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Valley polarization in biased bilayer graphene using circularly polarized light
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Achieving a population imbalance between the two inequivalent valleys is a critical first step for any
valleytronic device. A valley polarization can be induced in biased bilayer graphene using circularly polarized
light. In this paper, we present a detailed theoretical study of valley polarization in biased bilayer graphene. We
show that a nearly perfect valley polarization can be achieved with the proper choices of external bias and pulse
frequency. We find that the optimal pulse frequency ω is given by h̄ω = 2a, where 2a is the potential energy
difference between the graphene layers. We also find that the valley polarization originates not from the Dirac
points themselves, but rather from a ring of states surrounding each. Intervalley scattering is found to greatly
reduce the valley polarization for high-frequency pulses. Thermal populations are found to significantly reduce
the valley polarization for small biases. This work provides insight into the origin of valley polarization in bilayer
graphene and will aid experimentalists seeking to study valley polarization in the laboratory.
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I. INTRODUCTION

Since its first realization in 2004 [1], graphene has
promised to revolutionize electronics with its high elec-
tron mobility [2,3], impressive mechanical strength [4], and
tunable Fermi level [5]. There exist two inequivalent local
minima in graphene’s band structure known as valleys or
Dirac points which we label K and K ′. In analogy with spin-
tronics [6], the valley index is binary and the concept of using
this two-state system to perform logical operations is known
as valleytronics [7]. To realize such a system, we require a way
to induce a valley polarization, that is, a differential electron
population between the K and K ′ valleys.

There have been many proposals for valleytronic devices
based on monolayer graphene, however most have relied on
configurations that may be difficult to realize in the laboratory
[8–12]. Intrinsically, the K and K ′ valleys are indistinguish-
able from one another. This means that it is difficult to
selectively populate the valleys, say, using an optical field.
Inversion symmetry breaking is necessary for graphene-based
valleytronics [13,14]. One solution is to use a staggered
sublattice potential, for instance, by growing graphene on a
substrate of hBN [15]. Another option is to consider ma-
terials with intrinsically broken inversion symmetry. TMDs
such as monolayer MoS2 have gained significant interest re-
cently, in part due to the presence of an intrinsic band gap
at the Dirac points [16–19]. In this work we consider bilayer
graphene, which consists of two graphene sheets stacked in an
AB/Bernal stacking arrangement [20]. Biasing the bilayer by
applying a potential difference across the two graphene sheets
breaks the inversion symmetry and opens a band gap [21–24].
Not only that, but the band gap can be tuned continuously
from zero to the midinfrared by adjusting the strength of the
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external bias [25–27]. For an excellent review of the electronic
properties of both monolayer and bilayer graphene, please see
McCann [28].

It has been proposed that circularly polarized light can
be used to preferentially inject carriers into the K and K ′
valleys of bilayer graphene [14]. Right-hand circularly po-
larized light couples strongly to the K valley, while light of
the opposite helicity couples strongly to K ′. There has been
significant work towards inducing valley-polarized currents
in bilayer graphene with broken inversion symmetry [29–31],
but very few studies have focused on using circularly polar-
ized light to induce a valley polarization [32,33]. To the best
of our knowledge, no studies have yet sought to maximize
the optically-induced valley polarization, leaving experimen-
talists ill-equipped to study this phenomenon in the laboratory.
Several important questions remain unanswered: What is the
optimal operating external bias? What is the optimal operating
pulse frequency? And what pulse duration should be used?
It is also to date unknown as to which scattering processes
fundamentally limit performance of bilayer-graphene-based
valleytronic devices: How clean a sample is required? Can a
valley polarization be observed at room temperature? In this
paper, we seek to answer these questions as well as offer valu-
able insight into the underlying physics of valley polarization
in bilayer graphene.

Our findings can be summarized as follows. At low temper-
atures, and in the absence of scattering, a near-perfect valley
polarization can be obtained for pulse frequencies ω satisfying
h̄ω = 2a, where 2a is the potential energy difference between
the graphene layers. This result originates from a k-dependent
valley-contrasting optical selection rule which becomes exact
when h̄ω = 2a. This finding is qualitatively consistent with
some previous calculations [14,32], but so far seems to have
gone unnoticed in the literature. Our calculations indicate that
intervalley scattering via optical phonons greatly reduces the
valley polarization when operating at high pulse frequencies.
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We also find that thermal electron populations significantly
reduce the valley polarization for small external biases. Taken
together, intervalley scattering and thermal electron popula-
tions complicate the simple picture that the valley polarization
is maximized along h̄ω = 2a. In all cases, to maximize the
valley polarization, the pulse duration should be close to or
larger than the sample decoherence time. For typical samples,
with the proper choice of pulse frequency and external bias,
a valley polarization of up to 70% can be achieved at room
temperature. At low temperatures (<150 K), the valley polar-
ization can be as large as 97%.

This paper is organized as follows. In Sec. II, we present
our theoretical model. We construct the graphene Hamiltonian
and solve for the energy bands and eigenstates. We then de-
velop our density matrix equations of motion, solving them
perturbatively for excitation by circularly polarized light. In
Sec. III, we study the resulting valley polarization, primarily
as a function of the frequency of the exciting field and of the
external bias between the graphene layers. We first examine
a simplified model before proceeding to introduce intervalley
scattering and thermal effects. We also examine the effects
of varying the pulse duration and decoherence time before
concluding in Sec. IV.

II. THEORY

We employ a four-band nearest-neighbor tight-binding
model to calculate the low-energy electron bands and Bloch
eigenstates. We perturb the system with an optical field,
treating the interaction within the length gauge. We develop
density matrix equations of motion and solve them up to
second-order. We calculate the electron populations in the
K and K ′ valleys that result from the linear absorption of a
circularly polarized Gaussian pulse.

A. Tight-binding

We use as our basis the single-atom Bloch functions

�i(k, r) =
N∑

j=1

eik·R j φ(r − R j,i ), (1)

where k is the Bloch wave vector, r is the position vector, and
φ(r) is a carbon 2pz orbital [28]. The sum is over the N differ-
ent unit cells, and R j,i ≡ R j + ri, where R j is a Bravais lattice
vector and ri is a basis vector, which denotes the position of
one of the four atoms in the unit cell. Following the coordinate
conventions of Ref. [34], we have rA1 = d ẑ, rB1 = a0x̂ +
d ẑ, rA2 = −a0x̂ − d ẑ, and rB2 = −d ẑ, where a0 = 1.42 Å is
the interatomic distance, and 2d is the interlayer spacing (see
Fig. 1).

Using these basis states, we construct our eigenstates

�nk(r) = 〈r|nk〉 = An(k)
∑

i

Ci
n(k)�i(k, r), (2)

where An(k) is a normalization factor, the Ci
n(k) are expan-

sion coefficients, i indexes the atoms, and n labels the band.
In the basis i = {A1, B1, A2, B2}, including hopping between
nearest-neighbors within each layer, and between the over-
lapping A1 and B2 atoms in opposite layers, we obtain the

a2

a1

A2
B2 A1 B1x

y

FIG. 1. Bilayer graphene lattice. The A1 and B1 atoms are in the
top layer at energy +a (black), while the A2 and B2 atoms are in the
bottom layer at energy −a (white).

nearest-neighbor tight-binding Hamiltonian [28]

H0 =

⎛⎜⎝ a f (k)t‖ 0 t⊥
f ∗(k)t‖ a 0 0

0 0 −a f (k)t‖
t⊥ 0 f ∗(k)t‖ −a

⎞⎟⎠, (3)

where (by convention) 2a � 0 is the potential energy differ-
ence between the graphene layers, and where t‖ = 3.3 eV and
t⊥ = 0.42 eV are, respectively, the intra- and interlayer hop-
ping energies [20]. The function f (k) = 1 + e−ik·a1 + e−ik·a2

describes hopping between nearest-neighbor sites, where
a1 = a0(3x̂ + √

3ŷ)/2 and a2 = a0(3x̂ − √
3ŷ)/2 are the

primitive translation vectors (see Fig. 1). In what follows,
we will focus on the dynamics in the vicinities of the Dirac
points K = 4π ŷ/3

√
3a0 and K′ = −4π ŷ/3

√
3a0. To obtain

the Hamiltonian for electrons close to these points, we ex-
pand f (k) about K and K′ and obtain f (k) ≈ i 3

2 a0ke±iθk ,

with the plus and minus signs corresponding to the K and
K ′ valleys, respectively. Note that we have transformed to
a polar coordinate system with origin at K or K′, where
k = |k| = (k2

x + k2
y )1/2, and θk is the angle k makes with the

kx axis. The function f (k) may also be expressed in terms
of the graphene Fermi velocity v f = 3a0t‖/2h̄ ≈ 106 m s−1

according to f (k) = ih̄v f ke±iθk /t‖.
Neglecting overlap between inequivalent atoms, we solve

for the energies En(k) and eigenvectors �nk(r) of H0. The
dynamics of the system will be studied using only the
two lowest-energy bands whose (dimensionless) energies
are given by [22]

