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In this paper, we study an Anderson-localization-induced quantized transport in disordered Chern insulators
(CIs). By investigating the disordered CIs with a step potential, we find that the chiral interface states emerge
along the interfaces of the step potential, and the energy range for such quantized transport can be manipulated
through the potential strength. Furthermore, numerical simulations on the case with a multistep potential
demonstrate that such a chiral state can be spatially shifted by varying the Fermi energy, and the energy window
for quantized transport is greatly enlarged. Experimentally, such a chiral interface states can be realized by
imposing transverse electric field, in which the energy window for quantized transport is much broader than the
intrinsic band gap of the corresponding CI. These phenomena are quite universal for disordered CIs due to the
direct phase transition between the CI and the normal insulator.
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I. INTRODUCTION

Topological band theory plays an essential role in the
search for Chern insulators (CIs) [1–3]. A CI is distinguished
from a normal band insulator for possessing chiral edge states.
Specifically, when the Fermi energy is inside the bulk gap, the
electron transport of the chiral edge modes is ballistic, which
leads to quantized conductance even for macroscopic samples
[4–9]. Therefore, the CI with a large gap is highly desired for
observing the quantized electron transport. Meanwhile, these
dissipationless chiral modes are confined to the boundary of
the CI and cannot be manipulated spatially. These two bot-
tlenecks hinder the possible applications of CI in low-power
electronic devices [3,10–14].

In recent years, the CIs have been observed in various sys-
tems [4–9]. However, the CIs’ mobility in these experiments
are extremely low as from 74 cm2/(V s) to 760 cm2/(V s),
which suggests the presence of strong disorder. Hence, the
celebrated Anderson localization theory may play an impor-
tant role in these systems [15–18]. Naively, the Anderson
localization in CIs only extends its quantized edge transport
region from the band gap to the mobility gap, because the
bulk states inside the mobility gap now become localized
[19]. However, such speculation ignores the unique feature of
Anderson phase transition in the CIs [20–22]. In principle, the
Anderson phase transition is universal and only depends on
the system’s dimension and its symmetry ensemble [20,22].
A two-dimension CI breaking time-reversal (TR) symmetry
belongs to the unitary ensemble and hence exhibits a direct
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transition from CI to normal insulator (NI) [18]. That is to say,
all the bulk states in the disordered CI are localized except for
the discrete mobility edges [21,23–26]. Consequently, utiliz-
ing such unique feature of the Anderson phase transition, we
can go beyond the topological band theory and manipulate the
transport properties of the CIs so that the bottlenecks above
are overcome.

In this paper, we propose that the chiral interface states
with quantized transport can be realized in disordered CIs
by combining the Anderson localization and an external step
potential. Figure 1 illustrates the proposed setup and its cor-
responding physical mechanism. According to the topological
band theory, the Hall conductivity σxy for a clean CI is quan-
tized inside the band gap, while continuously decreases to
zero within the conduction band or the valence band by vary-
ing the Fermi energy. In contrast, according to the scaling
theory of the disordered CIs [27], the insulating feature en-
sures that σxy jumps from e2/h to 0 sharply at two mobility
edges since all the bulk states are localized by Anderson local-
ization. Therefore, when applying a step potential, the Chern
numbers (defined as σxy divided by e2/h) of a disordered
sample in two separated regions differ by 1 for specific Fermi
energy region [e.g., red dashed line in Fig. 1(c)]. Therefore,
a chiral interface state emerges and the spatial separation
of the backscattering channels leads to quantized electronic
transport.

From the numerical simulations on the transport behavior
for both the Qi-Wu-Zhang (QWZ) model and the Haldane
model with a step potential, we verify the existence of the
chiral interface states and the quantized transport in the dis-
ordered CI. In particular, we find that in addition to the bulk
gap, the energy region with quantized transport can also be
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FIG. 1. (a) Typical band spectrum of a CI. (b) Hall conductivity
σxy vs Fermi energy E in clean and disordered samples, respectively.
N is the sample size, W is the disorder strength. The red dashed line
represents σxy in the thermodynamic limit. (c) Schematic plot of the
step-potential-induced chiral interface state in a disordered CI.

modulated through the potential applied. Moreover, we also
study the disordered CI with a multistep potential, where the
chiral states can be shifted between different interfaces of the
potential by varying the Fermi energy. Meanwhile, the energy
range for the quantized transport can also be greatly enlarged.
Remarkably, such multistep potential can be replaced by an
external electric field along the transverse direction of the
sample, which provides an avenue to realize quantized trans-
port with a wide energy window . Finally, the differences
between our proposal and other related topological states are
also clarified.

II. THEORETICAL MODEL

Both the QWZ model and the Haldane model are widely
adopted for investigating the CIs [2,28,29]. Our investigation
is mainly based on the QWZ model whose Hamiltonian in a
square lattice reads

H =
∑

i

[
c†

i

(
tσz

2
− iυσy

)
ci+x̂

+ c†
i

(
tσz

2
− iυσx

)
ci+ŷ + H.c.

]

+
∑

i

[c†
i (m − 2t )σzci + c†

i (Vi + Wi)σ0ci]. (1)

where c†
i is the creation operator on site i and x̂ (ŷ) is the unit

vector along the x (y) direction, σx,y,z are Pauli matrices and
σ0 is a 2×2 identity matrix. Fermi velocity υ, hopping energy
t and mass m are three independent Hamiltonian parameters.
In a clean QWZ lattice, the band gap and the Chern number is
determined by m. Vi represents the profile of the applied po-
tential, for example, the top-gate-induced potential in Fig. 1(c)
is in a step function form as Vi = V �(iy − N/2). Finally, Wi is
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FIG. 2. The differential conductance G and the conductance fluc-
tuation δG vs Fermi energy E in a two terminal setup. The current
flows along the +x direction. The step potential V and the disorder
is only presented in the central region. Here, up to 1000 disorder
configurations are averaged. (a), (b) QWZ model with V = 1.5t and
disorder strength W = 3.5t . The sample size is Na×Na, where a
is the lattice constant. (c), (d) Haldane model with V = 1.4t and
sample size 3Na×2

√
3Na, other parameters are the same as those

in Fig. 3(a) of Ref. [24].

the Anderson disorder uniformly distributed within [−W
2 , W

2 ]
where W indicates the disorder strength.

