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We have calculated the exciton fine structure splittings (FSS) of asymmetric GaAs/AlGaAs quantum dots
(QDs) obtained after Al droplet epitaxy and subsequent nanoholes formation followed by annealing and GaAs
filling of nanoholes. We used a k · p model and considered the heavy-hole and light-hole mixing to calculate
the electron-hole exchange interaction (EI). The two components, long-range (LR) and short-range (SR) of the
EI, were deduced. The exciton fine structure is organized, as usual in zinc-blende compounds, into two groups
of states: bright (optically active) and dark states. The bright-dark and bright-bright splittings contain LR and
SR contributions, the LR part representing 5 to 68% of the total bright-dark splitting and 69 to 76% of the total
bright-bright splitting for sizes experimentally explored. In QDs having C2v symmetry, LR and SR contributions
to dark-dark splitting have to be calculated at the second order of perturbation theory. A good agreement between
the theory and experiment is obtained for QDs with different degrees of asymmetry, from QD having an isotropic
shape to QD with a very anisotropic shape.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) have been the object
of extensive studies, their discrete states making them attrac-
tive to quantum-technology applications. Important successes
have been obtained like efficient single-photon sources [1,2]
or the realization of qubits [3,4]. In this framework, confined
neutral excitons play a key role, being the first optically
excited state. In conventional semiconductors, like GaAs, neu-
tral excitons are splitted in two kinds of states, optically active
[bright exciton (BE)] or inactive [dark exciton (DE)]. The
BEs have been extensively studied in the last decades because
they are decisive for optoelectronic applications based on QDs
[5–8].

The DE states appear as promising candidates for the re-
alization of qubits, since they have long life and coherence
times, compared to BE states. The writing and control of the
DE states have been recently evidenced [9,10]. Nonetheless,
due to the complexity in the optical initialization and reading
processes [11], a precise understanding and modelization of
the excitonic states is necessary, particularly the fine structure
splittings (FSS) involving DE and BE states.

The most widely studied QDs are grown by molecular
beam epitaxy (MBE) and a self-assembly Stranski-Krastanov
approach. These QDs present residual strains [12] or unin-
tentional intermixing [13] with the barrier material, affecting
their optoelectronic properties. Alternative growths, based on
droplet epitaxy, have been developed to realize strain-free
QDs. The first approach was to deposit pure material droplets,
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followed by recrystallization under a complementary com-
pounds flux [14]. More recently, droplet etching has been
developed to grow self-assembled nanoholes, subsequently
filled to form QDs [15]. This technique leads to highly uni-
form [16] and isotropic GaAs QDs [17] showing very small
bright-bright exciton splitting [18]. This nanohole-infilling
approach can also be associated with nanopatterned substrate
to control the QDs position and realize QDs arrays [19,20].
Moreover, in these filled nanohole QDs, very recent studies
have evidenced the opportunity to observe DE states [21,22]
to control the DE decay rate and heavy-hole (HH)-light-hole
(LH) mixing via strain or electric field [23]. Those QDs can
then offer the necessary bricks to a platform with well con-
trolled and uniform qubits, encoded on dark DE states.

In this paper, we propose modeling the electronic and ex-
citonic properties of strain-free GaAs/AlGaAs QDs obtained
via nanohole etching. Among the theories currently used to
model solid state properties, the k · p approach is a well es-
tablished method to calculate electronic and excitonic states
in quantum nanostructures [24]. Other numerical methods are
also very developed in quantum nanostructures modelization
such as empirical pseudopotentials (PP) and tight-binding
(TB) approaches. While sometimes more complete, these ap-
proaches may be numerically very costly. In the end 1990s,
Fu et al. [25] presented a PP method within local-density
approximation to calculate the e-h exchange splitting in bulk
semiconductors, with some discrepancies with experiments.
In order to improve theoretical and experimental agreement,
Luo et al. [26] proposed later a PP approach combined with
the configuration interaction (CI) method to calculate the FSS
of GaAs QDs. More recently, this PP method, combined with
CI method [27] or screened CI method [28], provided accurate
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many-body theoretical calculations with an agreement with
experimental measurements, either for InAs [27] or CdSe QDs
[28]. The TB method has also been the object of numerous
studies. Combining TB approach [29] for single particle and
CI method for excitonic properties has permitted to calculate
the many-body spectrum of InAs QD [30] and to estimate
the QD excitonic fine structure [31]. Zielinski [32] recently
improved the CI approximation adopted in the Refs. [30,31]
by going beyond s, p, d shells and including the f shells as
well. This work provides valuable information into the bright
and dark excitonic fine structure for elongated InAs/InP QDs,
and its predictions compare well with experimental data.

