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Quantum transport in flat bands and supermetallicity
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Quantum physics in flat-band (FB) systems embodies a variety of exotic phenomenon and even counterintu-
itive features. The quantum transport in several graphene based compounds that exhibit a flat band and a tunable
gap is investigated. Despite the localized nature of the FB states and a zero group velocity, a supermetallic (SM)
phase at the FB energy is revealed. The SM phase is robust against the inelastic scattering strength and controlled
only by the interband transitions between the FB and the dispersive bands. The SM phase appears insensitive
and quasi-independent of the gap amplitude and nature of the lattice (disordered or nanopatterned). The universal
nature of the unconventional FB transport is illustrated with the case of electrons in the Lieb lattice.
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Over the past decade, we have witnessed a growing interest
for the physics in flat-band (FB) systems. In these systems,
and because of destructive quantum interferences, the elec-
tron group velocity is exactly zero, and the kinetic energy
is quenched. This gives rise to various exotic physical phe-
nomena, such as topological states [1–3], superconductivity
[4,5], Wigner crystal [6,7], and ferromagnetism [8–10]. The
wealth and fascinating physics that take place in these systems
motivate the search for efficient procedures and strategies for
flat-band engineering. For instance, twisted bilayer graphene
is known to feature isolated and relatively flat bands near
charge neutrality, when tuned to special magic angles only
[11–14]. Recently, it has been suggested that robust FB can be
realized in van der Waals patterned dielectric superlattices that
could be controlled by gate voltage [15]. Nanolithography,
molecular engineering, and 3D printing are also possible path-
ways to design complex two-dimensional materials [16–19].
The field of cold atoms on artificial lattices also offers a
platform to address these fundamental issues since it allows
the direct tuning of the physical parameters of the model
Hamiltonians [20–23].

The important progress made in the realization of complex
and nanostructured materials has stimulated theoretical stud-
ies in fractalized systems [24–28]. Recently, considering the
case of the graphene Sierpinski carpet where the fractalization
induces (i) a E = 0 flat band and (ii) a gap in the spectrum,
we have reported an unusual form of quantum electronic
transport [29]. Despite the gap, an unexpected supermetallic
(SM) phase, insensitive to the strength of the inelastic scat-
tering rate, appears at the neutrality point with a conductivity
that coincides within a few percent with σ0 = 4e2

πh that of the
pristine compound. In this system, the transport is controlled
by interband transitions only, between the FB and the valence
(conduction) band.
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Our goal is to address the crucial and inevitable ques-
tion that naturally arises: Is this unusual form of quantum
electronic transport universal? More precisely, does the SM
flat-band transport take place in other types of systems? For
that purpose, we consider three different situations that lead
to a FB at E = 0 and a gap in the spectrum: (i) the fully un-
compensated graphene (FUG) where vacancies are randomly
distributed on the same sublattice and two self-similar lattices,
(ii) the Serpinski carpet (GSC), and (iii) the Sierpinski gasket
(GSG). The choice for graphene is also motivated by the fact
that it has emerged as an outstanding system for fundamental
research [30–33]. Note that the GSC conductivity as studied
in detail in Ref. [29] will be used just for comparison with the
gasket case. Transport is expected to be drastically different in
the gasket than in the carpet. The Sierpinski carpet is infinitely
ramified while the gasket only finitely. In other words, the
gasket can be deconstructed by removing a finite number of
sites while it requires an infinite one for the carpet [34].

To address the second question, we consider the electronic
transport in the Lieb lattice (the CuO2 planes in cuprates)
where the spectrum is gapless and a FB meets the conduction
band and the valence band at the Dirac point. It is nowadays
possible to realize experimentally the Lieb lattice either by
manipulating cold atoms in optical lattices [35–37] or by di-
rect laser writing of optical waveguides [38–40], and it could
even be synthesized by means of covalent organic frameworks
[41].

Electrons in the FB systems, as illustrated in Fig. 1, are
modeled by a nearest-neighbor tight-binding Hamiltonian that
reads

Ĥ = −t
∑
〈i j〉,s

c†
isc js + H.c., (1)

where 〈i j〉 denotes nearest neighbor pairs. c†
is creates an elec-

tron with spin s at site Ri. In the Lieb lattice the only allowed
hoppings are between the nearest neighbor pairs (A, B) and
(A,C).
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FIG. 1. Illustration of (a) the fully uncompensated graphene
(FUG), (b),(c) the graphene Sierpinski carpet (GSC) and gasket
(GSG), and (d) the Lieb lattice. In (a), (b), and (c) the colored area
corresponds to the regions of removed atoms.