In addition to the QWZ model, we also study the Haldane
model whose Hamiltonian is

Hd =
∑
〈i,j〉

−tc†
i cj + i

∑
〈〈i,j〉〉

t2c†
i υi,jcj +

∑
i

c†
i Wici. (2)

in which the three terms are the nearest neighbor direct hop-
ping term, next nearest neighbor spin-orbit coupling (SOC)
term, and the Anderson disorder term, respectively [23]. In
our simulation, the parameters are chosen as υ = 0.5t , m = t ,
and t2 = 0.3t .

Numerical methods including nonequilibrium Green’s
function are adopted to study the transport properties of the
disordered CIs [30–32]. Although the experiments are usually
conducted on macroscopic samples [4–9], only much smaller
samples can be numerically investigated due to the limit of
the computing power. Therefore, a finite-size scaling analysis
is adopted, in which a series of samples with different sample
sizes N are simulated and an extrapolation is performed to
obtain the transport properties in the thermodynamic limit
(N → ∞).

III. CHIRAL INTERFACE STATES

We first simulate the electron transport in a two-terminal
disordered QWZ lattice which is in a cylinder geometry and
imposed with a step potential V [inset of Fig. 2(a)]. In the
V = 0 case, the zero-temperature differential conductance G
vanishes in the gapped region around E = 0 due to the ab-
sence of the edge state [34]. On the contrary, when a finite
V is applied, a G plateau is formed as Fig. 2(a). By increas-
ing the sample size N , the plateau width gradually increases
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and G approaches the quantized value between two mobility
edges with dG/dN = 0. In the same time, the conductance
fluctuation δG vanishes with the increase of N . The quantized
G and vanishing δG under strong disorder indicates a chiral
state in which its conterprogagating partner is spatially well
separated. It is quite consistent with the prediction of the step-
potential-induced chiral interface states [Fig. 1(c)] [35,36].

To verify the universality of the chiral interface states in
disordered CIs, the transport properties of the disordered Hal-
dane model is also studied. Here, we do not specialize the
parameters, but choose the SOC strength t2 and the disorder
strength W adopted in Fig. 3(a) in Ref. [24]. For V = 1.4t , the
same N tendency of both G and δG versus E as those in the
QWZ model is observed. Indeed, as plotted in Figs. 2(c), 2(d)
all the N curves cross at both Ec1 ≈ −0.9t and Ec2 ≈ 0.36t ,
manifesting a step jump of G from e2/h to 0 at these two
points in the thermodynamic limit. Such G behavior can be
explained as follows. In both the two sample regions with
applied potentials “0” and “V ”, all the bulk states are local-
ized between two mobility edges Ec1 and Ec2 where a direct
Anderson transition from CI to Anderson insulator occurs.
Therefore, a chiral interface state emerges between Ec1 and
Ec2 and leads to quantized G when a suitable V is applied.
From the transport study on both these two models, we con-
clude that the chiral interface state and the related quantized
transport originates from the universal characters of the An-
derson transition in the disordered CIs and is independent of
the Hamiltonian details. Furthermore, the quantized G is also
insensitive to the smoothness of the step potential [37].

Now we discuss the energy window for observing the
quantized transport. The differential conductance G under
different V and W is investigated by numerical calculations
(Figs. 6–10 in the Appendices). Generally, the width of such
an energy window is equal to Ec2 − Ec1. Moreover, Ec2 − Ec1

is insensitive to the disorder strength W while approximates to
the applied potential V . This is quite different from the normal
case that G is only quantized inside the CI’s mobility gap. Ex-
perimentally, the mobility gap itself is hard to be modulated.
However, in the presence of such chiral interface state, the
energy window Ec2 − Ec1 could be manipulated by tuning the
step potential V to obtain the desired quantized transport in
the disordered CIs.

Nevertheless, from the sketch in Fig. 1(c) and the transport
results summarized in the Appendices, one can intuitively
obtain the consequence that in the presence of a single step
potential, such quantized transport energy window tuned by V
will not be wider than the mobility gap. Currently, the biggest
challenge hinder the application of the CI is its narrow energy
gap (narrow quantized region). To overcome such a problem,
we further study the transport properties of the disordered CI
in the presence of a multistep potential. Figure 3(a) shows
the two-terminal differential conductance G under potential
Vi = V �(iy − N/3) + V �(iy − 2N/3) [inset of Fig. 3(a)], in
which two separated G plateaus at small N are exhibited. As
N approaches the thermodynamic limit, these two plateaus
will merge into one with perfectly quantized G = e2/h. In
this way, significantly, the energy window for quantized G
is approximately doubled to 2V = 3t , which is much larger
than the original energy gap 2t in the clean CI. For regions
labeled by “0”, “V ”, and “2V ” in the inset of Fig. 3(a), due to
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FIG. 3. (a) G vs Fermi energy E for the samples with multi-step
potential. The potential configuration is illustrated in the inset. Here,
V = 1.5t , and W = 3.5t . (b) Sketch of the disordered CI’s quantized
transport energy window with multiple width. Solid lines exhibit the
Chern numbers C1, C2, C3 vs E at the “0”, “V ” and “2V ” labeled re-
gions in the inset of (a), respectively. Chiral interface state emerges in
different energy regions (filled with different colors) for different E
and leads to a quantized G. (c), (d) Local current density distribution
of the sample at energies as marked by the red (black) arrows in (a).

