramers
pair in one of the edges. The junction is biased with a small
temperature difference, δT , and with a phase difference, φ,
between the two superconducting pairing potentials. Here, we
will focus on a magnetic island with one or two magnetic
domains. Our goal is to identify features in the thermal trans-
port that could indicate the topological nature of the junction.
We show that the thermal conductance is very sensitive to
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FIG. 1. Top and lateral view of the device. Two semi-infinite
superconductors at slightly different temperatures, T and T + δT ,
and with a phase bias φ, proximized to a 2DTI in the quantum spin
Hall regime. A magnetic island, of total length Lm, composed with
two magnetic domains of lengths L1 and L2, respectively, is placed at
distance lS from both superconductors, and contacted to the Kramers
pair of helical states localized at one of the edges. The magnetic
moments of the two domains are oriented with a relative tilt θ .

the characteristics of the junction, in particular, to the domain
structure of the magnetic island. Interestingly, systems hosting
JR resonant states lead to a peculiar behavior of the thermal
conductance, such that it decreases for increasing temperature
just above the superconducting critical temperature.

The work is organized as follows. In Sec. II we present
the model for the Kramers pair of 2DTI edge states in contact
with s-wave superconductors with a phase bias and magnetic
domains with different orientations of the magnetic moments.
In Sec. III we discuss the scattering matrix approach used
to analyze the topological junction. In Sec. IV we present
our main results concerning the Andreev spectrum and the
thermal conductance obtained in different configurations. Sec-
tion V is devoted to summary and conclusions.

II. MODEL

The system under investigation is depicted in Fig. 1. It
consists of a 2DTI strip attached to two superconducting
electrodes with a phase difference φ placed on top and kept
at slightly different temperatures, T, T + δT (see light blue
and red blocks in the sketch). Due to the proximity effect, the
two superconductors induce a pairing potential in the portion
of the 2DTI beneath it. In addition, a magnetic island with
one or two domains (yellow blocks) with the magnetization
directions forming an angle θ are put in contact with one of
the pairs of edge states of the strip. The lengths of the two
magnetic domains along the edge are L1 and L2, respectively,
and they are placed at distance lS from each superconducting
electrode. The width of the TI strip is assumed to be large
enough such that the helical states (represented by solid lines)
on the two edges are uncoupled from one another and there-
fore we can restrict our analysis to a single Kramers pair.
The Hamiltonian describing the system taking into account
the proximity-induced pairing potential and the coupling to
the magnetic island, expressed in the basis of Nambu spinors

�(x) = (ψ↑(x), ψ↓(x), ψ†
↓(x),−ψ

†
↑(x))T , reads

H =
∫ +∞

−∞
dx�†(x)[H0(x) + HM (x) + HS (x)]�(x). (1)

The term

H0(x) = (−ih̄vF ∂x )σzτz − μσ0τz (2)

describes the free Kramers pair, with z as the natural quanti-
zation axis of the topological insulator. The terms

HM (x) = J �m(x) · �σ , HS = �
(x) · �τ (3)

describe, respectively, the effect of the coupling to the mag-
netic island and the BCS superconducting potential. The
matrices σ0, �σ = (σx, σy, σz ) and τ0, �τ = (τx, τy, τz ) operate
on the spin and particle-hole degrees of freedom, respectively.
The pairing potential induced by superconducting proximity
is described as follows,

�
(x) = [ �
(φ/2)�(−x) + �
(−φ/2)�(x − xS )], (4)

with �
(±φ/2) = 
0(cos φ/2,± sin φ/2, 0) where φ is the
phase bias and xS is the distance between the two super-
conductors, which are considered to be semi-infinite. The
magnetization of the island is accounted for by

�m(x) = �m1[�(x − lS ) − �(x − x1)]

+ �m2[�(x − x1) − �(x − x2)], (5)

where �mj = mj (cos θ j, sin θ j, 0), for j = 1, 2 and x1 = L1 +
lS and x2 = L2 + x1. The total length of the magnetic island
is Lm = L1 + L2. The case with θ1 = θ2 and m1 = m2 ≡ m
effectively reduces to a single magnetic domain of length
Lm. For sake of simplicity, we assume a fully anisotropic
magnetic moment with a vanishing ẑ component of the mag-
netization (direction parallel to the natural quantization axis
of the topological insulator). Notice that the component of
the magnetization perpendicular to ẑ is the only mechanism
introducing a backscattering processes in the present problem,
and it is precisely this ingredient that is the one generating
nontrivial effects in the two-terminal transport properties.

For simplicity we discuss results corresponding to the con-
figuration where the magnetic island occupies all the space of
the junction, in which case lS = 0 and xS = Lm. However, for
lS �= 0, we find qualitatively similar features.