Ẽn(k) = Ẽn(k) = ±
√

t̃2| f (k)|2 + ã2 + 1
2 − ε̃(k), (4)

where Ẽn(k) ≡ En(k)/t⊥, where n = {c, v} labels the con-
duction band and valence band, and where we have intro-
duced the dimensionless quantities ã ≡ a/t⊥, t̃ ≡ t‖/t⊥, and
ε̃(k) ≡ ((4ã2 + 1)t̃2| f (k)|2 + 1/4)1/2. The conduction and
valence bands are shown in Fig. 2 for four different biases.
The energy bands are isotropic in-plane, but we show the
bands reflected across the k = 0 axis to emphasize the sym-
metry. The dispersion is electron-hole symmetric. At the Dirac
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FIG. 2. The conduction and valence band energies as a func-
tion of k for four different biases a. From darkest to lightest, a =
0, 100, 200, and 300 meV. For comparison, the intersecting dashed
lines are the energy bands of monolayer graphene.

points (k = 0), Ec(k) = a and Ev (k) = −a. The band gap for
a particular bias a is given by [28]

	E (a) = 2at⊥√
4a2 + t2

⊥
. (5)

The expansion coefficients of �nk(r) are

CA1
n (k) = Ẽn(k) − ã,

CB1
n (k) = t̃ f ∗(k),

CA2
n (k) = CB2

n (k)
[
CB1

n (k)
]∗

Ẽn(k) + ã
,

CB2
n (k) = [

CA1
n (k)

]2 − ∣∣CB1
n (k)

∣∣2
. (6)

B. Connection elements

We treat the carrier-field interaction using the length gauge
Hamiltonian HL = −eE(t ) · r, where e = −|e| is the electron
charge, E(t ) is the (classical) electric field of the optical pulse
at the graphene, and r is the electron position operator. The
density matrix equations of motion we will derive in the fol-
lowing section require matrix elements of r. Following Blount
[35], we have

〈nk|r|mk′〉 = iδnm∇kδ(k − k′) + δ(k − k′)ξnm(k), (7)

where we have defined the connection elements

ξnm(k) ≡ i
(2π )2

�

∫
d3r u∗

nk(r)∇kumk(r), (8)

where � is the area of a real-space unit cell, and the integra-
tion is over �, and over −∞ < z < ∞ perpendicular to the
plane. The cell-periodic function unk(r) is defined by

�nk(r) = eik·runk(r). (9)

FIG. 3. The connection element functions A (dark) and B (light)
as a function of k for a = 100 meV.

Imposing orthonormality on �nk(r), we obtain∫
d3r u∗

nk(r)umk(r) = �

(2π )2
δnm, (10)

and, in the nearest-neighbor tight-binding approximation, the
normalization factor

An(k) =
√

�

2π

(∑
i

∣∣Ci
n(k)

∣∣2

)−1/2

. (11)

The connection element for transitions between the con-
duction band and valence band is [36]

ξcv (k) = i
(2π )2

�
A∗

c (k)Av (k)

×
∑

i

[
Ci∗

c (k)∇kCi
v (k) − iriC

i∗
c (k)Ci

v (k)
]
. (12)

In what follows, we neglect the term proportional to ri in
Eq. (12), as we neglect terms of similar magnitude when we
expand f (k) to first order in k about the Dirac points. Equation
(12) can be evaluated analytically, but as the expression is very
long we do not present it here explicitly. We find that when
f (k) is taken to first order, the connection element takes the
form

ξcv (k) = iA(a, k)k̂ ± B(a, k)θ̂k, (13)

where k̂ and θ̂k are the standard unit vectors in our polar
coordinate system, and where the plus and minus signs cor-
respond to the K and K ′ valleys, respectively. Here, A and B
are real, positive functions that depend only on the magni-
tude of k and the external bias a. Although ξcv (k) depends
on the choice of gauge (i.e., the k-dependent phase of the
Bloch eigenstates |nk〉), the action of a gauge transformation
is to simply multiply ξcv (k) by an overall phase factor [35],
rendering the magnitudes of A and B, as well as the ratio
A/B, gauge-invariant quantities. We plot A and B as functions
of k in Fig. 3 for an example bias of a = 100 meV. As can
be seen, A = B = 0 at k = 0 (i.e., at the Dirac points) [37].
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Besides k = 0, there is second k for which A = B, whose
value depends on the external bias. In the large-k limit,
B ∼ 1/k, just as it does in monolayer graphene [38]. Biased
bilayer graphene is unlike monolayer graphene or unbiased bi-
layer graphene (a = 0) in that A is nonzero [34,38,39]. In the
limit of large k, A ∼ 1/k3. Under a → −a, A is unchanged
but B → −B. We will return these functions in Sec. III when
we discuss the results of our calculations. As we shall see,
it is the nonvanishing of A, and the crucial sign difference
between the K and K ′ valleys that unlocks the possibility of
valley polarization.

C. Equations of motion

The Heisenberg equations of motion for the reduced den-
sity operator ρ in the basis of Bloch states |nk〉 in the
relaxation time approximation are [38,40]

dρnm(k)

dt
= −iωnm(k)ρnm(k) − e

h̄
E(t ) · ∇kρnm(k)

+ i
e

h̄
E(t ) ·

∑
l

[ξnl (k)ρlm(k) − ξlm(k)ρnl (k)]

− γnm(k)
[
ρnm(k) − ρeq

nm(k)
]
, (14)

where h̄ωnm(k) ≡ En(k) − Em(k), ρ
eq
nm(k) = ρ

eq
nn(k)δnm is the

equilibrium density matrix, and γnm(k) is a matrix of scatter-
ing rates. If n = m, then we refer to γnm(k) as the intraband
scattering rate. If n �= m, then we refer to γnm(k) as the in-
terband decoherence rate. We allow for the γnm(k) to be in
principle k-dependent but will save our discussion of these
quantities for Sec. III. Using first-order perturbation theory,
we solve Eq. (14) subject to the initial conditions

ρ
eq
nn(k) = fn(k)

at t = −∞,

ρ (1)
nm (k) = 0

(15)

where fn(k) = fn(k) is the Fermi-Dirac distribution. To
zeroth-order we obtain ρ (0)

nm (k) = fn(k)δnm. Using standard
techniques, the first-order result for the off-diagonal density
matrix element at time t is found to be

ρ (1)
cv (k) = e−[iωcv (k)+γcv (k)]t

∫ t

−∞
i
e

h̄
E(t ′)

· ξcv (k)[ fv (k) − fc(k)]e[iωcv (k)+γcv (k)]t ′
dt ′. (16)

We are interested in the total electron populations around the
K and K ′ valleys, not the k-space distributions. Therefore,
when calculating the populations to second-order, we neglect
the second term in Eq. (14) because this term simply redis-
tributes carrier momentum within each valley. We find that the
second-order contribution to the conduction band population

is

ρ (2)
cc (k) = e−γcc (k)t

∫ t

−∞
i
e

h̄
E(t ′)

· [
ξcv (k)ρ (1)

vc (k) − ξvc(k)ρ (1)
cv (k)

]
eγcc (k)t ′

dt ′, (17)

where ξvc(k) = ξ∗
cv (k). Although ξnm(k) is gauge-dependent,

ρ (1)
mn (k) transforms in the opposite sense so that the product

ξnm(k)ρ (1)
mn (k) is gauge-invariant. The mth-order contribution

to the carrier density in the conduction band about each Dirac
point is given by

n(m)
V (t ) = 2

(2π )2

∫
ρ (m)

cc (k) d2k, (18)

where V = {K, K ′} labels the valley, the factor of two ac-
counts for spin degeneracy, and the integration is only in
the vicinity of the particular Dirac point. The zeroth-order
contribution gives the thermal carrier density, while the
second-order contribution gives the injected carrier density.

D. Calculating the injected carrier density

To evaluate the injected carrier density, we must specify
the electric field of the optical pulse. It is well known that a
valley polarization can be induced in biased bilayer graphene
using circularly polarized light [14]. In Appendix A, we dis-
cuss the possibility of using light of a more general elliptical
polarization, but here we limit our discussion to circularly po-
larized light as we find circularly polarized light to always be
optimal. We take E(t ) to be a right-hand circularly polarized
Gaussian pulse with central frequency ω, amplitude E0, and
pulse duration tp. Thus,

E(t ) = E (t )(x̂ + iŷ)e−iωt + c.c., (19)

where E (t ) = E0e−t2/t2
p . Given the form of the connection

element [Eq. (13)], it will be convenient to express the field
in the local k-space coordinate system. Taking the origin to be
either K or K′,

E(t ) = E (t )(k̂ + iθ̂k )e−i(ωt−θk ) + c.c. (20)

With Eqs. (17) and (18), one has, for the injected carrier
density,

n(2)
V (t ) = 2

(2π )2

∫ ∞

0
k dk

∫ 2π

0
dθk e−γcc (k)t

∫ t

−∞
dt ′

× i
e

h̄
E(t ′) · [

ξcv (k)ρ (1)
vc (k) − ξvc(k)ρ (1)

cv (k)
]
eγcc (k)t ′

.