the Anderson-disorder-induced direct NI-CI transition, their
Chern numbers C1, C2, C3 all exhibit a 0 → 1 step transi-
tion [Fig. 3(b)] at energies Ec1, Ec2 ≈ Ec1 + V , and Ec3 ≈
Ec2 + V , respectively. For Fermi energy E ∈ (Ec1, Ec2), C1 −
C2 = 1 so that a chiral interface state emerges along the in-
terface between region “0” and region “V ”. Similarly, for
E ∈ (Ec2, Ec3), the chiral interface state shifts to the interface
between region “V ” and region “2V ” since C2 − C3 = 1. Such
a physics picture is directly proved by the local current density
calculation. When E takes the value as that labeled by the red
arrow in Fig. 3(a), the local current flows along the interface
between regions “0” and “V ” [Fig. 3(c)]. On the contrary, if E
is in the value labeled by the black arrow in Fig. 3(a), the local
current distributes along the interface between regions “V ”
and “2V ” [Fig. 3(d)]. Moreover, in both Figs. 3(c) and 3(d), no
backscattered local current is observed. Finally, one can also
adopt a potential profile with more steps to obtain a quantized
G = e2/h region with multiple width, which is illustrated by
the δC curve filled with different colors in Fig. 3(b).

Combining the numerical results for both the single-step
and the multistep potential, we claim that with the help of the
Anderson localization, the quantized transport energy region
can be manipulated from nearly zero to multiple times of the
CI’s bulk gap. In other words, a continuously tunable transport
gap can be obtained in the disordered CIs based on the chiral
interface states.

IV. EXPERIMENTAL PROPOSAL

Now we put forward a more realistic experimental
proposal. Although multistep potential can, in principle, over-
come CIs’ narrow gap problem, fabricating such a multistep
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potential could be experimentally difficult. As illustrated in
Fig. 3(b), for a step potential with arbitrary number of steps,
there is always only one conducting chiral interface state in
the whole lattice, although its spatial position depends on
the explicit value of E . Such results imply that the profile
of the applied potential can be relaxed to a monotonously
increasing potential along the transverse direction, which can
be approximated by an infinite-step potential profile.

We then apply an electric field Ey to the disordered CI
lattice, which introduces a linear potential along the transverse
direction as shown in the inset of Fig. 4(b). The maximum
potential difference is U = 3t , which is the same as that in
Fig. 3(a). For comparison, we also study the disordered CI
sample in the absence of Ey. To directly simulate the exper-
imental observable, open boundary condition is adopted for
both these two samples. In the absence of both disorder and
Ey, the CI possesses an intrinsic band gap with width 2t . In the
presence of strong Anderson disorder [Fig. 4(a)], the differ-
ential conductance G is quantized when E ∈ [−0.82t, 0.82t],
which indicates the mobility gap for the disordered CI is about
1.64t and smaller than the band gap. In sharp contrast, if Ey

is applied, the lattice has no global gap in the clean limit
[Fig. 11(d) in the Appendices ], while it shows a quantized G
without fluctuation for E ∈ [0, 3t] when disorder is presented
[Fig. 4(b)]. Such a 3t-wide quantized transport region, much
broader than the mobility gap 1.64t and the band gap 2t ,
originates from the potential-induced chiral interface states.
The presence of the chiral interface state under strong dis-
order is verified by the local current distribution [Fig. 4(c)].
With the increase of E , the chiral interface state evolves
into the chiral edge state [Fig. 4(d)]. Moreover, we find that
the width of the quantized energy region is proportional to
the maximum potential difference U , while independent of the
disorder strength W and the topological mass m. In principle,
a large enough potential slope U

N may ruin the quantization

of G. However, in realistic samples, the quantized region has
been greatly enhanced before such slope is large enough.

Very recently, the existence of Anderson localization in
CI has been suggested by an experiment [8] in MnBi2Te4

[33]. For strong magnetic field, the authors observed the co-
existence of the quantum Hall (QH) effect and the quantum
anomalous Hall effect, which indicates that the Fermi energy
is inside the bulk band. The QH effect fades away when the
magnetic field decreases, however, a quantized Hall conduc-
tance is still observed, which strongly implies the localization
of the bulk states. As shown in Fig. 4(a), the Anderson lo-
calization itself has little effect on the narrow gap problem of
CI. Nevertheless, we expect that applying a transverse electric
field in these Anderson-localization-dominated CIs [4–9] will
greatly enlarge their energy window for dissipationless trans-
port.

V. DISCUSSION AND CONCLUSION

The Anderson phase transition is beyond the scope of the
band theory. Such feature distinguishes our proposal from
another well studied disorder-induced topological state; the
topological Anderson insulator (TAI) [34,39–43]. The TAI
originates from the disorder-renormalized band structure [44].
Furthermore, due to the symmetry-related classification of
the Anderson phase transition, our main results cannot be
extended to metals or the TR-symmetry-protected topological
systems [45], e.g., quantum spin Hall insulator [46]. Specif-
ically, due to the symplectic ensemble classification of the
latter system, a metallic phase emerges between the topologi-
cal insulator and the NI phases [24–26]. Such a metallic phase
prohibits the integer topological invariant difference between
the two sides of the potential step so that the topological
interface states are now absent [33]. Lastly, though all the
investigation here is performed at zero temperature, such an
enlarged quantized region also benefits the observation of the
quantized transport in the finite temperature case. Meanwhile,
the finite temperature will reduce the carriers’ quantum co-
herence, which is critical to the Anderson localization [15].
Lastly, in additional to condensed materials, the chiral inter-
face states may be realized in artificial structures, such as
topological electric circuit [43].

