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The scattering theory for two crossing metallic single-walled carbon nanotubes of finite length exposed to an
electromagnetic field has been developed based on a synthesis of the quantum transport formalism and classical
electrodynamics. The model of the point contact has been developed to be incorporated into the Hallén and
Pocklington equations for crossing carbon nanotubes. The influence of the contact conductance and position as
well as the angle between the tube axes on the tube polarizability has been analyzed in the range of 1 GHz to 10
THz. The physical mechanisms responsible for the electromagnetic interaction between crossing tubes with zero
and nonzero intertube contact conductance are shown and discussed. The influence of the coupling between the
tubes on the localized plasmon resonance in them has been demonstrated.
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I. INTRODUCTION

Electromagnetic properties of both individual carbon nan-
otubes (CNTs) and CNT networks have been actively studied
during the past two decades [1–8]. The theory of electromag-
netic (EM) wave scattering has been developed for individual
single-walled CNTs (SWCNTs) [2–4], a SWCNT bundle [9],
multiwalled CNTs [10], curved CNTs [11], SWCNTs with
mesoscopic insertion [8], and SWCNTs with dielectric coat-
ing [12]. Many interesting electromagnetic phenomena have
been predicted and discovered in CNTs including slowed-
down surface waves [1], the antenna effect in finite-length
CNTs [2–4], the screening effect due to the strong depolariz-
ing field [12], near-field enhancement [13], the Purcell effect
[14], and specific thermal radiation [15]. The first antenna
resonance or, in other words, localized plasmon resonance
(LPR) in CNTs has been observed as a broad peak in the
conductivity spectra of CNT films [16]. Peak frequency has
been shown to vary from 3 to 10 THz when the tube length
decreases from 1 μm to 300 nm [6]. Moreover, the magnitude
of the terahertz conductivity of CNT films strongly depends
on the CNT length demonstrating relatively weak coupling
between adjacent CNTs in their conductive network in the
terahertz range [17].

Though the electromagnetic response has been reported for
a periodic CNT array [18–20] and bundles of CNTs [9], in-
depth analysis of the interaction between even two nonparallel
CNTs has not been done yet. Also, an electromagnetic theory

of the CNT network taking into account both electromagnetic
interaction and intertube transport between adjacent CNTs has
not been developed yet. Note that modeling of the coupling
at the nanoscale is quite complicated as it should take into
account both the electromagnetic coupling and overlapping
of the wave functions [21–23]. Currently, only the mutual
impedance of two nontouching CNT antennas has been stud-
ied [2,24].

Recently, a simple Waterman-Truell approach has been
successfully applied in Ref. [25] to describe the conductivity
spectrum of CNT film in the terahertz range. The main ap-
proximation of this approach is the omission of the intertube
interaction. Justification of this simplification has not been
given yet due to the high complexity of the problem. Let us
point out the inconsistencies between the experimental data
and the theoretical description based on the Waterman-Truell
approach in the frequency range below the LPR peak: (i) The
frequency dependence of the measured effective conductivity
of the CNT film is weaker than that predicted by the theory
[26]; (ii) the concentration dependence of the effective con-
ductivity follows power-law behavior with the exponent being
larger than unity [27,28], whereas the Waterman-Truell ap-
proach predicts linear dependence; and (iii) the dielectric loss
tangent of CNT film appears to be much higher than that ob-
tained from the theory [17]. We believe that introduction of the
intertube electron transport into the model of electromagnetic
interaction between the CNTs can reduce inconsistencies be-
tween the experimental data and the theoretical description.
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FIG. 1. Geometry of two crossing CNTs of lengths L1 and L2.
Axes z and z2 coincide with the axes of the first and second CNTs,
respectively. Also, r1 and r2 denote the distances between CNT edges
and the crossing point. Vectors E(0)

± show the direction of the incident
fields taken for numerical calculations in Sec. III.

Here, we present a scattering theory for two interacting
SWCNTs as a first step toward developing a theory of CNT
networks. We formulate an electrodynamic boundary-value
problem for two crossing carbon nanotubes of finite length
exposed to an electromagnetic field. The problem is reduced
to both Hallén and Pocklington equations. The conductance
of the contact between CNTs is described by the quantum
transport theory of the mesoscopic structure. The intertube
current is taken into account (i) by a discontinuity of axial cur-
rents in CNTs and (ii) by an introduction of the extra charges
at the crossing points of the CNTs. The polarizabilities of
crossing CNTs are calculated and analyzed. The influence of
the tunneling and electromagnetic coupling between the ad-
jacent tubes on the localized plasmon resonance in the CNTs
is shown. Our study provides a justification of the applicabil-
ity of the Waterman-Truell approach for a CNT network at
and above the frequency of the LPR. On the other hand, we
demonstrate that the intertube coupling cannot be excluded
from consideration in the frequency range below the LPR.
This paper is a continuation of our research on the synthesis of
the electrodynamics and the theory of electrical nanocircuits
[8].

II. THEORETICAL FRAMEWORK

A. Boundary-value problem

Let a system of two crossing single-wall carbon nanotubes
of finite length be located in a host medium with permittivity
ε (host relative permittivity is εh = ε/ε0, ε0 = 8.85 × 10−12

F/m) (see Fig. 1). Let us designate the CNTs by index m,
m = 1, 2. The mth tube is of radius am and length Lm and has
axial surface conductivity σm. The angle between the CNT
axes is θ (θ � π/2), and the shortest distance between them
is D + a1 + a2, where D is a distance between the surfaces of
the tubes at the crossing point (D � 0.25 nm; see Ref. [29]).

Let us choose two cylindrical coordinate systems (ρ, φ, z)
and (ρ2, φ2, z2) so that the axes z and z2 coincide with the axes
of the first and second CNTs, respectively (see Fig. 1). The
first CNT occupies the region z ∈ [0, L1], and the intertube
contact occurs at the point with coordinate z = r1, 0 < r1 <

L1. The second CNT occupies the region z2 ∈ [0, L2], and the
intertube contact takes place at z2 = L2 − r2, 0 < r2 < L2.

The system of the crossing CNTs is exposed to an in-
cident electromagnetic field with the axial components on
the surface of the first and second tubes being E ex

1z (z, t ) =

E (0)
1z (z)exp(−iωt ) and E ex

2z2
(z2, t ) = E (0)

2z2
(z2)exp(−iωt ), re-

spectively. Here, ω is an angular frequency. Note also that
am � λ, where λ is a wavelength of the incident field. Further-
more, we shall consider the low-frequency range (<10 THz)
where only intraband electron transitions are allowed in the
CNTs. As these transitions contribute to the axial conductivity
[30], only the axial electric surface current densities jm with
polar symmetry are excited in the mth CNT; then, j1(φ, z) =
j1(z), and j2(φ2, z2) = j2(z2).

