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We investigate the current flow of microcavity polariton condensates loaded into concentric ring-shaped
potentials. The tunneling of the condensates between different potential rings results in different phase-locked
states, depending on the separation of the potential rings. As a consequence, the condensate currents in different
rings can flow either in the same or opposite direction, depending on the specific configuration of the ring-shaped
potentials. In two concentric standard ring-shaped potentials, the condensates always circulate in the same
direction (coflowing current), and the vortices formed in the two rings share the same topological charge because
of the azimuthally uniform distribution of their phase difference. In this case, increasing the number of the
potential rings enables the excitation of Bessel-like solutions. If the two ring-shaped potentials are engineered
into an eye shape, with the inner ring being standard ring-shaped and the outer ring being elliptically ring-shaped,
the phase differences of the condensates in the two rings along the major and minor axes of the ellipse can be
opposite, which gives rise to counterflowing condensate currents.
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I. INTRODUCTION

The exciton-polaritons studied in the present work are
quasiparticles composed of photons and excitons in a planar
quantum-well based semiconductor microcavity. As hybrid
light-matter entities, exciton-polaritons can be excited op-
tically and emit coherent light due to the finite polariton
lifetime, which provides an excellent platform for structur-
ing light on a few-micron length scale. Under excitation
with a nonresonant optical beam, polaritons can still show
macroscopic coherence [1,2], also referred to as nonequilib-
rium polariton condensates, enabled by efficient stimulated
scattering of polaritons into the coherent phase. The repul-
sive polariton-polariton interaction also leads to the system
showing strong nonlinearity, driving spontaneous symmetry
breaking and the formation of polariton vortices. Polariton
vortices carry circular currents around a phase defect, and
can be created by various methods. For example, they can
form spontaneously due to the inhomogeneity of the system
and initial phase defects [3–5], or the orbital angular mo-
mentum can be transferred directly from a coherent pump
to the polaritons [6–8]. Strong spatial anisotropy [9,10] and
optical lattices [11] are also important factors to sustain po-
lariton vortices. Recent research activities were devoted to
the structuring of the circular polariton currents by using
diverse potential shapes, focusing mainly on ring-like poten-
tials including optically induced potentials [12–16], built-in
potentials [17–20], as well as the combination of both of
them [21,22].

Considering spatially more extended scenarios, the in-
plane motion of polaritons and the polariton-polariton

interaction give rise to the build-up of phase locked states
for spatially separated condensates [23–25]. These can either
have symmetric or antisymmetric phases, depending on their
separation distance, geometrical arrangement [26], and out-
going polariton flows. A very large separation leads to the
formation of the simple harmonic oscillator states [27]. This
phase locking influences not only the stationary fundamental
mode, but also the higher-order modes that may feature flow-
ing polariton currents.

Polaritons loaded into multiple potential traps can also
couple with each other due to quantum tunneling. In two over-
lapping micropillars, the tunneling of polaritons between the
two pillars leads to the observation of Josephson oscillations
[28,29]. In multiple overlapping pillars engineered to a hexag-
onal ring, the tunneling of photons between adjacent pillars
and the polarization-dependent confinement allows the cou-
pling between the spin and orbital momenta of polaritons [17].
Polariton condensates can also be excited to phase-locked
states in one-dimensional (1D) chain lattice potentials, where
the phase of the condensates can be either symmetric or anti-
symmetric depending on the pump intensity [30]. In such 1D
arrays, vortex chains can form, that is the condensate in each
pillar is excited to a vortex state. Their topological charges
can be the same or opposite with similarity to the 1D spin
systems with ferromagnetic and antiferromagnetic order [18].
In our previous work, we found that in a single ring-shaped
potential the phase coupling of condensates located at the
centrosymmetric points supports multistable circular currents
[20]. If a potential barrier splits the ring-shaped potential to
make it form a C shape, polariton condensates in it exhibit pro-
nounced coherent oscillations, which may persist far beyond
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the coherence time of polariton condensates, passing periodi-
cally through clockwise and anticlockwise current states [31].
These may find applications in information processing, data
storage, or implementation of quantum algorithms.