In most experiments, the Fermi energy is not always inside
the topological gap. One needs to gate the Fermi energy inside
the gap to obtain the quantized transport. The small energy
gap also means a narrow energy window for the quantized
transport, which implies gating may not be so efficient (espe-
cially when the Fermi energy is far from the bottom of the
conduction band or the top of the valence band [47]). The
broadening of such an energy window implies that it should
be more accessible and easier to gate the chemical potential to
the quantized transport region in experiments.

In summary, we find a step potential will give rise to the
chiral interface state in the disordered CIs. Such a state is
highly related to the universal Anderson transition properties
of the CIs that the disorder drives a direct transition from CI
to NI. Based on such a chiral interface state, it is hopeful to
breakthrough the bottleneck of the CIs’ narrow gap problem
and obtain a quantized transport whose energy window could
be tuned from nearly zero to multiple times of the band gap.
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Finally, utilizing a simple transverse electric field, these pro-
posals can be realized under current experimental techniques.
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APPENDIX A: FINITE SIZE SCALING
OF THE HALL CONDUCTANCE

To show that the Hall conductance σxy trace is in the shape
of the red dash line in Fig. 1(b) of the main text (or the red
dashed line in Fig. 5) in the thermodynamic limit (N → ∞),
we present the scaling analysis of σxy in this section. The
Hall conductance is calculated by using the real space Chern
number method [32] where

σxy = 2π ie2

h
Tr[P[−i[x, P],−i[y, P]]]. (A1)

Here, P is the projector of the occupied states, and (x, y) is
the real space coordinate for each site. The evolution of the
Hall conductance σxy with the variance of the Fermi energy E
is plotted in Fig. 5, in which the calculation is based on the
QWZ model [29] adopted in the main text. We have to point
out that Eq. (A1) is also corresponding to the Chern number
with C = h

e2 σxy, which has been presented in a previous study
[32].

In the case of W = 0, σxy decreases to zero smoothly and
there is no sudden step jump between the σxy = 0 plateau
and the σxy = e2/h plateau. However, after taking the disorder
effect into consideration (W = 3.5t), it can be seen that σxy

increases with the increasing of the sample size N when the

Fermi energy lies between two critical points. In the mean-
time, σxy decreases with the increasing of N for the rest part
of the Fermi energy. Therefore, it is reasonable to assume that
in the thermodynamic limit N → ∞, the Hall trace will be in
the form of a step function as the red dashed line in Fig. 5.
To sum up, σxy = 0 and σxy = e2/h regions are separated by
critical points in the disordered Chern insulators (CIs).

APPENDIX B: AN ANALYSIS ON THE TWO-TERMINAL
CONDUCTANCE

In this section, we investigate the transport properties of
square CI samples under periodic boundary condition in de-
tails. In our calculation, the current flows along the x direction,
while the electric potential applied along the y direction can
be written as Vi = V �(iy − N/2). Here �(iy − N/2) is the
Heaviside step function, V is the voltage difference, iy is
the real space coordinate along the y direction, and N is the
sample width.

First, we set V = 1.5t and study the relation between the
two-terminal conductance G and the disorder strength W .
Based on the finite-size scaling analysis, the conductance
in the thermodynamic limit could be obtained. To be spe-
cific, if G increases (decreases) with the increasing of N (the
conductance fluctuation δG decreases at the same time), the
conductance will approach e2/h (0) in the thermodynamic
limit N → ∞. In contrast, the conductance is nearly inde-
pendent of the sample size at the transition points. Figure 6
exhibits the conductance curves for different sample sizes N .
The transition points drawn from Fig. 6 are summarized in the
phase diagram shown in Fig. 8(a), in which the conductance
approaches e2/h in the thermodynamic limit (N → ∞) for
the orange region. For simplicity, the low energy transition
point is denoted as the “first transition point” here, and the
high energy transition point is named as the “second transition
point”. When W � 4t , both the first and the second transition
points shift to the higher energy with the increasing of W ,
and the width of the orange region is almost invariant. On
the contrary, for W > 4t , the width of the nontrivial region
quickly decreases with the increasing of W .

As we have shown in Fig. 1 in the main text, the non-trivial
region shown in Fig. 8 is closely related to the chiral inter-
face states. To illustrate such a topologically nontrivial region
in Fig. 8(a), we exhibit the evolution of the Chern number
at both the “0” and the “V” regions for different disorder
strengths as shown in Fig. 8(c). The solid red (black) line in-
dicates the Chern number as a function of the Fermi energy E
at the “V” (‘0”) region, respectively. The inset of Fig. 8(c)
plots the voltage distribution in real space, where the “0”
(“V”) region corresponds to the green (purple) part of the CI
sample. The green dashed line labels the Fermi energy E = 0
in Fig. 8(a), while the red dashed line indicates the Fermi
energy E = V . If the Chern numbers shown by the solid black
and the solid red lines are equal to 1 and 0 at the same energy,
respectively, then the chiral interface state protected by the
Chern number difference is presented [Fig. 8(c)]. Moreover,
the topological band gaps for both the solid red line and the
solid black line decrease with the increasing of the disorder
strength W .
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FIG. 6. The two-terminal conductance along the x direction for the cylindrical CI samples with different disorder strengths W and different
sample sizes Nx = Ny = N . The electric voltage applied along the y direction can be written as Vi = V �(iy − N/2) where �(iy − N/2) is the
Heaviside step function, V is the voltage difference (V = 1.5t in this figure), and iy is the real space coordinate along the y direction. The
disorder strength for each figure is (a) W = 3t ; (b) W = 3.5t ; (c) W = 4t ; (d) W = 4.5t; (e) W = 5t ; and (f) W = 5.2t . Each curve is averaged
for 1000 disorder configurations. Other parameters are the same as those in Fig. 5.

