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Effect of magnetic field and chemical potential on the RKKY interaction in the α-T3 lattice

Oleksiy Roslyak,1 Godfrey Gumbs ,2 Antonios Balassis ,1 and Heba Elsayed 1

1Department of Physics and Engineering Physics, Fordham University, 441 East Fordham Road, Bronx, New York 10458, USA
2Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065, USA

(Received 4 July 2020; revised 16 January 2021; accepted 19 January 2021; published 12 February 2021)

The interaction energy of the indirect-exchange or Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
between magnetic spins localized on lattice sites of the α-T3 model is calculated using linear response theory. In
this model, the AB-honeycomb lattice structure is supplemented with C atoms at the centers of the hexagonal
lattice. This introduces a parameter α for the ratio of the hopping integral from hub to rim and that around
the rim of the hexagonal lattice. A valley and α-dependent retarded Green’s function matrix is used to form the
susceptibility. Analytic and numerical results are obtained for undoped α-T3 when the chemical potential is finite
and also in the presence of an applied magnetic field. We demonstrate the anisotropy of these results when the
magnetic impurities are placed on the A, B, and C sublattice sites. Additionally, a comparison of the behavior of
the susceptibility of α-T3 with graphene shows that there is a phase transition at α = 0.
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I. INTRODUCTION

An effective single-particle model Hamiltonian represent-
ing an electronic crystal was recently constructed to represent
the low-lying Bloch band of the α-T3 lattice (for a review
of artificial flat-band systems, see Ref. [1]). The electronic
properties of this material have come under growing scrutiny
for a number of important reasons which are fundamental and
technological [2–22]. The potential tunability of these materi-
als, ranging from their optical and transport properties to their
response to a uniform magnetic field and varying chemical po-
tential, presents researchers with the opportunity to investigate
new materials. Regarding their fabrication, it was suggested in
[2] that an α-T3 lattice may be constructed with the use of cold
fermionic atoms confined to an optical lattice with the help of
three pairs of laser beams for the optical dice (α = 1) lattice
[23]. Jo et al. [9] successfully fabricated a two-dimensional
kagome lattice consisting of ultracold atoms by superimpos-
ing a triangular optical lattice on another one commensurate
with it and generated by light at specified wavelengths. The
α-T3 and kagome lattices are related in that they both have
flat bands as well as Dirac cones at low energies. In modeling
this structure, an AB-honeycomb lattice like that in graphene
is combined with C atoms at the centers of the hexagonal
lattice as depicted in Fig. 1. Consequently, a parameter α

is introduced to represent the ratio of the hopping integral
between the hub and the rim (αt) to that around the rim (t)
of the hexagonal lattice. When one of the three pairs of laser
beams is dephased, it is proposed in [23] that this could allow
the possible variation of the hopping parameter over the range
0 < α � 1.

Interestingly, it would be informative to explore how the
optical and transport properties of α-T3 systems are affected
by defects. These include substituting impurities or guest
atoms in a hexagonal lattice with fermionic host atoms. In

this way, one could effectively manipulate the fundamental
properties which are inherent in the α-T3 system. The guest
atoms could be added to their hosts by chemical vapor de-
position or discharge experiments. With doping, the A and
B sublattices are no longer equivalent since the π bonding
on these lattices may be seriously distorted, which causes
significant modification of the physical properties, including
the energy band structure with a deviation from the original
Dirac cone and flat band. However, at low doping (<1.5%),
the low-energy portion of the band structure is only slightly
affected. We emphasize that the doping configuration and
concentration in general create unusual band structures with
feature-rich and unique properties.

Oriekhov and Gusynin [15] took the first step of investigat-
ing the role played by the sea of background α-T3 fermions on
the indirect exchange interaction between a pair of spins local-
ized on lattice sites. Local moments like these may occur near
extended defects. The doping giving rise to the presence of
these spins was assumed to have such a low concentration that
the energy dispersion and the zero band gap remain unaltered.
Specifically, these authors [15] were interested in this effect
of doping and temperature on the Ruderman-Kittel-Kasuya-
Yosida (RKKY) or indirect-exchange coupling as discussed
for different types of two-dimensional materials by others
[24–28] between spins via the host conduction electrons of
freestanding monolayer graphene [29–39] and biased single-
layer silicene [40]. In this paper, we continue the investigation
in [15] by calculating the effect of a uniform magnetic field
and a variable chemical potential on the RKKY interaction of
α-T3. It is worth getting a better understanding of the behavior
of this topic since one could exploit the RKKY interaction to
determine spin ordering as excitations near the Fermi level
are, in part, governed by the indirect exchange interaction
between local magnetic moments [41–43].
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FIG. 1. Lattice sites of the α-T3 model. The “rim” atoms are
labeled A and B, whereas C is a “hub” atom.