We shall model CNTs as finite-length hollow cylin-
ders with axial surface conductivity found from quantum-
mechanical considerations in the tight-binding approximation
[1]. For a small-radius (<2 nm) metallic CNT, the surface
conductivity is given by [1]

σm(ω) = 2ie2υF

π2h̄am(ω + iν)
, (1)

where υF is the Fermi velocity for a CNT, υF � 106 m/s; h̄
is the reduced Planck constant; e is the electron charge; and ν

is the electron relaxation frequency, ν = τ−1, where τ is the
electron relaxation time. We shall neglect the influence of the
adjacent tube on the intrinsic tube conductivity σm within
the contact area, as this influence is rather weak [29].

We suppose that the axial current on each tube has a polar
symmetry even in the presence of intertube tunneling. Then
the current on the first CNT satisfies the following boundary
conditions at the contact point, z = r1:

j1(r1 + 0) − j1(r1 − 0) = It/(2πa1), (2)

∂ j1
∂z

∣∣∣∣
z=r1−0

= ∂ j1
∂z

∣∣∣∣
z=r1+0

, (3)

where It is an intertube tunneling current taken to be directed
from the second to the first CNT [see Fig. 2(a)]. Condition
(2) stems from Kirchhoff’s law, while condition (3) expresses
a continuity of the charge distribution at point z = r1 [the
relation between the charge and current densities is shown in
Eq. (45)]. The absence of concentrated charges on the first
CNT edges must be ensured by the edge conditions for the
current

j1(0) = j1(L1) = 0. (4)

Similar boundary conditions are true for the current j2 on
the second CNT in the coordinate system (ρ2, φ2, z2)

j2(L2 − r2 + 0) − j2(L2 − r2 − 0) = −It/(2πa2), (5)

∂ j2
∂z2

∣∣∣∣
z2=L2−r2−0

= ∂ j2
∂z2

∣∣∣∣
z2=L2−r2+0

, (6)

j2(0) = j2(L2) = 0. (7)

Let us note that the current discontinuity in (2) and (5)
leads to the localization of charges −q and +q, q = iω−1It ,
at the point of junction on the first and second CNTs, respec-
tively. They are unphysical as their density is infinite. Those
charges should be compensated in our model by the charges
induced by intertube current It . Indeed, the intertube current
It can be modeled as a dipole with the charges +qt and −qt ,
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FIG. 2. (a) Scheme of two CNTs with the tunnel junction at z =
r1. It is a current through the junction. I1, I2, I3, and I4 are currents in
CNTs on opposite sides with respect to the junction. For simplicity,
tubes are shown to be parallel; in general, they could be nonparallel.
(b) Same as (a) except that the tunneling current element is replaced
by the dipole with the charges +qt and −qt , qt = iω−1It , on the CNT
surface at z = r1. (c) Same as (b) except that the charges +qt and
−qt are replaced by the azimuthally symmetrical homogenous axial
current It having a jump at z = r1 from It down to 0 in the first CNT
and from 0 up to It in the second CNT, respectively.

where

qt = iω−1It . (8)

The charges +qt and −qt are distributed on the infinitely thin
rings of radius a1 and a2 on the surface of the first and second
CNTs, respectively, at the point of junction [see Figs. 2(a)
and 2(b)]. In this case, the infinite charge density due to the
current “jump” in CNTs is compensated completely by the
charge density caused by the intertube current.

We shall formulate the boundary-value problem concern-
ing only the first CNT in the coordinate system (ρ, φ, z);
for the second CNT, it can be done in the same way in
the system (ρ2, φ2, z2). The scattered electromagnetic field
induced by the current j1 can be expressed in terms of the
electric Hertz potential �(r) = �(ρ, z)ez which satisfies the
Helmholtz equation

(∇2 + k2)� = 0, (9)

where ez is a unit vector along the z axis, k = √
εhω/c is the

wave number, and c is the speed of light in a vacuum. The
scattered fields have the following nonzero components:

E (1)
ρ = ∂2�

∂z∂ρ
, E (1)

z =
( ∂2

∂z2
+ k2

)
�, H (1)

φ = iεω
∂�

∂ρ
.

(10)

Expressions (10) can be used to find the field scattered by the
first CNT on the surface of the second CNT.

The boundary conditions for Eq. (9) for the first CNT can
be written as [1]

∂�

∂ρ

∣∣∣∣
ρ=a1+0

− ∂�

∂ρ

∣∣∣∣
ρ=a1−0

= j1(z)

iωε
, z ∈ (0, L1), (11)

∂�

∂ρ

∣∣∣∣
ρ=a1+0

= ∂�

∂ρ

∣∣∣∣
ρ=a1−0

, z ∈ (−∞, 0) ∪ (L1,+∞),

(12)

�|ρ=a1+0 = �|ρ=a1−0, −∞ < z < +∞. (13)

Let the electromagnetic field produced by the current j2 be
defined on the surface of the first tube as E(2)

1 (a1, φ, z). Since
only the azimuthally symmetric component of this field con-
tributes to the axial current in the first CNT, we assume that
E (2)

1z (ρ = a1, φ, z) = E (2)
1z (ρ = 0, z) ≡ E (2)

1z (z). Similarly, let
E (1t )

1z and E (2t )
1z be z components of the electric fields induced

on the first CNT by the charges +qt and −qt , respectively.
The total axial field on the surface of the first CNT is

E tot
z (a1, z) = E (0)

1z (z) + E (2)
1z (z) + E (2t )

1z (z) + E (1t )
1z (z)

+
(

∂2

∂z2
+ k2

)
�(a1, z), (14)

where the last term is the field scattered by the first CNT [see
E (1)

z in Eqs. (10)].
The surface current density on the surface of the first CNT

in the local approximation satisfies Ohm’s law:

j1(z) = σ1E tot
z (a1, z), (15)

The intertube current can be found as

It = Gd (U1 + U2), (16)

where Gd is the two-terminal intertube conductance that can
be found from the four-terminal Landauer formalism (see
Appendix A); U1 (U2) is the intertube voltage caused by the
current density j1 ( j2) and charge +qt (−qt ).

It has been found from measurements [31] that the con-
ductance of the intertube junction between metallic CNTs is
in the range of 0.04G0 to 0.13G0, where G0 = e2/(π h̄). Theo-
retical calculations predict that Gd depends on the (i) crossing
angle [32,33], (ii) contact distance and contact force [29,34],
(iii) interlinking bonds [35], and (iv) presence of physisorbed
molecules [36] or linker atoms [37].

To obtain the unique solution of the boundary-value prob-
lem for two crossing CNTs, the boundary conditions must be
supplemented by radiation conditions [38].