Now we explain the phase boundaries of the nontrivial
region in Fig. 8(a). First, for weak disorder strength (W < 4t),
the lower (upper) phase boundary in Fig. 8(a) is determined by
the lower edge of the solid black (red) line [Fig. 8(c1)]. It can
be seen that both the lower edges of the solid black line and the
solid red line shift to the higher energy with the increasing of
the disorder strength W . In this way, the width of the orange
region only depends on V and is almost independent of the
disorder strength W in the case of W < 4t . Then, for W ≈ 4t ,
the lower edge of the solid red line begins to be higher than
the upper edge of the solid black line [Fig. 8(c2)]. Therefore,
finally, the orange region corresponds to the topological gap
of the solid black line in the case of W > 4t [Fig. 8(c3)].
Hence the width of the orange area decreases with the increas-
ing of W . We also notice that for W > 5.5t , the nontrivial
region disappears since the topological state is destroyed by
disorder.

To further investigate the dependence of the topological
region on the gate voltage, we study the two-terminal con-
ductance G as a function of the voltage difference V with
W = 3.5t . The conductance traces are shown in Fig. 7, and
the corresponding transition points are summarized as in
Fig. 8(b). The first transition point is almost invariant with
the increasing of V , while the second transition point strongly
depends on V . Moreover, it is shown that the gradient of
the nontrival region’s upper boundary (formed by the second

transition points) decreases with the increasing of V . Such
results is also illustrated in Fig. 8(d). Since the first transition
point is determined by the lower edge of the solid black line (V
independent), the lower boundary of the nontrivial region is
nearly independent of V . The slight shift of the first transition
point could originate from the self-energy of the purple area
[the inset of Fig. 8(c)], which is V dependent. The second tran-
sition point is sensitive to V because these transition points
are determined by the lower edge of the solid red line, which
corresponds to the purple sample region imposed with electric
voltage V . Furthermore, since the width of the orange region
is almost invariant when V is larger than the topological band
gap of the solid black line [Figs. 8(d2), 8(d3)], the gradient
of the topologically non-trivial region’s upper boundary in
Fig. 8(b) decreases as expected. These results imply that it
is an efficient way modulating the topological “band gap” by
tuning the gate voltage V . Although such single-step potential
has a disadvantage that the topological “band gap” cannot
be wider than the mobility gap at the gate voltage V = 0,
such disadvantage could be overcame by using the multistep
electric potential proposed in the main text.

Finally, as shown in Fig. 9, in case of fixed sample size
N = 900 and fixed disorder strength W = 3.5t , the quantized
conductance G = e2/h is much easier to be obtained for larger
V . Besides, the width of the G = e2/h plateau also increases
with the increasing of V . This implies that tuning the gate
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FIG. 7. The two-terminal conductance along the x direction for the cylindrical CI samples with different voltage differences V and different
sample sizes N . Disorder strength is fixed at W = 3.5t in this figure. The electric voltage applied along the y direction is the same as that in
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voltage is also an efficient way modulating the quantized
plateau in disordered CIs.

APPENDIX C: TWO-TERMINAL CONDUCTANCE FOR
LINEAR BIASED CHERN INSULATOR SAMPLES

In the section, we study the two-terminal conductance G
in the linear biased CI samples, in which a linear transverse
voltage is imposed along the y direction as Vi = iyV/N (iy
is in the range of [1, N]). The conductance G as a function
of the Fermi energy E as well as the voltage difference V
is plotted in Fig. 10. As shown in Fig. 10(a), the width of
the plateau with quantized conductance G = e2/h increases
almost linearly with the increasing of V . The data in Fig. 10(a)
could be replotted as Fig. 10(b) to obtain a more clear view,
where the G = e2/h plateau is evidently broadened for larger
V . These results suggest that the topological “band gap” can
be greatly enlarged with the help of the transverse voltage
along the y direction.

Figure 10(c) shows the conductance traces for different
disorder strengths W with sample size N = 600. It implies
that the conductance plateau width is nearly independent of
the disorder strength W , and such a plateau can be formed
in a wide range of disorder strength W ∈ [2.5t, 4t]. We also
notice that the conductance slightly deviates from the quan-
tized value G = e2/h in the case of W = 2t . Such a deviation
originates from the small disorder strength and the small sam-

ple size in which some bulk states can still contribute to the
conductance G. On the contrary, for a CI sample with larger
sample size, the conductance can be perfectly quantized at
G = e2/h.

Moreover, as shown in Fig. 10(d), even in the small-gap
case such as m = 0.1t , the quantized plateau is still well
preserved and the plateau width is also almost unchanged.
Therefore, the main conclusion of our manuscript is still valid
for the small-gap case, since the width of the energy window
with quantized transport is almost independent of the bulk gap
of the clean sample.

APPENDIX D: THE BAND STRUCTURES IN
DIFFERENT VOLTAGE SCHEMES

In this section, we discuss the band structures of the QWZ
lattice in four different cases.

(1) Figure 11(a) shows the band structure with voltage V =
0 under open boundary condition. The presence of the edge
states inside the bulk gap shows the topological nature of the
QWZ lattice.

(2) Figure 11(b) is the band structure with voltage V = 1.5t
under periodic boundary condition. The voltage applied along
the y direction is Vi = V �(iy − N/2). It is shown that the band
structure could be separated into two parts, and the energy
difference between these two parts is about V = 1.5t . Besides,
the edge-state-like chiral interface states are also shown in
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FIG. 8. Phase diagrams obtained from Figs. 6 and 7. The con-
ductance in the orange area is e2/h in the thermodynamic limit
(N → ∞). (a) Phase diagram on the plane spanned by the Fermi
energy E and the disorder strength W . (b) Phase diagram on the
plane spanned by the Fermi energy E and the voltage difference
V . (c) The Chern number versus the Fermi energy E for different
disorder strengths W . The solid red (black) line is the Chern number
curve for the sample area with electric voltage V (0). The inset is a
sketch of the voltage distribution in real space. The green dashed line
corresponds to the E = 0 green dashed line in (a). The red dashed
line indicates the Fermi energy E = V . (d) The Chern number versus
the Fermi energy E for different voltages V . Other parameters are the
same as those in (c).

the figure. Although the bulk gap decreases with the increas-
ing of V , the bulk state is localized when Anderson disorder
is presented. Thus, only the chiral interface state can still
contribute to the conductance, which is consistent with our
previous numerical results.

