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Accuracy of polarization field measurements by electron holography in InGaN quantum wells
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We thoroughly investigate two methods for estimating electric field strength across semiconductor het-
erostructure quantum wells from electron holograms. Due to the small width of quantum wells these holograms
must often be taken under dynamical diffraction conditions, since projection effects forbid the investigation
under larger tilt angles. We especially investigated the robustness of the evaluation methods against dynamical
diffraction artifacts due to excitation conditions and strain, artifacts due to the material contrast, as well as
limited resolution effects. For this we developed ways to incorporate polarization effects into combined strain
and multislice simulations. It turns out that errors estimated from detection noise of single measurements alone
mostly underestimate the true error, since variation due to hardly controlled diffraction effects and measurement
details often prevails.
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I. INTRODUCTION

The electronic and optoelectronic properties of wurtzite-
phase group-III nitride heterostructures are strongly affected
by the spontaneous and piezoelectric polarization along the
c axis of these compounds. The polarization strength de-
pends nonlinearly on composition and strain state within these
multilayer structures [1,2]. Abrupt changes in polarization
at internal interfaces cause large internal electrostatic fields
and interfacial sheet charges. In quantum wells (QWs) of
light-emitting diodes and laser diodes this causes the quan-
tum confined Stark effect, mostly observable as a reduction
of the radiative recombination rate together with a redshift
of the emission wavelength [3–5]. For high-electron-mobility
transistors the strong band bending caused by the interfacial
charges is even beneficial for device performance [6].

Measuring the strength of these internal fields directly is a
formidable task, since it requires a method capable of quan-
titative electric field measurements on the nanometer scale.
Electron holography (EH) within the transmission electron
microscope (TEM) is such a measurement technique. It allows
to measure the mutual phase shift of two electron waves which
traveled along different paths [7]. If one path goes through the
specimen and the other through vacuum, the observed phase
shift is proportional to the projected electrostatic potential
within the specimen. This at least is true in the simple picture
of kinematic electron diffraction. Several examples of electron
holographic measurement of such fields in group-III nitride
structures can be found in the literature [8–17].

In order to mitigate the influences of surface effects
like strain relaxation, surface damage, and band bending
due to surface defects (“dead layers”) [18–21], typically
specimens of a few hundred nanometers’ thickness are in-
vestigated. Thicker specimens additionally provide a more
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significant phase signal. However, thicker specimens require
that for avoidance of projection effects the typically only few-
nanometer-wide QW must be oriented on edge. On the other
hand, the on-edge orientation corresponds to strong diffrac-
tion conditions (here systematic row conditions) [9,13,22],
where the assumption of kinematic diffraction breaks down.
Also the different materials cause diffraction effects at the
interface. Additionally, the surface relaxation of the strain
within the thin specimen lamella results in diffraction condi-
tions that are changing over the specimen thickness. In some
publications (e.g., in Ref. [9]) these effects are qualitatively
discussed as a source of error; however, no efforts have been
undertaken so far to quantify their influence on the measure-
ment accuracy.

The avoidance of surface effects also requires that the
investigated structures are not too close to the specimen edges.
This requires distances between both holographically inter-
fered paths (overlap), typically in the range of hundreds of
nanometers. Typically, the TEM is operated using the Lorentz
lens for such observations, as the low magnification of the
Lorentz lens is the only way to allow such large path differ-
ences in common TEM setups. However, the relative strong
aberrations of the Lorentz lens limits the spatial resolution
of such measurements typically to above 2 nm. Obviously,
observing an electric field in a QW, which has a similar width
as the resolution of the microscope, will become an additional
source of inaccuracy for such a measurement.

Most reports of electric field measurements of QW
in group-III nitrides in the literature cover different het-
erostructures, which makes them not comparable. Neverthe-
less, several reports exist for 2- to 3-nm-wide IncGa1−cN
QWs within a GaN matrix for In concentrations in the
range c = 0.13, . . . , 0.18: Haas et al. [17] report values
of the electrical field strength within several (2.2 ± 0.2)-
nm-wide In0.15Ga0.85N QWs between 3.3 and 3.8 MV/cm
(±0.2 MV/cm) measured by means of EH and values be-
tween 2.2 and 3.7 MV/cm (±0.2 MV/cm) for differential
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phase contrast (DPC) measurements performed on the same
sample. Stevens et al. [12] report field strength of 1.65 ±
0.6 MV/cm (values taken from figure) for a 2-nm-wide
In0.13Ga0.87N QW (measured by EH). Cai and Ponce report
2.2 ± 0.6 MV/cm for a 2.7-nm-wide In0.18Ga0.82N QW (also
EH) [11]. Theoretical predictions for the field strength are in
the range of 2.2 MV/cm (for c = 0.13 [1]). Overall, a large
spread of the reported values for holographic electric field
measurements is already noticeable in the literature.