B. Pocklington-type equation

Let us now present a system of Pocklington-type equations
with the exact kernels for two crossing CNTs. The solution
of the Helmholtz equation (9) with boundary conditions (11)–
(13) is sought as a single-layer potential for the field scattered
by the current j1:

�(ρ, z) = ia1

εω

∫ L1

0
j1(z′)G(ρ, z − z′)dz′, (17)
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where

G(ρ, z) =
∫ 2π

0

exp
(
ik

√
a2

1 + ρ2 − 2ρa1 cos φ + z2
)

4π

√
a2

1 + ρ2 − 2ρa1 cos φ + z2
dφ.

(18)

Substitution of (17) into (14) allows one to obtain the Pock-
lington integro-differential equation for the first CNT.

Let us first find a scalar potential ϕ = −∂�/∂z from (17).
Replacing ∂G/∂z → −∂G/∂z′, integrating by parts, and tak-
ing into account (2) and (3), we arrive at

ϕ(ρ, z) = − ia1

εω
[ j1(0)G(ρ, z) − j1(L1)G(ρ, z − L1)]

− ia1

εω

(∫ r1−0

0
+

∫ L1

r1+0

∂ j1(z′)
∂z′ G(ρ, z − z′)dz′

)

− ia1

εω
[ j1(r1 + 0) − j1(r1 − 0)]G(ρ, z − r1). (19)

Because of the edge conditions (4), the terms with j1(0) and
j1(L1) equal zero in (19). The last term in (19), comprising
j1(r1 + 0) − j1(r1 − 0), determines the field produced by the
charge −q, q = iω−1It , which appears due to the current dis-
continuity at z = r1 according to (2). This term is equal in
magnitude but opposite in sign to the potential ϕt produced by
the charge +qt on the first CNT:

ϕt (ρ, z) = iIt

2πεω
G(ρ, z − r1). (20)

The axial electric field E (1t )
z produced by the charge +qt is

E (1t )
z (ρ, z) = −∂ϕt (ρ, z)/∂z. The intertube voltages U1 can be

found as follows:

U1 = ϕ(a1 + D, r1) + ϕt (a1 + D, r1) − ϕ(a1, r1)

− ϕt (a1, r1). (21)

Intertube voltage U2 produced by the current j2 and charge
−qt can be found in a way analogous to (19)–(21). The axial
field produced simultaneously by the current j1 and charge
qt is

∂2�

∂z2
+ k2� + E (1t )

z = ia1

εω

(∫ r1−0

0
+

∫ L1

r1+0
dz′

×
[
∂ j1(z′)

∂z′
∂G(ρ, z − z′)

∂z

+ k2 j1(z′)G(ρ, z − z′)
])

. (22)

After substitution of (22) into (14) at ρ = a1 and taking
into account (15), we arrive at the Pocklington-type equation
for the first CNT

j1(z)

σ1
= E (0)

1z (z) + E (2)
1z (z) + E (2t )

1z (z)

+ ia1

εω

(∫ r1−0

0
+

∫ L1

r1+0

∂ j1(z′)
∂z′

∂G(a1, z − z′)
∂z

dz′
)

+ ia1

εω

∫ L1

0
k2 j1(z′)G(a1, z − z′)dz′. (23)

The field E (2)
1z + E (2t )

z produced by the current j2 and charge
−qt can be found by analogy to (22). Equation (23) must be
supplemented by Eq. (16), Pocklington-type equation (B1) for
the second CNT (see Appendix B), and boundary conditions
(2)–(7). In solving the system of the resulting equations (23)
and (B1), we used suitably smooth subdomain basis functions
for the current expansion, though the application of pulse
functions is also possible [39].

C. Hallén-type equation

Toward an efficient numerical solution at lower frequen-
cies, we formulated the scattering problem using Hallén-type
equations. Let us note that the fourth and fifth terms in (14)
tend to infinity at z → r1, which leads to difficulties in the
numerical solution of a Hallén-type equation describing the
boundary-value problem. Let us also notice that the sum of
the the fourth and fifth terms in (14) is finite. To avoid infinite
terms in (14), we replace in our task the charges +qt and −qt

by the surface current densities j1a(ρ = a1, z) ≡ j1a(z) and
j2a(ρ2 = a2, z2) ≡ j2a(z2) on the surface of infinite-length
cylinders, which coincide with the first and second CNTs,
respectively [see Figs. 2(b) and 2(c)],

j1a(z) =
{

It/(2πa1), z ∈ (−∞, r1)
0, z ∈ (r1,+∞), (24)

j2a(z2) =
{

0, z2 ∈ (−∞, L2 − r2)
It/(2πa2), z2 ∈ (L2 − r2,+∞). (25)

This replacement is justified for an electrically small sys-
tem of CNTs (L1 + L2 � λ) as the current densities j1a and
j2a produce the same scalar field potentials as charges +qt

and −qt , respectively (see Appendix C). As discussed in Ap-
pendix C, there is some arbitrariness in choosing the currents
j1a,2a. Then, the total axial field on the surface of the first CNT
(z ∈ [0, L1]) can be expressed as

E tot
z (a1, z) ∼= E (0)

1z (z) + Ẽ (2)
1z (z) +

(
∂2

∂z2
+ k2

)
�̃(a1, z),

(26)

where Ẽ (2)
1z (z) is an electric field produced by j2 + j2a and �̃

is a Hertz potential of the field produced by the current density
j1 + j1a; �̃ satisfies the Helmholtz equation and boundary
conditions

∂�̃

∂ρ

∣∣∣∣
ρ=a1+0

− ∂�̃

∂ρ

∣∣∣∣
ρ=a1−0

= 1

iωε

{
j1 + j1a, z ∈ [0, L1]
j1a, z ∈ (−∞, 0) ∪ (L1,+∞), (27)

�̃|ρ=a1+0 = �̃|ρ=a1−0, −∞ < z < +∞. (28)

Taking into account the relation between the electric po-
tential ϕ and Hertz potential �̃, ϕ = −∂�̃/∂z, one can obtain
the intertube voltage

U1 ≈ ∂

∂z
[�̃(a1, z) − �̃(a1 + D, z)]

∣∣∣∣
z=r1

. (29)

The second component of the intertube voltage U2 can be
found in the same way from the field induced by j2 and j2a.
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Thus the impact of the tunneling current on the current
in the tubes could be taken into account by means of the
boundary conditions (2) and (5) and introduction of the extra
currents (24) and (25).

The solution of the Helmholtz equation for �̃ with bound-
ary conditions (27) and (28), taking into account (24), is
sought as a single-layer potential

�̃(ρ, z) = ia1

εω

(∫ L1

0
j1(z′)G(ρ, z − z′)dz′

+ It

2πa1

∫ r1

−∞
G(ρ, z − z′)dz′

)
, (30)

where j1(z) and It are the unknown surface current density
and the intertube tunnel current to be found.