The rest of this paper is organized as follows. In Sec. II, we
present the low-energy α-T3 model Hamiltonian and derive
the lattice Green’s functions for small magnetic field (Zeeman
effect). We calculate the indirect exchange coupling between a
pair of impurities. We represent the RKKY interaction energy
as a Hadamard product of three matrices: a valley matrix,
an α matrix, and a distance matrix. In Sec. III, we present
numerical results for the α-dependent exchange interaction in
the case of strong magnetic field when Landau levels have
been formed. We demonstrate that the spin susceptibility for
the α-T3 model is different in nature from that for graphene,
thereby signaling a magnetic phase transition at α = 0. We
also analyze the behavior of the spin susceptibility at low and
high doping. We conclude with a summary in Sec. IV.

II. WEAK MAGNETIC FIELD: ZEEMAN EFFECT
ON RKKY INTERACTION FOR THE α-T3 MODEL

The conventional α-T3 model describes triplon energy
bands. A small magnetic field induces nontrivial topological
character in the triplon energy spectrum. First, we shall intro-
duce the lattice-specific Green’s functions which are essential
for calculating RKKY interactions. Throughout the paper, we
use two conventions for the notation adopted: bold capitalized
letters stand for 3×3 matrices (or 3×1 vectors); quantities
with tildes are dimensionless. The energy spectrum can be
derived from the low-energy Hamiltonian at the K and K′
points,

H =

⎛
⎜⎝

� fλ,k cos φ 0

f ∗
λ,k cos φ 0 fλ,k sin φ

0 f ∗
λ,k sin φ −�

⎞
⎟⎠, (1)

where 0 < φ � π/4 is the hopping parameter with α = tan φ;
fλ,k = λεke−iλθk , with εk = h̄vF k; λ = ±1 stands for the val-
ley index at the K and K′ points located at (λ 4π

3
√

3a
, 0); a

is the conventional graphene carbon-carbon distance; and vF

FIG. 2. Dispersion of (a) the massive �a/h̄vF = 0.1 triplon with
φ = π/10, (b) the masless �a/h̄vF = 0 triplon with φ = π/10, and
(c) the massive �a/h̄vF = 0.1 spin-1 fermions (dice lattice) with
φ = π/4. Changing the magnetic field orientation Bz → −Bz, or, in
other words, � → −�, leads to a flip of the dispersion E → −E .

stands for the Fermi velocity. The angle between k and the x
axis is given by θk , yielding kx/|k| = cos θk , ky/|k| = sin θk .
The rows and columns of the Hamiltonian are labeled by
the (A, B, C) lattice indices indicated in Fig. 1. The mass
term induced by the pseudomagnetic field as it follows from
Ref. [44] is denoted by � = mv2

F /2.
The energy spectrum corresponding to Eq. (1) first reported

in Ref. [45] is shown in Fig. 2. For convenience, we denote by
ω = E/E0 and δ = �/E0 the normalized energy and normal-
ized gap, respectively, where E0 = h̄vF /a. In the absence of
magnetic field, the triplon is built from two Dirac cones as
well as a “flat band.” For the dice lattice φ = π/4, and the
effect of the mass term is to open a gap at k = 0 such as −δ �
ω � δ, and we recover the standard spin-1 dispersion. This
also breaks time reversal symmetry. Reducing the value in
φ, we shall obtain two nonsymmetrical gaps, 0 < ω � δ and
−δ � ω � ωδ , where ωδ = −δ cos (2φ) (asymptotic value of
the middle). The bending of the flat band reveals the nontriv-
iality of the energy dispersion topology and may be related to
a nonzero Chern number. One of the most striking features of
the α-T3 model is the broken particle-hole symmetry.

We define the Green’s functions by the elements of an
inverse matrix involving the energy difference with the Hamil-
tonian of Eq. (1) as

G(k, E ; λ; φ) = [(E + i0+)I − H]−1

=

⎛
⎜⎝

GAA GAB GAC

G∗
AB GBB GBC

G∗
AC G∗

BC GCC

⎞
⎟⎠. (2)

In this notation, I is the unit matrix, and the replacement
E → E + i0+ guarantees the retarded nature of the Green’s
functions. The direct diagonalization of the Green’s tensor
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yields

G(k, E ; λ; φ) = D−1

⎛
⎜⎝

E (E + �) − ε2
k sin2 φ (E + �) fλ,k cos φ f 2

λ,k sin(2φ)/2

E2 − �2 (E − �) fλ,k sin φ

E (E − �) − ε2
k cos2 φ

⎞
⎟⎠, (3)

with the determinant given by D(k, E ) = E (E2 − �2) − [E + � cos(2φ)]ε2
k , whose dispersion is given by its poles, as shown

in Fig. 2.
Clearly, the Green’s function matrix is Hermitian, and we observe that GBB(k, E ; λ; φ) = GAA(k, E ; λ; φ = 0) is the only

element of the Green’s function matrix which does not depend on φ. Consequently, this leads to the RKKY interaction between
spins on the B site being unaffected when φ is varied.