We present a systematical quantitative investigation on
the accuracy of the electron holographically measured field
strength. For this we perform combined strain and multislice
simulations. We developed and discuss two ways to include
the effect of polarization fields into such simulations. For
the calculated electron exit waves we test and discuss the
robustness of different methods of field strength evaluation
under the present dynamical diffraction conditions and espe-
cially focus on the influences to experimental conditions like
incident beam tilt and limited resolution.

II. METHODS

For our calculations we model the specimen that was in-
vestigated in the article of Haas et al. [17]: the heterostructure
consisted of six 2.25-nm-wide In0.15Ga0.85N QWs separated
by 12-nm GaN layers and followed by an 80-nm-thick GaN
layer on top of the QW stack. The growth direction was the
GaN-[0001] direction (Ga polar surface). We assumed the
thickness of the investigated specimen lamella to be in the
range between 200 and 240 nm. This is within the optimal
thickness range for EH measurements on GaN at 300 kV
acceleration voltage, given that for silicon 200–400 nm is an
optimal thickness range [18] and GaN is a heavier compound.

A. Strain simulations

The specimen was modeled in a continuum model of the
layered heterostructure, where a displacement field describes
changes of the lattice relative to a relaxed GaN lattice. The
used material constants were taken from literature [23–29]
and are listed in Table S1 of the Supplemental Material [30].
For the In0.15Ga0.85N layers the constants were linearly in-
terpolated between the GaN and InN values according to
Vegard’s law.

For tests of the implementations of the polarization field
(see below), the pseudomorphic strain model was applied. It
assumes that the InGaN layers have the same in-plane (basal
plane) lattice constants as the GaN matrix. This model in-
cludes the biaxial strain occurring due to the misfit; i.e., the
displacement field adjusts the lattice constants of the quantum
well such that [31]

aQW = aGaN and cQW = cInGaN

(
1+2

C13

C33

aInGaN − aGaN

aGaN

)
.

(1)

Strictly speaking this pseudomorphic model is only valid
for an infinitely large specimen, since relaxation effects at the
specimen surface will occur. Since strain relaxations at the
surface will strongly influence the dynamical scattering be-
havior of the specimen, these relaxations were also considered

in the final simulations, where the continuum displacement
field was obtained by the finite-element method (FEM) using
linear elasticity theory. The strained layers were modeled
by the concept of Eshelby’s inclusions [32]. The method
is described in more detail in Ref. [33]. The displacements
were calculated for several lamellas with thicknesses between
200 and 240 nm. The calculations were done for a three-
dimensional specimen slab. In the growth direction as well as
in the electron beam direction the specimen has a constricted
size in the experiment. In the remaining direction the spec-
imen is sufficiently large to neglect any surface effects. The
slab used for strain calculation was 1 µm wide in this direction
and any of the displacements entering the subsequent scat-
tering modulations were evaluated in the center of the slab.
The slab featured a 361-nm-wide GaN substrate, which was
fixed to zero displacement at its bottom side. The resulting
displacement field is depicted in Fig. S1 of the Supplemental
Material [30].

B. Scattering simulations

The multislice simulations require an atomic model of the
specimen, which was obtained from the continuum model
in the following way. A large supercell with 36 GaN unit
cells in the c direction and a beam direction corresponding
to the GaN [4 11 7 0]-zone axis was created. This zone axis
was chosen because it is sufficiently close to (0002) system-
atic row conditions while simultaneously allowing a periodic
supercell along the remaining direction. This perpendicular
periodicity corresponds to the [6 1 5 0] GaN lattice vector. The
size of the supercell in the beam direction was made large
enough to accommodate the full thickness of the lamella. The
supercell was populated by Ga and N atoms corresponding to
the respective sites of the enclosed GaN lattice. Subsequently,
the atoms which are positioned within a QW region of the
continuum model were marked specially. For the N atoms
in the QW the relative displacement to the Ga atoms was
adjusted according to the interpolation formula given by [1]

u(c) = 0.3793c + 0.3772(1.0 − c) − 0.0057c(1.0 − c),

with an indium concentration of c = 0.15. Finally, all atom
positions were displaced according to the continuum displace-
ment model. Since the continuum model is much larger than
the supercell, the supercell only captures the region around
one QW of the continuum model. In all presented simulations
the displacements around the bottom QW of the multi-QW
stack were used.

Electron beam propagation through the atomic model was
simulated for 300-keV electrons using the multislice method
[34] on a grid of 1536 × 256 points, resulting in a sampling
of 12.1 × 12.0 pm/pixel. In the propagation steps, a cutoff
at 27.5 1/nm (54 mrad) was used. The atomic model was
separated into 0.15-nm-thick slices and the atomic potential
of all atoms within each slice was projected. For the atomic
potential the parametrization of Kirkland [35] was used. For
the metal sites within the QW, a linear interpolation between
the parametrized atomic potentials of Ga and In was used.