(21)

Since the energy bands are isotropic, we assume that the scat-
tering rates are as well so that we may write γnm(k) = γnm(k).
We may then pull e−γcc (k)t through the angular integral and
then interchange the order of the temporal and angular inte-
gration. Performing the angular integral first, one can show
(after significant work)

n(2)
V (t ) = 2

(2π )2
π3/2 e2

h̄2 E2
0 tp

∫ ∞

0
k dk e−γcct

∫ t

−∞
dt ′

[
(A ± B)2

(
erf

(
t ′

tp
+ λ−

)
+ 1

)
exp

(
λ2

− + t ′

tp
δ− − t ′ 2

t2
p

)

+ (A ∓ B)2

(
erf

(
t ′

tp
+ λ+

)
+ 1

)
exp

(
λ2

+ + t ′

tp
δ+ − t ′ 2

t2
p

)]
+ c.c., (22)
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where we have suppressed explicit k-dependence, and where
the upper and lower operations correspond to the K and K ′
valleys, respectively. The Greek letters represent the quantities

λ∓ ≡ − tp

2
[γcv + i(ωcv ∓ ω)], (23)

δ∓ ≡ 2λ∓ + γcctp, (24)

where the subscripts indicate whether the term is resonant (−)
or antiresonant (+) with the optical field.

We are faced with the following integral:

J (t ) =
∫ t

−∞
dt ′

[
erf

(
t ′

tp
+ λ

)
+ 1

]
× exp

[
λ2 + t ′

tp
δ − t ′ 2

t2
p

]
. (25)

Making the replacement η = t ′/tp + λ, and completing the
square in the exponential, Eq. (25) may be re-expressed as

J (t ) = tp exp(β )
∫ t/tp+λ

−∞+λ

dη[erf (η) + 1]

× exp[−(η + c)2], (26)

where

β ≡ λ2 + 1
4δ2,

c ≡ −λ − 1
2δ. (27)

To the best of our knowledge, the integral in Eq. (26) cannot
be performed analytically. However, an analytic result is pro-
vided by Ref. [41] in the limit t → ∞. In Appendix B, we
address the subtleties of taking this limit given that λ is in
general complex. We find

J (t → ∞) = √
π tp exp(β ) erfc

(
c√
2

)
. (28)

For times t = t f by which the integrand of Eq. (26) has de-
cayed essentially to zero, we may make the approximation
J (t f ) ≈ J (t → ∞). This approximation limits the applicabil-
ity of this analytic result to times t f that are at least several
times the pulse duration tp. This should not pose a problem
in practice, because one would likely only wish to manipu-
late the valley-polarized carriers after the exciting pulse has
passed. The pulse durations we will be considering are only on
the order of 10s to a few 100s of femtoseconds, so this delay
is very small. Using Eq. (28) in Eq. (22), we obtain the key
result of this section: the carrier density injected into valley V
at time t = t f ,

n(2)
V = 1

2

e2

h̄2 E2
0 t2

p

∫ ∞

0
k dk e−γcct f

[
(A ± B)2exp (β−) erfc

(
c−√

2

)
+ (A ∓ B)2exp (β+) erfc

(
c+√

2

)]
+ c.c. (29)

Again, the upper and lower operations correspond to the K and
K ′ valleys, respectively, and the subscripts indicate whether
the term is resonant (−) or antiresonant (+) with the field.
Recalling that A and B are real and positive, observe that
in the K valley, the resonant term couples to the large
(A + B)2 term, while the antiresonant term couples to the
small (A − B)2 term. The situation is reversed in K ′, in that
it is the antiresonant term which couples to (A + B)2, while
the resonant term couples to (A − B)2. This asymmetry leads
to a stronger response in K than in K ′, or in other words, a
valley polarization. For unbiased bilayer graphene (a = 0),
Eq. (29) should return equal populations for the K and K ′
valleys. Indeed, if a = 0, then A(a, k) = 0 and the asymmetry
between K and K ′ disappears. As a check for our code, we
have confirmed that Eq. (29) returns equal populations in K
and K ′ for the a = 0 case when integrated numerically.

III. RESULTS

We wish to compare the carrier densities in the conduction
bands of the K and K ′ valleys shortly after excitation by a
pulse of circularly polarized light. Depending on the tem-
perature, a significant contribution to the carrier density can
come from the zeroth-order thermal population n(0)

V . We will
consider this in more detail in Sec. III D, but for now we focus
solely on the second-order response. To this end, we define
the second-order valley polarization P (2) to be the difference
between the carrier densities injected around the K and K ′

valleys at time t = t f , normalized by their sum:

P (2) ≡ n(2)
K − n(2)

K ′

n(2)
K + n(2)

K ′
. (30)

When the system is completely valley polarized in favor of K
(K ′) electrons, P (2) = 1 (−1). If the system is not valley po-
larized, then P (2) = 0. Throughout this section, we consider a
(Gaussian) right-hand circularly polarized pulse, so we expect
the system to be valley polarized in favor of K electrons.

We vary the external bias and pulse frequency to examine
how the valley polarization depends on these two parame-
ters. We consider the frequency-bias pairs which result in
the strongest valley polarizations to be the optimal operating
parameters for valleytronic devices. Unless otherwise stated,
we take the temperature T to be 300 K and the chemical
potential to be at the charge-neutrality point (μ = 0). How-
ever, we emphasize that the second-order valley polarization is
only weakly dependent on T and μ. Because of electron-hole
symmetry, the choice μ = 0 leads to identical results for both
electron and hole populations. For this reason, we discuss only
electron populations. In what follows, we restrict ourselves to
external biases greater than 50 meV, because for lower biases,
thermal populations and spatial variations in the system gating
can severely limit the valley polarization.

The relaxation dynamics of photoexcited carriers in mono-
layer graphene have been studied extensively [42–45]. For
bilayer graphene, the relaxation processes are expected to
be similar, but the associated time scales are not precisely
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known and depend on the substrate, fabrication process, and
bias. The general consensus in the literature is that an ini-
tial period of rapid thermalization occurs due primarily to
electron-electron scattering in which the photoexcited carriers
relax to a quasithermal equilibrium within a few 10s of fem-
toseconds [46–48]. This process is then followed by a period
of carrier cooling due to the emission of optical phonons over
a timescale of 100s of femtoseconds. Finally, there is a pe-
riod of cooling due to acoustic-phonon scattering and carrier
recombination on the scale of picoseconds. In this work, be-
cause we are interested in the valley polarization a few 10s to
100s of femtoseconds after the pulse arrives, we neglect these
picosecond processes completely and focus on the early-time
dynamics. As we are working in the perturbative regime, we
will consider only intraband scattering processes.

To help develop the main ideas, in Sec. III A we work with
a simplified model in which we neglect intraband scattering,
accounting only for interband decoherence. In Sec. III B, we
will introduce intraband scattering via optical phonons. In
particular, we will allow for intervalley scattering, which acts
to reduce the valley polarization, and for intravalley scatter-
ing, which limits the intervalley process. In Sec. III C, we
will examine the effects of varying the pulse duration and
decoherence time. In Sec. III D, we will examine the effects
of the thermal electron populations on the valley polarization.

A. Without intraband scattering

In this section, we examine the second-order valley po-
larization when there is no intraband scattering, but where
there is interband decoherence. Thus, we let γcc(k) = 0 and
γcv (k) = 1/τ0, where τ0 is a phenomenological decoherence
time. We take τ0 = 30 fs and the pulse duration tp = 50 fs.
We restrict ourselves to photon energies greater than 50 meV,
because for lower energies, the pulse duration can be shorter
than a single period. In Fig. 4 we plot 1 − P (2), that is,
the deviation of the valley polarization from perfect polar-
ization (P (2) = 1), on a logarithmic scale as a function of
the external bias a and the central photon energy h̄ω of
the exciting right-hand circularly polarized Gaussian pulse
[49]. Lighter colors correspond to stronger valley polariza-
tions. The strongest valley polarizations are concentrated in
the low-frequency—low-bias regime, along the line h̄ω = 2a
(indicated by a straight dashed line). The valley polarization
falls off on either side of h̄ω = 2a. The valley polarization de-
grades and broadens with increasing frequency and bias. The
innermost contour corresponds to P (2) > 0.97. The two next-
to-innermost contours correspond to P (2) > 0.95 and 0.90,
respectively. Over the parameter space considered in Fig. 4,
the valley polarization ranges from 0.10 � P (2) � 0.98. The
optimal operating frequency-bias pair occurs for (h̄ω, a) ≈
(241, 127) meV. Note, however, that both the optimal
operating pair and the corresponding valley polarization de-
pend on the pulse duration and decoherence time.