The potential �̃(a1, z) can be expressed from (26) as fol-
lows:

�̃(a1, z) =
∫ L1

0
E tot

z (a1, z)eik|z−z′ |dz′ − �(z) , (31)

where

�(z) =
∫ L1

0

(
E (0)

1z (z) + Ẽ (2)
1z (z)

)
eik|z−z′ |dz′

+
{

C1eikz + C2e−ikz, z ∈ (0, r1)
D1eikz + D2e−ikz, z ∈ (r1, L1),

(32)

with C1,2 and D1,2 being unknown constants to be determined
from the edge conditions (2)–(4).

After substitution of (31) into (30) at ρ = a1, and taking
into account (15), we arrive at the Hallén equation for the first
CNT ∫ L1

0

[
σ−1

1 eik|z−z′ | + 2a1k

εω
G(a1, z − z′)

]
j1(z′)dz′

+ kIt

πεω

∫ r1

−∞
G(a1, z − z′)dz′ = �(z). (33)

Let us notice that the form of the Hallén equation (33)
depends on the choice of the current j1a. Equation (33) must
be supplemented by Eq. (16) and Hallén equation (B2) for the
second CNT (see Appendix B).

The integrals in (33) and (B2) can be handled by a quadra-
ture formula, thereby transforming (33) and (B2) into matrix
equations. As the current varies significantly near the crossing
point, the discretization step along the z axis should be com-
parable to the tube diameter in the vicinity of this point. The
matrix equations can be solved numerically to find the current
density in the CNTs and intertube current It . In solving nu-
merically the Hallén-type integral equations by the collocation
method we arrive at a matrix that is close to degenerate at low
frequencies. This leads to instability of the numerical matrix
inversion in the quasistatic regime.

We compared the results given by the Hallén and Pockling-
ton equations and found a good agreement within the error of
numerical computations (<1%) for data presented in Fig. 6.
We also found that the Pocklington equation gives a stable
solution in a wide frequency range (>1 MHz), whereas the
Hallén equation produces stable results only at high frequen-
cies (>50 GHz) for the same parameters of the crossing tubes
as those in Fig. 7. Results presented below in Sec. III have

been obtained at high frequencies using the Hallén equation
(Figs. 3–5, 9, and 10) and at low frequencies using the Pock-
lington equation (Figs. 6–8).

D. Superposition of CNT currents and introduction
of the equivalent RC circuit

Consider two crossed CNTs exposed to an incident ar-
bitrarily oriented electromagnetic field with electric field
magnitude E (0). Let the current densities j1,2 and intertube
current It be known from the solution of Eqs. (33), (B2), and
(16). As follows from (33) and (B2), the current densities j1,2

can be divided into two parts

j1(z) = j (e)
1 (z) + j (c)

1 (z), j2(z2) = j (e)
2 (z2) + j (c)

2 (z2),
(34)

where the terms j (e)
1,2 satisfy (33), (B2), and (2)–(4) with It = 0;

the terms j (c)
1,2 satisfy the same equations but with E (0)

1z (z) =
E (0)

2z2
(z2) = 0 and It �= 0. The current densities j (e)

1,2(z) describe
the CNT responses to the external field when Gd = 0. The
current densities j (c)

1,2(z) describe the transport of the charges
passing between the CNTs due to the tunneling current It .

Since j (e)
1,2 ∝ E (0) and j (c)

1,2 ∝ It , the current densities j1,2 in
(34) can be represented through normalized current densities
j (e,c)
1n,2n as follows:

j1(z) = j (e)
1n (z)E (0) + j (c)

1n (z)It , (35)

j2(z2) = j (e)
2n (z2)E (0) + j (c)

2n (z2)It . (36)

Then the intertube voltage U1 + U2 produced by the currents
j1 and j2 can be divided into two components

U1 + U2 = PE (0) − KIt , (37)

where P and K are the proportionality coefficients. The term
PE (0) in (37) is a voltage produced by the currents j (e)

1,2; it can
be considered as the external voltage applied to the intertube
contact. The term −KIt in (37) is a voltage produced by the
currents j (c)

1,2; it can be interpreted as the depolarizing voltage
induced by the charges transferred between the tubes.

Our numerical calculations show that the frequency depen-
dencies of the coefficients K and P can be approximated with
high accuracy in the range below the frequencies of the LPR
and electron relaxation frequency ν in the first and second
CNTs as follows:

K (ω) ≈ K ′ + iω−1K ′′, (38)

P(ω) ≈ P′ + iωP′′, (39)

where K ′, K ′′, P′, and P′′ are real positive values. Note that
Im(P) � Re(P) and Im(K ) � Re(K ). For realistic values of
Gd , the inequality G−1

d � Re(K ) is true.
After substitution of (38) and (39) into (37) and substitu-

tion of (37) into (16), one can express the current It from (16)
as follows:

It ≈ (P′ + iωP′′)E (0)

G−1
d + K ′ + iω−1K ′′ . (40)

Equation (40) is true in the frequency range below the LPR
peak. It can be considered as an expression for the current
in the equivalent RC circuit (or RC filter) composed of a
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resistor with the resistance R = G−1
d + K ′ and a capacitor with

the capacitance C = 1/K ′′; the frequency-dependent voltage
U0 = (P′ + iωP′′)E (0) is applied to this RC circuit. The circuit
has a cutoff frequency fc = (2πRC)−1 defining two response
regimes: (i) At f � fc, the capacitor has sufficient time to
charge up, so that the current It is strongly suppressed by
the capacity voltage; hereafter, this regime will be called a
regime of the high transparency of the intertube junction.
(ii) At f � fc, the capacitor has insufficient time to charge
up, so that the current It is determined mainly by the external
voltage U0; this regime will be referred as a regime of the low
transparency of the intertube junction. Both regimes will be
considered in Sec. III B.