In the absence of superconducting contacts (
 = 0), the
component of the magnetization perpendicular to the natural
spin quantization axis of the helical edge states is analogous
to a mass term in the Dirac system and opens a gap in the
spectrum. There are several consequences when this mass
is not uniform in space. The magnetic island indeed plays
the role of a barrier for the propagating helical states and
it must be long enough in order to completely suppress the
tunneling [35]. Hence, in order to have a well defined gap in
the spectrum, for which the tunneling probability is exponen-
tially suppressed, the magnetic island must be larger than the
characteristic length

ξM = h̄vF

Jm
, (6)

Jm being the magnetic energy gap in the limit of uni-
form magnetization along infinite-length helical modes. In
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summary, the inequality Lm > ξM must be satisfied in order to
show a clear suppression of the transmission probability due
to the opening of the magnetic gap. Another interesting effect
introduced by a nonuniform magnetization takes place in the
case of two magnetic domains with exactly opposite orien-
tations, i.e., θ = π , which realizes the JR model [37], where
two consecutive masses with different sign define a soliton
domain wall in a one-dimensional Dirac system. This model,
along with its SSH discrete version [39], hosts a topological
zero mode at the interface. As analyzed in Ref. [35], this mode
survives as a resonant state in the magnetic gap, shifted away
from zero energy for a wide range of relative tilting angle θ

in the orientations of the magnetic moments, and the width
of this resonance scales with the inverse of the length of the
magnetic domains. The reason for its stability is due to the
fact that the system realizes a Goldstone-Wilczek soliton, as
discussed in Refs. [28,55,56].

In combination with superconductivity, for a finite mag-
netization embedded in the junction between the two super-
conductors, a topological state develops, with Majorana zero
modes localized in the boundaries between the supercon-
ductors and the magnetic island [14,16,21]. Interestingly, a
magneto-Josephson duality exists [16], such that the role of
the magnetization can be interchanged with the superconduct-
ing potential. This can be understood by noticing that in the
Hamiltonian for the device, Eq. (3), the terms with the Pauli
matrices acting on the spin degrees of freedom, �σ , have the
same structure as those with Pauli matrices �τ , which act on
the particle-hole degrees of freedom. Due to the s-wave nature
of the superconducting order parameter, the relevant physical
parameter characterizing the orientation of the magnetic mo-
ments is the relative tilt θ . Furthermore, this angle is related
through the above mentioned duality to the phase difference φ

between the two superconductors.
Importantly, in the presence of the superconducting con-

tacts, the other characteristic length in the problem is the
superconducting coherence length ξS = h̄vF /
. As we will
see, most of the interesting effects in the behavior of the
thermal conductance arise from the interplay between the
magnetic and superconducting spectral gaps. The conditions
under which they are most remarkable correspond to compa-
rable values for the two characteristic lengths ξM and ξS .

III. SCATTERING MATRIX APPROACH

We rely on the scattering matrix approach to evaluate the
subgap Andreev spectrum, as well as the transmission func-
tion ruling the behavior of the thermal conductance. In the
absence of inelastic processes, dc transport is determined by
the quantum mechanical matrix S, which yields scattering
properties at energy ε, of a phase-coherent, noninteracting
system described by the Hamiltonian H of Eq. (1). The scat-
tering problem in terms of the S matrix can be formulated as

�α
(i,σ )

∣∣
out = Sα,β

(i,σ )( j,σ ′ )�
β

( j,σ ′ )

∣∣
in, (7)

where summation is implicit on repeated indices. This
equation relates incoming/outgoing states ( j, σ ′)/(i, σ ) with
{σ, σ ′} = {↑,↓} labeling the spin channel at the respective
superconducting lead i, j = L, R. In Eq. (7), {α, β} = {ẽ, h̃}

label the quasiparticles (QPs) and quasiholes (QHs) in the
superconductors. Following the standard procedure presented
in Ref. [57], we computed the full scattering matrix of the
system

S = SL ◦ SM ◦ SR. (8)

The matrices SL,R describe the left and right interfaces of the
2DTI with the superconductors. These matrices are combined
with the matrix SM describing the 2DTI edges in contact with
the magnetic domain. In the Appendix we present in more
detail the calculation of the different matrices SL,R (Sec. A 1)
and SM (Sec. A 2). By taking the trace over spin channels of
the scattering matrix of Eq. (8) we can compute the probability
scattering coefficients [58]

Pα,β
i, j =

∑
σ,σ ′

∣∣Sα,β

(i,σ ),( j,σ ′ )

∣∣2
, (9)

which represent the reflection (i = j) or transmission (i �= j)
probabilities of a quasiparticle of type β in the lead j to a
quasiparticle of type α in lead i.

Andreev bound states and thermal conductance

Under suitable conditions [59,60], Andreev bound states
develop with energies below the superconducting gap 
.
These states are crucial in the behavior of the Josephson
current. To calculate the Andreev spectrum for |ε| < 
, we
proceed as in Refs. [21,59]. Recall that for the nonsupercon-
ducting region we have �out = SM�in, with �in,out defined
as in Eq. (7) [see also Eq. (A10)]. For the subgap regime
only perfect Andreev reflection is allowed, which leads to
�in = SA�out, being

SA = exp

[
2i

ε




lS
ξS

− i arccos
( ε




)]

×
(

0 Diag[eiφ/2, e−iφ/2]

Diag[e−iφ/2, eiφ/2] 0

)
. (10)

By combining these two expressions we obtain the so called
compatibility equation [59]

Det[1 − SASM] = 0, (11)

which we solve numerically to investigate the Andreev bound
state spectrum.