Now, defining the Fourier transform of the total Green’s function at the two valleys, upon shifting to the Dirac points with
k → k + λK, we obtain the following expression for the components in real space:

Gμν (rll ′ , E ; φ) = A
(2π )2

∑
λ=±1

∫
B.Z.

d2k Gμν (k, E ; λ; φ)ei(k+λK)·rll′ , (4)

where the integration over the wave vector k is carried out in the Brillouin zone and we have used rll ′ = rl − rl ′ . After some
straightforward algebra (see Appendix A) we obtain the Green’s function tensor as a Hadamard product,

G(rll ′ , E ; φ) = A
πa2E0

V1/2 ◦ �1/2 ◦ R1/2, (5)

where the valley matrix is given by

V1/2(rll ′ ) =

⎛
⎜⎝

cos (K · rll ′ ) sin (K · rll ′ − αll ′ ) cos (K · rll ′ − 2αll ′ )

cos (K · rll ′ ) sin (K · rll ′ − αll ′ )

cos (K · rll ′ )

⎞
⎟⎠

and the α- (or, equivalently, φ-) dependent matrix has the form

�1/2 =

⎛
⎜⎜⎜⎝

ω+δ
ω−ωδ

(
1 − ω−δ

ω−ωδ
sin2 φ

) √
ω2−δ2

ω(ω−ωδ )
ω+δ
ω−ωδ

cos φ ω2−δ2

(ω−ωδ )2
sin(2φ)

2

ω2−δ2

ω(ω−ωδ )

√
ω2−δ2

ω(ω−ωδ )
ω−δ
ω−ωδ

sin φ

ω−δ
ω−ωδ

(
1 − ω+δ

ω−ωδ
cos2 φ

)

⎞
⎟⎟⎟⎠. (6)

The position- and energy-dependent distance matrix is given by

R1/2 = ω

⎛
⎜⎝

−K0(−i�r) −iK1(−i�r) K2(−i�r)

−K0(−i�r) −iK1(−i�r)

−K0(−i�r)

⎞
⎟⎠,

where � =
√

ωω2−δ2

ω−ωδ
and the dimensionless length r is de-

fined by r = rll ′a−1, with a denoting the AB separation on the
lattice as shown in Fig. 1.

We now consider two magnetic impurities having spins S1

and S2 occupying the lattice sites rl and rl ′ , respectively. The
effective RKKY exchange interaction energy for this pair of
spins in the sea of Dirac electrons is, by linear response theory,
given in the Heisenberg form as [23,29,30]

Eμν (rll ′ ; φ) = λ2
0h̄2

4
χμν (rll ′ ; φ) S1 · S2,

where λ0 is the short-range exchange interaction between
the impurity spins and the α-T3 electrons and χμν (rll ′ ; φ) is
the free-particle charge density sublattice susceptibility which
depends on the lattice sites μ, ν = A, B, C where the impurity

spins are positioned and is given by

χμν (rll ′ ; φ, δ, μ) = − 2

π

∫ 0

−∞
dE Im

[
G2

μν (E + i0+)
]

=
(

3
√

3

2πE0

)2

E0Vμν (rll ′ )χ̃μν (rll ′ ; φ, δ, μ).

(7)

Here μ = EF /E0 is a normalized Fermi energy. A new valley
matrix is given by the highly oscillatory direct product V =
V1/2 ◦ V1/2.

We now focus on the dimensionless envelop matrix ele-
ments χ̃μν , given by

χ̃ = − 2

π

∫ μ

−∞
dωIm[� ◦ R], (8)

where � = �1/2 ◦ �1/2 is a smooth function of ω and R =
R1/2 ◦ R1/2 is the oscillating kernel. It is convenient to
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FIG. 3. Equation (9) along various directions for small (top panels) and large (bottom panels) distances and the set of numerical parameters
φ = π/10, δ = 0.1, μ = 1.0.

separate the above expression by writing

χ̃ = χ̃(0) + χ̃(1)

= − 2

π

∫ −μ

−∞
dωIm[� ◦ R] − 2

π

∫ μ

−μ

dωIm[� ◦ R]. (9)

Note that due to the symmetry of the kernel the χ̃(1)(δ = 0)
term vanishes; therefore, its contribution is a direct measure
of the magnetic field influence. At this point we consider the
high-doping regime δ/μ � 1, so that we can neglect the δ

effect in

χ̃(0) 	 χ̃(0)(δ = 0) = − 2

π
� ◦

∫ −μ

−∞
dωIm[R]. (10)

Its exact expression in terms of the Meijer G functions was
first obtained in Ref. [15] and exhibits Friedel oscillations in
the susceptibility.