The k · p method has also been largely explored for quan-
tum nanostructures. One can cite the work of Kadantsev and
Hawrylak [33] who applied the k · p approach to investigate
the excitonic fine structure as a function of QD anisotropy,
size, and applied electric field. More recently, by combin-
ing the k · p method for the computation of single-particle
states and the CI method for excitonic states, it was possible
to investigate the magneto-optical properties excitonic fine
structure of GaAs/AlGaAs QDs obtained by droplet-etching
method [34,35]. In the following, we will use a k · p ap-
proach, already used for similar GaAs/AlGaAs QDs [36,37].
We focus our study on the influence of the QD size and
shape on the bright-dark (BD), dark-dark (DD), and bright-
bright (BB) exciton splittings. It is well established that the
exciton FSS is controlled by the electron-hole (e-h) exchange
coupling, mediated by Coulomb interaction [38,39]. The two
main contributions are the short-range (SR) and long-range
(LR) coupling, as defined in Refs. [38,39]. These exchange
couplings are particularly sensitive to QD anisotropy [40]
or strain [41]. Following recent modelizations [36,37] (those
works focusing on theoretical study of the electronic states,
such as the single particles levels or single particle wave func-
tions), we have derived the BD, DD, and BB splittings and
compare our theoretical results with very recent micropho-
toluminescence measurements [21,22,37]. The calculated BB
splitting is smaller than the experimental one while a good
agreement between theory and existing experimental observa-
tion is obtained for BD and DD splittings. We also discuss the
different contributions to FSS that are not taken into account
in this work and could improve agreement between theory
and experiment, especially for the BB splitting contributions
[32,42–44].

The outline of the paper is the following: In Sec. II, we de-
scribe the theoretical methodology followed to obtain differ-
ent splittings involved in the exciton fine structure. In Sec. III,
we apply the developed theoretical method to describe recent
microphotoluminescence experiments on the exciton FSS ob-
tained for nanohole-infilled GaAs/Al0.45Ga0.55As QDs. Size
and shape QDs parameters were deduced from previous spec-
troscopic and AFM characterizations. We conclude in Sec. IV.

II. THEORETICAL METHODOLOGY

The upper valence band is associated to HH states
|Jh = 3/2, Jh

z = ±3/2〉 while the lower conductions states are
|C±〉 = |Se = 1/2, Se

z = ±1/2〉 for the majority of the epitax-
ial QD made of III-V or II-VI zinc blende semiconductors.
After promotion of an electron from the top of the valence

FIG. 1. (a) Energy labeling of the fine structure exciton states.
(b) The QD shape and their corresponding parameters.

band to the bottom of the conduction band, four e-h pairs
are then possible, commonly divided into bright and dark
excitons. The e-h pairs (Jh

z = ±3/2, Se
z = ±1/2) with angu-

lar momentum ±1 are dipole allowed and are referred to as
BE, while the (Jh

z = ±3/2, Se
z = ±1/2) pairs, with angular

momentum ±2, are dipole forbidden and referred to as DE.
In the following, we present the theoretical approach used

to describe the microelectronvolt scale structure created by
spin-dependent interactions between the electron and the hole,
that is, the excitonic fine structure. |BE+〉 and |BE−〉 are the
high and low energy BE states, while |DE+〉 and |DE−〉 are
the high and low energy DE states. A scheme describing the
exciton energy splittings is given in Fig. 1(a).