The complex-valued electron wave front emanating from
the multislice simulation was Monte Carlo averaged over
30 samples of atomic positions disturbed according to the

075306-2



ACCURACY OF POLARIZATION FIELD MEASUREMENTS … PHYSICAL REVIEW B 103, 075306 (2021)

thermal displacement parameters of the respective atom (see
Table S1 [30]) in order to incorporate thermal diffuse scatter-
ing effects [36,37].

The resulting wave fronts were averaged in the direction
perpendicular to the GaN’s c axis. The resulting profiles were
subsequently Fourier filtered with a Gaussian modeling the
microscope’s envelope, the mask used in the experimental
holographic reconstructions, and a sinc filter corresponding to
a subsequent rebinning of the values. Unless otherwise noted,
we used the experimental conditions found in the FEI Ti-
tan 80-300 “Berlin Holography Special” microscope for this.
Typically the (0002) reflections are barely visible within ex-
perimental holograms under aberration-corrected conditions,
when simultaneously a wide hologram overlap of around
230 nm is used to avoid effects of the specimen edges.

Using q as scattering vector, the microscope’s envelope is
modeled as

f (q) = exp(−2q2d2
(0002))

such that the envelope reaches exp(−2) at the (0002) re-
flection, which corresponds to a resolution limit at d(0002) =
0.259 nm. A reconstruction cutoff of 4.5 1/nm was used to let
these reflections pass, and a 14th-order Butterworth filter was
chosen to soften the mask’s edges. Finally, a sinc filter

f (q) = sinc(bq)

with b = 0.345 nm was applied, which corresponds to typical
bin sizes b in experimental profiles.

All electron beam simulations were performed using the
PYTEM software package [38] and 300 kV acceleration volt-
age. Due to the nature of the discrete Fourier transforms used
within the multislice algorithm and the subsequent filtering,
the simulated profiles are continuous and periodic at their
boundaries. However, the corresponding faces of the supercell
are placed at arbitrary positions. This results in wraparound
artifacts in the calculations (see for instance Fig. 2). For this
reason we treat the left- and rightmost 3 nm of the calculated
profiles as artifacts without further consideration.

C. Modeling polarization fields in simulations

A comprehensive modeling of the electrostatic potential
within the specimen requires the calculation of the (valence)
electron density in order to fully incorporate bonding, band
offset, and polarization effects, which can be in principle
achieved by, e.g., density functional theory [1]. Since our
aim here is an investigation of occurring artifacts and the
robustness of evaluation strategies against these artifacts, it is
sufficient to approximate the resulting electrostatic potential.
For this we adopt the commonly used isolated atom approx-
imation to model the potential in both materials, as already
implicitly indicated by the use of the atom form factors above.

However, no approaches for the incorporation of polariza-
tion effects into electron microscopic simulations exist. We
tried two approaches for the incorporation of the polarization,
a more microscopic one, where additional charges were mod-
eled on the atom positions, and a macroscopic one, where only
interfacial charges were added.

In the microscopic picture, the spontaneous and piezoelec-
tric polarization of the group-III nitrides occurs due to the

partial ionic nature of the atomic bonding together with the
deviation from the ideal tetrahedral coordination [39]. The
partial ionic nature can be quantified by an effective charge
of the atomic sites, which represents the effective number of
valence electrons close to the nuclei [28]. We subtract the
number of electrons needed for the neutral atom (i.e., five for
nitrogen, three for the metal atom) from this effective charge
to form effective excess charges: Q = 1.02e for the Ga atom
in GaN and Q = 1.04e for the metal atoms in In0.15Ga0.85N.
The N atom has the same effective charge but is of opposing
sign for each compound. We incorporated this excess charge
Q into our calculations by adding the pseudoatom form factor
resulting from a Gaussian charge distribution centered on the
atom site to the atom form factor fNeutral(q) of the neutral
atom,

fIon(q)= fNeutral(q) + em0

2πε0h2

Q

q2
exp

(−2π2R2
ff q

2
)

for q �= 0.

(2)

Here e is the elementary charge, m0 is the electron rest mass,
h is Planck’s constant, and q is the scattering vector. Rff is the
root-mean-square (rms) width of the Gaussian distribution,
which still must be adjusted to the simulation. For q = 0 the
neutral form factor was left unchanged, which results in an
overall electrically neutral supercell.