Except at very low biases, the optimal operating frequen-
cies do not coincide with the band gap energy (indicated
by the lower dashed curve). In fact, the valley polarization
appears to be somewhat suppressed for frequencies reso-
nant with the band gap energy. The upper dashed curve in
Fig. 4 gives the energy of the next-lowest transition, involving

FIG. 4. [50] Deviation of the second-order valley polariza-
tion from perfect polarization log10[1 − P (2)] as a function of the
external bias a and central photon energy h̄ω of the exciting
Gaussian pulse. Lighter regions correspond to stronger valley po-
larizations. From lightest to darkest, the contours correspond to
P (2) = 0.97, 0.95, 0.9, 0.8, 0.7, and 0.5. The straight dashed line is
the line h̄ω = 2a. The lower dashed curve is the band gap energy
[Eq. (5)], while the upper dashed curve is the energy of the next-
lowest transition involving the higher-energy bands that we have
neglected [Eq. (31)]. The pulse duration is tp = 50 fs, and the valley
polarization is evaluated long after the pulse has passed. Intraband
scattering is neglected [γcc(k) = 0], and the interband decoherence
time is taken to be τ0 = 30 fs. The temperature is 300 K and the
chemical potential is μ = 0.

the high-energy bands that we have neglected [51]. Photon
energies above this curve will induce significant transitions
between bands other than the two low-energy bands we have
considered. This curve is given explicitly by

	EHB(a) = (a2 + t2
⊥)1/2 + a, (31)

which is strictly greater than 2a.

We now examine in detail the origins of the main features
of Fig. 4 and, in particular, why the valley polarization is
generally greatest along the line h̄ω = 2a. First, note that
the first-order interband coherence ρ (1)

cv (k) is proportional to
the carrier-field interaction ξcv (k) · E(t ) [see Eq. (16)]. If
ξcv (k) · E(t ) can be forced to zero in one valley but not the
other, then a strong valley polarization is expected. For a
right-hand circularly polarized field with central frequency
ω, it can be easily shown using Eqs. (13) and (20) that the
carrier-field interaction is given by

ξcv (k) · E(t ) ≈ iE (t )e−i(ωt−θk )[A(a, k) ± B(a, k)], (32)

where A and B are the real, positive functions that were
introduced in Sec. II B, and where the approximation sign
indicates that we are considering only the resonant contri-
bution. Again, the plus and minus signs correspond to the
K and K ′ valleys, respectively. We see from Eq. (32) that
in the K valley, the interaction is proportional to the sum of
the (positive) functions A and B, while in the K ′ valley the
interaction is proportional to the difference. When A = B,
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FIG. 5. A/B ratio for several biases (dashed curves, leftmost
axis), and corresponding conduction band energies Ec(k) for the
same biases (solid curves, rightmost axis) as a function of k. From
lightest to darkest, a = 100, 200, and 300 meV. The dashed horizon-
tal line indicates A/B = 1.

Eq. (32) amounts to a valley-contrasting optical selection rule
in favor of the K valley. Because A and B are k-dependent,
the selection rule is in general not exact, except for very
specific states within each valley (namely, states for which
A = B). Note that if one uses light of the opposite helicity, the
dominant piece of the carrier-field interaction is instead pro-
portional to (A ∓ B), such that when A = B the selection rule
favors K ′.

The ratio A/B gives a measure of the “exactness” of the
optical selection rule (A/B = 1 when A = B). In Fig. 5, we
plot the quantity A/B as a function of k for three different
biases (dashed curves), along with the corresponding con-
duction band energies, Ec(k) (solid curves). For all biases,
A/B = 1 at k = 0, indicating an exact selection rule. As one
moves away from k = 0, the selection rules softens as the A/B
ratio deviates from unity. The A/B ratio reaches its maximum
at the band-minimum. The A/B ratio then decays to zero as
k → ∞. However, as the A/B ratio decays, it passes through
A/B = 1 at some k = k1. In other words, for any given bias,
the optical selection rule is exact at precisely two values of
k: k = 0 and k = k1. If we wish to achieve a strong valley
polarization, then we should try to induce excitations at these
very k. However, as was discussed briefly in Sec. II B, both A
and B vanish at k = 0. The carrier-field interaction [Eq. (32)]
therefore vanishes at k = 0 (for both K and K ′), and so there
is no carrier injection at k = 0. Therefore, in what follows, we
focus our discussion on the states near k = k1.

In Fig. 5, we saw that the A/B ratio peaks at the band-
minimum. In fact, one can show that

A

B
= a

Ec(k)
. (33)

Thus, A/B = 1 when Ec(k) = a, which occurs precisely at
k = 0 and k = k1, where

k1 = 4a

3a0t‖
= 2a

h̄v f
. (34)

To target these states, we must tune the frequency of the
exciting field such that it is resonant with interband transi-
tions at k = k1. Due to electron-hole symmetry, the transition
energy at k1 is simply 2Ec(k1), and so the optimal operating
frequency for a particular bias is expected to be given by

h̄ω = 2Ec(k1) = 2a, (35)

which explains why the optimal operating frequency-bias
pairs in Fig. 4 lie along the line h̄ω = 2a. In monolayer
graphene with a staggered sublattice potential, one finds an
exact selection rule at the Dirac points (k = 0) [14]. In con-
trast, in biased bilayer graphene, because A and B both vanish
at exactly K and K′, there are no carriers injected at k = 0 and
therefore there is no valley-contrasting optical selection rule at
k = 0. Rather, the optical selection rule is found along a ring
of states with radius k = k1 surrounding the Dirac points. The
existence of such a k value seems to have gone unnoticed in
the literature. However, evidence for this result can be seen in
Fig. 2 of Yao et al. [14].

The valley polarization is robust to deviations from h̄ω =
2a. In Fig. 4, the innermost contour corresponded to P (2) >

0.97. Consider operating near the optimal frequency and bias
(h̄ω, a) = (241, 127) meV, for which P (2) = 0.98. For fixed
h̄ω = 241 meV, external biases within the range 110 < a <

161 meV yield P (2) > 0.97. For fixed a = 127 meV, central
photon energies within 198 < h̄ω < 284 meV yield P (2) >

0.97. Similarly, the third-to-innermost contour corresponded
to P (2) > 0.90. For fixed h̄ω = 241 meV, 84 < a < 230 meV
yields P (2) > 0.90. For fixed a = 127 meV, 146 < h̄ω <

396 meV yields P (2) > 0.90. Thus, deviations of several 10s
of meV in either frequency or bias from the optimal operating
pair still yield valley polarizations well-over 90%. If one can-
not target the optimum precisely, then it is better to err towards
larger frequencies and biases.

In Fig. 4, the optimal operating frequencies coincide with
the band gap for small biases. This is because the band gap
energy 	E (a) → 2a in the limit of small a [see Eq. (5)].
For more moderate biases, we see from Fig. 4 that the valley
polarization appears somewhat reduced at frequencies close
to the band gap energy. This is because for any given bias,
the A/B ratio reaches its maximum at the band edge and
therefore in general leads to a poor valley polarization [see
Fig. 5 or Eq. (33)]. For frequencies less than the band gap
energy, carriers are still predominantly excited at the band
edge due to the finite bandwidth of the Gaussian pulse. Only
once the central frequency exceeds the band gap energy do
carriers away from the band edge begin to dominate the re-
sponse. The valley polarization is therefore not reduced near
the band gap, rather, the valley polarization “stalls” at the
band gap energy as one sweeps upwards in frequency. This
result is in agreement with Fig. 3 of Ref. [32], where a strong
valley polarization was calculated for photon energies close to
resonance with the band gap energy 	E (a) ≈ 2a for a small
bias of 2a = 20 meV.

In Fig. 4, the stripe of optimal operating frequency-bias
pairs is seen to broaden with increasing a and h̄ω. This can be
understood as follows. The energy-derivative of the A/B ratio
at k = k1 is a measure of the sensitivity of the optical selection
rule to small deviations in photon energy from h̄ω = 2a. One
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may easily verify that

d

dEc(k)

(
A

B

)∣∣∣∣
k=k1

= −1

a
. (36)

Thus, as the bias is increased, the system becomes less
sensitive to small deviations from the optimal operating con-
figuration and the valley polarization broadens.