The second contribution to the susceptibility in Eq. (9) was
worked out numerically. Special attention has to be paid to
the gap region −δ < ω < δ since it contains a singularity
at ω = −δ cos(2φ) which is the asymptote of the middle
(flat-band) dispersion curve in Fig. 2. The Zeeman kernel
Im[� ◦ R] becomes highly oscillatory upon approaching the
singular point (see Fig. 1 in the Supplemental Material [46]),
and the integral was determined using∫ δ

−δ cos(2φ)
· · · =

∑
i

∫ ωi+1

ωi

· · · , (11)

where ωi are the kernel R zeros in ascending order. The
magnitude of the above summation grows with rll ′ . The kernel
with and without the Zeeman effect for small kF r is shown in
Fig. 2 of the Supplemental Material. Note that along the AC
direction the kernel singularity occurs even for δ = 0. This
is a manifestation of the flat-band contribution. The Zeeman
effect deforms the otherwise flat band, and its contribution is
pronounced in all magnetic impurities orientations.

In Fig. 3, we analyze the χ̃(1) elements. These are shifted
to the right for δ > 0 when compared to χ̃(0) for small values

of rll ′ . The left shift occurs upon flipping of the magnetic field
orientation δ → −δ following the flip in the dispersion curve
E → −E (see Fig. 2). Let us focus on points in the lattice
such that χ̃(0) = 0. Switching orientation in the magnetic field
changes the RKKY interaction from ferromagnetic to antifer-
romagnetic. This effect may be useful in spintronics. Another
interesting effect occurs at larger kF r where the shift may
disappear and change its direction in beatlike format. We may
attribute the beats to the broken particle-hole symmetry where
two types of Friedel oscillations occur. This is supported by
the fact that the beats disappear upon restoring the symmetry
to the lattice as in the dice lattice case of φ = π/4 [see
Fig. 4(b)]. It is also worth noting that the dice lattice gives
vanishing χ

(1)
AC .

The kernel plays a crucial role in the low-temperature
correction kbT/μ � 1 obtained in the Sommerfeld expansion
[15]

χ̃ = χ̃(T = 0) + π2

6

(
kbT

E0

)2

χ̃(2)(ω = μ),

χ̃(2) = d

dω
Im[� ◦ R]. (12)

It is clear that the expansion fails around a singular point and
the edges of the gap (see Fig. 3 in the Supplemental Material).
The standard approach to correct the expansion is to define a
chemical potential that depends on temperature. That would
take us beyond the scope of this investigation.

III. STRONG MAGNETIC FIELD EFFECTS ON THE RKKY
INTERACTION: FORMATION OF LANDAU LEVELS

We performed our calculations using the Landau gauge, for
which the vector potential is A = −Bzyx̂ and ∇×A = Bzẑ is
the magnetic field. Using the Hamiltonian of Eq. (1), one can
determine the wave functions and Landau levels for the lattice.
Making use of the vector potential and the Peierls substitution
h̄k → p → p + eA, where h̄k is the momentum eigenvalue in

075418-4



EFFECT OF MAGNETIC FIELD AND CHEMICAL … PHYSICAL REVIEW B 103, 075418 (2021)

(a) (b)

FIG. 4. Limiting cases of RKKY response along various directions for small (top panel) and large (lower panel) distances and the set of
numerical parameters δ = 0.1, μ = 1.0.

the absence of magnetic field and p is the momentum operator,
we have

ĤK = −Ĥ∗
K′

= EB

⎛
⎜⎝

0 cos φ â 0

cos φ â+ 0 sin φ â

0 sin φ â+ 0

⎞
⎟⎠, (13)

where EB = √
2γ l−1

B is the cyclotron energy related to
the magnetic length lB = √

h̄/(eBz ). We also define the
annihilation operator â = 1√

2h̄eBz
( p̂x − eBzŷ − i p̂y) and the

creation operator â+ = 1√
2h̄eBz

( p̂x − eBzŷ + i p̂y) as in the
case of the harmonic oscillator. We note that when φ = 0,
the Hamiltonian submatrix consisting of the first two rows
and columns is the one used in [41,42] for monolayer
graphene.

In the most general case, let us denote the eigenstates
by {�n(r), En}, where the eigenfunctions are orthonormal,
i.e.,

∫
d2r�T

n1(r)��
n2(r) = δn1,n2. We then write the Green’s

function as

G(E ; rll ′ ) = 1

EI − H
=
∑

n

��
n(rl )�T

n (rl ′ )

E − En + i0+ . (14)

In the presence of magnetic field, we have n = {λ, s, n, ky},
where λ = ±1 denotes the K or K′ = −K valley; s =
−1, 0, 1 stands for the valence, flat, and conduction bands,
respectively; n � 0 is the Landau level index; and ky is the
wave vector. The energies can be found by diagonalizing the
Hamiltonian (13) as

En = EBελ,s,n = EBs
√

n + χλ, (15)

where the auxiliary parameter χλ = [1 − λ cos (2φ)]/2, with
0 � χλ < 1, has been used.