Following the procedure described in Appendix A and
used previously [37], we begin to calculate the single particle
energy levels Eν (ν = e, h) and the single particle wave func-
tions �ν

n (rν ) (rν being the coordinates of the ν carrier), by
solving the single particle Schrödinger equation Hν�

ν
n (rν ) =

Eν�
ν
n (rν ) with Hν = Tν (rν ) + Vν (rν ). Hν is a single particle

Hamiltonian associated to the electron (e) or hole (h), Tν is the
kinetic energy operator, and Vν is the confinement potential
induced by the band offset. Let us notice that in Ref. [37], we
have presented a theoretical model that takes into account the
QD shape anisotropy which induces the cylindrical symmetry
breaking. The numerical parameters used in our calculations
are laid out in Appendix B. The lattice mismatch being very
small for GaAs/Al0.45Ga0.55As QD (0.2% of mismatch), com-
pare to InAs/GaAs QD (7% of mismatch), we have neglected
any hydrostatic and shear strain and then any piezoelectric
effect. QDs shape elongations have a pronounced effect on
the exciton fine structure in semiconductor QDs and have been
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FIG. 2. Bright exciton energy versus hQD for different anisotropy
factors β. The inset shows the calculated values of the exciton bind-
ing energy as a function of hQD.

explored on numerous systems, such as elliptical QD [33,45],
InAs/GaAs lens and disk QDs [46], InAs trianglelike QDs
[47,48]. Recently, Zielinski [32,49] has studied InAs/InP QDs
and clearly demonstrated that nanostructure shape anisotropy
has a strong impact on the magnitudes of dark and bright
exciton splittings.

A. Quantum dot shape and confinement potential

The shape of the GaAs QDs obtained by droplet epitaxy is
modelled as in Refs. [36,37]. Two revolution ellipsoids with

different centers and eccentricities allow us to define the shape
contours of the GaAs QD. The nanohole shape is described
by an ellipsoid cap [denoted P1 in Fig. 1(b)] and the upper
surface of the GaAs QD after nanohole filling is also described
by another ellipsoid cap [denoted P2 in Fig. 1(b)]. The main
parameters are the QD thickness hQD, the semiaxes r0x and
r0y of the hole opening, and the in-plane anisotropy parameter
defined as β = r0x/r0y (for details see Ref. [37]). Following
the AFM images given in Ref. [37], we have fixed r0y = 30
nm, and varied hQD and β to reproduce emission energies and
FSS. In this modelization to simulate the experimental data,
the QD volume, defined as the volume between the two ellip-
soid surfaces P1 and P2, increases with the anisotropy without
significant change in the emission energy (see Fig. 2 and com-
ments below). This is in agreement with AFM measurements
[17] done on very similar QDs and showing that isotropic QDs
are obtained for small volumes, while the anisotropy increases
with larger volumes. hQD is related to GaAs experimental flux;
we have then considered hQD = 3.10, 4.28, 4.93, 5.38, 6.03,
6.80, and 7.42 nm.

B. Coulomb interaction

Once (Eν, �
ν
n (rν )) are calculated, we then estimate the

Coulombic contribution to the exciton energy and reproduce
the excitonic wave function. For this purpose, we have per-
formed a variational calculation and considered the following
trial function:

�(re, rh) = N (a, λ)

[
exp −1

a

√
(xe − xh)2 + (ye − yh)2 + λ2(ze − zh)2

]
�e

n (re)�h
n (rh). (1)

It is composed by the product of the single particle wave
functions obtained previously and a modified hydrogenic
wave function. This approach is commonly used for quantum
well, wire, or dot [50,51]. N is a normalization factor and
�ν

n (rν ) (ν = e, h) is the eigenfunction of the carrier ν. a and
λ represent the variational parameters, a acts as an effective
Bohr radius and λ has been introduced to take into account
the large anisotropy between the Oz axis and the xOy plane (λ
improves the binding energy determination by 0.1–0.2 meV.
No significant improvement has been observed by adding an
extra parameter for the xOy anisotropy). Using the exciton
Hamiltonian:

HT = He + Hh − e2

4πε0εr |re − rh| (2)

with ε0 the vacuum permittivity and εr the exciton dielectric
constant (we have taken εr = 12.53 in the present numerical
calculations), it is then possible to deduce the exciton energy
EX by minimizing 〈HT 〉 versus a and λ. The exciton binding
energy is defined as EB = (Eg + Ee + Eh) − EX , Eg being the
bulk band-gap energy.