(3) Figure 11(c) is the band structure with voltage V = 1.5t
under periodic boundary condition. Now the voltage applied
along the y direction is in the multistep function form as Vi =
V �(iy − N/3) + V �(iy − 2N/3). The band structure here is
similar to that in Fig. 11(b), except for the presence of a
third part whose corresponding energy shift is 2V . Due to the
presence of the third part, the energy region for the topological
interface states is enlarged, hence the multistep electric poten-
tial contributes to the enhancement of the topological “bulk
gap”.

(4) The most important result is Fig. 11(d), which shows
the band structure with voltage V = 3t under open boundary
condition. The voltage applied here is along the y direction
and in a linear function form as Vi = iyV/N . The linear bias
makes the bulk band much more flat so that it benefits the An-
derson localization. The chiral interface state is still presented,
although there is no global band gap.

APPENDIX E: THE HALDANE MODEL

In this section, we study the metal-insulator transition of
the Haldane model [2]. To demonstrate that the main results
in this paper are independent of the specific choice of the
parameter sets, the parameters here for the Haldane model is
chosen to be the same as those in a previous study [24]. The
band structure for the Haldane model is shown in Fig. 12(a),
which proves itself as a Chern insulator in the clean limit.
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2 /h
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V=1.25t
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FIG. 9. The evolution of the two-terminal conductance G with
respect to the Fermi energy E for different voltage differences V .
The disorder strength is chosen as W = 3.5t , and the sample size is
N = 900. Other parameters are the same as those in Fig. 6.

By using the transfer matrix method [31], we also calculate
the renormalized localization length λ/N for cylindrical Hal-
dane model lattices. In general, there could be three different
behaviors for the renormalized localization length λ/N : (1)
If λ/N decreases with the increasing of N , it indicates an
insulator behavior; (2) For the metallic phase, λ/N increases
with the increasing of N ; (3) If λ/N is invariant with the
increasing of N , the transition points can be determined. As
shown in Fig. 12(b), there is no metallic phase since λ/N
does not increase with the increasing of N . In addition, the
transition point separating two different insulator phases (the
normal insulator and the Chern insulator phases) is a point
rather than a region. Since the localization length λ for the
phase transition points is of the same order as the sample
size N , the conductance for these areas is difficult to reach
the quantized value even in the thermodynamic limit N → ∞.
In fact, as shown in Fig. 3(a) of the main text, a region with
nonquantized conductance close to the phase transition point
is presented between the two quantized plateaus. More details
are going to be presented in the following section.

We replot the band structure of the cylindrical Haldane
model lattice, which has been given in Ref. [36]. The volt-
age applied here is in the form of Vi = V �(iy − N/2) with
V = 1.4t . As shown in Fig. 13(a), the band structure is similar
to the result shown in Fig. 11(b), where the chiral interface
states are mixed with the bulk states. The conductance for
the clean sample is very large due to the contribution from
the bulk states [Fig. 13(b)]. In contrast, the conductance de-
creases when disorder is presented (W = 5t), and a plateau
with G = e2/h is obtained. These results once again show that
our proposal for CIs is independent of the model as well as the
Hamiltonian details.

APPENDIX F: THE CONDUCTANCE FLUCTUATION OF
FIG. 3(a) IN THE MAIN TEXT AND THE NONQUANTIZED
CONDUCTANCE NEAR THE PHASE TRANSITION POINTS

The conductance G and its corresponding fluctuation δG
of Fig. 3(a) in the main text are shown in Figs. 14(a), 14(b),
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in which more conductance curves are also plotted. Moreover,
the periodical boundary condition is adopted in the calculation
for Figs. 14(a) and 14(b). To realize a perfect plateau near
E > −0.7t , we have tried our best to enhance the sample
size N . However, the dip between the two plateaus still ex-
ist. It is challenging to further increase the sample size N
since the time-cost for calculating the conductance curve with
N = 2100 is already about one and a half month. Thus, we
pay more attention to the scaling of the conductance, which
implies that there should be a broad G = e2/h plateau when
N → ∞.

We also notice that the conductance increases more slowly
when E ≈ 0.8t . Based on the study of the metal-insulator
transition in the Haldane model, the localization length λ for
the phase transition points is of the same order as the sample
size N . Therefore, it is much more difficult to obtain the
quantized conductance when the Fermi energy E is close to
the phase transition points. In other words, the Chern number
is not quantized as 0 or 1 for such points even in the limit
of N → ∞. Thus, the chiral interface states are absent at
these points even in the thermodynamic limit. Furthermore,
the sample size should be too large (beyond our computing
power) when the Fermi energy is close to these transition

points. Fortunately, the phase transition point is only a single
point in the disordered CI so that it has little effect on the
continuity of the quantized plateau when N is large enough.
As a consequence, our main conclusion for the chiral interface
states and its related quantized transport still hold.