In the present work, we use multiple concentric ring-
shaped potentials to structure the current flow of polariton
condensates in different potential rings on the basis of their
phase coupling. Their phase difference can vary with the
separation of the potential rings. We find that in two nested
ring potentials the azimuthal isotropic phase difference of
the condensates, which can be zero (symmetric) or π (an-
tisymmetric), enables the generation of co-flowing currents.
In the case of antisymmetric coupling in multiple concentric
ring-shaped potentials, Bessel-like solutions are found, that is
in the potential ring coflowing condensates are formed with
π -phase jumps between neighboring rings. Most importantly,
we propose an eye-shaped potential setup which supports
counterflowing currents. Exploiting the spatial dependence of
the condensate phase-locking to create an anisotropic phase
difference between neighboring condensates leads to the cur-
rents flowing in opposite directions. These counter-flowing
currents are nonpersistent, but instead oscillate robustly as
time evolves, with an oscillation period much longer than the
polariton lifetime. The eye-shaped potential setup provides a
platform to create nested counter-rotating condensates, which
can be used to design more complicated condensate currents.

II. MODEL

To study the dynamics of polariton condensates in semi-
conductor microcavities under nonresonant excitation, we
employ the driven-dissipative Gross-Pitaevskii equation cou-
pled to an incoherent equation describing the density of the
exciton reservoir [32]:

ih̄
∂�(r, t )

∂t
=

[
− h̄2

2meff
∇2

⊥ − ih̄
γc

2
+ gc|�(r, t )|2

+
(

gr + ih̄
R

2

)
n(r, t ) + V (r, t )

]
�(r, t ), (1)

∂n(r, t )

∂t
= [−γr − R|�(r, t )|2]n(r) + P(r, t ) . (2)

Here, �(r, t ) describes the coherent condensate field, and
n(r, t ) describes the density of the reservoir. meff=10−4me

(me is the free electron mass) is the effective polariton
mass around the bottom of the lower polariton branch,
which is assumed as parabolic. γc=0.08 ps−1 denotes the
decay rate of the condensate and γr=1.5γc represents the
decay rate of the reservoir. The polariton condensation
rate is given by R=0.01 ps−1 μm2. The nonlinear coef-
ficient gc=3 × 10−3 meV μm2 represents the strength of
the polariton-polariton interaction, and the strength of the
polariton-reservoir interaction is given by gr=2gc. The exter-
nal potential is given by V (r), with ring-shaped distribution
and written as

V (r) =
∑

j

−V0e−(r′ )2N
[1 − e−(r′′ )2N

] . (3)

Here, r′ = r/[wR + ( j − 1)(d + wR − wr )],

FIG. 1. Vortex steady states in two concentric ring-shaped po-
tential wells. (a) In-plane (xy-plane) landscape of the concentric
ring-shaped potentials. wr and wR are the radii of the inner and outer
edges, respectively, of the innermost well. The width of the ring is
given by wR−wr. The separation of the rings (the distance from the
outer edge of the inner ring to the inner edge of the outer ring) is
denoted by d . (b) 1D distribution of the potential along the dashed
line in (a). (c,d) Distributions of the density (top row) and the phase
(bottom row) of the stationary vortex states with topological charge
m = 1 for (c) d = 1 μm and (d) d = 3 μm. Here, wr = 5 μm and
wR = 8 μm.

r′′ = r/[wr + ( j − 1)(d + wR − wr )], V0 is the depth of
the potential. wr and wR represent the radii of the inner and
outer edges, respectively, of the innermost ring. d denotes the
separation of the rings, and it is defined as from the outer edge
of the inner ring to the inner edge of the outer ring as indicated
in Fig. 1(a). The index j ∈ N represents the number of the
potential rings. The integer index N could be very large, to
make the potential very steep. Such a kind of potential can be
fabricated in planar semiconductor microcavities by different
techniques [30,33–36]. The nonresonant optical pump P(r, t )
is a continuous wave with a broad Gaussian shape, and its
spatial distribution satisfies