For a couple of reasons, one can never achieve a perfect
valley polarization. First, targeting states for which A/B = 1
exclusively is impossible. Even when the pulse duration is
very long, the decoherence time results in linewidth broad-
ening. This means that even when the central photon energy
of the pulse is h̄ω = 2a, carriers will be excited not just
at k = k1, but also in the vicinity of k = k1 where A �= B
and the valley-contrasting optical selection rule is inexact. In
Fig. 4, we observed that the valley polarization degrades along
h̄ω = 2a with increasing frequency and bias. This degradation
is only observed in the presence of finite decoherence times.
Second, the valley polarization is limited by the presence
of the antiresonant piece of the carrier field interaction. In
contrast to the resonant term [Eq. (32)], the antiresonant term
is proportional to (A ∓ B), meaning that the selection rule can
never be truly exact. That is, when A = B the resonant term
vanishes but the antiresonant term does not. For the particular
pulse duration and decoherence time chosen in Fig. 4, the
difference between the valley polarization obtained if one
includes both the resonant and antiresonant terms, and the val-
ley polarization obtained when one includes just the resonant
terms, can be as large as 	P (2) = 0.05 along the line h̄ω = 2a
(over the parameter space considered). The greatest differ-
ences occur at the edges of the parameter space. Close to the
optimal operating frequency-bias pair, the difference is signif-
icantly smaller, about 	P (2) = 0.01. Since the valley polar-
ization can reach up to P (2) = 0.98, a difference of 0.01 is
significant. The antiresonant term must therefore be included
to obtain accurate results. Taken together, a finite decoherence
time and the presence of the antiresonant term ensures that the
valley polarization is never complete. However, as we shall
discuss in Sec. III C, the impact of these two effects can be re-
duced by increasing the decoherence time and pulse duration.

In the ideal limit of infinite decoherence times and infinite
pulse durations, with tp � τ0, one can show that the valley
polarization approaches unity when operating at h̄ω = 2a. To
see this, consider Eq. (29). In this ideal limit, the exponentials
exp(β∓) approach delta functions centered on ωcv (k) = ∓ω.

Since ω > 0 and ωcv (k) = 2Ec(k)/h̄ > 0, the antiresonant
(+) term contributes nothing to the carrier density, leaving
only the resonant (−) term. If h̄ω = 2a, then A = B and
the resonant term vanishes in K ′, resulting in perfect valley
polarization.

B. With intraband scattering

We now improve upon our model by accounting for
intraband scattering processes which act to reduce the valley
polarization. Intervalley scattering (IVS) is a process in which
an electron in (say) the K valley scatters to K ′, degrading
the valley polarization. As was discussed in the beginning
of Sec. III, the relevant relaxation pathways for photoexcited
carriers in bilayer graphene are carrier-carrier and carrier-

phonon scattering. Due to momentum conservation, IVS via
carrier-carrier interactions is very weak [42]. We find it cru-
cial, however, to account for carrier-phonon interactions as
IVS via optical phonons can significantly reduce the valley
polarization when the frequency of the exciting pulse is large.

Carrier-phonon scattering in monolayer graphene (MLG)
has been studied extensively [52–54]. Unfortunately, the liter-
ature on carrier-phonon scattering in bilayer graphene (BLG),
and in particular in biased bilayer graphene (BBLG), is some-
what lacking and there is no clear consensus on the dominant
scattering modes. In this work, we treat scattering to be the
same as in MLG where optical phonons dominate at room
temperature [53]. This is certainly an approximation, for it
is not clear whether scattering in BBLG is similar to scatter-
ing in MLG. For instance, a 2011 study has suggested that,
in contrast to MLG, low-energy acoustic phonons dominate
in unbiased BLG, while optical-phonon scattering is highly
suppressed [55]. However, it is unclear if this result holds for
a biased bilayer: A 2015 study found that optical phonons
are the dominant scattering mode in BBLG at biases above
a = 150 meV [56]. If it turns out that acoustic phonons play
an important role in BBLG transport, then our calculations can
be easily modified to account for them.

To incorporate intraband scattering into our model, we
adopt the formalism of Ref. [57]. In this approach, scattering
is treated microscopically, rather than phenomenologically (as
we have done up to this point). Beginning with a Fröhlich
Hamiltonian and making the second-order Born-Markov ap-
proximation, one obtains scattering rates �(k) that appear
analogously to γcc(k) in Eq. (14). Electron-phonon scatter-
ing can therefore be incorporated in our model by simply
replacing γcc(k) with �(k) in Eq. (29). At room tempera-
ture, the thermal population of optical phonons is very small,
and so the dominant inelastic scattering process in MLG is
optical-phonon emission. Optical phonons with crystal mo-
menta near the K points are the only phonons capable of
assisting in intervalley scattering. However, optical phonons
near the � point can assist in intravalley “down-scattering”
(DS), a process which leaves the scattered carrier in its orig-
inal valley. IVS and DS processes are depicted schematically
in the inset of Fig. 6. It is important to include DS along
with IVS because DS will limit the number of carriers avail-
able to IVS. The dominant contribution to IVS comes from
the TO mode at the K points, while the dominant contribu-
tion to DS comes from the degenerate TO and LO modes
at � [58]. All other phonon modes are neglected, and all
other elastic/quasielastic scattering processes are accounted
for through the phenomenological decoherence time τ0.

The scattering-out rates for conduction band electrons due
to K- and �-phonon emission are [57]

�IVS(k) = 2π

h̄N

∑
q

1

2
g2

K

(
1 − ρ (0)

cc (k − q)
)
(nK + 1)

× δ[Ec(k − q) − Ec(k) + h̄ωK ], (37)

�DS(k) = 2π

h̄N

∑
q

2g2
�

(
1 − ρ (0)

cc (k − q)
)
(n� + 1)

× δ[Ec(k − q) − Ec(k) + h̄ω�], (38)
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FIG. 6. Scattering rates �IVS (dark) and �DS (light) as functions
of energy for an example bias of a = 205 meV. The sharp onsets
of �IVS and �DS occur at energies EIVS(a) and EDS(a), respectively.
The scattering rates are cut off at a maximum value of � = �max =
40 ps−1 (see text). The inset schematically depicts the corresponding
scattering processes.

where N is the number of unit cells, and where we have
approximated the angle for IVS events to be 60 degrees (the
angle between the K and K′ points, as measured from the
zone-center). The quantities g2

K and g2
� are constants, but

there is some debate in the literature as to their precise val-
ues [58–61]. Following Ref. [54], we take g2

K = 0.2098 eV2

and g2
� = 0.0558 eV2, noting that their precise values will

have little effect on our conclusions. Since the high-energy
phonon dispersion of BLG (and BBLG) is very similar to
MLG [62,63], we follow Ref. [57] and take the phonons
to be dispersionless near the K and � points with constant
frequencies h̄ωK = 160 meV and h̄ω� = 196 meV. We treat
the phonons as thermal baths at 300 K so that the phonon pop-
ulations nK and n� are given by Bose-Einstein distributions at
energies h̄ωK and h̄ω� , respectively. Since Ec(k) = Ec(k) and
ρ (0)

cc (k) = fc(k), the scattering-out rates are isotropic and we
may write �IVS(k) = �IVS(k) and �DS(k) = �DS(k). We now
let

γcc(k) = �IVS(k) + �DS(k). (39)

We also modify the interband decoherence rate according to
γcv (k) = 1/τ (k), where

1

τ (k)
= 1

τ0
+ γcc(k)

2
, (40)

and where the factor of 1/2 arises from the usual relationship
between decoherence and population decay rates.

In Fig. 6, we plot �IVS(k) and �DS(k) as functions of energy
for an example bias of a = 205 meV. As is demonstrated in the
figure, the Dirac delta functions in Eqs. (37) and (38) ensure
that intraband optical-phonon scattering is forbidden unless an
excited electron can afford to lose the energy of a phonon and
remain in the conduction band. In other words, �IVS(k) and

�DS(k) are, respectively, strictly zero unless

Ec(k) � h̄ωK/� + 	E (a)/2 ≡ EIVS/DS(a), (41)

where 	E (a) is the band gap. Since h̄ωK < h̄ω�, IVS be-
comes energetically possible before DS. Due to electron-hole
symmetry, the photon energy required to excite an electron
from the valence band to an energy EIVS(a) or EDS(a) in
the conduction band is given by h̄ω = 2EIVS(a) or h̄ω =
2EDS(a), respectively. A second consequence of the delta
functions is that �IVS(k) and �DS(k) diverge when Ec(k) =
EIVS(a) and Ec(k) = EDS(a), respectively. Away from these
energies, the scattering rates are well-behaved and on the or-
der of a few 10s of ps−1, which is consistent with rates found
in Refs. [53,64]. Due to the approximations we made when
evaluating the carrier density (Sec. II D), a divergent intraband
scattering rate results in numerical difficulties unless the ob-
servation time t f is very large. More precisely, large values
of γcc(k) push the peak of the integrand of Eq. (26) toward
t = ∞. In requiring that the integrand decay sufficiently to
zero by t = t f , a divergent γcc(k) forces us longer and longer
t f at which to evaluate the carrier density. To address this
problem, we limit �IVS(k) and �DS(k) to a maximum value
�max = 40 ps−1 (see Fig. 6). With this value of �max, for
pulse durations tp on the order of 10s to a few 100s of fs,
and for typical decoherence times, we obtain convergence for
t f = 5tp. We find that although changing the value of �max

affects the high-frequency results (where scattering is strong),
it has very little effect in the optimal operating region.