The GSC is constructed from a square piece of graphene of
length L = 3ic+1a (a is the nearest neighbor C-C distance). We
use for the GSC’s the notation (ic, f ) where f is the degree of
“fractalization” that varies from 0 (pristine) to its maximum
value fmax = ic. The GSG is obtained from a triangular piece
of graphene delimited by the vectors N.a1 and N.a2 where a1

and a2 are the unit cell vectors of graphene and N = 2ig+1. It is
then symmetrized with respect to the y axis to give a diamond
piece of graphene. Because of the symmetrization, the GSG
contains the same number of C atoms on both sublattices. The
GSG is specified by the notation (ig, f ). Here, our study is
restricted to optimally fractalized compounds only: f = ic for
the carpet and f = ig for the gasket. The lattice geometry is
unimportant for the FUG case. Periodic boundary conditions
along x and y directions (see Fig. 1) are used for the FUG, the
GSC, and the Lieb lattice and along a1 and a2 for the GSG.

The conductivity along the x direction is given by the
Kubo-Greenwood formula [42,43],

σ (E ) = e2h̄

π�
Tr[Im Ĝ(E )̂vx Im Ĝ(E )̂vx]. (2)

The current operator is defined by v̂x = − i
h̄ [̂x, Ĥ ] and the

Green’s function Ĝ(E ) = (E + iη − Ĥ )−1. � is the sample
area and η mimics an energy independent inelastic scattering
rate with a characteristic timescale τin = h̄

η
. For the FUG, the

GSG, and the GSC the calculations are done using the Cheby-
shev polynomial Green’s function method (CPGF) [44–46]
that (i) allows large scale calculations as it requires a mod-
est amount of memory and (ii) a CPU cost that varies only
linearly with the system size NS . CPGF has proven to be a
powerful tool to address the nature of the magnetic couplings
in disordered materials [47,48]. In the same spirit as CPGF,
the conductivity could be also calculated by quantum wave
packet dynamics as well [49–51]. The FUG, the GSC, and the
GSG considered contain approximately 3.5 × 106 sites. The
number of random vectors NR used for the stochastic trace
calculation is 50. The number of Chebyshev polynomials kept
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FIG. 2. Density of states (in 1/t) in (a) the FUG for three differ-
ent concentrations of vacancies, x = 0.01, 0.025, and 0.05, (b) in the
GSG and in the GSC, and (c) in the Lieb lattice. The systems used for
the calculations are (7,7) for the GSC, and (11,11) for the GSG (see
the notations in the text). The FUG contains approximately 3.5 × 106

sites.

is M = 2500, leading to a M × M matrix of moments used
for the conductivity calculation. It has been checked that both
NR and M were sufficient to reach convergence. On the other
hand, the calculations are realized analytically in the case of
the Lieb lattice.

Figure 2 depicts the electronic density of states (DOS)
ρ(E ) = − 1

πNS
Tr[Im Ĝ(E )] as a function of the energy in the

graphene compounds and in the Lieb lattice. As expected
for the FUG, a δ peak at E = 0 appears and a gap which
increases with the density of randomly distributed A vacan-
cies [52]. The gap (	) from the valence (resp. conduction)
band to the FB of zero energy modes (ZEM) is 0.10 t , 0.15 t ,
and 0.20 t for, respectively, x = 0.01, 0.025, and 0.05. The
DOS has a richer texture in the fractal lattices. Besides a
gap, 	 = 0.135 t in the GSC and significantly larger in the
GSG where it is approximately 0.31 t , we observe complex
fluctuating substructures that result from the fractal nature of
the eigenspectrum. In the GSG, we observe many extended
low-DOS regions interspersed by sharp peaks. This reflects
a one-dimensional-like characteristic that originates from the
finitely ramified fractal lattice. In the GSG, in addition to a
central ZEM peak, several pronounced satellite peaks appear
at E = ±0.06 t , ±0.077 t , ±0.085 t , ±0.22 t , and ±0.24 t ,
revealing additional, almost flat bands. The exact diagonaliza-
tion calculations on smaller systems, (4,4), (5,5), and (6,6),
have confirmed that these subbands are not rigorously flat,
in contrast to the E = 0 band. In addition, in both the FUG
and the GSC the number of ZEM states (NZEM) is exactly
|NA − NB|, NA (resp. NB) being the number of C atoms on
sublattice A (resp. B), as it is expected in bipartite lattices
[52,53]. In the GSC, the ZEM density, xZEM, is approximately
0.05. In contrast, the situation is different in the GSG, where
by construction NA = NB (see Fig. 1). The expected xZEM