P(r) = P0e−r2/w2
g . (4)

Here, wg = 50 μm, which is much larger than the size of
the potential, and P0 = 1.1 ps−1μm−2 (the threshold pump
intensity Pthr = 0.96 ps−1μm−2). In the following study, we
keep the pump and the depth of the potential (V0 = 0.45 meV)
fixed, and vary the radii of the ring-shaped potentials and their
separations. In all the simulations in this work a vortex initial
condition of the coherent condensate with topological charge
m = 1 and very small amplitude is applied.

III. STATIONARY AND OSCILLATORY DYNAMICS
OF VORTICES IN TWO CONCENTRIC

RING-SHAPED POTENTIALS

We start from the simplest case with only two concentric
ring-shaped potentials. Each of them has a standard ring shape
as shown in Fig. 1(a). In this case, the separation of the two
rings is azimuthally isotropic, that is, d is a constant. For a
very small separation of the two rings with d = 1 μm, the
polariton condensates mainly occupy the inner ring as shown
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FIG. 2. Oscillatory dynamics of vortices in two concentric ring-
shaped potentials. (a) Time evolution of the peak density of the
condensate. (b)–(c) Density (top row) and phase (bottom row) dis-
tributions of the oscillating vortex at different times, corresponding
to the markers in (a), with a difference of �t = 330 ps. (d) Real-
space spectrum of the oscillatory solution in (a) on top of the 1D
distribution of the potential. Here, wr = 5 μm, wR = 8 μm, and
d = 5 μm.

in Fig. 1(c). The phases of the condensates in both rings are
fully synchronized due to the strong tunneling effect, thus they
rotate in the same direction and act as a single condensate.
When the separation is larger, with d = 3 μm, the second
ring becomes mainly occupied [see Fig. 1(d)], although the
pump intensity at the inner ring is stronger than that at
the outer ring. This is because besides the circular motion,
the condensate also propagates along the radial direction, sup-
ported by the gradient of the pump intensity, driving polariton
density towards the region where the pump intensity is lower.
Increasing the separation also weakens the quantum tunneling
of the particles, resulting in slight desynchronization of the
phases in the two rings as visible in Fig. 1(d).

In principle, further increasing the separation of the two
rings should lead to a π -phase jump between the condensates
in different rings. However, the decrease of the pump intensity
along the radial direction leads to a significant condensate
density difference in the two rings as the separation becomes
larger. Hence, the density-induced blue shift results in a split-
ting into two distinct modes visible in the spectrum [Fig. 2(d)].
The beating of these two modes induces an oscillatory dy-
namics as shown in Figs. 2(a)–2(c) for d = 5 μm. At higher
energy, the condensate in the inner ring rotates faster than the
condensate in the outer ring, as visible in the phase profiles in
Figs. 2(b) and 2(c).

IV. BESSEL-LIKE VORTICES IN FOUR CONCENTRIC
RING-SHAPED POTENTIALS

As presented in Fig. 1(d), in a multiring configuration,
most of the condensate is gathered in the outer ring due to
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FIG. 3. Bessel-like vortices in four concentric ring-shaped po-
tentials. (a) In-plane landscape of the ring potentials. (b) Density and
phase distributions of the Bessel-like vortex with m = 1. (c) Com-
parison of the normalized Bessel mode J2 with the normalized 1D
solution selected from (b) along the dashed line at y = 0, as indicated
in (a). (d) Real-space spectrum of the solution in (b) on top of the
1D distribution of the potential along the dashed line in (a). Here,
wr = 5 μm, wR = 8 μm, and d = 3 μm.