Given the scattering matrix, we can also calculate the
heat current generated as a response to the temperature bias
δT . This quantity provides complementary information to the
Andreev spectrum, since it depends only on the quasiparti-
cle spectrum above the gap. We focus on small δT , such
that linear response applies. Indeed the corresponding heat
current in this regime is proportional to δT and the thermal
conductance is the natural transport coefficient. We find it
convenient to characterize the response to the thermal bias
in terms of the relative thermal conductance κth(T ), which is
expressed with respect to the quantum of thermal conductance
GT = π2k2

BT/3h. It reads [58,61,62]

κth(T ) = − 1

GT

∫ ∞




ε2 ∂ f (ε)

∂ε
T (ε)dε, (12)
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where f (ε) = [exp( ε
kBT ) − 1]−1 is the Fermi-Dirac distribu-

tion. Note that according to this definition, the relative thermal
conductance is dimensionless and expresses clearly the ratio
between the actual conductance and the maximum achievable
thermal conductance for a quantum channel which is GT . The
transmission function, T (ε), can be written in terms of the
probability scattering coefficients as

T (ε) =
∑

α,β=ẽ,h̃

Pα,β
R,L , (13)

with Pα,β
R,L given by Eq. (9). We recall that in the next section,

for the sake of simplicity, we will focus on lS = 0. Similar
results are obtained when lS �= 0.

IV. RESULTS

We now turn to discuss results for the Andreev spec-
trum obtained by solving Eq. (11) for two configurations:
the single-domain magnetic island (Sec. IV A) and the two-
domain island (Sec. IV B) in the Josephson junction. The
properties of the Andreev states strongly affect the behavior
of the dc Josephson current. Although the quasiparticle states
above the gap also contribute to the Josephson current, the
signatures of the topological phase, like the jumps in the
current-phase relation in the dc case and the periodicity in
the ac case, fully depend on the behavior of the Andreev
states [14,16,17,24,27]. Instead, the latter do not play any
direct role in the response to the difference of temperature δT
between the two superconductors. The latter manifests itself
in the thermal conductance, which we analyze for both con-
figurations in Sec. IV C and Sec. IV D. As already mentioned,
we focus on configurations with lS = 0, since this parameter
does not affect the main results we aim to discuss. In addition,
we find it sometimes convenient to characterize the strength
of the magnetic coupling with respect the proximized super-
conducting gap 
0 through the dimensionless parameter

� = Jm


0
= ξS

ξM
. (14)

Importantly, as highlighted in the last equality, this parameter
also defines the ratio between the magnetic and superconduct-
ing lengths.

A. Andreev spectrum of a junction with a single-domain
magnetic island

The Andreev bound states for the configuration corre-
sponding to a magnetic island with a single magnetic domain
have been already analyzed in Refs. [14,17,21]. Here, we
review those results in order to have them as a reference.

Figure 2 presents the Andreev spectra calculated for sev-
eral lengths Lm of the magnetic island. The left panel of
Fig. 2 shows the spectrum for � = 0, which corresponds
to a junction hosting bare helical edge states between the
superconducting contacts. We can identify two degenerate
states corresponding to a Kramers pair at the time-reversal
symmetric case φ = 0, mod(2π ). The degeneracy is broken as
φ advances with one of the states evolving to a higher energy
and hybridizing with the quasiparticle continuum for |ε| > 
.
A crossing point at zero energy takes place at φ = π . For

FIG. 2. Andreev spectrum of the junction with a single magnetic
domain of different lengths. Panels (a), (b), and (c) correspond to
� = 0, 0.5, and 1, respectively. Gray bands indicate the continuum
spectrum. Different colors correspond to different lengths Lm/ξS =
0.25, 1, 2.5 of the magnetic island.

� �= 0 time-reversal symmetry is broken even for φ = 0, and
the degeneracy is consequently lifted. According to calcula-
tions [14,21], Majorana modes are stabilized at the boundaries
of the magnetic domain in the present case. Hence, the An-
dreev states with lowest absolute value of the energy result
from the hybridization of these Majorana modes. These two
states have different parity and cross at φ = π . Since they are
completely decoupled from the quasiparticle continuum, the
spectrum is effectively 4π -periodic and so is the ac Josephson
current if parity is conserved, in contrast to the � = 0 case,
which is 2π -periodic due to the hybridization of the subgap
states with the continuum. An interesting feature to highlight
is the fact that the Andreev spectra are qualitatively different
in the case � < 1 [panel (b) of Fig. 2] and � � 1 [panel (c) of
Fig. 2]. For � < 1, several Andreev bound states may exist in
the gap for large enough junctions, in addition to the ones with
lowest absolute energy. Instead, for � � 1 the spectrum has
only two Andreev states, which result from the hybridization
of the two Majorana zero modes.

B. Andreev spectrum of a junction with a magnetic island with
two domains

The spectrum for two domains of lengths L1,2 = Lm/2,
equal magnetizations �1,2 = � = Jm/
, and relative tilt θ =
π in the orientation of the magnetization of the domains is
presented in the left panel of Fig. 3. For φ = 0, this system
is invariant under spatial inversion symmetry with respect to
the center of the junction, i.e., x = xS/2, and the simultane-
ous inversion of the magnetic moments and spin. For this
reason, in this configuration, the Andreev bound states are
degenerate for φ = 0, mod(2π ) (see the level crossing in the
left panel of Fig. 3). In general this degeneracy is broken and
a gap appears in the spectrum. A representative example is
illustrated in the right panel of Fig. 3. This panel shows a
zoom at φ = 0, mod(2π ) for configurations which slightly
depart from the symmetric case with Lm/ξS = 1 (red curve
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FIG. 3. Andreev spectrum of the junction with two magnetic do-
mains. Left panel correspond to � = 1 and θ = π and each domain
of length L1 = L2 = Lm/2. Different colors correspond to different
lengths, Lm/ξS = 0.25, 1, 2.5 of the full magnetic island. Gray band
indicates the continuum spectrum. Black box indicates zoom on
spectrum around φ = 0, mod(2π ) for two domains. Right panel: An-
dreev spectra for two domains, in the range covered by the box of the
left panel. Different lines correspond to a single parameter variation:
L2 = 0.45ξS (light blue), θ = 0.99π (yellow), and �2 = 0.9 (violet).
Red line is the same in both panels.