In Fig. 1 the difference between the potential calculated
with the modified form factor fIon(q) and the unmodified
form factors fNeutral(q) is shown. The depicted potential was
averaged over the specimen thickness, as internally only the
projected potential is calculated. In order to make the poten-
tial in the figure more illustrative, here only the strain of a
pseudomorphically strained QW [as given by Eq. (1)] was
assumed as well as the atomic potential being smoothed by the
Debye-Waller factor, while the final simulations were done for
the strain state calculated by the finite element method, which
includes surface relaxation effects, and with the Monte Carlo
integration of thermal displacements. It can be seen that the re-
sulting macroscopic electrical fields are rather independent of
the choice of Rff . But it becomes apparent that for a too-small
choice of Rff (e.g., for Rff = 0.10 nm) the structure factors
become significantly changed, since here an additional modu-
lation with the monolayer period appears. This microscopic
approach to polarization modeling mimics the true micro-
scopic source of the polarization fields and already creates
interfacial charges. However, it also creates an artificial charge
dipole at the periodic supercell boundary. These boundary
charges would not appear if the size of the supercell is an in-
teger number of unit cells. However, when surface relaxations
are later included in the simulation, it becomes impossible
to create such a commensurable supercell. Furthermore, the
microscopic model also lacks the incorporation of the electric
susceptibility. Since these artificial boundary charges caused
too-strong diffraction artifacts for the chosen supercell sizes
and due to the fact that different polarization field strengths
and susceptibility must be modeled quite artificially by chang-
ing the effective charge strength between both materials, we
selected a different way of modeling the polarization fields.

In a macroscopic picture, changes of the polarization are
observable as charges. For a heterostructure like here, these
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FIG. 1. Difference between the electrostatic potential with and without included polarization effects (averaged over specimen thickness).
The “microscopic” model utilizes modified form factors as given by (2). The “macroscopic” model included the potential resulting from
additional interfacial charges as given by (4) instead. The region of the QW is marked by the gray background; its center is located at the zero
position. The charges induced by the polarization effects are shown in Fig. S1 of the Supplemental Material [30].

charges occur mainly as sheet charges σeff at the interfaces
between the materials due to changes in spontaneous Psp,
piezoelectric polarization Ppz, as well as induced (dielectric)
polarization. The resulting electric field is given by [1]

EQW = −σeff

ε0
= 1

ε0
(
κIn0.15Ga0.85N − 1

)
× [(

Psp
GaN + Ppz

GaN

) − (
Psp

In0.15Ga0.85N + Ppz
In0.15Ga0.85N

)]
.

(3)

Since the piezoelectric polarization is primarily caused by the
pseudomorphic strain within the QW, any additional piezo-
electric polarization changes due to relaxation effects at the
surfaces are neglected. Please note that the definition of ef-
fective sheet charges σeff used in (3) includes the charges due
to the induced dielectric polarization and thus differs by the
electric susceptibility κ − 1 from the sheet charges occurring
due to changes in spontaneous and piezoelectric polarization
alone. The sheet charge σeff is specified for the upper interface
(x > 0).

In the macroscopic approach for modeling the polariza-
tion fields these interfacial charges are explicitly added to
the simulations. For this, the location of the interfaces rif in
the growth direction was sampled with 1-nm-depth resolution
from the continuum model. At these positions the electrostatic
potential Vif (r − rif ) resulting from a sheet charge distribu-
tion, which is smoothed out by a Gaussian with rms width
Rif in the growth direction, is added to the potential of each
multislice slice:

Vif (r) = σeff

4π2ε0

∫ +∞

−∞
dq

exp(−2π2Rif q2)

q2
exp(i2πqr). (4)

This interfacial charge potential was added for both inter-
faces with opposing sign of the sheet charge, such that the

overall supercell remains electrically neutral again. The Gaus-
sian smoothing here should avoid high spatial frequencies
and is set to Rif = 0.15 nm for all simulations. Using this
macroscopic approach to model the polarization fields allows
to directly specify the interfacial sheet charge σeff for the
simulation.

Figure 1 shows the difference of the thickness-averaged
potential between supercells with and without interfacial
charges. Due to the artificial boundary charges of the mi-
croscopic model, the potentials obtained for both approaches
differ by an additional electric field stretching over the whole
supercell. However, this additional electric field will not
change the result of any (sensible) further data evaluation
method: Additional global electric fields (as well as an ad-
ditive constant potential) are only determined by the electric
boundary conditions of the experiment. Since these boundary
conditions are usually not sufficiently well defined in the ex-
periment (see discussion in Sec. IV), any evaluation methods
of polarization field from holographic measurements should
be insensitive to these contributions anyway.

We want to use the simulations to test whether the field
strength obtained by the evaluation methods described in
the next section agree with the field strengths assumed for
the simulation itself, i.e., whether the methods are truthful.
For illustration purposes we mainly assume a sheet charge
of σeff = 0.025e/nm2 in the following, which corresponds
to an electric field strength of −4.5 MV/cm. The reported
values for the expected electric field strength vary in the
literature, as discussed in the Introduction. However, they
are always in this order of magnitude. The effective charges
used in the microscopic method above correspond to a sheet
charge of σeff = 0.075e/nm2. They were taken from [28],
but significantly different values for the effective charges can
also be found in the literature (e.g., in Ref. [40]). Ab initio
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FIG. 2. Simulated profiles for 200-, 210-, and 220-nm-thick
lamellas at zero tilt with interfacial charge densities of σeff =
±0.025 e/nm2. Within the phase profile the orange and green lines
mark the gradients and offsets estimated from the matrix regions
to the left- and right-hand sides of the QW underlaid by the gray
background. The red line indicates the gradient estimated within the
center of QW. The underlaid gray mark in the QW center marks
the −δ < r < δ interval for this center gradient estimation (see main
text). The field strength obtained from both estimators is noted in the
lower left corner of the phase plots.