The susceptibility components at T = 0 K and the Fermi
energy EF are given by Eq. (7). Using the Green’s function in
Eq. (14), we obtain

χμν = − 1

π
Im

∫ ∞

−∞
dE θ (EF − E )G2

μν (E ; rll ′ )

= − 1

π
Im

∑
n1,n2

�μν
n1;n2

(rl , rl ′ )
∫ ∞

−∞
dE

θ (EF − E )

(En1 − En2 )

×
(

1

E − En1 + i0+ − 1

E − En2 + i0+

)

=
∑
n1,n2

�μν
n1;n2

(rl , rl ′ )

[
θ (EF − En1 ) − θ (EF − En2 )

En1 − En2

]
.

(16)

Here, we have used the shorthand notation �
μν
n1;n2 (rl , rl ′ ) =

�
�μ
n1 (rl )�ν

n1
(rl ′ )�

�μ
n2 (rl ′ )�ν

n2
(rl ).

Mapping the sites of the lattice A, B, C → −1, 0, 1 and
separating the spatial variables in the wave function, we obtain

��μ
n (rl ) = ψ

μ
λ,s,nφn+λμ,ky (xl )e

−ikyyl e−iλKyyl , (17)

where the vector components specific to the given lattice are
denoted by ψ

μ

λ,s,n, φn,ky (xl ) and are given by the harmonic
oscillator wave functions. When s2 = 1, these components
take the following form:

ψ
μ

λ,s,n = 1√
2(n + χλ)

⎧⎪⎨
⎪⎩

√
n(1 − χλ), λμ = −1,

sλ
√

(n + χλ), λμ = 0 ,√
(n + 1)χλ, λμ = 1.

(18)

For the flat band (s = 0), when n > 0, the components are

ψ
μ

λ,s,n = 1√
n + χλ

⎧⎪⎨
⎪⎩

−λ
√

(n + 1)χλ, λμ = −1,

0, λμ = 0 ,

λ
√

n(1 − χλ), λμ = 1,

(19)

while for n = 0 the components are

ψ
μ
λ,s,n =

⎧⎪⎨
⎪⎩

0, λμ = −1,

0, λμ = 0,

1, λμ = 1.

(20)

075418-5



ROSLYAK, GUMBS, BALASSIS, AND ELSAYED PHYSICAL REVIEW B 103, 075418 (2021)

By combining Eqs. (15), (16), and (18) and after some algebra (see Appendix B) we finally obtain the general form of the
susceptibility components:

χμν = A
EB(2π lB)2 χ̃μν (rl , rl ′ ),

χ̃μν (rl , rl ′ ) =
∑

λ1,2=±1

∑
s1,2=0,±1

∑
n1,2�0

ψ
μν
λ1s1n1;λ1s1n1

�̃
n1+λ1ν
n1+λ1μ

(s1; rl , rl ′ )�̃
n2+λ2ν
n2+λ2μ

(s2; rl ′ , rl )e
−iK (λ1−λ2 )(yl −yl′ )

× θ (μF − s1
√

n1 + χλ1 ) − θ (μF − s2
√

n2 + χλ2 )

s1
√

n1 + χλ1 − s2
√

n2 + χλ2

, (21)

where we have introduced the normalized Fermi
energy μF = EF /EB as well as ψ

μν
λ1s1n1;λ1s1n1

=
ψ

μ

λ1,s1,n1
ψν

λ1,s1,n1
ψ

μ

λ2,s2,n2
ψν

λ2,s2,n2
. Equation (21) is applicable

for a wide range of experimental parameters and serves as
a basis for the numerical simulations which are presented
below. For simplicity, we neglect highly oscillatory intervalley
terms, setting λ1 = λ2 = λ = ±1.

Figures 5 present the magnetic field dependent suscepti-
bility as a function of the spin separation when EF = 0 at

T = 0 K. Three values of φ were chosen in the numerical
calculations. They all show regions of ferromagnetic and anti-
ferromagnetic behavior with the amplitude of the oscillations
decreasing with increasing separation between the spins on
the lattice. However, for φ = π/80 in Fig. 5(b), χCC has the
largest amplitude for the oscillations, and χAB + χBA, χAC +
χCA, and χBC + χBA all remain negative and independent of
rll ′ . These results are interesting as they demonstrate how one
could control the magnetic behavior of the α-T3 lattice. Most

(a)

(b)

FIG. 5. Spin susceptibility in units of A/EB(2π lB)2 as a function of the interparticle separation for EF = 0, T = 0 K.
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importantly, the results in Fig. 5(b) signal that the magnetic
properties of the α-T3 lattice near α = 0 need to be com-
pared with those for graphene in Fig. 5(a). Remarkably, the
susceptibility has one sign for small rll ′ . The component χAA

oscillates but remains positive for large spin separation. On
the contrary, both χAB and the sum χAA + χAB remain negative
in this limit. This behavior is independent of the position of
the Fermi level. We point out that in doing the calculations
for graphene, we first set α = 0 in Eq. (13) before calculating
the eigenstates, which were in turn employed in the spin
susceptibility. Therefore, the change in behavior discovered
here is clear when α is finite and zero.