in both panels of Fig. 3). Namely, for the light blue curve
we set L2 = 0.45ξS , for the yellow curve θ = 0.99π , and for
the violet we set �2 = 0.9 while all the other parameters are
equal to the symmetric case. The plot in red lines is a reference
equal to the red one in the left panel. For all the configurations
examined, the crossing at φ = π is topologically protected,
as in the case of a single magnetic domain. The behavior as a
function of the coupling � is also similar to the case of a single
magnetic domain analyzed in Fig. 2. Namely, for � > 1 the
spectrum is composed of only two Andreev states crossing at
φ = π , which can be identified as hybridized Majorana states.

C. Thermal conductance of a junction with a single-domain
magnetic island

The relative thermal conductance, defined in Eq. (12), is
completely determined by the behavior of the transmission
function given in Eq. (13). The analytical expression of the
transmission function for a system with a magnet and without
superconductors has been presented in Refs. [35,63,64]. Here,
instead, we discuss the numerical results of the transmis-
sion function introduced in Eq. (13) for the hybrid system
with the superconducting contacts. In this configuration, in
addition to the magnetic gap, the transmission function de-
pends on the effect of the superconducting gap which has a
strong temperature dependence. We approximated the usual
self-consistence dependence of the BCS theory for the super-
conducting gap as a function of the temperature, with 
(T ) =

0 tanh(1.74

√
TC
T − 1), 
0 being the corresponding value at

T = 0. Since in the present problem 
0 is the gap induced by
proximity effect on the 2DTI, it is expected to be smaller than
the corresponding value in the bulk of the superconducting

0 5
0

1

S=2S=1S=0.5

FIG. 4. Transmission function for a single magnetic domain of
length Lm embedded in the Josephson junction with � = 2 (ξM =
ξS/2) and φ = 0. Solid lines correspond to T = 0.44TC while dashed
lines correspond to T = 1.1TC . Vertical line indicates the magnetic
gap. Other details are in the figure.

contact. On the other hand, the magnetic gap does not change
in magnitude within the temperature range we will consider
hereafter.

Therefore, the transmission function depends on the tem-
perature T , as well as on the amplitude of the magnetic
coupling, governed by the dimensionless parameter � and the
length of the magnet Lm. This is illustrated in Fig. 4, where
results for the transmission function are presented for the
dimensionless magnetic coupling � = 2 and several lengths
of the magnetic island at temperatures T < TC (solid lines)
and T > TC (dashed lines). Notice that for T > TC the super-
conducting gap is closed. Hence, in this case, the transmission
function coincides with the one for a magnetic island contact-
ing the helical edge states without superconductivity analyzed
in Ref. [35].

Focusing on the plots of Fig. 4 we see that the quasiparticle
transmission is strongly suppressed for the case Lm = 2ξS

(corresponding to Lm = 4ξM) up to energies ε � 2
0, for both
temperatures. This is a clear manifestation of the fact that a
gap opens in the spectrum of the edge states when the length
of the island is Lm � ξM , while for T > TC the gap is not fully
developed for islands of length Lm � ξM or shorter. When the
magnetic gap is not fully formed the superconductivity can
suppress the transmission. Indeed, within the low-temperature
regime shown in solid lines, superconductivity dominates, and
the superconducting gap erases all the spectral features with
energies ε < 
(T ). This implies that for the short magnets
considered in the figure (with length Lm < ξM), the spectrum
is still gapped, while there is a finite spectral weight at higher
temperatures when the superconductivity is suppressed. On
the other hand at energies ε > 
(T ), the transmission func-
tion has a structure of peaks and minima that depends on Lm.
For low temperatures, the features above 
(T ) also depend
on the superconducting phase difference φ (that is set to zero
in Fig. 4). In conclusion, for the long islands, like the one
shown in the figure with Lm = 2ξS = 4ξM , we can clearly see
the dominance of the magnetic gap over the superconducting
one. In fact, there is a gap of �
0 (see vertical dashed line)
in the transmission function in both regimes of temperatures,
in strong contrast with the cases of the shorter magnets, with
Lm = ξM , 2ξM . This will be reflected in the behavior of the
thermal conductance, to be discussed shortly.