E. Electromagnetic parameters of CNTs

Let dm = dmem be a dipole moment of the mth CNT, where
em is a unit vector along the mth CNT, m = 1, 2, and let E(0)

be a vector of the incident field. Let us define a polarizability
tensor α̂ of the system of the crossing CNTs as follows:

d1 + d2 = α̂E(0). (41)

Then

α̂ = α11e1 ⊗ e1 + α12e1 ⊗ e2 + α21e2 ⊗ e1 + α22e2 ⊗ e2,

(42)
where αmn (m, n = 1, 2) are parameters that relate the magni-
tude of dipole moments and projections of the incident field
on the CNT axes[

d1

d2

]
=

[
α11 α12

α21 α22

][
E(0) · e1

E(0) · e2

]
. (43)

Once we know the surface current density, we can calculate
the magnitude of the dipole moments of mth CNT in the long-
wavelength regime (L1 + L2 � λ)

dm = 2π iam

ω

∫ Lm

0
jm(z)dz, m = 1, 2. (44)

For further analysis, we shall consider a symmetric geom-
etry providing excitation of similar currents in both tubes, i.e.,
L1 = L2 = L, σ1 = σ2, r1 = r2 = r < L/2, and E (0)

1z = ±E (0)
2z2

.
Then α11 = α22, α12 = α21, and d1 = ±d2. We shall refer to
the value α1z = d1/E (0)

1z = α11 ± α12 as the polarizability of
the first CNT that takes place at E (0)

1z = ±E (0)
2z2

. The surface
charge density on the first CNT can be found from the conti-
nuity equation as

ρc1(z) = − i

ω

∂ j1(z)

∂z
, z ∈ (0, L1). (45)

The power Pcn dissipated in the crossed CNTs by the cur-
rents j1 and j2 can be found as follows [12]:

Pcn = π
∑

m=1,2

amRe
(
σ−1

m

) ∫ Lm

0
| jm(z)|2dz. (46)

The dissipated power Pc caused by the tunneling current It

can be obtained as [40]

Pc = |It |2
2Gd

. (47)

The power Pc is dissipated within a distance of the order of
the electronic mean free path from the intertube junction.

III. NUMERICAL RESULTS AND DISCUSSION

In our calculations, we consider two identical zigzag (15,0)
CNTs of length L = 1 μm crossing as shown in Fig. 1 at angle
θ � 90◦ and r � L/2. For calculation of the tube conductivity,
we shall use an electron relaxation time of τ = 100 fs [27].

We shall consider two orientations of the incident field,
as shown in Fig. 1: (i) E (0)

1z = E (0)
2z2

= 3 × 104 V/m (electric

field E(0)
+ ) and (ii) E (0)

1z = −E (0)
2z2

= 3 × 104 V/m (electric field

E(0)
− ). Here, we neglect the variation of the incident field

within the CNT system, as the long-wavelength regime is
valid (λ � L). Because of the mirror symmetry of the prob-
lem geometry and the symmetry of the incident field, the
current and charge densities in the tubes have the symmetry
j1(z) = j2(L − z2), ρc1(z) = −ρc2(L − z2) if z = z2; here, the
current density j1,2 and charge density ρc1,c2 on the first and
second CNTs are considered in coordinate systems with axes
z and z2, respectively, as shown in Fig. 1. Then, the polariz-
ability is the same for these tubes, and we shall present the
parameters α1z, j1, and ρc1 only for the first CNT. For com-
parison, we shall also reproduce data for a single 1-μm-long
zigzag (15,0) CNT.

A. Crossing CNTs with zero intertube conductance

Let us first assume that there is only electromagnetic
interaction between the tubes; the intertube current equals
zero (Gd = 0). Figure 3 shows the frequency dependences of
the real and imaginary parts of the polarizability α1z in the
range 0.1–10 THz for the first CNT at different positions of
the crossing point r and different orientations of the incident
field E(0)

± . For comparison, the polarizability of a single CNT
is presented in Fig. 3 by a solid line. All the spectra in Fig. 3(b)

FIG. 3. Frequency dependence of the (a) real and (b) imaginary
parts of the polarizability of the first CNT at different distances r =
0.1, 0.25L and different incident fields E(0)

+ and E(0)
− ; θ = 45◦. There

is no current between the tubes, i.e., Gd = 0. The polarizability of a
single CNT is shown by a solid line.
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FIG. 4. Distribution of (a) and (b) the surface current density,
(c) and (d) the charge density, and (e) and (f) radial and (g) and (h)
axial fields on the surface of the first CNT and a single CNT at 1
THz; Gd = 0, θ = 45◦, and r = 0.1L.

contain a broad peak at ≈2.5 THz due to the first antenna (or
localized plasmon) resonance in finite-length CNTs [4].

As shown in Fig. 3(b), the electromagnetic interaction be-
tween the tubes leads (i) to a red shift of the LPR peak from
2.53 to 2.26 THz for the incident field E(0)

+ and (ii) to the blue
shift of this peak from 2.53 to 2.69 THz for the incident field
E(0)

− .
The physical mechanism of the electromagnetic interac-

tion is clear from Fig. 4, where the current density, charge
density, and radial and axial fields on the CNT surface are
shown for a single tube and for the first CNT for different
polarizations of the incident field E(0)

± and f = 1 THz. Due
to the polarization effect, there is a high charge density dis-
tribution along the CNT [see Figs. 4(c) and 4(d)]. For the
external field E(0)

+ , the unlike charges are concentrated on
the first and second tubes near the crossing point. Attraction
between these charges leads to a sharp peak in the total charge
distribution at z/L = 0.1 [Figs. 4(c) and 4(d)]. This results in
the enhancement of the total field in the intertube gap [see
the sharp peak at z/L = 0.1 in the radial field distribution
of the first CNT in Figs. 4(e) and 4(f)]. The energy of the
Coulomb interaction of unlike charges near the crossing point
is negative resulting in a red shift of the LPR peak in com-
parison with the LPR peak of a single CNT [see Fig. 3(b)].
This shift increases with the charge density near the crossing
point. Since the charge density is maximal at minimal values
of r, the LPR peak shift is larger for smaller values of r. This
tendency is demonstrated in Fig. 3 (compare the spectra for
E(0)

+ at r = 0.1L and r = 0.25L).
For the incident field E(0)

− , the like charges are accumu-
lated on the first and second tubes near the crossing point.
Repulsion between these charges leads to a dip in the total

FIG. 5. Frequency dependence of the polarizability α1z of the
first CNTs for various (a) and (b) angles between CNTs θ = 3◦, 45◦,
D = 0.34 nm, and (c) and (d) distances D ∈ {0.34, 25, 100} nm,
θ = 45◦; r = 100 nm, and Gd = 0. The polarizability of a single
CNT is shown by the dotted line. The external field is E(0)

+ .

charge distribution at z/L = 0.1 [see Figs. 4(c) and 4(d)]. The
radial field produced by the charge on each tube becomes
weak at the crossing point [see Figs. 4(e) and 4(f)]. Since the
energy of the Coulomb interaction between the like charges
near the crossing point has positive sign, the blue shift of the
LPR peak occurs in this case [see Fig. 3(b)]. The blue shift is
typically smaller than the red one, as the charge variation near
the crossing point due to the intertube interaction is smaller
for the incident field E(0)

− than for E(0)
+ . Thus the electromag-

netic interaction can shift the LPR peak to higher or lower
frequencies depending on the direction of the incident field.

The existence of two plasmon modes has been reported for
a metallic nanoparticle dimer [41–44]. It has been shown that
such a dimer supports a bonding plasmon at lower frequencies
and an antibonding plasmon at higher frequencies. A bonding
(antibonding) plasmon occurs when both particles are polar-
ized in the same (opposite) directions. For the crossing CNTs,
the incident fields E(0)

+ and E(0)
− lead to the excitation of the

collective plasmon modes corresponding to the bonding and
antibonding plasmon modes, respectively.