the polariton outflow generated by the radially decreasing
pump intensity. However, being trapped in a potential well, the
polaritons cannot propagate further than the outermost ring.
To study how the outgoing flow influences the distribution of
the condensates in different rings, we extend the potential to
four concentric rings as sketched in Fig. 3(a) and use the same
parameters as in Fig. 1(d). From the solution in Fig. 3(b) one
can see that the outflow of the condensates results in a small
occupation of the outermost ring, although in that region the
pump intensity is already below the condensation threshold.
Remarkably, in this case, the phase between neighboring rings
is not the same anymore, but instead a clear π -phase jump
occurs. These π -phase jumps lead to a spatially separated
arrangement of the polariton currents in different rings [see
Fig. 3(d)]. The buildup of the π -phase jump is obviously
caused by the appearance of more concentric rings in the
potential, shown by comparing it with the solution in Fig. 1(d).
The reason is that more rings enhance the tunneling effect
and make the potential approaching a periodic one along the
radial direction, recognized by the relatively smaller pump
spot. It is known that in the 1D periodic potentials polariton
condensates can be excited to the π state (i.e., the boundary
of the first Brillioun zone) when the pump intensity is slightly
above the threshold [30,34,37,38]. Therefore, the same phase
distribution shown in Fig. 1(d) vanishes for the configuration
in Fig. 3 under the same pump. The distribution of the solution
in Fig. 3(b) is similar to that of a Bessel function of the first
kind of second order J2, as shown in Fig. 3(c). To more accu-
rately create a Bessel vortex mode, the width and separations
of the potential rings can be adjusted as needed (not shown).

If the separation of the potential rings in Fig. 3(a) is re-
duced, the strong tunneling effect synchronizes their phases
again and a rotating solution is formed as shown in Figs. 4(a)
and 4(b), in which the density profile shows a wheel pattern
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FIG. 4. Rotating solution in four concentric ring-shaped potentials. (a)–(b) Density and phase distributions of the rotating solution at
different times with �t = 10 ps (the period is 56 ps). (c) Real-space spectrum of the rotation solution on top of the 1D distribution of
the potential. (d) Sorted distribution of the topological charges of the solution in (a). (e)–(f) Extracted density and phase profiles from the
real-space spectrum in (c): (e) extracted from the fundamental mode �1 with m1 = 1 and (f) extracted from the higher-order mode �2 with
m2 = 5. Here, wr = 5 μm, wR = 8 μm, and d = 1 μm.

and rotates with a period of 56 ps. During the rotation, the
peak density of the solution remains constant. From the phase
distribution and the real-space spectrum [Fig. 4(c)] one can
see that the rotation results from the excitation of two differ-
ent modes. The rotating states of polaritons in a ring-shaped
potential can also be excited by a bichromatic pump [39].
The fundamental mode in Fig. 4(c) shows that the density
along the radial direction is nodeless, which means that the
phases in the rings are the same. The higher-order mode,
which carries a larger topological charge, shows a spatially
discrete spectrum along the radial direction at the edge of
the potential well, caused by the π -phase jumps that occur
between neighboring rings, as studied in Fig. 3(d). To find
the phase information of each mode separately, in Fig. 4(a)
we assume the solution �(r, t ) = �1(r)e−iω1t + �2(r)e−iω2t

with �1(r) = �01(r)eik1reim1φ and �2(r) = �02(r)eik2reim2φ ,
where �01(r) and �02(r) are the amplitude profiles, m1 and
m2 are the topological charges, ω1 and ω2 are the frequencies,
and φ is the polar angle. The contributions of the solution
in Fig. 4(a) with topological charges m can be extracted
by projecting onto the respective orbital angular momentum
components with:

A(m) =
∫

�(r)e−imφdr. (5)