We also present the conductance and its corresponding
fluctuation for CI samples with V = 1.3t [Figs. 14(c) and
14(d)]. It is obvious that the conductance plateau is also pre-
sented in such a case. Besides, the conductance plateau, here is
much more smooth than the case of V = 1.5t , which implies
that the nonquantized conductance region near the phase
transition points can be reduced by finding an appropriate
parameter set. Moreover, such a nonquantized conductance
region related to the phase transition points can be further
eliminated by imposing an electric potential with a multistep
form. For instance, as shown in Fig. 14(e), a broarder and
smoother plateau can be obtained by applying a multistep
electric potential along the y direction [inset of Fig. 14(e)],
where the maximum and the minimum value of such a poten-
tial is still fixed at 3t and 0, respectively. More importantly,
by applying such multistep potentials, it can be seen that the
dip shown in Fig. 14(a) is eliminated and the corresponding
conductance fluctuation is also reduced at the same time.
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condition. (b) The band structure with voltage V = 1.5t under periodic boundary condition. The voltage along the y direction is in the single
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APPENDIX G: THE REALIZATION OF THE CHIRAL
INTERFACE STATES IN LC CIRCUITS

In this section, we discuss the realization of our proposal
in LC circuit. Following the previous study [43], the nearest
neighbor hopping strength of the Haldane model is fixed at
−t , the next nearest neighbor hopping strength is set as −0.2t ,
and the U(1) hopping phase is chosen as 2π/3. We first
exhibit the band structure when a step potential with V = t
is presented [Fig. 15(a)]. One can see that the dispersion
of the LC circuit structure is similar to the previous results.
Next, we calculate the transmission coefficient with respect to
the disorder strength W and 3ω2C. A quantized transmission
coefficient can be realized [Figs. 15(b) and 15(c)], where a
typical “trans”∼W plot is shown as Fig. 15(d) with 3ω2C =
−0.46t . Since the fluctuation vanishes when the transmission
coefficient is quantized at 1, it is reasonable to claim that the
topological interface states are also presented in such an LC
circuit system.

Now we briefly present the circuit structure [43] realizing
the honeycomb Haldane lattice. For simplicity, now we only
pay attention to the orange rectangle [upper part of Fig. 15(e)]
in the honeycomb lattice, which contains three atoms, two
nearest neighbor hopping term (solid red line), and one next
nearest neighbor hopping term (dashed black line). Each of
these three atoms corresponds to the circuit structure shown
in a rectangle in the lower part of Fig. 15(e), where each
rectangle contains three circuit nodes. These three nodes are
firstly connected by three capacitors with capacitance C to
form a closed ring. The light green (gray) ellipse denotes
the nearest neighbor (next nearest neighbor) hopping term,
which is realized by inductors with inductance L1 (L3). More
importantly, the 2π/3 U(1) phase can be realized by connect-
ing these inductors in a cross-connected fashion as shown
in the lower part of Fig. 15(e) [43]. In addition, each node
is grounded with two inductors with different inductances
L2 and LW [For simplicity, only the grounding inductors for
one node is plotted in Fig. 15(e)]. Specifically, the on-site
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FIG. 13. (a) The band structure of the Haldane model under periodic boundary condition with applied voltage as Vi = V �(iy − N/2) where
V is fixed at V = 1.4t . (b) The corresponding conductance versus the Fermi energy E for different disorder strength W .
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FIG. 14. (a), (b) The conductance G and its corresponding conductance fluctuation δG of Fig. 3(a) in the main text. (c), (d) The conductance
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energy (the voltage potential V ) is inversely proportional to
L2 whose inductance is in a high accuracy. Meanwhile, the
Anderson disorder can be achieved by LW whose inductance
is in a sufficient error. Theoretically, all the physical quantities
are realizable in the circuit. One should also notice that the
Green’s function and the wave function corresponds to the

impedances and the alternating current (AC) voltage signals in
the circuits, respectively [43]. It suggests that the topological
features of the interface states can be detected in such a circuit
structure.

Experimentally, the parameters can be chosen as follows.
The nearest neighbor and the next nearest neighbor hopping
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FIG. 15. (a) The dispersion of the Haldane model under periodical boundary condition which can be realized in the LC circuits. The
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The electric potential applied here is the same as that in Fig. 2 in the main text with V = t . (b), (c) The transmission coefficient (“trans”) and
its corresponding fluctuation as functions of disorder strength W and 3ω2C, respectively. The sample size here is N = 100. (d) A typical plot
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FIG. 16. (a) The Chern number for different parts of the sample in a four-step electric potential. The Chern number curves and the
corresponding areas of the sample in (c) are marked by the same color. Case A to case H correspond to eight different Fermi energies.
(b) The set of Chern numbers (C0,CV ,C2V ,C3V ) for the areas with different electric potentials (0,V, 2V, 3V ) in the cases of different energies
as shown in (a). (c) The spatial positions of the interface channels (marked by black arrow) in the y direction. The arrow’s direction represents
the right/left moving channel along the +x/ − x directions. c1 to c8 correspond to case A to case H , respectively, as marked in the figure.

terms are related to the inductances as L1 = 1
t and L3 = 5

t .
Furthermore, the accurate inductance of the grounding in-
ductors simulating the voltage potential satisfies 1

V = 1
t . The

Anderson disorder with strength W ≈ 3.5t can be realized by
using inductance LW ≈ 0.0577

t with an error ratio y = 0.1. In
addition, the total energy shift is approximately 3

L1
+ 6

L3
+

17.5t .
Therefore, the Fermi energy is about 3ω2C ≈ 21.24t ,

where ω is the frequency of the AC field and C is the ca-
pacitance. If the parameters are chosen as L1 = 1mH, L3 =
5mH and C = 10μF, then the accurate grounding inductor
is L2 = 1mH, and the disordered grounding inductors are
in the inductance of LW ≈ 57 μH with the AC frequency
ω ≈ 26.6 KHz.

APPENDIX H: THE EVOLUTION OF CHIRAL INTERFACE
STATES VERSUS FERMI ENERGY

We take a sample in a four-step-potential as an example.
The voltage distribution and the corresponding Chern num-

ber curves for different parts of the sample are plotted in
Fig. 16(a). For simplicity, we assume that 0 < V <

mobility gap
4 .