Figure 5 shows the imaginary part of the polarizability α1z

of the first CNT at different angles θ and distances D between
CNTs for the incident field E(0)

+ . For comparison, the spectrum
of a single CNT is presented by a dotted line. One can see
from Fig. 5 that the red shift of the LPR peak is not strong
in comparison with the peak width, and it becomes weaker if
the angle θ and distance D increase. The larger the distance D
and angle θ , the weaker is the interaction between the charges
at the crossing point and, consequently, the smaller is the
shift of the LPR peak. For example, as shown in Fig. 5(b),
the electromagnetic interaction between the tubes leads to the
peak shift from 1.85 to 2.21 THz due to angle variation from
3◦ to 45◦. Figures 5(c) and 5(d) demonstrate that the maximal
red shift of the LPR peak occurs at the minimal value of
D = 0.34 nm, and it vanishes when the distance D exceeds
100 nm.
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Thus the electromagnetic coupling of the crossing CNTs
occurs by means of the Coulomb interaction of the charges
located near the crossing point. This interaction is rather weak
resulting in a slight variation of the tube polarizability. Since
the intertube voltage is maximal for the incident field E(0)

+ , in
the next section, we shall consider only this case taking into
account intertube electron transport.

B. Crossing CNTs with nonzero intertube transport

Figure 6 shows the frequency dependence of the polar-
izabilities of a single CNT and the first CNT for various
intertube conductances. The spectrum of the imaginary part
of the polarizability Im(α1z ) has two peaks: a broad gigahertz
peak located in the range 1–700 GHz and an LPR peak ap-
pearing in the terahertz range 1–4 THz. The center frequency
of the gigahertz peak increases with increasing the intertube
conductance Gd , whereas the LPR peak at 2.3 THz practi-
cally does not depend on the value of Gd . Additionally, due
to the intertube tunneling current, the imaginary part of the
polarizability increases drastically (by a factor of 10 or even
100) below 1 THz, whereas the real part of the polarizability
increases by a factor of about 2.1. It should be noticed that two
crossing tubes do not behave as a single longer tube; however,
their response is qualitatively similar to that of a CNT with a
short low-conductive section [8].

For a deeper understanding of the mechanism of the elec-
tromagnetic interaction of two crossing CNTs, we represent in
Fig. 7 the spectra of the power Pcn dissipated by the currents
j1,2 and the power Pc dissipated by the intertube current Id for
the case of Gd = 0.1G0. As shown in Fig. 7, the inequality
Pc > Pcn is true below 0.4 THz, thus explaining the high
value of Im(α1z ) in this range. Moreover, the charge transfer
between the tubes leads to a reduction of the depolarizing field
along the tubes resulting in an increase in the value of Pcn

(compare Pcn at Gd = 0.1G0 and Gd = 0 below 0.4 THz in
Fig. 7).

Below the LPR peak ( f < 2 THz), the crossing CNTs can
be considered as a capacitor. The intertube current can be de-

FIG. 6. Frequency dependence of the (a) real and (b) imaginary
parts of the polarizability of the first CNT for various intertube
conductances Gd ∈ {0, 0.01, 0.1}G0; θ = 45◦, and r = L/10. The
polarizability of a single CNT is shown by a solid line.

FIG. 7. Frequency dependencies of the dissipated powers Pcn, Pc,
and Pcn + Pc at Gd = 0.1G0 and dissipated power Pcn at Gd = 0; θ =
45◦, and r = L/10.

scribed by Eq. (40) for an RC circuit (see Sec. II D). The cutoff
frequency fc of the RC circuit corresponds to the frequency of
the gigahertz peak in Fig. 6(b). Let us indicate three regimes
of the intertube tunneling for the case of Gd = 0.1G0.

(i) Regime of the high-transparency of the intertube junc-
tion, f < 30 GHz. At low frequencies ( f � fc, fc = 0.1
THz), the incident field oscillates quite slowly, so that the
charge carriers have enough time to pass through the inter-
tube junction and be redistributed between the tubes. For this
regime, the approximate equality Re[α1z( f )] ≈ Re[α1z(0)] is
true. Figure 8 demonstrates the distributions of the current
density j1 and charge density ρc1 along the first CNT at
20 GHz. Current density components j (e,c)

1 obtained in accor-
dance with (34) and corresponding charge densities ρ

(e,c)
c1 =

−iω−1∂ j (e,c)
1 /∂z are shown in Fig. 8. The charge with the

density ρ
(e)
c1 oscillates along the first CNT and creates an

“external” field in the gap between the tubes, while the charge
passing between the tubes spreads along the first CNT with
the density ρ

(c)
c1 and creates the “depolarizing” field in the gap.

Distribution of the charge density ρ
(c)
c1 is almost homogenous

along the tube except near the tube edges and crossing point

FIG. 8. Distribution of (a) and (b) the surface current density j1

and (c) and (d) the surface charge density ρc1 and their components
j (c,e)
1 and ρ

(c,e)
c1 on the surface of the first CNT at f = 20 GHz; Gd =

0.1G0, θ = 45◦, and r = L/10.
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[see Figs. 8(c) and 8(d)]. Due to the strong depolarization
effect, the resulting charge density ρc1 = ρ

(c)
c1 + ρ

(e)
c1 at the

crossing point is small [see Figs. 8(c) and 8(d)], the intertube
voltage is low, and the intertube current is suppressed.

(ii) Intermediate regime, f ∈ (30, 500) GHz. The depo-
larizing field in the gap between the tubes decreases as the
frequency increases. Though the current j (c)

1 becomes smaller,
it is still comparable with j (e)

1 , and the intertube current Id

reaches its maximum at f ≈ fc.
(iii) Regime of the low transparency of the intertube

junction, f > 500 GHz. At high frequencies ( f � fc), the in-
cident field oscillates quite quickly, so that a small amount of
charge can be transferred between the tubes during the period
of the field oscillations. In this range, the value of Re[α1z]
is close to that for Gd = 0 [see Fig. 6(a)]. The total field in
the gap between the tubes is determined mainly by the charge
density ρ

(e)
c1 , so that the magnitude of intertube voltage and,

consequently, the dissipated power in the gap Pc practically
do not depend on frequency in the range between the gigahertz
and terahertz peaks (see Fig. 7). However the charge density
ρ

(c)
c1 and current density j (c)

1 still should be taken into account,
as they contribute significantly to the values of Im(α1z) and Pc

in the range below 1 THz.
Localized plasmon resonance in the CNTs manifests itself

as a broad peak in the conductivity spectra of CNT films and
composites [16,27,45]. Based on the data on the LPR peak at
2.3 THz in Fig. 6, we may conclude that (i) the magnitude
of this peak does not depend on whether tubes are isolated
or form a conductive network; (ii) the high-frequency side
of this peak practically does not depend on the intertube
coupling (though it depends on the electron relaxation time
in the CNTs and on the type of the distribution function over
the CNT length); (iii) the low-frequency side of the peak
strongly depends on the intertube interaction. The latter leads
to the peak broadening in the direction of the lower frequen-
cies. Also, conclusions (i) and (ii) above justify application
of the homogenization theory of noninteracting nanoparticles
to describe the effective permittivity of CNT-based compos-
ites and films at and above the LPR frequency. Thus the
Waterman-Truell formula adapted for CNT-based media [25]
gives a good approximation for the estimation of the effective
parameters of CNT-based media in the terahertz and infrared
ranges.