calculations expect a field strength of EQW = −2.2 MV/cm
for an In0.13Ga0.87N QW in a GaN matrix (under the as-
sumption of no further screening by free carriers) [1], which
corresponds to σeff = 0.012e/nm2. Also, when the expected
polarization is evaluated for a pseudomorphically strained
InGaN with the theoretical polarization constants given in
Refs. [41,42], values of similar magnitude are obtained.

D. Estimation of electric field strength within the quantum well

Simulated profiles for lamellas of several thicknesses at
zero tilt, τ = 0 mrad, for an interfacial charge density of
σeff = +0.025 e/nm2 are shown exemplarily in Fig. 2. Clearly
observable is the position of the QW in the amplitude pro-
file from −1.0 � r � 1.0 nm. In the region of the QW an

increasing phase profile is observable. Also observable are
identical phase gradients in the matrix regions to the left-
and right-hand sides of the QW. The slight high-frequency
wiggling of the profiles is the remaining lattice contrast from
the ±(0002) reflections.

The “slope” method evaluates the gradient of the phase
within the QW directly. In the simple kinematic picture, where
the phase ϕ(r) is proportional to the projected electrostatic
potential

ϕ(r) = CEtV (r), (5)

with lamella thickness t , electrostatic potential V (r), and the
acceleration voltage-dependent interaction constant [7] CE =
6.52 × 10−3 rad/(V nm), these phase gradients in the QW and
the surrounding matrix can be interpreted as electric fields:

ESlope(r) = −dV

dr
= − 1

CEt

dϕ

dr
.

As discussed in Sec. II C, the electric fields are also depending
on the boundary conditions; thus only the difference of the
potential gradients of the QW and matrix can be interpreted
as a polarization field:

EQW = ESlope − EMatrix = − 1

CEt

[
dϕ

dr

∣∣∣∣
QW

− dϕ

dr

∣∣∣∣
Matrix

]
.

(6)

In the following we refer to (6) as the “slope” method for
estimation of the field strength. Examples for the use of such
an estimator are Refs. [14,15,17].

The “offset” method evaluates a second quantity, which
also depends on the polarization field strength EQW within
the QW. The potential difference between the regions to the
left (at rL) and right (at rR) sides of the QW depends on the
field strength EQW within the QW, its width w, and the field
strength EMatrix in the matrix:

V (rR) − V (rL ) = wEQW + (rR − rL )EMatrix,

thus

EQW = − 1

wCEt

[
ϕ(rR) − ϕ(rL ) − dϕ

dr

∣∣∣∣
Matrix

(rR − rL )

]
. (7)

In the following we refer to (7) as the “offset” method for
estimation of the field strength. Examples for the use of such
an estimator are Refs. [9,10,13].

Both methods (6) and (7) depend on phase values or gra-
dients of the phase values, which are quantities subjected to
noise in the measurement. Furthermore, the calculation of
the phase from the complex-valued hologram reconstructions
is a nonlinear operation. This nonlinearity leads to a phase
variance, which is inversely proportional to the amplitude
[43,44]. The noise dependency is considered by Gaussian
error propagation. For a robust estimation, these phase values
and gradients are additionally averaged over a region of the
profile.

Assuming the center of the QW is located at r = 0, the
phase values ϕ(rL ) were averaged within the interval −6.1 �
r � −3.1 nm and the phase values ϕ(rR) within the interval
3.1 � r � 6.1 nm, and the positions rL and rR were taken in
the center of the intervals. The phase gradients of the GaN
matrix were estimated in both aforementioned intervals simul-
taneously. The phase gradient within the QW was evaluated
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FIG. 3. Phase and amplitude profiles from simulations for a
220-nm-thick specimen, a QW width of 2.25 nm, and no additional
interface charges for various tilts.

using a weighted average, with a Gaussian centered at r = 0
and with δ = 0.50 nm rms width as a weighting envelope. The
detailed equations used for the evaluation can be found in the
Supplemental Material [30].

These intervals and the −δ � r � +δ interval in the Gaus-
sian weighted case are also depicted in Fig. 2 together with the
evaluated phase gradients and offsets as well as the estimated
field strengths using both methods. It should be noted that,
even though the QW gradient region seems off center in the
phase profile, this region actually is centered in the amplitude
profile. However, the exact positioning of the QW center is a
systematic error source, as we discuss later.