should be zero, which is not the case. It varies with the system
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FIG. 3. Conductivity (in e2

h ) at T = 0 K as a function of the energy in (a) the FUG and (b) the GSC and GSG. In (a) we consider three
different concentrations of vacancies x = 0.01, 0.025, and 0.05; the systems contain approximately 3.5 × 106 sites. In (b) the GSC and the
GSG are, respectively, (6, 6) and (10, 10) systems. σ (0) is 1.26 e2

h in the GSG and 1.365 e2

h in the GSC. Here η = 0.016 t but σ (0) is found
insensitive to η. The insets magnify the neutrality point region.

size and we find xZEM = 0.164, 0.172, 0.177, and 0.178 in
the (8,8), (9,9), (10,10), and (11,11), respectively, indicating
a convergence towards 0.18. If NL

A (resp. NL
B ) is the number

of A (resp. B) sites of the ‘left’ triangle of the GSG diamond,
|NL

A − NL
B | is also different from NZEM. Figure 2(c) illustrates

the well known DOS in the Lieb lattice. It reveals three bands,
two dispersive, which form a Dirac cone at the M point of
the Brillouin zone and a FB at E = 0. We recall, in this case,
that the local charge density of the localized, E = 0 states, is
nonzero on B and C sublattices only.

We discuss the electronic transport in these systems, with
a focus on the central region. In the FUG, the conductivity
σ (E ) is depicted in Fig. 3(a) for different concentrations of
vacancies. Besides a maximum in the valence band (VB) and
conduction band (CB) at E = ±t (Van Hove singularities in
pristine graphene), σ (E ) is finite for |E | � 	 and decreases,
as expected, as x increases. However, a close look at the FB
vicinity reveals a peak that varies very weakly with x, σ (0)
coincides within a few percent with that of the pristine case,
σ0. We have also checked that σ (0) is insensitive to η, with η

ranging from 0.001 t to 0.05 t . We should stress that our calcu-
lations correspond to the thermodynamic limit, as is illustrated
in the Supplemental Material [54]. For |E | � 	, σ (E ) gets
narrower and narrower as η decreases and can be nicely fitted
by a Lorentzian of width η. However, our results disagree with
those of Ref. [49] where σ (0) = 0 is found. In this work, σ (E )
is obtained from the Einstein formula and a direct calculation
of the diffusivity from wave packet propagation. The singular
DOS at E = 0 and the fact that their calculations correspond
to the limit η = 0, may explain the discrepancy.

Let us consider how self-similarity affects the electronic
transport. Results, for a fixed η, are depicted in Fig. 3(b).
The conductivity in the GSC has been discussed in details in
Ref. [29]. It is only considered to facilitate the comparison
with the gasket case and show the universality of the FB
quantum transport. In the GSG, σ (E ) is much smaller than
that of the GSC and the peaks appear sharper. In the inset,

we observe a clear gap in the GSG of 0.31 t much larger
than that of the GSC (0.135 t), as seen in the DOS (Fig. 2).
A peak at E = 0 is also clearly visible with values close to
σ0. More precisely, we find σ (0) = 1.07σ0 in the GSC and
0.99σ0 in the GSG. Note also, for the GSG, shoulders in the
central peak that are absent for the GSC. They correspond to
the states located at E = ±0.06 t , ±0.077 t , and ±0.085 t in
the DOS. We have checked that these shoulders disappear as
η reduces (see Ref. [54]). Compared to the FB states, these
satellite states behave in a more “standard” way. They are
localized impurity states, leading to a vanishing conductivity
when η → 0. These results are robust, with negligible size
effects (see Ref. [54]). Hence, from Fig. 3(a) and Fig. 3(b)
we conclude that these graphene based systems lead to the
same conclusion: a universal quantum transport at E = 0 with
a supermetallic flat band and a conductivity that reduces to the
interband term (the intraband contribution vanishes). Remark
that an important interband term was also at the origin of
the quantum electronic transport anomalies in the icosahedral
quasicrystals α-AlMnSi [55]. The interband supermetallic
regime can be visualized as a quantum transport controlled by
the velocity fluctuations in systems where its average is very
small or zero.