1. Intervalley scattering

To begin with, let us simplify things and neglect down-
scattering by setting �DS(k) = 0, such that γcc(k) = �IVS(k).
Because we treat the K and K ′ valleys as disconnected in
k-space, and we do not account for carriers scattering-in, we
cannot keep track of IVS explicitly. That is, γcc(k) simply acts
as a population decay rate for electrons in each valley indepen-
dently [see Eq. (29)]. We therefore require a systematic way
to keep track of the number of carriers that IVS from each
valley. Once we have that, we can then add those carriers into
the opposing valley before computing the valley polarization.

To this end, we calculate the carrier density in each valley
twice: Once subject to decay from IVS, and a second time
without population decay. If IVS is the only scattering pro-
cess, then the difference between these two quantities gives
an estimate of the density of carriers that have intervalley
scattered. Concretely, let nIVS

K be the carrier density injected
into the K valley at time t = t f , calculated using Eq. (29) with
γcc(k) = �IVS(k). As before, n(2)

K is the carrier density injected
into K, calculated using Eq. (29) with γcc(k) = 0. A summary
of these quantities are given in Table I. The quantity

	nIVS
K ′ = n(2)

K − nIVS
K (42)

gives the density of carriers intervalley scattered from K to K ′
(the subscript on 	nIVS

K ′ denotes the final valley). The carrier
density in the K ′ valley is then modified according to

ñ(2)
K ′ = nIVS

K ′ + 	nIVS
K ′ . (43)

In other words, the carrier density in K ′ is given by the carrier
density remaining in K ′ (after allowing for population decay
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TABLE I. Summary of the notation used for the carrier densities
in the K valley and their associated scattering rates. Each density
is calculated using Eq. (29) with γcc(k) as indicated and γcv (k)
according to Eq. (40). The K ′ densities are defined analogously.

n(2)
K nIVS

K nDS
K nIVS+DS

K

γcc(k) 0 �IVS �DS �IVS + �DS

from IVS), plus the carriers that have intervalley scattered
from K to K ′. The modified carrier density in the K valley
is obtained by interchanging K ↔ K ′ in Eqs. (42) and (43).

The valley polarization is modified to

P (2) = ñ(2)
K − ñ(2)

K ′

ñ(2)
K + ñ(2)

K ′
, (44)

which we plot as a function of the external bias and central
photon energy in Fig. 7(a) under the same conditions as Fig. 4
(tp = 50 fs, τ0 = 30 fs, T = 300 K, μ = 0). As was the case
in Fig. 4, the strongest valley polarizations are concentrated
in the low-frequency–low-bias regime, along h̄ω = 2a. The
most obvious difference between Fig. 7(a) and Fig. 4 is the
emergence of a dark blue region of poor valley polarization in
the high-frequency portion of the parameter space. This is due
to the presence of intervalley scattering, the onset of which
is indicated by the dashed white curve corresponding to h̄ω =
2EIVS(a). Notice that the onset of IVS intersects the line h̄ω =
2a, meaning that IVS effectively cuts off high frequencies
from the parameter space of optimal operating frequency-bias
pairs. Unfortunately, high frequencies may be desirable due
to hot-carrier multiplication, which would result in a larger

population imbalance and thus a stronger valley polarization
[65,66]. If low-energy acoustic-phonon scattering turns out to
play an important role in BBLG, then one would expect to see
an onset curve analogous to the one in Fig. 7(a), but shifted
towards lower photon energies. In comparison to Fig. 4, the
optimal operating frequency-bias pair is shifted slightly to-
wards lower frequencies, (h̄ω, a) = (236, 126) meV, but a
very strong valley polarization of P (2) = 0.98 is retained. The
difference is slight because the optimal operating region is
largely unaffected by the presence of intervalley scattering,
but nonzero because the pulse excites over a broad energy
range. In Fig. 7(a), the valley polarization is evaluated long
after the exciting pulse has passed (t f = 5tp = 250 fs).

At photon energies greater than the onset of IVS, the valley
polarization can become negative, meaning that the system
is valley polarized in favor of K ′ electrons. In fact, the five
darkest shaded regions in Fig. 7(a) correspond to P (2) � 0.

This is because the IVS rate is so strong in this region that
more carriers intervalley scatter from K to K ′ than remain
in the K valley. This result suggests that it may be possible
to achieve an inverse valley polarization, that is, a valley
polarization in favor K ′ electrons, even though the exciting
pulse is right-hand circularly polarized. We emphasize that a
significant fraction of this region of inverse valley polarization
lies above the upper black dashed curve 	EHB(a) and there-
fore should be taken with a grain of salt [Eq. (31)].

By neglecting down-scattering thus far, the results pre-
sented in Fig. 7(a) give an underestimate of the valley
polarization. Carriers that DS contribute to the valley polariza-
tion in the same way as if they had not scattered at all because
they remain in their original valley. However, down-scattered
carriers will likely have scattered into states below the energy

(a) (b)

FIG. 7. Deviation of the second-order valley polarization from perfect polarization log10[1 − P (2)] as a function of the external bias a and
central photon energy h̄ω of the exciting Gaussian pulse with the inclusion of (a) intervalley scattering and (b) both intervalley scattering and
down-scattering. The dashed black curves are as in Fig. 4. In panel (a), the dashed white curve is the onset of intervalley scattering, given by
h̄ω = 2EIVS(a) [Eq. (41)]. In panel (b), the lower dashed white curve is the same curve as in panel (a), while the upper dashed white curve
is the onset of down-scattering, given by h̄ω = 2EDS(a). From lightest to darkest, the contours in panels (a) and (b) correspond to P (2) =
0.975, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0, −0.15, −0.3, −0.45, and −0.6. Note that the final three contours are not visible in panel (b) because the
data does not extend to these values. In both panels (a) and (b), the phenomenological decoherence time is τ0 = 30 fs, the pulse duration is
tp = 50 fs, and the valley polarization is evaluated at t f = 250 fs. The temperature is 300 K and the chemical potential is μ = 0.
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(a) (b)

FIG. 8. Deviation of the second-order valley polarization from perfect polarization log10[1 − P (2)] as a function of the central photon
energy h̄ω of the exciting Gaussian pulse for a fixed bias of a = 205 meV. In order of increasing energy, the vertical lines indicate the band
gap energy, h̄ω = 2a, the onset of intervalley scattering, and the onset of down-scattering. The horizontal line indicates P (2) = 0. (a) From
lightest to darkest, tp = 10, 15, 25, 50, 100, and 200 fs for a fixed decoherence time of τ0 = 100 fs. The valley polarization does not visibly
change for tp > τ0. (b) From lightest to darkest, τ0 = 10, 30, 100, 200, and 300 fs for a fixed pulse duration of tp = 100 fs. Note that the scale
of the valley-polarization axis is different in (a) and (b). In both (a) and (b), the valley polarization is evaluated at t f = 5tp, the temperature is
300 K, and the chemical potential is μ = 0.

threshold EIVS(a) required to IVS. In other words, DS acts to
limit IVS by reducing the number of carriers available to IVS.
We are again faced with the problem of keeping track of these
carriers given that γcc(k) simply acts as a population decay
rate.

2. Down-scattering

To achieve a better estimate of P (2), we must adjust
Eqs. (42) and (43) to account for down-scattering. This es-
sentially amounts to keeping track of another contribution to
the carrier density in each valley. In the exact same way we
estimated the density of carriers that intervalley scattered, let
us define

	nDS
K ′ = n(2)

K ′ − nDS
K ′ (45)

to be the density of carriers scattered within the K ′ valley
(again, the subscript on 	nDS

K ′ denotes the final valley). Anal-
ogously, nDS

K ′ is the carrier density injected into K ′, calculated
using Eq. (29) with γcc(k) = �DS(k) (see Table I). The carrier
density in the K ′ valley becomes

ñ(2)
K ′ = nIVS+DS

K ′ + 	nIVS
K ′ + 	nDS

K ′ . (46)

Here, nIVS+DS
K ′ is the carrier density obtained by allowing for

decay from both IVS and DS, that is, for γcc(k) = �IVS(k) +
�DS(k). In other words, the carrier density in the K ′ valley is
given by the carrier density remaining in K ′ (after allowing
for population decay from both IVS and DS), plus the carriers
that IVS from K to K ′, plus the carriers that DS within K ′.