We now turn our attention to two specific cases where
closed-form analytic expressions can be obtained for the spin
susceptibility. A very interesting case occurs when the lattice
is undoped, i.e., EF = 0, in strong magnetic field for which
there are well-separated Landau levels at λ = 1 and φ → 0.
The dominant contributions to Eq. (21) come from n1,2 = 0
terms,

χ̃μν =
∑

s1,2=0,±1

�̃ν
μ(s1; rl , rl ′ )�̃

ν
μ(s2; rl ′ , rl )

× ψ
μ
1,s1,0

ψν
1,s1,0ψ

μ
1,s2,0

ψν
1,s2,0

θ (−s1 sin φ) − θ (−s2 sin φ)

s1 sin φ − s2 sin φ
.

(22)

Let us introduce the normalized temperature T̃ = kBT
EB

and the
integral representation of the Fermi function instead of the θ

function. For an arbitrarily chosen small temperature, we set
T̃ = sin2(φ), and we expand the above equation around small
positive φ to obtain

χ̃μν ∼
Erf

[
1√
2

]
exp

[−r2
ll′

2

]
4φ

×

⎡
⎢⎣
⎛
⎜⎝

0 0 0

0 −1 1

0 1 −1

⎞
⎟⎠+

⎛
⎜⎝

0 0 0

0 0 0

0 0 −4

⎞
⎟⎠
⎤
⎥⎦. (23)

The first matrix is due to transitions between the valence and
conduction bands as well as within the conduction band from
below to above the Fermi level. The second matrix arises
from transitions from the flat band to the conduction band.
We conclude from these results that the largest change in the
spin susceptibility occurs in the limit when φ → 0 and there
is no smooth transition from finite φ to φ = 0. This in turn
indicates that there is a phase transition between graphene
(φ = 0) and the α-T3 model. This anomaly is short range due

to the exponent and has no counterpart in the K (λ = −1)
valley.

We also study the case of high doping when the Fermi level
nF is defined via√

nF − 1 + χλ1 � μF �
√

nF + χλ2 .

In this case, there are only intraband s1 = s2 = 1 contributions
to the susceptibility. The leading terms (largest contributions
to the sum) come from the states nearest to nF . Specifically,
for large nF , we found numerically that the terms in Eq. (21)
scale as δ|n1−n2|,1. The transitions from the flat band to the
conduction band do not follow this rule; they rather scale
as ∼1/nF , which allows us to neglect such contributions.
A similar approach was adapted by Lozovik [47] when he
discussed edge magnetoplasmons in graphene (leading con-
tributions to the conductivity tensor in the above-mentioned
limit). However, there is an important difference in that the
magnetoplasmons are given by the optical conductivity tensor
where δ|n1−n2|,1 is the true selection rule which applies for all
n.

In this limiting case Eq. (21) can be written in a compact
form as

χ̃ = [
I ◦ �λ1=λ2 + Vλ1=−λ2 ◦ �λ1=−λ2

] ◦ R. (24)

Contributions from the same valley λ1 = λ2 (the first term
in the square brackets in the above expression) are given by
� = �1/2 ◦ �1/2, which is identical to the no-magnetic-field
case δ = 0 in Eq. (6),

�λ1=λ2 =

⎛
⎜⎝

cos4 φ cos2 φ 1
4 sin2 2φ

1 sin2 φ

sin4 φ

⎞
⎟⎠. (25)

However, for mixed valley contributions, λ1 = −λ2, we ob-
tain highly oscillatory terms Vλ1=−λ2 = cos(2Kyll ′ )I along
with a peculiar form for the φ matrix,

�λ1=−λ2 =

⎛
⎜⎝

1
4 cot2 φ 1

2 csc2 φ −2

csc2(2φ) 1
2 sec2 φ

1
4 tan2 φ

⎞
⎟⎠. (26)

It is informative to look at the top left 2×2 submatrix in
Eqs. (25) and (26) corresponding to the graphenelike case of A
and B sublattices. While Eq. (25) provides a smooth transition
to graphene at φ → 0, the valley mixing in Eq. (26) gives
1/φ2 scaling. The absence of the smooth graphene limit can
be directly attributed to broken symmetry for the K and K′
valleys in magnetic field.

The site-to-site distance and Fermi number dependent ma-
trix referred to Eq. (24) are given by

R(rll ′ , nF ) = 1

2πr

⎛
⎜⎜⎜⎝

−4 cos2 (2
√

nF r) e−r2
cos (4

√
nF r) + 1 1

4

[
e−r2

cos (4
√

nF r) + 1
]

−4 cos2 (2
√

nF r) e−r2
cos (4

√
nF r) + 1

−4 cos2 (2
√

nF r)

⎞
⎟⎟⎟⎠ , (27)
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where for convenience we have omitted the subscripts through
the replacement rll ′/

√
2 → r. If we formally associate

√
nF

with kF , the oscillations in the above equation correspond to
Kohn anomalies in the absence of magnetic field, which was
first reported in Ref. [35]. However, they are much larger in
range due to the ∼1/r dependence. At larger distances, we
can neglect the terms ∼ exp(−r2), and the oscillations for
impurities which are placed on different sublattices vanish.