The result is shown in Fig. 4(d), where two topological
charges are obtained: m1 = 1 (corresponding to the funda-
mental mode) and m2 = 5 (corresponding to a higher-order
mode). To extract the density distribution �01 (�02) and the
radial component of the phase eik1r (eik2r) of the two modes,
we Fourier transform separately each mode in Fig. 4(c) from
the energy-spatial domain to the time-spatial domain, then se-
lect the resulting 1D profile at a fixed time scale and extend it
to the two-dimensional (2D) distribution by multiplying with
the term eim1φ (eim2φ). The two extracted profiles are shown
in Figs. 4(e) and 4(f). The fundamental mode in Fig. 4(e)
carries the topological charge m1 = 1 and the phase is radially

independent, similar to the result in Fig. 1(c). Due to the
strong tunneling effect, the condensate propagates further
away from the pump center, and mainly resides in the two
middle rings rather than in the innermost ring. For the higher-
order mode in Fig. 4(f) at the edge of the potential, its
innermost ring is dominated by the topological charge m2 = 5
and π -phase difference between the neighboring rings. There
are two factors that lead to the selection of m2 = 5 as the
contributing higher-order mode. The first one is that the initial
condition is with topological charge m = 1, which determines
that the topological charge of the higher-order mode can only
be an odd number (i.e., antisymmetric). The other one lies in
the size of the innermost ring and the polariton lifetime. For
a fixed polariton lifetime, the radius of the vortex ring and its
topological charge are related [40].

V. COUNTERFLOWING CONDENSATE CURRENT
IN EYE-SHAPED POTENTIALS

Thus far, all the condensates in different rings propagate
in the same direction. In other words, the vortices formed in
different potential rings have the same topological charge. It is
worth asking whether the condensates in different concentric
ring-shaped potentials can propagate in opposite directions,
that is can they carry opposite topological charges in neigh-
boring rings? In this section, we analyze and demonstrate this
kind of dynamic in an eye-shaped potential as sketched in
Fig. 5(a), where the inner potential is of standard ring shape
and the outer potential is of an elliptical ring shape. This
configuration can lead to an azimuthally anisotropic phase
difference between the condensates in the two rings, depend-
ing on the eccentricity of the ellipse. Here we assume that
the separation of the two rings along the minor axis of the
elliptical ring (the x direction) dx is smaller than that along
the major axis of the elliptical ring (the y direction) dy. In
this case, the smaller dx induces the condensates at the closest
points [see the red and blue points within the dashed ellipses in
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FIG. 5. Counterflowing condensate currents in an eye-shaped potential. (a) Landscape of the eye-shaped potential. (b) Schematic illus-
tration of the counterflowing condensate current. The separations of the two rings along the x and y directions are denoted by dx and dy,
respectively. Possible phase distributions of the condensates in the two rings are marked. The dashed ellipses enclose the points with the
same phase, while the dashed rectangles enclose the points with π -phase difference. The red and blue arrows indicate the flow directions of
the condensates in the inner and outer rings, respectively. (c)–(e) Density and phase profiles of the counterrotating vortex at different times
with �t = 82.5 (the oscillation period is 330 ps). Real-space spectra of the counterrotating currents selected along (f) the minor and (g) the
major axes of the ellipse. The corresponding 1D potential distributions are superimposed. Here, wr = 5 μm, wR = 8 μm, dx = 2 μm, and
dy = 6 μm.

Fig. 5(b)] in the two rings to have the same phase. The larger
dy, however, enables the condensates at the farthest points
[see the red and blue points within the dashed rectangles in
Fig. 5(b)] in the neighboring rings to have a π phase jump. If
the condensate in the inner ring circulates counterclockwise,
as indicated by the red arrow, with topological charge m = 1,
the only possibility of the condensate in the outer ring is
to circulate clockwise, as indicated by the blue arrow, and
consequently its topological charge is m = −1 (here we ne-
glect the higher-order vortices). Therefore, in this scenario the
condensates in the different rings of the eye-shaped potential
can flow in opposite directions.