After the analysis of the transmission function we discuss
the relative thermal conductance, κth. Indeed, the competi-
tion between the magnetic and the superconducting gaps is
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FIG. 5. Relative thermal conductance κth (T ) (left axis, solid line)
and its temperature derivative dκth

dT = κ ′
th(right axis, dashed line) for

a magnet with a single magnetic domain embedded in the Josephson
junction with φ = 0. Top panel corresponds to � = 1 and bottom
panel corresponds to � = 2. Black dashed vertical line indicates T =
TC . Inset: Zoom of κ ′ near T = TC . Other details are in the figure.

particularly evident in the behavior of this response func-
tion as a function of temperature. This is shown in Fig. 5.
The upper panel corresponds to � = 1 (where ξM = ξS) and
the lower one to � = 2 (where ξM = ξS/2). In all the plots
we can clearly identify the exponentially small value of the
thermal conductance at low temperatures as well as the high-
temperature saturation to the quantum bound κth = 1 [65–67]
for Lm → 0. The limit where Lm = 0 corresponds to the junc-
tion without magnetic island, in which case, the transport
channel is fully open only when the superconducting gap
closes, for T > TC .

At finite Lm, the magnetic gap remains open even when the
superconducting gap is closed, and the thermal conductance
is smaller than the quantum bound. This feature is enhanced
with increasing � (compare both panels of the figure). The
changes in κth as the superconducting gap closes are more
visible in the behavior of its derivative κ ′

th = dκth/dT , which
is shown in each panel with dashed lines. At T = TC the
derivative has a discontinuity, as expected when the phase
transition happens between a superconducting regime and a
nonsuperconducting one. For T > TC the derivative of the
thermal conductance monotonically increases with both � and
Lm, while the opposite behavior takes place for T < TC .

When T > TC there is no superconductivity; hence there
cannot be defined a fixed phase bias φ in the setup. On the
other hand, when T < TC there exists a phase difference φ

in the Josephson junction which introduces quantum interfer-
ence in the behavior of the thermal conductance. We better
analyze the features related to this effect in Fig. 6, which
shows the behavior of κth as function of φ and Lm for a fixed
temperature T < TC and different values of � in the different
panels. The limit � = 0, corresponding to the junction without
magnetic island, has been previously analyzed in Refs. [46,50]
and is shown in panel (a). The main feature to highlight is
the oscillatory response which is even and 2π -periodic in φ
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FIG. 6. Relative thermal conductance of the junction with a sin-
gle magnetic domain with temperature T = 0.44TC . Different panels
correspond to different ratios � = Jm/
0. Panel (a) corresponds to
� = 0, panel (b) to � = 0.5, and panel (c) to � = 1. Inset in panel
(c) is κth as a function of Lm/ξS; blue line corresponds to � = 0, red
line corresponds to � = 0.5, and green line corresponds to � = 1.
Solid lines are for φ = 0 and dashed lines are for φ = π .

and oscillatory but decreasing on Lm/ξS , as shown in panel
(b) for � = 0.5. Further details on the oscillatory behavior as
a function of the length are presented in the inset of the panel
(c), where results for κth as function of Lm are shown only
for φ = 0, π and � = 0, 0.5, 1 up to length Lm = 20ξS . We
see that for finite � < 1, the pattern of damped oscillations
is very similar to the one without magnet (corresponding to
� = 0). Notice in particular that besides a shift and a smaller
amplitude, the period of the oscillations is basically the same
in the cases with � = 0, 0.5. Albeit, as the strength of the
magnetic coupling is increased and overcomes � = 1, this
response is much less sensitive to φ and decreases very fast
with the length. This is consistent with a behavior dominated
by the magnetic gap, even for temperatures below TC , where
the superconducting gap is finite. In the inset of panel (c) it can
be appreciated how the thermal conductance tends to some
limit when Lm � ξS that depends on � but does not depend on
φ. This saturation value is achieved as a limit of the damped
oscillations for � < 1, while it is approached fast and without
oscillations for � � 1.

D. Thermal conductance for a magnetic island with two
magnetic domains

The transmission function for the magnet with two do-
mains is shown in Fig. 7 for T < TC (solid lines) and T > TC

(dashed lines), for θ = π and � = 2 with L1,2 = Lm/2. In the
absence of superconducting contacts, or equivalently, for T >

TC , the main feature is the presence of resonant peaks inside
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0

1

S=2S=1S=0.5

5
0

FIG. 7. Transmission function for two magnetic domains of
length L1 = L2 = Lm/2 with opposite orientation, θ = π , and equal
magnetization m, embedded in the Josephson junction for � = 2
and φ = 0. Solid lines correspond to T = 0.44TC while dashed lines
correspond to T = 1.1TC . Vertical dashed line indicates the magnetic
gap. Other details are in the figure.

the gap, as was discussed in Ref. [35]. In this case we can
clearly distinguish the resonance that develops at ε = 0. This
peak has a width that decreases with the length of the island
Lm and for these parameters it corresponds to a JR zero mode.
For other relative orientations θ �= π the resonance is shifted
from ε = 0, albeit remains being a robust feature within the
gap for a wide range of parameters [28,35,55,56]. The value of
the expected magnetic gap, �
0, corresponding to the island
with uniform magnetization is indicated as a reference with
a vertical line in the figure. In the plots corresponding to
T < TC we can clearly see the effect of the superconducting
gap; i.e., the transmission function is vanishing for ε < 
(T ).
Anyway the JR resonance in the gap leads to a remarkable
behavior of the thermal conductance as a function of the
temperature, which is presented in Fig. 8 for a configuration
with two domains with equal length, L1,2 = Lm/2, equal mag-
netization, and opposite orientation, i.e., θ = π . As in the case