IV. CONCLUDING REMARKS AND SUMMARY

We have investigated the behavior of the RKKY interaction
for undoped and doped α-T3 semimetals as well as when
they are subjected to a uniform perpendicular magnetic field.
Specifically, we have shown the following: (a) For undoped
samples, the RKKY interaction obeys an inverse cubic law
for the separation between spins located on lattice sites. The
strength of this interaction is anisotropic and determined by
the adjustable hopping parameter φ except when both spins
are on B sites. Furthermore, the AA, BB, and CC exchange
interactions are ferromagnetic, but the sign of this interaction
is reversed when the spins are located on different sublattices.
(b) For the case when the chemical potential is finite, we were
able to express our closed-form analytic expression for the
spin susceptibility in the same algebraic form as in case (a).
However, the amplitudes of these interactions are multiplied
by an oscillatory factor which could be positive or negative for
ranges of the spin separations. (c) In the presence of magnetic
field, the spin susceptibility oscillates as the spin separation
is varied, displaying ranges of ferromagnetism and antifer-
romagnetism. When φ is small, we found that the behavior
of the susceptibility is radically different from when the dice
or Lieb phase (φ = π/4) is approached. These observations
confirm that a phase transition occurs as φ → 0 and this phase
change is signaled through an applied magnetic field. A phase
change was also reported in Ref. [48] when the softening of
a magnetoplasmon mode as the hopping parameter is reduced
was discovered. (d) We were able to obtain analytic expres-
sions for the spin susceptibility in the limit of low magnetic
field or high doping. Interestingly, the power law behavior
as a function of spin separation is ∼1/r. At large distances
between the impurities the RKKY interaction exhibits Kohn
anomalies only when those are located on the same sublat-
tices. These effects are experimentally observable signatures
of the electronic properties of α-T3 semimetals and could
serve to motivate others to apply them to future technologies.
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APPENDIX A: DERIVATION OF EQUATION (5)

Here we obtain the analytical form of the following integral
in Eq. (4):

∑
λ

∫
B.Z.

· · · ≈
∑

λ

∫ ∞

0
dk

∫ 2π

0
dθ =

∑
λ

∫∫
, (A1)

where the upper limit of the k integral is extended to ∞ and we
used θk = θ + αll ′ , with αll ′ being the angle which rll ′ makes
with the positive kx axis. This leads to

GAA = 2A
(2π )2

cos (K · rll ′ )
∫∫

E (E + �) − ε2
k sin2 φ

D eik·rll′ ,

GBB = 2A
(2π )2

cos (K · rll ′ )
∫∫

E2 − �2

D eik·rll′ ,

GCC = 2A
(2π )2

cos (K · rll ′ )
∫∫

E (E − �) − ε2
k cos2 φ

D eik·rll′ ,

GAB = A
(2π )2

[
ei(K·rll′ −αll′ )

∫∫
(E + �)εk cos φ

D ei(k·rll′−θ )

−e−i(K·rll′ −αll′ )
∫∫

(E + �)εk cos φ

D ei(k·rll′ +θ )

]
,

GAC = A
(2π )2

[
ei(K·rll′ −2αll′ )

∫∫
ε2

k sin(2φ)

2E (E2 − ε2
k )

ei(k·rll′ −2θ )

+e−i(K·rll′ −2αll′ )
∫∫

ε2
k sin(2φ)

2E (E2 − ε2
k )

ei(k·rll′ +2θ )

]
,

GBC = A
(2π )2

[
ei(K·rll′ −αll′ )

∫∫
(E − �)εk sin φ

D ei(k·rll′ −θ )

−e−i(K·rll′ −αll′ )
∫∫

(E − �)εk sin φ

D ei(k·rll′ +θ )

]
.

The above expressions can also be written in the form

GAA = cos (K · rll ′ )FAA(rll ′ , E ; φ),

GBB = GAA(rll ′ , E ; φ = 0),

GCC = GAA(rll ′ , E ; φ + π/2),

GAB = sin (K · rll ′ − αll ′ )FAB(rll ′ , E ; φ),

GAC = cos (K · rll ′ − 2αll ′ )FAC(rll ′ , E ; φ),

GBC = sin (K · rll ′ − αll ′ )FBC(rll ′ , E ; φ). (A2)

Let us define the following auxiliary quantities given by the
Hankel transforms:

FAA =
( A

πa2E0

)∫ ∞

0
dq q J0(qr)

{
ω(ω + δ) − q2 sin2 φ

ω(ω2 − δ2) − [ω + δ cos(2φ)]q2

}

= −
( A

πa2E0

)
ωK0

(
−ir

√
ω(ω2 − δ2)