The results of the counterflowing polariton currents in the
eye-shaped potential are shown in Figs. 5(c) and 5(d). The
phase in Fig. 5(c) shows that the condensate in the inner
ring propagates counterclockwise, whereas the condensate in
the outer ring propagates clockwise, evidencing the coun-
terflowing condensate current as discussed above. However,
the currents of the condensates in the eye-shaped potential
are not steady states. After about 82.5 ps the currents stop
simultaneously [Fig. 5(d)], and both of them start to rotate to
the opposite directions [Fig. 5(e)]. The flipping of their topo-
logical charges repeats as time evolves, forming an oscillatory
solution (a video showing the oscillatory dynamics in Fig. 5
can be found in the Supplemental Material [41]). Importantly,
the counterrotation of the condensates is maintained during
the oscillation. In the real-space spectrum in Fig. 5(f) one
can see that along the minor axis of the elliptical ring the
fundamental mode is excited with the same phase in the two
rings, while along the major axis a π -phase state is excited
as shown in Fig. 5(g). The energy difference along the per-
pendicular directions gives rise to the oscillatory dynamics.
We note that this kind of counterflowing condensate currents
and their oscillations in an eye-shaped potential are very ro-
bust against noise. Relying on the spatial dependence of the
condensate phase locking, the creation of the counterflowing
currents is not limited to the specific choices of the parameters
we used.

If we reduce the separation of the two rings in the eye-
shaped potential along both the perpendicular directions, the
tunneling effect is enhanced. The resulting stronger coupling
of the condensates in the two potential rings leads to syn-
chronization of their phases such that they possess the same
topological charge, as shown in Fig. 6. But, for the same
reason as discussed above in Figs. 5(f) and 5(g), the en-
ergy difference along the x and the y directions still leads
to an oscillation of the topological charge carried by the
solution between m = 1 and m = −1 as time evolves. We
note that these oscillations in Figs. 5 and 6 are fundamentally

4 4.2 4.4 4.6
t (ns)

1

2

3

|
|2

 (
m

-2
) 

D
en

si
ty

0

3.4

P
ha

se

-

(a)

(b) (c) (d)

10 m

FIG. 6. Coflowing condensate currents in an eye-shaped poten-
tial. (a) Time evolution of the peak density of the condensate.
(b)–(d) Density and phase profiles at different times corresponding
to the marks in (a). Here, wr = 5 μm, wR = 8 μm, dx = 1 μm,
and dy = 5 μm.
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different from those we observed in our previous work where
the oscillations of the topological charges were induced by the
potential barriers [16,31].

VI. CONCLUSION

We have successfully created coflowing and counterflow-
ing currents of polariton condensates loaded into a series of
concentric ring-shaped potential wells. The nature of the cur-
rent flow depends on the phase difference of the condensates
in the different rings. If their phase difference is azimuthally
isotropic, for example in concentric standard ring-shaped po-
tentials, the condensates propagate in the same direction and
carry the same topological charge. However, if the phase
differences is azimuthally anisotropic, for example in the
eye-shaped potentials, the neighboring condensates can prop-
agate in opposite directions. Additionally, the counterflowing

currents in the eye-shaped potentials periodically and syn-
chronously change their flow directions due to the energy
difference along the major and minor axes of the elliptical
potential. Our findings may be interesting for structuring light
based on microcavity polaritons, and may also trigger further
investigations in nonconcentric ring-shaped potentials, sup-
porting nested counterflowing condensates.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) through the collaborative research center
TRR142 (Grant No. 231447078, project A04) and Heisenberg
program (Grant No. 270619725) and by the Paderborn Center
for Parallel Computing, PC2. X.M. further acknowledges sup-
port from the National Natural Science Foundation of China
(Grant No. 11804064).

[1] H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto,
Science 298, 199 (2002).

[2] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,
J. Keeling, F. Marchetti, M. Szymańska, R. André, J. Staehli
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