FIG. 8. Relative thermal conductance κth (T ) (left axis, solid
lines) and its derivative κ ′

th (right axis, dashed line) for two magnetic
domains with opposite orientations, equal length Lm/2, and equal
magnetizations m1 = m2 = m for φ = 0. Top panel corresponds to
� = 1 and bottom panel corresponds to � = 2. Black dashed hor-
izontal line on both panels indicates κ ′

th = 0 while vertical line
indicates T = TC . Inset shows a zoom of κ ′ near T = TC . Other
details are in the figure.

of the island with a single domain, when Lm → 0, κth tends to
saturate at the quantum bound for T > TC and is exponentially
small at low temperatures. However, we now see that the
derivative κ ′

th is negative right above TC . We can trace back
this peculiar feature to the development of the resonant peak in
the gap as the temperature overcomes the critical temperature.
From the mathematical point of view, this can be understood
by calculating the derivative with respect to the temperature
on Eq. (12), which leads to

κ ′
th = 2κth

T
− 1

GT T

∫ ∞

0
ε3 ∂ f

∂ε

∂T
∂ε

dε, T � TC . (15)

The first term on the right-hand side is due to the contribution
of GT (recall that this quantity is linear with T ) and is always
positive. Instead, the sign of the second term depends on the
sign of the derivative of the transmission function. Therefore,
since ∂ f /∂ε < 0, if ∂T /∂ε is negative and the contribution of
the second term is large enough, the derivative of the relative
thermal conductance may be negative. This is precisely the
case of the configuration with two magnetic domains due to
the resonance where, within the window defined by the func-
tion −∂ f /∂ε, the transmission function T (ε) has a negative
slope, which leads to a large contribution to the integral
when multiplied by ε3. This contribution becomes small as
the length of the island increases and the resonance becomes
narrow enough. In conclusion, the result of having κ ′

th negative
just above TC can be regarded as an indication of the presence
of a JR peak in a Josephson junction.

This effect is analyzed in more detail in Fig. 9, where κ ′
th

is shown as function of the relative orientation of the islands
and the length for fixed � in each panel at a temperature just
above TC . We can see that there is a wide range of lengths and
orientations close to θ = π where κ ′

th is negative. These cases
coincide with configurations leading to resonant peaks of the
transmission function inside the magnetic gap. Importantly,
the width of the resonant peak scales with the inverse of
the length of the magnetic island (see plots in dashed lines
in Fig. 7). Hence, the impact of this feature in generating a
negative derivative of the relative thermal conductance just
above TC becomes negligible as the length of the magnetic
island increases. This shows that the JR peak can be identified
by the negativity of κ ′

th only if Lm � ξS , i.e., for sufficiently
short magnetic islands.

As in the case of a single-domain configuration, we expect
some dependence of the thermal conductance on φ in the low-
temperature regime with T < TC . This is analyzed in Fig. 10
for the case of two magnetic domains with opposite orien-
tations of the magnetic moments (θ = π ). The interference
pattern is still even and 2π -periodic in φ but different from
the one observed in Fig. 6 for a single domain. However, like
in that case, as the length of the magnetic island increases
and becomes significantly larger than ξM , the magnetic gaps
becomes dominant, and the features introduced by φ become
suppressed. This is highlighted in the inset shown in the
bottom panel of the figure and we can pose similar obser-
vations to those in the case of the single magnetic domain.
Namely, for � � 1, where the magnetic gap dominates, the
conductance is practically nonsensitive to the superconducting
phase φ and it decreases rapidly with Lm. Instead, for � < 1,
thermal conductance depends on φ and displays oscillations
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FIG. 9. Derivative of the relative thermal conductance, κ ′
th, at

T = 1.01TC as function of the relative tilt θ in the orientation of
the magnetic moments with Lm/2 = L1 = L2 and φ = 0. Panels (a),
(b), and (c) correspond to � = 0.5, 1, 2 (with ξM = 2ξS, ξS, ξS/2),
respectively. The black line in each panel indicates the boundary for
the region with κ ′

th < 0.

as a function of Lm. The pattern of such oscillations is very
different and much less regular than the one observed in the
junction without magnetic island (corresponding to � = 0).
Hence, in the regime of � < 1, the interference pattern of the
thermal conductance provides clear signatures of the domain

FIG. 10. Relative thermal conductance of the junction with two
magnetic domain with opposite magnetic moments and L1 = L2 =
Lm/2 at temperature T = 0.44TC . Upper and lower panels corre-
spond to � = Jm/
0 = 0.5, 1 (ξM = 2ξS, ξS). The inset in the lower
panel shows κth as function of Lm/ξS . Red line is for � = 0.5 and
green line is � = 1 for φ = 0 (π ) for solid (dashed) lines.

FIG. 11. Relative thermal conductance κth (T = 0.44TC ) as a
function of the tilting angle in the orientation of the magnetic do-
mains θ and the phase difference of the superconducting potentials
φ for � = 1 (ξM = ξS) and L1 = L2 = Lm/2. Panel (a) corresponds
to Lm/ξS = 0, panel (b) to Lm/ξS = 0.5, panel (c) to Lm/ξS = 1, and
panel (d) to Lm/ξS = 2.

structure of the magnetic island. Instead, for � � 1, the rapid
suppression of the thermal conductance is an indication of
the effect of the magnetic island, but no information on the
domain structure can be extracted from that behavior.