Finally, we address the possibility of FB induced SM phase
in a very different system, the Lieb lattice. Figure 4(a) depicts
σ (E ) as a function of E for different values of η. As in the
graphene based systems, a peak at E = 0 is revealed [more
visible in the inset of Fig. 4(b)]. However, in the Lieb lattice,
σ (E = 0) increases slowly as η decreases (η varies by two
orders of magnitude). The inset of Fig. 4(b) shows, for η/t =
10−2, the decomposition in terms of the intraband (σintra) and
the interband (σinter) contributions. The only nonvanishing
matrix elements of the velocity operator that contribute to
σinter are between the FB and the CB (resp. VB) states; those
between VB and CB states are zero. We find that σintra is finite
at E = 0. A focus on the η dependence of σ (0), as is plotted in
Fig. 4(b), shows that σintra(0) is constant and equals 0.318 e2

h .
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FIG. 4. (a) Conductivity in the Lieb lattice as a function of the
energy E for different values of η. (b) Different contributions to σ (0)
as a function of ln(η/t ). (Inset) σ (E ) (total, interband, and intraband)
as a function of E for η = 2 × 10−3 t .

On the other hand, σinter(0) has an unusual logarithmic depen-
dence on η. We find, numerically, σinter(0) = σ1 + σ2|ln(η/t )|
where σ1 = 0.784 e2

h and σ2 = 0.637 e2

h . Using the linear dis-
persion of the valence and conduction bands in the vicinity of
the Dirac point, we find the following analytical expressions:
σintra(0) = 1

π
e2

h , σ2 = 2
π

e2

h , and σ1 = 2
π

ln(Ec/t ) e2

h where Ec is
the cutoff energy. Using a normalized DOS for the dispersive
bands, we end up with σ1 = 0.806 e2

h .
We propose now to discuss the η dependence of the diffu-

sivity in the SM phase. In the gapped cases, for both η and |E |
smaller than 	, ρ(E ) reduces to NZEM

π�

η

E2+η2 . Equation (2) of
the conductivity can be rewritten,

σ (E ) =
(

4h̄

Nzem

∑
α,λ=±,β

|〈β |̂vx|�λ
α〉|2

E2
α

η

)
e2ρ(E ), (3)

where we have introduced |�λ
α〉, the valence (λ = −), and

conduction (λ = +) eigenstates with energy ±|Eα| and the
FB eigenstates |β〉. From the Einstein formula, the diffu-
sivity D(E ) = σ (E )

e2ρ(E ) is straightforwardly obtained. It scales
linearly with η, instead of the 1/η behavior in standard metal-
lic systems where D = 1

2v2
F

h̄
η
. In the gapless case of the Lieb

lattice, the transport is still controlled by the interband term
but the diffusivity has now two contributions, D = D0η +
D1|η.ln(η)|. We expect, by introducing vacancies in the Lieb
lattice, that a gap should open and the conductivity might
loose the |ln(η)| contribution and σintra(0) should vanish. All
the features reported here justify the use of the term “superme-
tallicity” and generalize what has been found in the peculiar
case of the GSC [29].

Notice that transport in the gapless dice lattice in the pres-
ence of random onsite potentials has revealed, in the weak
disorder regime, a conductivity that varies logarithmically
with the disorder strength [56]. Because, in the vicinity of
E = 0, the electronic band structure is similar in the dice
lattice and in the Lieb lattice, one expects the transport to
behave similarly. Here, for vanishing η, σ (0) diverges; this
agrees with what has been found in the dice lattice in the limit
of vanishing disorder.

In conclusion, in standard systems, the quantum transport
is dictated by the average intraband velocity of the carriers;
here at the FB energy, it is of interband nature. In all cases
investigated, a SM phase, controlled by the off-diagonal ma-
trix elements of the current operator, is revealed at the FB
energy. In the graphene based systems, the conductivity is in-
dependent of the gap value, nature of the lattice, and inelastic
scattering strength, and coincides within a few percent with σ0

( 4e2

πh ). In the gapless case of electrons, the Lieb lattice, the FB
conductivity is found to vary logarithmically with the inelastic
scattering strength (σ ≈ 1

2σ0|ln(η)|). This shows that the un-
conventional supermetallicity of the flat bands has a universal
character. Based on the recent progress in the realization of
complex 2D systems and in optical lattice physics, we hope
that our findings will stimulate experimental studies.
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