In Fig. 7(b), we plot Eq. (44) for P (2), modified to include
down-scattering according to the redefinitions above, and un-
der the same conditions as Fig. 7(a). The general features
that were observed in Fig 7(a) are unchanged. In compari-
son to Fig. 7(a), the valley polarization recovers somewhat

after the onset of down-scattering, which is indicated by the
upper dashed white curve corresponding to h̄ω = 2EDS(a).
However, the valley polarization does not recover significantly
enough to make this regime attractive for valleytronics. We
therefore conclude that, even when accounting for DS, one
should operate in the low-frequency—low-bias regime be-
fore the onset of IVS. The optimal operating frequency-bias
pair is unchanged from the previous calculation: (h̄ω, a) =
(236, 126) meV, P (2) = 0.98. Due to our approximate scheme
for estimating carrier scattering, Fig. 7(b) simultaneously
overestimates the number of carrier that IVS and the number
of carriers that DS. Overestimating the number of carri-
ers that IVS (DS) tends to reduce (increase) the valley
polarization. Because these two effects act in opposition, it
difficult to discern whether Fig. 7(b) provides an overestimate
or an underestimate of the valley polarization. However, we
believe it provides a better estimate than Fig. 7(a), which
should be considered a worst-case scenario.

C. Pulse duration and decoherence time

In this section, we study the effects of varying the pulse du-
ration tp and decoherence time τ0 on the second-order valley
polarization. As might be anticipated, the effect of increasing
tp and τ0 is to improve the valley polarization and sharpen
the response, as we explore in Fig. 8. In Fig. 8(a) we fix
the bias to a constant value of a = 205 meV, and plot the
second-order valley polarization as a function of the central
photon energy h̄ω of the exciting pulse. We use the scattering
model developed in the previous section, accounting for both
intervalley scattering (IVS) and down-scattering (DS). Thus,
Fig. 8(a) can be thought of as a vertical slice of Fig. 7(b)
along constant a. In general, the valley polarization increases
steadily as h̄ω approaches 2a, stalling briefly at the band
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gap energy, for reasons discussed in Sec. III A. The valley
polarization peaks close to h̄ω = 2a, then decays. The decay
is accelerated by the presence of IVS, and an inverse valley
polarization is observed. The presence of DS counteracts the
decay due to IVS. These general features are observed for all
biases, but are particularly prominent for a = 205 meV. In
Fig. 8(a), the band gap energy, h̄ω = 2a, and onsets of IVS
and DS can be clearly seen (indicated with dashed vertical
lines).

Six different pulse durations are considered in Fig. 8(a),
and the response is evaluated at t f = 5tp for a relatively
long decoherence time of τ0 = 100 fs [67]. As can be seen,
increasing the pulse duration tends to sharpen the response
about h̄ω = 2a and improve the maximum valley polariza-
tion. For a tp = 10 fs pulse, a maximum valley polarization
of P (2) = 0.976 is achieved, while for a tp = 100 fs pulse,
the maximum valley polarization achieved is P (2) = 0.989.

Note that the tp = 100 fs curve and the tp = 200 fs curve are
virtually indistinguishable. This can be attributed to the finite
decoherence time (which results in linewidth broadening),
making targeting Ec(k) = a precisely impossible even when
the pulse duration is very long. Therefore, from the point of
view of valley polarization, there is no reason to use a pulse
duration that is much longer than the decoherence time. On
the other hand, from the perspective of carrier density, using a
very long pulse duration can be beneficial.

In Fig. 8(a), the optimal operating frequency does not in
general coincide exactly with h̄ω = 2a, and in fact varies
somewhat with the pulse duration. For a tp = 10 fs pulse, the
optimal operating frequency is h̄ω = 422 meV, while for a
tp = 100 fs pulse, the optimal operating frequency is h̄ω =
400 meV. The value of the optimal operating frequency is
a result of a complex interplay between the pulse duration,
decoherence time, external bias (with corresponding A/B ratio
and density of states), the presence of intervalley scattering,
and perhaps other factors. Taken together, these factors lead to
violations of the simple rule of thumb that the optima lie along
h̄ω = 2a. For the particular bias chosen in Fig. 8(a), the pres-
ence of IVS seems to play an important role in the interplay,
pushing the optima towards lower values as the pulse duration
is increased. Some experimental fine-tuning may therefore
be useful for finding the optimal operating frequency-bias
pair for each particular sample and laser. As was discussed
in Sec. III A, in the ideal limit of long pulse durations and
decoherence times, the optimal operating frequency converges
to h̄ω = 2a.

In Fig. 8(b) we again set the bias to a = 205 meV, but this
time fix the pulse duration to tp = 100 fs and vary the decoher-
ence time. The same general features of Fig. 8(a) are observed.
The main difference is that the maximum valley polarization
obtained in Fig. 8(b) can be much larger than in Fig. 8(a) (note
the different scales on the vertical axes). For a decoherence
time of τ0 = 10 fs, a maximum valley polarization of P (2) =
0.930 is achieved, while for τ0 = 300 fs, the maximum valley
polarization achieved is P (2) = 0.996. The maximum valley
polarization continues to grow even as the decoherence time is
increased through 500 fs (not shown). In Fig. 8(a), improving
the valley polarization by increasing the pulse duration was
limited by the decoherence time. Conversely, in Fig. 8(b), the
valley polarization can be increased indefinitely by using very

pure samples with long decoherence times, regardless of the
pulse duration. Comparing Figs. 8(a) and 8(b), it is clear that
the decoherence time is the limiting factor with respect to
the valley polarization. While clean samples are preferable,
a very strong valley polarization can still be achieved when
the decoherence time is short.

D. Thermal carriers

Up to this point we have only considered the valley polar-
ization arising from the second-order response P (2), and have
so far neglected the background of thermal carriers. In this
section, we examine how thermal carriers act to reduce the
valley polarization and comment on strategies for minimiz-
ing their impact. To account for the thermal background, we
simply add the thermal carrier density to the injected carrier
density [see Eq. (18)] and compute the valley polarization.
That is, we write ñV = ñ(2)

V + n(0)
V , where ñ(2)

V was defined
in Sec. III B to account for intraband scattering via optical
phonons (both IVS and DS). Since the thermal carrier density
is the same in both the K and K ′ valleys, this corresponds
mathematically to adding a factor of 2n(0)

K = 2n(0)
K ′ to the de-

nominator of Eq. (44). The valley polarization is now

P = ñ(2)
K − ñ(2)

K ′

ñ(2)
K + ñ(2)

K ′ + 2n(0)
K

. (47)

Since ñ(2)
V ∝ E2

0 [Eq. (29)], the field strength had no effect on
the second-order valley polarization, but it will become impor-
tant now as the zeroth-order response does not depend on E0.
We take E0 = 1.5 × (ω/ω0)1/2 kV cm−1, with h̄ω0 = 50 meV.
By scaling the field with the pulse frequency, we ensure that
the number of photons per pulse is fixed across all frequencies.
The magnitude of E0 is chosen to ensure that ρ (2)

cc (k) is at
most 1% for any k, such that first-order perturbation theory
is sufficient.

In Fig. 9(a), we plot the valley polarization under the same
conditions as Fig. 7(b) (tp = 50 fs, τ0 = 30 fs, t f = 250 fs,
T = 300 K, μ = 0), but this time account for the thermal
background. As can be seen, the valley polarization is re-
duced significantly, with a maximum valley polarization of
P = 0.70 obtained at (h̄ω, a) ≈ (368, 308) meV. The region
of optimal operating frequency-bias pairs has also moved
away from h̄ω = 2a and now hugs the band edge. This can
be understood by considering the following. Along h̄ω = 2a,

the second-order response is very strongly valley polarized,
however the actual number of carriers excited is quite small
because we are operating away from the band edge where the
joint density of states is small. Along the band edge, many
more carriers are excited and even though the second-order
response is not as pure, the difference in carrier density be-
tween the K and K ′ valleys is able to overcome the thermal
background. Note also that in contrast to Fig. 7(b), the valley
polarization obtained below band gap is now essentially zero.
This is because at frequencies below the band gap, very few
carriers are excited and so the thermal population dominates.