Finally in Fig. 11, we analyze the combined effect of θ

and φ on the behavior of the thermal conductance for dif-
ferent lengths of the magnetic island, a magnetic coupling
corresponding to ξM = ξS where we expect the maximal in-
terplay between superconductivity and magnetic scales, and
setting T < TC . The figure highlights the fact that not only the
superconducting phase bias φ generates interference patterns
but also the tilting angle θ . Furthermore, we notice that the
specific features as function of φ are similar to those as func-
tion of θ . This is not surprising in view of the duality relation
between these two parameters [16]. Notice that such duality
implies that similar physical properties should be observed
if the magnetic islands are interchanged with the supercon-
ductors, with θ playing the role of φ and vice versa, due
the similar structure of the massive terms, as is explicit in
Eq. (3). In the Josephson-junction configuration studied here,
we can observe signatures of the aforementioned duality, in a
context where the superconductors have infinite length, while
the magnetic islands are finite. In fact, we see that panel (a),
which corresponds to a purely superconducting junction, has
a pattern of straight vertical features, reflecting the sensitivity
of the thermal conductance only with the phase bias φ. In
the opposite limit of a long enough magnetic island shown
in panel (d), the magnetic effect becomes dominant and the
pattern tends to follow horizontal straight lines, indicating
a sensitivity on the tilt θ but losing the dependence on φ.
Configurations between these two cases can be observed in
panels (b) and (c). These results show that the interplay of
the tilting angle and phase difference may be an interesting
phenomenology in the studied system.
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V. CONCLUSIONS

We have analyzed the Andreev spectrum and the ther-
mal conductance of a one-edge Josephson junction of a 2D
topological insulator hosting a magnetic island with one and
two magnetic domains. We have shown that the Andreev
spectrum, which defines the behavior of both the dc and ac
Josephson current, is qualitatively similar for these two con-
figurations of islands. Instead, the behavior of the thermal
conductance shows several features as a function of φ and
the temperature T that characterize the nature of the junction.
We have analyzed in detail all these properties. Most of them
can be understood as a consequence of a competition between
the temperature-dependent superconducting gap 
(T ) below
the superconducting critical temperature TC and the magnetic
gap, which typically remains constant within this temperature
range.

A remarkable result is the fact that for configurations with
two magnetic domains with different orientations, which host
JR resonant modes, the thermal conductance decreases with
the temperature, just above the superconducting critical tem-
perature. This is a peculiar behavior that could be useful to
identify the existence of these intriguing modes. So far, no
experimental signatures of JR resonances have been reported
and this signature in the thermal conductance can be useful
to identify them. Notice that the Josephson current is not
sensitive to the existence of this resonant state. The Josephson
current is defined by the derivative of all the negative energies
of the spectrum of the superconducting junction with respect
to the phase bias, including the quasiparticle continuum and
the subgap Andreev states. We have shown that the spectra
for systems where the magnets have different orientations are
similar. Furthermore, they are also similar to those without
any magnet. These results rule out the Josephson current as an
appropriate witness of the existence of a JR mode. More im-
portantly, the peak in the transmission probability associated
with the JR resonance develops when the superconducting
gap closes, in which case there is no Josephson effect at
all. Instead, the thermal conductance, being a nonequilib-
rium quantity, depends not only on the spectrum but also
on the transmission properties of the system, irrespectively
of the fact that the system is superconducting or not. The
development of the JR resonance above TC generates a large
transmission probability at low energies, which significantly
affects the behavior of the thermal conductance.

In the low-temperature regime, for T < TC , the thermal
conductance in the two-domain configuration shows inter-
ference patterns as a function of both the phase bias of the
superconductors and the angle between the magnetic mo-
ments. This feature is particularly clear for islands where the
magnetic and superconducting lengths are similar, ξM ∼ ξS .

According to estimates presented in Ref. [35], reasonable
configurations of the magnetic island, compatible with the
present state of the art experiments, should have magnetic
lengths below ξM ∼ 10–20 μm, which is of the same order
of magnitude of the superconducting coherence length ξS and
energy gaps of Jm ∼ 1.2–2.4 K. These correspond to a regime
with � ∼ 1, 2, similar to the one analyzed in the present work,
where the different features of κth as a function of φ below
TC , as well as the corresponding behavior as a function of

temperature close to TC , clearly distinguish the different type
junctions.
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APPENDIX: SCATTERING MATRIX

In this Appendix we present the details of the calculations
for the different scattering matrices SL,R and SM introduced
in Eq. (8) of the main text. We proceed by writing first the
scattering matrices SL,R describing the left and right interfaces
of the 2DTI with the superconductors (in Sec. A 1) and then
the scattering matrix SM describing the 2DTI edge in con-
tract with the magnetic domain (in Sec. A 2). In Sec. A 3 we
combine them in order to get the full scattering matrix of the
system.