E. Evaluation of interfacial charges from second derivative

In the literature, also uses of the second derivative of
the reconstructed phase for the estimation of field strength
or more exactly the estimation of interfacial charges can be
found (e.g., Refs. [8,11,45]). This estimation is based on the
Poisson equation and gives a charge distribution Q(r) within
the kinematic picture of (5):

Q(r) = −ε0	V

∣∣∣∣
r

= − ε0

CEt
	ϕ

∣∣∣∣
r

. (8)

This charge can be evaluated at the interface of the QW
and GaN matrix. We here rejected this evaluation method for
several reasons:

First, at the interface between QW and GaN also the inter-
facial charge dipole responsible for the difference of the mean
inner potential between both materials is located. However,
neither is there a reason for this charge dipole to be exactly
asymmetrical around the interface nor a symmetrical propa-
gation of the wave within the sample can be assumed, due
to projection and dynamical diffraction effects. This nonsym-
metrical interface can be immediately noticed in the simulated
phase profiles in Fig. 3, where no polarization field is added
to the calculation. Nor is there a reason to assume that both
interfaces are symmetric with each other. This nonsymmetry
between both interfaces can also be observed in Fig. 3.

The effect of a nonasymmetrical dipole charge distribution
can be avoided, when the charge (8) is not evaluated at a single
position but integrated over the whole interfacial area I:

QTotal = 1

I

∫
I

dr Q(r).

Since the interfacial dipole is created by two opposing
charges, its contribution to QTotal should vanish and only the
interfacial charge due to changes in the polarization should
remain. When (8) is only evaluated at a single point, it is not
obvious how this interfacial dipole can be separated from the
interfacial charge, nor how to place this point in experimental
data, where the exact position of the interface is unknown.

Second, in the general case the second derivative is biased
in cases of limited resolution. This becomes immediately ob-
vious when the second derivative of (8) is evaluated in Fourier
space,

Q(r) = 4π2ε0

CEt

∫ +∞

−∞
dq q2ϕ̃(q) exp(i2πqr), (9)

using the Fourier-transformed phase

ϕ̃(q) =
∫ +∞

−∞
dr ϕ(r) exp(−i2πqr).

When higher frequencies q are attenuated, e.g., the integral
in (9) is only evaluated in the limits of −qmax < q < qmax,
but ϕ̃(q) does not vanish for |q| > qmax, the resulting evalu-
ated charge Q becomes biased. This bias remains even when
the charge is integrated over the interfacial area. A truthful
evaluation of the charge thus requires that the resolution of
the holographic reconstruction is sufficiently smaller than the
extent of the interfacial charge.

Third, while the numerical evaluation of the first derivative
already increases the variance by a factor of 2 compared to
the original signal, the variance of the numerically evaluated
second derivative becomes even four times larger than the
original signal.

III. RESULTS

Systematical tilt and thickness variations are used to inves-
tigate the combined effects of strong diffraction, projection
artifacts, and difference in material. Observed variations and
the bias of the estimators are statistically quantified.

The effect of beam tilt alone with a tilt axis parallel to the
interfaces on the calculated profiles without added polariza-
tion fields can be seen exemplarily in Fig. 3 for a specimen
thickness of 220 nm. It is obvious that the shape of the profile
across the QW and especially the shape of the interfaces is
dependent on the beam tilt. Also visible are slight oscillations
of the phase profiles in the center of the QW, which may
complicate the evaluation of a slope in these parts. In general
also the width of the apparent QW becomes wider when the
beam is tilted away from the zero position. This is expected
due to projection effects.

The effect of the interfacial charges occurring due to
changes in the polarization between both materials is dis-
played in Fig. 4. Clearly observable is the increase of the
phase gradient with increasing interfacial charge, as well as
an increase of the phase step between both sides of the QW.
Indeed, the effect of the interfacial charge on the phase is
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FIG. 4. Phase and amplitudes from simulations for a 220-nm-
thick specimen at zero tilt for various interfacial charge densities σeff .

found to be interpretable as an additive effect in the simulated
range of thicknesses and beam tilts. Also, the additional elec-
trostatic field is too weak to have a significant influence on the
amplitudes.

The electric field strengths estimated by slope estimator
(6) and the offset estimator (7) using calculated profiles for
an interfacial charge of σeff = 0.025e/nm2 are shown in the
left column of Fig. 5. The estimates were evaluated for a
tilt range from −8.45 to +8.45 mrad and thicknesses from
200 to 240 nm. The expected field strength for the homo-
geneous field between both interfaces is EQW = −σeff/ε0 =
−4.524 MV/cm. Exemplarily the estimates for 220-nm thick-
ness are also shown as line graph in the bottom row.

The right column of Fig. 5 shows the expected standard
error of the obtained field strength for each tilt and thickness.
Assuming the detection noise is Poisson distributed, the vari-
ance of each data point in the reconstructed hologram will be
proportional to the point’s amplitude, while the proportional-
ity factor will depend on the electron dose and the detector.
The errors for each individual field estimation displayed in
Fig. 5 are obtained by Gaussian error propagation from the
noise in the reconstructed data points. Any correlations in-
troduced by the reconstruction aperture and the rebinning
were considered by performing the error propagation with
the full covariance matrix (see Ref. [44] for details of error
propagation of holographic reconstructions). Since there is a
constant global factor depending on dose and detector in the
experiment, the presented errors are only given in arbitrary
units. Nevertheless, they are comparable among each other.