ω + δ cos(2φ)

)
ω + δ

ω + δ cos(2φ)

[
1 − ω − δ

ω + δ cos(2φ)
sin2 φ

]
,
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FAB = −
( A

πa2E0

)∫ ∞

0
dq q J1(qr)

{
(ω + δ)q cos φ

ω(ω2 − δ2) − [ω + δ cos(2φ)]q2

}

= −i

( A
πa2E0

)
ωK1

(
−ir

√
ω(ω2 − δ2)

ω + δ cos(2φ)

)√
ω2 − δ2

ω[ω + δ cos(2φ)]

ω + δ

ω + δ cos(2φ)
cos φ,

FAC =
( A

πa2E0

)∫ ∞

0
dq q J2(qr)

{
q2

ω(ω2 − δ2) − [ω + δ cos(2φ)]q2

}
sin(2φ)

2

=
( A

πa2E0

)
ωK2

(
−ir

√
ω(ω2 − δ2)

ω + δ cos(2φ)

)
ω2 − δ2

[ω + δ cos(2φ)]2

sin(2φ)

2
,

FBB = −
( A

πa2E0

)
ωK0

(
−ir

√
ω(ω2 − δ2)

ω + δ cos(2φ)

)
ω2 − δ2

ω[ω + δ cos(2φ)]
,

FCC = −
( A

πa2E0

)
ωK0

(
−ir

√
ω(ω2 − δ2)

ω + δ cos(2φ)

)
ω − δ

ω + δ cos(2φ)

[
1 − ω + δ

ω + δ cos(2φ)
cos2 φ

]
,

FBC = −i

( A
πa2E0

)
ωK1

(
−ir

√
ω(ω2 − δ2)

ω + δ cos(2φ)

)√
ω2 − δ2

ω[ω + δ cos(2φ)]

ω − δ

ω + δ cos(2φ)
sin φ . (A3)

Here we employed the well-known integral∫ ∞

0
dx

xn+1

x2 + C2
Jn(xR) = Cn Kn(−CR),

where Kn(x) (n = 0, 1, 2, . . . ) is a modified Bessel function of
the second kind. Together Eqs. (A2) and (A3) yield the desired
final expression.

APPENDIX B: DERIVATION OF EQUATION (21)

The integration over ky in Eq. (16) can be performed ana-
lytically using

∑
ky

= A
2π

∫ ∞

−∞

d[Y + (xl ′ + xl )/2 + i(yl ′ − yl )/2]

2π l2
B

. (B1)

Then the expression for the wave function overlap becomes

�n+λν
n+λμ(rl , rl ′ )

=
∑

ky

φn+λμ,ky (xl )φn+λν,ky (xl ′ )e
−iky (yl −yl′ )

= A
2π

exp
[− r2

ll′
4 − i (xl +xl′ )(yl −yl′ )

2l2
B

]
2π3/2l2

B

√
2n+λμ(n + λμ)!

√
2n+λν (n + λν)!

×
∫ ∞

−∞
dye−y2

Hn+λμ(x − y)Hn+λν (z − y), (B2)

where Y =kyl2
B, y=Y/lB, x= (xl −xl′ )+i(yl −yl′ )

2lB
= rll′

2 exp (iαll ′ ),

z = (xl′ −xl )+i(yl −yl′ )
2lB

= − rll′
2 exp (−iαll ′ ), and rll ′ = 2|x| =

2|z|.
Now, let us use the following integral relation:∫ ∞

−∞
dy e−y2

Hn+λμ(x − y)Hn+λν (z − y)

= √
π2n

⎧⎨
⎩

2λν (n + λμ)! zλ(ν−μ)Lλ(ν−μ)
n+λμ

(
r2

ll′
2

)
, λμ � λν,

2λμ(n + λν)! xλ(μ−ν )Lλ(μ−ν)
n+λν

(
r2

ll′
2

)
, λμ > λν.

(B3)

Including the flat band in the overlap function, we finally
obtain

�n+λν
n+λμ(s; rl , rl ′ ) = A

(2π lB)2 �̃n+λν
n+λμ(s; rl , rl ′ ),

�̃n+λν
n+λμ(s, rl , rl ′ ) = exp

[
− r2

ll ′

4
− i

(xl + xl ′ )(yl − yl ′ )

2l2
B

]
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
2λν (n+λμ)!
2λμ(n+λν)! zλ(ν−μ)Lλ(ν−μ)

n+λμ

(
r2

ll′
2

)
, λμ � λν,√

2λμ(n+λν)!
2λν (n+λμ)! x

λ(μ−ν)Lλ(μ−ν)
n+λν

(
r2

ll′
2

)
, λμ > λν,

0, n + min (λμ, λν ) < 0,

L0
0

(
r2

ll′
2

)
, n = 0, s = 0.

(B4)

Substituting Eqs. (18) and (B4) into Eq. (17) and the resulting equation into Eq. (16), we finally obtain Eq. (21).
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