There could be eight different cases for different choice of
the Fermi energy, which are marked by case A to case H
with different colors. Figure 16(b) lists the set of Chern num-
bers (C0,CV ,C2V ,C3V ) for the sample region with different
potentials (0,V, 2V, 3V ). According to the topological band
theory, a chiral interface state emerges if the Chern number
at the two sides of this interface differs by one. Hence, the
chiral interface states for different cases can be obtained [as
shown in Fig. 16(c)] based on the Chern numbers shown in
Fig. 16(b). It is obvious that C0 = 1 remains unchanged from
case A to case D. The nontrivial region becomes more exten-
sive with the increase of the Fermi energy and finally extends
to the entire sample in case D. The backward chiral edge state
always stays at the bottom of the sample, while the forward
chiral interface state shifts along the y direction step by step
with the increase of the Fermi energy and finally reaches the
top edge. From case D to case G, similarly, C3V = 1 remains
unchanged while the area of the nontrivial region decreases.
Finally in case H where the Fermi energy is large enough, the

TABLE I. Sample sizes and the corresponding electron mobilities μ for different experimental samples. The references shown in this table
are given in the main text.

Material width(μm) length(μm) μ(cm2V−1s−1) Reference

Cr0.15(Bi0.1Sb0.9)Te3 50–200 50–400 �103 Chang et al. Ref. [4]
(Bi0.29Sb0.71)1.89V0.11Te3 500 2000 130 Chang et al. Ref. [5]
Crx (Bi1−ySby )2−xTe3 200 600 270 Checkelsky et al. Ref. [7]
MnBi2Te4 20 �40 100–700 Deng et al. Ref. [8]
MnBi2Te4 20 20 74 Liu et al. Ref. [9]
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FIG. 17. (a) Vi vs Ny for different smoothness β with N = 600 and V = 1.5t . (b) The corresponding two-terminal conductance G versus
the Fermi energy E . Other parameters are the same as those in Fig. 2(a) in the main text.

entire sample becomes topologically trivial so that the chiral
interface state vanishes.

To sum up, the disorder-induced localization in the CIs
leads to the “rectangular profile” of the Chern number curves.
At the same time, the sample is divided into parts with differ-
ent potentials due to the external voltage. The combination of
these two mechanisms results in the penetration of the chiral
states into the bulk.

APPENDIX I: THE INFLUENCE
OF THE POTENTIAL SLOPE

The plateau will be destroyed if the slope is too large. How-
ever, the detailed inspection below demonstrates that such
constraint could barely restrict the increase of the desired
energy window in realistic conditions.

The distance between two counterpropagating chiral edge
states is not only determined by the slope of the voltage. As
shown in Fig. 16, for the multistep potential case, the distance
between two counterpropagating chiral edge states is always
an integer multiple of the width of the potential steps. For
linear biased samples, the evolution of the counterpropagating
chiral edge states is also similar to the case shown in Fig. 16.
For simplicity, we suppose the localization length (along the
y direction) of the topological edge (interface) states to be λ.
To ensure that the quantized conductance plateau will not be
interrupted, the critical electric field (voltage slope) Ec in such
a sample should satisfy the relation as

2λEc ≈ �, (I1)
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FIG. 18. (a)–(g) We pick Ny of the maximum local-current density along x direction [Jx (Nx, Ny )] for each slice Nx ∈ [1, N]. Then, the
statistical histograms of Ny for samples under different parameters are presented. The sample size is N = 360, and the step potential along
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diagram of the setup. (h) and (i) are the two-terminal conductance G for (a)–(d) and (e)–(g), respectively. Other parameters have been given in
the figures. The Fermi energy is set as EF = −0.1t .
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where � is the effective energy gap of the sample. Hence, for a
sample whose width along the y direction is Ly, the maximum
external potential allowed is about Vm = EcLy ≈ Ly�

2λ
. Thus,

correspondingly, the effective energy gap can be enlarged by
about Ly

2λ
times. In a typical quantum anomalous Hall system,

the localization length is λ ≈ h̄vF
�

∼ 10–100 nm [38], where
vF is the Fermi velocity. The typical experimental sample
widths Ly (summarized in Table I) are much larger than λ.
Thus, even a small electric field El satisfying El 
 Ec will
significantly enlarge the quantized “transport gap”. Conse-
quently, though the plateau could be destroyed when V is large
enough, the “transport gap” has already been significantly
enhanced before the plateau is destroyed.

APPENDIX J: THE INFLUENCE
OF THE SMOOTHED POTENTIAL

In the following, we replace the step potential with the
following smoothed potential [37]:

Vi = tanh[(Ny − N/2)β]V/2 + V/2, (J1)

where i ≡ Ny ∈ [0, N], V is the bias, tanh(x) is the hyper-
bolic tangent function, and β describes the “smoothness” of

the potential profile. In our calculation, we fix N = 600 and
V = 1.5t . As shown in Fig. 17(a), the Vi-Ny curve becomes
more smooth with the increase of β. Figure 17(b) shows the
corresponding conductance curve (with respect to the Fermi
energy E ) along the x direction. It can be seen that such
conductance curve is independent of the smoothness of the
potential distribution β along the y direction.

APPENDIX K: THE LOCALIZATION
OF INTERFACE STATES

Because the localized bulk states have little effect on
the local-current density along x direction [Jx(Nx, Ny) with
Nx, Ny ∈ [1, N], the current is also along the x direction], we
use Jx(Nx, Ny) to uncover the localization properties of the
“edge states” instead. Taking samples with one step poten-
tial as an example, we pick Ny of the maximum Jx(Nx, Ny )
for each slice Nx ∈ [1, N]. Then, the statistical histograms of
Ny for samples under different parameters are presented in
Fig. 18. The corresponding conductance G is also given. It
clearly shows that the disorder strength W and the potential
V will influence the topological interface states’ localization.
In short, if the conductance G is closer to the quantized value
e2/h, the topological channel is more localized.
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