Figure 2 presents the energy of the BE states for different
anisotropy factors β, in the absence of electron-hole exchange

energy, but including the direct Coulomb interaction. As ex-
pected, the exciton energy decreases as the QD thickness
increases, leading to a reduction of the confinement. One can
note that the exciton energy is mainly sensitive to the z-axis
confinement (associated to the hQD parameter) and much less
to the ellipticity (β parameter). The exciton binding energy
also decreases with QD thickness following a reduction of the
electron and hole wave function overlap. However, a small
impact of the β value can be observed on the exciton binding
energy EB (see the inset of Fig. 2) which is related to the
increase of the confinement along the x axis when β decreases.
The xy confinement in our QD increases EB by a factor of two
compared to GaAs/AlGaAs quantum wells with a thickness in
the 3–8 nm range and EB � 9 meV [52] and we also underline
that EB is varying slowly with hQD in agreement with the
quantum wells of Ref. [52]. In the following, we will use this
exciton wave function �(re, rh) to estimate the e-h LR and
SR exchange interaction (EI) contributions.

C. Basis function for holes

To explore the effect of the valence band mixing on the
e-h EI, we use the six-band k · p hole Hamiltonian, for which
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the notations are given in Appendix B. Here, we investigate
the role of the e-h EI on the excitonic properties by explicitly
taking into account the contributions of HH, LH, and split-off
(SO) bands while reducing the Hilbert space. For this purpose,
HH band being energetically lower than LH and SO bands, we
carry out the Löwdin renormalization [53,54] to get the new
basis states for holes, namely the HH-like states, which are a
mixture of the heavy- with the light- and SO-hole states. We
label these hole ground states as |3̃/2〉 and | − 3̃/2〉. With the
perturbation formalism applying at second order, we can write
the HH-like states as

|3̃/2〉 = η|3/2, 3/2〉 + C∗

(E
h − Ehh)
|3/2,−1/2〉

−
√

2C∗

(Eso − Ehh)
|1/2,−1/2〉

| ˜−3/2〉 = η|3/2,−3/2〉 + C

(E
h − Ehh)
|3/2, 1/2〉

+
√

2C

(Eso − Ehh)
|1/2, 1/2〉, (3)

where |Jh, Jh
z 〉 are the periodic parts of the Bloch states of

bulk bands, more precisely the p-like valence bands. Here
|3/2,±3/2〉, |3/2,±1/2〉, and |1/2,±1/2〉 correspond to
HH, LH, and SO states, respectively. The parameter η veri-
fies

η = 1 −
(

1

(E
h − Ehh)2 + 2

(Eso − Ehh)2

)
|C|2. (4)

The term without C in the last equation is derived from the HH
band while the terms with C are derived from the HH-LH and
HH-SO interactions. Note that, employing the perturbation
theory at first order, we get η = 1. The C expression is given
explicitly in Appendix B [Eq. (B3)]. Ehh, E
h, and Eso denote
the energy of the HH, LH and SO hole states, respectively,
which are estimated within the effective mass approximation
and the BenDaniel Duke Hamiltonian [55] following the the-
oretical model developed in Ref. [37]. The |3̃/2〉 (| ˜−3/2〉)
state is divided into two parts: a major component which
is |3/2, 3/2〉 (|3/2,−3/2〉) and additional components that
admixtures the HH, LH, and SO bands. Due to this band-
mixing effect, we refer to the BE states by |C−, 3̃/2〉 and
|C+, ˜−3/2〉, and the DE states as |C+, 3̃/2〉 and |C−, ˜−3/2〉.
Having determined the expressions of this excitonic quartet,
we are now able to calculate the 4 × 4 matrix representation
of the e-h EI by taking into account the two conduction bands
and six valence bands (HH, LH, SO) each doubly degenerate
due to spin.