A wide range of field estimates is found for both esti-
mators; however, the evaluated value varies far more for the
slope estimator. The strongest deviations in Fig. 5 are found
for tilt and thickness combinations, where the intensity of the
zero beam of the electron wave is small either in the QW
itself or in the matrix (also see Fig. S3 of the Supplemental
Material [30]). These small intensities occur due to dynamical
diffraction effects.

When the standard deviations of the estimators are com-
pared with the field estimations, i.e., the left and right columns
of Fig. 5 are compared, it becomes obvious that most of
the large deviations found are caused by these low intensi-
ties. In order to quantify the spread of the estimated field
strength due to the experimental conditions, we calculated
the weighted averages and standard deviations over the shown
tilt and thickness ranges. The inverse square of the presented
standard errors were taken as weights. The resulting statistics
are displayed in Fig. 6.

The standard deviations remain within the same order of
magnitude independently of the interfacial charge used in the
calculation, showing that this is an effect of the experimental
conditions and not of the actual charge strength. The standard
deviations of the slope estimator are consistently larger than
for the offset estimator. However, the actual deviations found
in experiments will depend on the range of tilts and thickness
measured and will be increased by additional uncertainties
caused by noise.

Another observation visible in Fig. 5 is that the variances
of the estimators become smaller when tilts far away from the
symmetry position are evaluated. This is somewhat expected,
as for larger tilts the effects of dynamical diffraction become
weaker [22]. However, for larger tilts the slope estimator also
becomes biased due to projection effects: It gives system-
atically smaller field strength for larger negative tilts, while
giving systematically larger field strength for larger positive
tilts. On a closer look this effect is caused by a broaden-
ing and shifting of the QW region due to the projection
effect on the tilted QW. This effect can also be mitigated,
when the position where the slope is evaluated is shifted
with the tilt angle. However, we observe that empirically
this shift must be smaller than the geometrically expected
amount. This raises the question of how to objectively de-
termine the position where the slope in experimental data is
evaluated.

The sensitivity of the slope estimator with respect to spatial
resolution was also evaluated. Since the phase profile becomes
smoothed in cases of limited resolution, it can be expected that
also the estimated field strength becomes biased. Resolution
may be limited by two quantities: the width of the area used to
calculate the slope, here given by the the width δ of the Gaus-
sian weight, and the reconstruction aperture, here given by
the cutoff frequency. The influence of these quantities can be
observed in Table I. A general trend of underestimations of the
true field strength with decreasing resolution (i.e., increasing
rms width δ and decreasing cutoff) is observed. Compared to
the observed general variations due to dynamical diffraction,
these become only significant when twice the rms width is
chosen in the range of the QW width (here 2.25 nm) or the
reciprocal of the cutoff is in this range.

Another source of errors occurring with limited resolution
becomes more apparent in the simulated profiles in Fig. 7,
where also the effects of smaller reconstruction cutoffs are
illustrated. When the cutoff is decreased it becomes increas-
ingly more difficult to separate the slope within the QW
from the slope of the washed-out phase offset caused by the
different material. The raising slope of the material contrast
can be easily mistaken for the slope of the QW, resulting in
erroneous estimations of the field strengths using the slope
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FIG. 5. Left: Estimated electric field strength (given in MV/cm) within the QW for simulated specimen with an interfacial charge of
σeff = 0.025e/nm2. The expected field strength is EQW = −4.524 MV/cm. Right: Expected standard deviations due to detection noise obtained
by error propagation (given in arbitrary units). For better readability the estimates and standard deviations for 220-nm lamella thickness are
also plotted in the bottom row.

method. Whether the effect of limited resolution and recon-
struction cutoff have a significant influence on the evaluated
field strength depends on the conditions of the profile under
investigation. For a lamella thickness of 210 nm and zero tilt

as in Fig. 7 the effect is very apparent. For a thickness of
220 nm and zero tilt we found no large influence. However,
as can be seen from Table I there is an overall influence on the
average.

TABLE I. Statistics of the slope method in dependence of center-rms and reconstruction cutoff. An interfacial charge of σ = 0.025e/nm2

was assumed, for which the expected field strength is E = −4.524 MV/cm.

Reconstruction cutoff (1/nm) 4.5 4.5 4.5 4.5 1.0 0.5 0.3
Gaussian rms width δ (nm) 0.25 0.50 0.75 1.00 0.50 0.50 0.50
Weighted mean (MV/cm) −4.4 −4.0 −3.6 −3.2 −4.0 −4.0 −3.5
Weighted standard deviation (MV/cm) 1.6 1.8 1.5 1.2 1.8 2.0 1.6
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FIG. 6. Weighted average field strength as obtained by the slope
and offset methods for four interfacial charges. The weighted stan-
dard deviation of the obtained field strength is displayed as error bars.
The expected field strength is given by EQW = −σeff/ε0. For display
purposes the data points are slightly shifted along the abscissa.