It should be noted that the conductivity peak reported at
3 THz for thin CNT films in Ref. [46] was associated with
plasmonic excitations due to reflections of the plasmon wave
at the CNT intersections. Here, we have shown that such a
reflection is impossible. The reasons are (i) the very weak
electromagnetic interaction between CNTs (see Figs. 3 and
5) and (ii) the negligibly small modification of the intrinsic
electron transport in the CNT near the crossing point [34,36].

Though the intertube conductance Gd depends on the angle
θ between the crossing tubes [32,33], we shall not take this
into account in our further consideration. Figures 9(a) and
9(b) show the spectra of the imaginary part of the polariz-
ability of the first CNT at different angles θ and different
distances r; the intertube conductance is assumed to be the
same (Gd = 0.1G0). As shown in Fig. 9, the angle between the
tubes slightly affects the tube polarizability, whereas distance

FIG. 9. Frequency dependence of the imaginary part of the polar-
izability of the first CNT for (a) various angles between the crossing
tubes θ ∈ {3◦, 45◦, 90◦}, r = 100 nm, and (b) various distances r ∈
{50, 250, 450} nm, θ = 45◦; Gd = 0.1G0.

r impacts significantly the value of Im(α1z ). Below the LPR
peak, the energy dissipation in the CNTs is higher for smaller
distance r. This occurs due to the following reasons: (i) The
charge density is maximal near the CNT edges resulting in the
highest intertube voltage and current; and (ii) the total size of
the CNT system is larger at smaller r causing a smaller de-
polarizing field and, consequently, the higher current density
excited in the CNTs.

Figure 10 shows the spectra of the imaginary part of the
polarizability of a single CNT and the first CNT for vari-
ous tube lengths L = 250 nm and L = 1 μm and constant
values of r/L = 0.1, θ , and Gd . As shown in Fig. 10, the
polarizability peaks are blue shifted with decreasing tube
lengths. The influence of the intertube coupling is strong in
the quasistatic regime of the electromagnetic interaction, i.e.,
below the localized plasmon resonance. The intertube cur-
rent and its impact depend not only on the conductivity of
the intertube junction but also on the intertube voltage. The
voltage, in turn, is caused by depolarization effects, and con-

FIG. 10. Frequency dependence of the imaginary part of the
polarizability of a single CNT and the first CNTs for various tube
lengths, L = 250 nm and L = 1000 nm; r = 0.1L, θ = 45◦, and
Gd = 0.1G0.
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sequently, it strongly depends on the frequency, tube length,
and relative position of the intertube junction. Thus the in-
tertube coupling is determined by the finite-size effect in the
CNTs.

IV. CONCLUSION

The electromagnetic boundary-value problem of two cross-
ing SWCNTs of finite length has been formulated taking into
account the electromagnetic coupling and intertube charge
transport. The problem has been reduced to Pocklington- and
Hallén-type equations with respect to the current density in
CNTs and the intertube current. The intertube current has been
taken into account (i) by a discontinuity of the axial currents
in the CNTs and (ii) by an introduction of the extra charges
at the crossing points of the CNTs. To incorporate the field
of extra charges into the Hallén-type equation, they have been
replaced by semi-infinite currents.

The current in the CNTs can be divided into two compo-
nents; one of them describes the charge oscillations within
the tubes, and the other describes the oscillation of the charge
passing between the tubes. The intertube current is shown to
behave like the current in an equivalent RC circuit. The cutoff
frequency of the RC circuit separates the regimes of high and
low transparency of the intertube junction.

The electromagnetic interaction between the crossing tubes
occurs due to the interaction of the charges concentrated near
the crossing point; these charges create a strong radial scat-
tered field which can be hundreds-fold higher than the incident
field resulting in the field enhancement in the gap between
the tubes. The electromagnetic interaction of the CNTs with
zero intertube conductance shifts slightly the LPR peak to
the lower or higher frequencies depending on the direction
of the incident field. Due to the intertube current, the charge
is redistributed between the tubes resulting in a weakening
of the depolarizing field in the CNTs and in the appearance
of the depolarizing field in the gap between the CNTs. The
intertube current leads to a significant energy dissipation near
the crossing point of the CNTs at low frequencies resulting in
manifold increase in the total energy dissipation. The intertube
coupling practically does not change the magnitude and fre-
quency of the LPR peak, but modifies its low-frequency side.
Due to a weak intertube coupling at and above the LPR peak,
the Waterman-Truell formula is a good approximation for the
description of the effective permittivity of CNT networks.
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APPENDIX A: APPLICATION OF THE FOUR-TERMINAL
LANDAUER FORMULA TO THE JUNCTION OF

THE CROSSING CNTs

The junction between two crossing CNTs can be modeled
as a four-terminal mesoscopic system. Each short section of
the tubes near the junction plays the role of a lead connecting
the junction to the rest of the tube, which is considered as a
reservoir (see Fig. 11). Let the electrochemical potentials of
the n reservoirs (m, n = 1, 2, . . . , 4) be μn and the current in
the n lead be In. The relation between μn and In in the case
of multichannel leads can be expressed by the four-terminal
Landauer formula [47,48]:

In = e

h

(
(Nn − Rnn)μn −

∑
m �=n

Tnmμm

)
. (A1)

where Nn is the number of conductive channels in the nth lead,
Nn = 2 for metallic undoped SWCNTs [49]. Also in (A1), Tnm

is the total transmission function for carriers incident in the
mth lead to be scattered by junction into lead n, and Rnn is the
total reflection function for carriers incident in the nth lead to
be reflected into the the same lead; thus

Tnm =
Nn∑

i=1

Nm∑
j=1

Tnm,i j, Rnn =
Nn∑

i=1

Nn∑
j=1

Rnn,i j, (A2)

where Tnm,i j is the probability for carriers incident in channel
j of the mth lead to be transmitted into channel i of the nth
lead and Rnn,i j is the probability for carriers incident in the jth
channel of the nth lead to be reflected into the ith channel of
the same lead.