1. Scattering matrix of the SC-2DTI interface

The scattering matrix equation for SL, obtained by solving
the wave function matching problem at the interface between
the left superconducting lead (SC) and the edge state of the
2DTI, can be written as⎛

⎜⎜⎜⎜⎝

c̃−
L

b̃−
L

c+
L

b+
L

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 rL
ẽ,h̃

t L
ẽ,e 0

rL
h̃,ẽ

0 0 tL
h̃,h

tL
e,ẽ 0 0 rL

e,h

0 tL
h,h̃

rL
h,e 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

c̃+
L

b̃+
L

c−
L

b−
L

⎞
⎟⎟⎟⎟⎠, (A1)

where we indicate with c∓
L /b∓

L the incoming and outgoing
quasiparticles/quasiholes in the TI region and with c̃±

L /b̃±
L

the incoming and outgoing quasiparticles/quasiholes in the
superconductor. The index L labels the interface with the left
superconductor and ± indicate the direction of propagation of
quasiparticles along the x axis (+ for right movers and − for
left movers). Notice that with this basis the scattering matrix
can be written as

SL =
(

rL t ′
L

tL r′
L

)
, (A2)

where rL and r′
L are blocks concerning particles reflected at the

interface, whereas tL and t ′
L are blocks concerning particles

transmitted through the interface. The obtained coefficients
rL
α,β and tL

α,β represent the reflection and transmission am-
plitudes respectively of an incoming particle of type β to a
particle of type α at the interface.
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The coefficients of Eq. (A1) can be compactly written as

rL
γ ,γ̄ = γ

v

u
eiαei φ

2 ,

rL
γ̃ , ˜̄γ = −v

u
e−iβ�(ε − 
),

tL
γ ,γ̃ =

√
u2 − v2

u
e

i
2 (α−β )e−iγ φ

4 �(ε − 
),

tL
γ̃ ,γ = γ̄

√
u2 − v2

u
e

i
2 (α−β )eiγ̄ φ

4 �(ε − 
), (A3)

where the QP/QH index (γ = e, h) on the left-hand side is
converted in a simple sign (γ = +,−) on the right-hand side
and the bar represents the opposite element (for instance ē =
h). In Eq. (A3) we defined the functions

u =
√




2ε
e

1
2 arccos ε


 ; v =
√




2ε
e− 1

2 arccos ε

 , (A4)

and the phases α = 2 ε



lS
ξS

, β = 2 lS
ξS

√
( ε



)2 − 1, with ξS =
h̄vF /
 the coherence length, 
 the superconducting gap, and
lS the length of the 2DTI measured from the superconductor
as depicted in Fig. 1. A similar result for the scattering ma-
trix SR at the right interface can be obtained. The scattering
coefficients can be obtained from Eqs. (A3) by replacing
(rL

α,β, tL
α,β ) → (rR

β,α, tR
β,α ) and φ → −φ.

2. Scattering matrix of the magnetic island

Following Refs. [30,35,63,64], here we compute the scat-
tering matrix SM describing the edge of the 2DTI in contact
with a magnetic island. In order to do this we start by writing
the evolution operator Û e(xN , x0) = ∏N

k=1 Û e(xk, xk−1) where
the superscript e makes reference to the electron part and N
indicates the total number of magnetic domains, with

Û e(xk, xk−1) = σ0 cos λk + i�nk · �̂σk sin λk, (A5)

where Lk = xk − xk−1 is the length of the corresponding mag-
netic domain. We have introduced λk = Lk

√
ε2 − ε2

⊥/(h̄vF ),
with �nk = (iεk⊥ sin θk,−iεk⊥ cos θk, ε)/

√
ε2 − ε2

⊥ and θk is
the orientation of the domain in the plane of the sample.

The inverse of the evolution operator is the transfer matrix

(U e)−1 = T e =
(

T e
11 T e

12

T e
21 T e

22

)
, (A6)

which in turn is related to the scattering matrix as follows,

Se
M = 1

T e
22

(−T e
21 1

1 T e
12

)
, (A7)

satisfying the following scattering equation:

(c−
L , c+

R )T = Se
M (c+

L , c−
R )T

. (A8)

A similar relation links the incoming and outgoing holes:

(b−
L , b+

R ) = Sh
M (b+

L , b−
R ), (A9)

where Sh
M (ε) = −σzSe∗

M (−ε)σz [21]. By combining Eqs. (A8)
and (A9), we obtain the scattering matrix for the magnetic
island, which reads

SM =
(

rM t ′
M

tM r′
M

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

Se
M,11 0 Se

M,12 0

0 Sh
M,11 0 Sh

M,12

Se
M,21 0 Se

M,22 0

0 Sh
M,21 0 Sh

M,22

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(A10)

satisfying the scattering equation

(c−
L , b−

L , c+
R , b+

R )T = SM (c+
L , b+

L , c−
R , b−

R )T
.

Here we can see that each submatrix takes a block-diagonal
form since in the magnetic domain an electron cannot be
converted into a hole or vice versa in contrast to the case of
the SC-2DTI interface which only allows an electron (hole)
to be reflected as a hole (electron) or be transmitted as a QP
(QH) [see Eq. (A1)].

3. Combination of the scattering matrices

By following Ref. [57] we combine matrices SL of Eq. (A2)
and SM of Eq. (A10) and obtain

SL ◦ SM =
(

r t ′
t r′

)
, (A11)

in which

r = rL + t ′
LrM[1 − r′

LrM]−1tL,

r′ = r′
M + tM[1 − r′

LrM]−1r′
Lt ′

M,

t = tM[1 − r′
LrM]−1tL,

t ′ = t ′
L[1 − rMr′

L]−1t ′
M, (A12)

where 1 stands for the 2 × 2 identity matrix. Finally, by ap-
plying the same procedure but adding SR we obtain the full
scattering matrix of the system:

S = SL ◦ SM ◦ SR. (A13)
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