IV. DISCUSSION

A large variation of the evaluated field strength values
can be seen with variation of the diffraction conditions and
estimator method. For the evaluation of a single orientation
this is a systematic error, which can be significantly larger than
the statistical error calculated for the individual measurements
due to detection noise. Nevertheless, when the experiment is
conducted over a sufficient number of beam tilts, the estimated
average field strength asymptotically reaches the true value,
which means the estimators are statically not biased.

The offset method turned out to be more robust than the
slope method. This can be seen in the far smaller standard
deviations of the offset estimated values compared to the slope
estimated values. While the diffraction effects become less
detrimental when larger tilt angles are probed, the imaged
QW also becomes broader due to projection effects. Since
the position where the slope is estimated must be chosen
to some extent objectively in experimental holograms, this
causes a significant additional bias for the slope estimation.
The slope method also becomes biased when the QW itself
is not well resolved anymore; thus it is important to perform
such field measurements using the slope method only, when
the holograms are not limited by instrumental resolution or
too-small reconstruction masks.

The offset method assumes that there is only negligible
band bending in the matrix within the range of a few nanome-
ters close to the QW. This might be not necessarily true in
a highly doped specimen, where the interfacial charges are
effectively screened by the carriers. The offset method also re-
quires knowledge about the width of the QW. Here, we always
assumed it is known well enough, since we assume it most
times can be obtained from accompanying high-resolution
measurements with one-monolayer accuracy, i.e., a relative
error of less than 10%. Also the specimen thickness can only
be determined with limited precision and accuracy [21] (also
see Ref. [46] for a discussion of intricate details of thickness

FIG. 7. Simulated profiles for 210-nm-thick lamellas at zero tilt
with interfacial charge densities of σeff = ±0.025e/nm2 for three
values of the reconstruction cutoff (expected field strength, E =
−4.524 MV/cm).

estimation from the mean free path). However, compared to
the limited accuracy due to diffraction effects and sensitivity
to evaluation position these two additional error sources are
negligible in the present case.

While not in the scope of this paper we feel obliged to
mention a few more sources of experimental misinterpreta-
tions. In principle both estimators (6) and (7) only evaluate
the field strength projected over the specimen thickness. This
is converted here to an electric field strength by division
through the specimen thickness t . So technically the resulting
field strength is the average field strength over the thickness.
However, this neglects any field variations over the thickness,
e.g., due to surface damages from specimen preparation or any
band bending due to additional surface charges and/or states.
This misinterpretation between thickness-averaged quantities
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and bulk quantities was already often discussed in the litera-
ture, e.g., under the name of dead layers [18–20]. A further
misinterpretation is the influence of the beam itself. The high
energetic electrons easily generate electron-hole pairs within
the semiconductor, which then change the electrostatic energy
landscape within the specimen in dependence on doping levels
and how any currents can flow within or around the specimen
[20,21]. Thus the situation during the measurement is often
not the same as the lower excitation conditions found during
device operation. Eventually, the specimen itself degrades un-
der the influence of the electron beam [20,47] and the indium
within the QW may segregate [48].

Also it is generally energetically favorable to screen the
induced interfacial charges by free carriers, which will also
decrease the field strength [1,3]. However, this is expected to
have a larger influence on thicker QWs as well as highly doped
samples. Also a compensation of the polarization-induced
charges by interfacial defect charges is energetically favor-
able, and will reduce the field strength [1].

V. CONCLUSION

Strong deviations between field strengths obtained un-
der different conditions are found within the conducted
simulations. From this three guidelines for accurate results of
electric field measurements in QWs can be formulated:

(1) When dynamic diffraction conditions cannot be
avoided due to geometric constraints, measurements under

various beam tilts should be performed in order to mitigate
the dynamical influences. Once the microscope is set up for
holographic measurements, usually small beam tilts are easily
applied.

(2) If possible, estimate the field strength from the offset
step found across the QW in the GaN’s matrix potential.

(3) Conduct the experiment with sufficient spatial resolu-
tion; e.g., use aberration corrected setups. This also reduces
beam tilt constraints due to lens aberrations.

Statistical errors due to detection noise in general under-
estimate systematical errors caused by dynamical diffraction,
resolution-limiting effects, and details of the evaluation
method. Reports of electrical field measurements from QWs
made by EH should at least contain detailed information about
specimen thickness, resolution (reconstruction apertures),
evaluation methods, electron dose rate, exact diffraction
conditions (specimen orientation), and electrical grounding.
Previous measurements found in the literature often miss such
details, making the postassessment of these measurements
difficult. It should be taken care that these details are always
included in future publications.
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