If the electrochemical potentials μi are the same in all
reservoirs, the currents must vanish in the leads, i.e., In =
0. In this case, (A1) is transformed into the following
expressions:

Rnn +
∑
m �=n

Tnm = Nn. (A3)

Carrier transmission coefficients between two of the four ter-
minals Tnm can be found from ab initio quantum-mechanical
calculations [34,36,37].

Let us now determine the relation between Tnm and the
two-terminal intertube conductance value Gd used in formula
(9). For simplicity, we consider the case when the external
magnetic field is absent. Due to the time-reversal invariance

FIG. 11. Schematic illustration of two crossing CNTs de-
composed following the Landauer-Büttiker concept of quantum
transport. The CNT junction (black circle) has four terminals con-
nected by leads to reservoirs.
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and the symmetry of the lead positions with respect to the
junction, we can write the following relations: For intertube
transmission coefficients, T13 = T31 = T24 = T42 and T14 =
T41 = T23 = T32, and for intratube transmission coefficients,
T12 = T21 and T34 = T43 [47,48].

Let us next assume that four arbitrary electrochemical
potentials μn are applied to four terminals of the junction.
Using (A3) and the relations between intratube and intertube
transmission coefficients introduced above, we can rewrite
Eq. (A1) in the following way:

I1 = e

h
(T12�μ12 + T13�μ13 + T14�μ14)

I2 = − e

h
(T12�μ12 − T23�μ23 − T24�μ24)

I3 = e

h
(T34�μ34 + T31�μ31 + T32�μ32)

I4 = − e

h
(T34�μ34 − T41�μ41 − T42�μ42),

(A4)

where �μnm = μn − μm, n, m = 1, 2, . . . , 4. The first term in
each equation of (A4) corresponds to the intratube transport,
while the other two terms are responsible for the intertube
tunneling.

After adding the first equation to the second one and the
third equation to the fourth one in (A4), we obtain

It = I1 + I2 = −(I3 + I4) = e

h
(T13 + T14)(�μ13 + �μ24),

(A5)
where It is the total intertube current.

As mentioned in Sec. III, due to the depolarization effect,
the total axial field in the CNT is much lower than the radial
field determining the intertube voltage. This means that for
short-length leads (about several nanometers) we can accept
that μ3 = μ4, μ1 = μ2 and, consequently, �μ13 = �μ24 =
eU , where U is the intertube voltage. Then Eq. (A5) is trans-
formed into (16) with the following intertube conductance:

Gd = 2e2

h
(T13 + T14). (A6)

APPENDIX B: POCKLINGTON- AND HALLÉN-TYPE
EQUATIONS FOR THE SECOND CNT

Following Sec. II B, the Pocklington-type equation can
be formulated for the second CNT in the coordinate system
(ρ2, φ2, z2)

j2(z2)

σ2
= E (0)

2z (z) + E (1)
2z (z) + E (1t )

2z (z) + ia2

εω

(∫ L−r2−0

0
+

∫ L2

L−r2+0

∂ j2(z′)
∂z′

∂G(a2, z2 − z′)
∂z

dz′
)

+ ia2

εω

∫ L2

0
k2 j2(z′)G(a2, z2 − z′)dz′, (B1)

where E (1)
2z and E (1t )

2z are axial components of an electric field
produced by the current j1 and charge +qt , respectively, on
the surface of the second CNT.

Following Secs. II A and II C, the Hallén-type equation can
be formulated for the second CNT in the coordinate system
(ρ2, φ2, z2)

∫ L2

0

[
1

σ2
eik|z2−z′

2| + 2a2k

εω
G(a2, z2 − z′

2)

]
j2(z′

2)dz′
2

+ kIt

πεω

∫ ∞

L2−r2

G(a2, z2 − z′
2)dz′

2 = �2(z2), (B2)

where

�2(z2) =
∫ L2

0

(
E (0)

2z (z2) + Ẽ (1)
2z (z2)

)
eik|z2−z′

2|dz′
2

+
{

C′
1eikz2 + C′

2e−ikz2 , z2 ∈ (0, L2 − r2)
D′

1eikz2 + D′
2e−ikz2 , z2 ∈ (L2 − r2, L2).

(B3)

Here, C′
1,2 and D′

1,2 are unknown constants to be determined

from the edge conditions (5)–(7), and Ẽ (1)
2z is an axial field

produced by the currents j1 and j1a on the surface of the
second CNT.

APPENDIX C: ELECTRIC FIELD POTENTIAL OF THE
SEMI-INFINITE CURRENT

Let us consider the axial current on the surface of infinite-
length cylinders which extend the first CNT

j1a(z) = 1

2πa1

{
I1, z ∈ (−∞, r1)
I2, z ∈ (r1,+∞), (C1)

where I1,2 are constant values. The Hertz potential of the field
produced by the current j1a can be expressed as follows:

�t (ρ, z) = i

2πεω

∫ ∞

−∞
j1a(z)G(ρ, z − z′)dz′, (C2)

where G(ρ, z − z′) is a Green function defined by (18). The
electric potential at point (ρ, z) can be calculated as

ϕt = −∂�t (ρ, z)

∂z
= − i

2πεω

[
I1

∫ r1

−∞

∂G(ρ, z − z′)
∂z

dz′

+ I2

∫ ∞

r1

∂G(ρ, z − z′)
∂z

dz′
]
. (C3)

Due to the symmetry of the integrals in (C3) with respect to
the replacement ∂/∂z → −∂/∂z′, the electric potential can be
calculated as

ϕt (ρ, z) = i(I1 − I2)

2πεω
G(ρ, z − r1). (C4)
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The value of ϕt in (C4) coincides with an electrical potential
of the field produced by the charge qt = iIt/ω = i(I1 − I2)/ω
distributed uniformly on an infinitely thin ring of a radius a1 at
z = r1. The difference between the z component of the electric
field ∂2�t/∂z2 + k2�t produced by the current j1a and the z
component of the field −∂ϕt/∂z produced by the charge +qt

equals k2�t , and it can be neglected on the surfaces of the
CNTs when (kL1,2)2 � 1. Then, the electric field produced by
the charge +qt can be replaced by the field produced by the
currents j1a. This replacement is justified if the field produced

by the currents j1a on the CNT surface can be considered
longitudinal with a high accuracy. Though the choice of the
values I1,2 is limited only by an equality I1 − I2 = It , it is
reasonable to choose them to be close to zero in order to
guarantee the longitudinal character of the field �t in the
vicinity of the CNTs. For simplicity we choose I1 = It and
I2 = 0 for j1a in (24). Thus the electric field produced by the
charges +qt and qt in the CNTs can be replaced by the field
produced by the currents j1a and j2a, respectively, as shown in
Figs. 2(b) and 2(c).
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