In Figs. 9(a) through 9(d), we show the evolution of the
valley polarization as the temperature is decreased from 300
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(a) T = 300 K (b) T = 250 K

(c) T = 200 K (d) T = 150 K

FIG. 9. Deviation of the valley polarization (including thermal carriers) from perfect polarization log10(1 − P ) as a function of the external
bias a and central photon energy h̄ω of the exciting Gaussian pulse at four different temperatures and including both intervalley scattering and
down-scattering. The black dashed lines are as in Fig. 4. The white dashed lines from Fig. 7 have been omitted for clarity. The field amplitude
is given by E0 = 1.5 × (ω/ω0)1/2 kV cm−1, with h̄ω0 = 50 meV. The contour values are not the same for all four plots, but the color scale is
consistent throughout. In all plots, the interband decoherence time is taken to be τ0 = 30 fs, the pulse duration is tp = 50 fs, and the chemical
potential is μ = 0.

to 150 K. As the temperature is decreased, the thermal car-
rier density decreases, so the valley polarization improves
and the optimal operating region returns to h̄ω = 2a. At
150 K, the optimal operating frequency-bias pair is (h̄ω, a) ≈
(235, 126) meV, yielding a very strong valley polarization of
P (2) = 0.97. However, even at 150 K, thermal carriers signif-
icantly reduce the valley polarization for small biases. This
is because the band gap 	E (a) ≈ 2a for small biases, and
so the thermal population is nonnegligible. The presence of
thermal carriers effectively cuts off small biases from the
optimal operating region, much in the same way as intervalley
scattering cut off high photon frequencies (Sec. III B). Small
biases may be desirable due to reduced electron mobility with
increasing external bias a [68]. For T = 50 K (not shown), the
thermal population is negligible, and the valley polarization

observed in Fig. 7(b) is restored. To operate in the low-bias
regime, one must work at low temperatures. If one works at
a larger bias, then a very strong valley polarization can be
achieved at 150 K.

It would be nice if a strong valley polarization could be
achieved at room temperature. One possibility is to increase
the field strength, which has the effect of mitigating the ther-
mal population, and follows a similar progression as Fig. 9.
We must be careful with increasing the field strength however,
because as alluded to earlier, we begin to push the limits of
first-order perturbation theory. To restore Fig. 9(a) to Fig. 7(b)
by increasing the field amplitude alone, E0 would need to
be increased by about a factor of 50. Since ρ (2)

cc (k) ∝ E2
0 ,

this puts us well outside the realm of first-order perturbation
theory [57,69–71].
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IV. CONCLUSION

In this work, we present a detailed study of valley po-
larization in biased bilayer graphene. The energy bands are
calculated using a tight-binding model, and density matrix
equations of motion are derived within the length gauge. Elec-
tron populations in the K and K ′ valleys are calculated for
an incident circularly polarized Gaussian pulse. The resulting
population imbalance between the valleys is quantified by the
valley polarization, which we seek to maximize with respect
to the external bias, pulse frequency, and pulse duration.

In the ideal limit (omitting thermal carriers, taking the
pulse duration to be infinite, and neglecting carrier scattering
and decoherence), we find that a perfect valley polarization
can be achieved when operating at pulse frequencies ω satisfy-
ing h̄ω = 2a, where 2a is the potential energy difference (the
external bias) between the graphene layers. This result origi-
nates from a k-dependent valley-contrasting optical selection
rule that becomes exact when h̄ω = 2a. In the presence of in-
terband decoherence or finite pulse durations, it is not possible
to achieve a perfect valley polarization, even at zero tempera-
ture. However, a near-perfect valley polarization (>98%) can
still be achieved by operating close to h̄ω = 2a.

Intervalley scattering and thermal electron populations
complicate the simple picture that the optimal operating
frequency-bias pairs lie along the line h̄ω = 2a. While in-
tervalley scattering via optical phonons has little effect on
the valley polarization for low-frequency pulses, we find that
intervalley scattering greatly reduces the valley polarization
when the central photon frequency is large enough to inject
carriers to an energy greater than that of a K-optical phonon.
When we account for thermal populations, we find that the
valley polarization is significantly reduced when the external
bias (and hence the band gap) is small. Thermal populations
drive the optimal operating frequency-bias pairs away from
h̄ω = 2a and towards the band edge, where the density of
states is greatest. At room temperature, thermal populations
reduce the maximum obtainable valley polarization to just
70%. However, the effect of thermal populations can be miti-
gated by working at low temperatures.

While the valley polarization can be improved significantly
by limiting defects and impurities, a strong valley polarization
can be achieved in any reasonably pure sample. To maximize
the valley polarization, the pulse duration should be close to
or larger than the interband decoherence time of the sam-
ple. For a decoherence time of 30 femtoseconds and a pulse
duration of 50 fs, we obtain the following optimal operating
conditions. For room-temperature experiments, the optimal
operating frequency-bias pair is (h̄ω, a) = (368, 308) meV,
for which a valley polarization of 70% is obtained. At low
temperatures (T < 150 K), the optimal condition is (h̄ω, a) =
(235, 126) meV, where a valley polarization of over 97%
can be achieved. Given these promising results, we believe
that bilayer graphene is a strong candidate for valleytronic
applications.
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APPENDIX A: ELLIPTICAL POLARIZATION

In this section, we examine why circularly polarized light
is optimal to induce a valley polarization in biased bilayer
graphene. We also explore whether a general elliptical polar-
ization is ever preferable to circular polarization. Consider a
general electric field

E(t ) = αEL + βER + c.c., (A1)

which we have written in the basis of left- and right-hand
circularly polarized components

EL = (k̂ − iθ̂k )e−i(ωt+θk ), (A2)

ER = (k̂ + iθ̂k )e−i(ωt−θk ), (A3)

expressed in polar coordinates with origin at either K or K′
(the field takes the same form in both valleys). Here, α and
β are complex coefficients that characterize the polarization
of E(t ), with |α|2 + |β|2 = 1. If α = 0 or β = 0, then E(t ) is
circularly polarized. If |α| = |β|, then E(t ) is linearly polar-
ized, the polarization axis determined by the phase difference.
If α �= β and neither α nor β are zero, then we have some
general elliptical polarization.

The first-order interband coherence ρ (1)
cv (k) is proportional

to the carrier-field interaction ξcv (k) · E(t ) [see Eq. (16)]. If
ξcv (k) · E(t ) can be forced to zero in one valley but not the
other, then a strong valley polarization is expected. For the
field of Eq. (A1), the carrier-field interaction takes the form

ξcv (k) · E(t ) ≈ ie−iωt [A(αe−iθk + βeiθk )

± B(−αe−iθk + βeiθk )], (A4)

where the approximation sign indicates that we are consider-
ing only the resonant contributions, and where the plus and
minus signs correspond to the K and K ′ valleys, respectively.
Here, A and B are the real, positive, k-dependent functions
that were introduced in Sec. II B. Setting Eq. (A4) to zero, we
obtain the condition

β(B ± A) = α(B ∓ A)e−2iθk , (A5)

which is valid for any choice of gauge. The problem of forcing
the resonant piece of ξcv (k) · E(t ) = 0 has been reduced to
satisfying Eq. (A5). On the surface, we are faced with serious
problem: Eq. (A5) depends on θk, suggesting that Eq. (A5)
can only be satisfied along a single radial direction in k-space.
Since A and B are k-dependent, this then implies that Eq. (A5)
can only be satisfied at (at most) a couple of points in k-space.
One way to circumvent this issue is to use circularly polarized
light. If we set α = 0 (right-hand circular polarization), then
we obtain

(B ± A) = 0, (A6)

which can be satisfied in the K ′ valley when A = B, but
never in K [72]. Similarly, if we set β = 0 (left-hand circular
polarization), then we obtain

0 = (B ∓ A), (A7)

which can be satisfied in the K valley when A = B, but never
in K ′. Thus, for any noncircular elliptical polarization, the
phase-dependence of Eq. (A5) limits the optical selection rule
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to just a couple of k-space points. By choosing circularly
polarized light, the phase dependence of Eq. (A5) is removed,
and a valley-contrasting optical selection rule is obtained for
the specific constraint A = B. Since A = B occurs for k = k1

(see Sec. III A), the valley-contrasting optical selection rule
is simultaneously satisfied around an entire ring of states in
k-space, as opposed to just a couple of points. Circular polar-
ization is therefore always preferable to elliptical.

APPENDIX B: COMPLEX-SHIFTED INTEGRAL

In Eq. (26), λ is in general complex, but the integral
bounded by (−∞,∞) is equivalent to a complex-shifted in-
tegral bounded by (−∞ + iγ ,∞ + iγ ) for some real γ .

Proof: By Cauchy’s integral theorem, an integral over the
closed contour C = [−R, R, R + iγ ,−R + iγ ,−R] is zero:

0 =
∮

C
f (η)dη =

∫ R

−R
+

∫ R+iγ

R
+

∫ −R+iγ

R+iγ
+

∫ −R

−R+iγ
, (B1)

where R is real and f (η) = [erf(η) + 1]exp[−(η + c)2]. For
R → ∞, the integrals over the segments of constant R are zero
because f (η) goes to zero. Thus, the integral along the real
axis is equal to an arbitrarily complex-shifted integral over
the same real limits:

0 =
∫ R

−R
+

∫ −R+iγ

R+iγ
=

∫ R

−R
−

∫ R+iγ

−R+iγ
. (B2)
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