D. Electron-hole exchange interaction

We begin to derive the matrix representation of the LR EI,
HLR

exch, by adopting the following basic equation [40]

HLR
exch = 1

(2π )3

∫
dq

(
e2

ε0εX

1

q2

) ∑
i, j

Q
i j
m′Kn
Kn′ m

qiq j

× exp[iq.(re − r′
e)] δ(re − rh)δ(r′

e − r′
h), (5)

where m, m′ (n, n′) indicate the Bloch states of the elec-
tron in the conduction band (the hole in the valence band),
εX being the high-frequency (at the exciton resonance)
dielectric constant, and K is the time-reversal operator.
q =(qx, qy, qz ) denotes the wave vector in the reciprocal
space and q2 = q2

x + q2
y + q2

z . The explicit form of the matrix

representation Qm′n′
m n

(q) = ∑
i, jQ

i j
m′Kn
Kn′ m

qiq j is given in Ap-

pendix C. Adopting equation (C3) and using the e-h states
{|C−, 3̃/2〉, |C+, ˜−3/2〉, |C+, 3̃/2〉, |C−, ˜−3/2〉} as basis, the
following matrix representation is obtained:

HLR
exch =

⎛
⎜⎜⎝

HLR
db HLR

odb 0 0
c.c. HLR

db 0 0
0 0 HLR

dd HLR
odd

0 0 c.c. HLR
dd

⎞
⎟⎟⎠, (6)

where c.c. denotes the complex conjugate. The matrix ele-
ments of HLR

exch are given by:

HLR
α =

∫
dqLαVq exp iq.(re − r′

e)δ(re − rh)δ(r′
e − r′

h) (7)

in which α denotes the bright excitons contributions (db,
odb) as well as the ones of the dark excitons (dd, odd),
hence α = db, odb, dd , odd; Vq = [1/(2π )3](e2/ε0εX )(1/q2)
is the Fourier transform of the Coulomb potential. We have
taken εX = 12.53 in our calculations. The diagonal terms,
(Ldb,Ldd ), and the off-diagonal ones, (Lodb,Lodd), are ex-
pressed as

Ldb = Aη2K2 − K2
−√
3

[
A

(E
h − Ehh)
+ B

(Eso − Ehh)

]
ηC∗

− K2
+√
3

[
A

(E
h − Ehh)
+ B

(Eso − Ehh)

]
ηC

+ K2

3

[
A

(E
h − Ehh)2 + 2B

(E
h − Ehh)(Eso − Ehh)

+ 2C

(Eso − Ehh)2

]
|C|2 (8)

Lodb = Aη2K2
− − 2K2

√
3

[
A

(E
h − Ehh)
+ B

(Eso − Ehh)

]
ηC

+ K2
+

3

[
A

(E
h − Ehh)2 + 2B

(E
h − Ehh)(Eso − Ehh)

+ 2C

(Eso − Ehh)2

]
C2 (9)

Ldd = 2

3
q2

z

[
2A

(E
h − Ehh)2 − 2B

(E
h − Ehh)(Eso − Ehh)

+ C

(Eso − Ehh)2

]
|C|2 (10)

Lodd = −2

3
q2

z

[
2A

(E
h − Ehh)2 − 2B

(E
h − Ehh)(Eso − Ehh)

+ C

(Eso − Ehh)2

]
C2. (11)

Note that, in the dark states subspace, nonzero LR terms only
appear at the second order. K2 = (q2

x + q2
y ), K± = (qx ± iqy),
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A = (h̄2/4m0)(EP/E2
g ), B = (h̄2/2m0)(EP/Eg(Eg + so)),

and C = (h̄2/2m0)(EP/(Eg + so)2). EP is the Kane energy,
m0 is the free electron mass, and so is the spin-orbit coupling
parameter. Taking (Eg + so) approximately equal to Eg in
the relationships of B and C, we get C � B � 2A, and this
has been adopted systematically in our calculations. The C

quadratic terms in Eqs. (8) and (9) have not been taken into
account in the present modelization.

In addition to the LR EI addressed above, the SR EI also
contributes to describe the exciton fine structure. For this
purpose, we directly derive the matrix representation of the
SR EI, HSR

exch, by adopting the Eq. (C4) of Appendix C. In

the basis {|C−, 3̃/2〉, |C+, ˜−3/2〉, |C+, 3̃/2〉, |C−, ˜−3/2〉}, the
HSR

exch matrix takes the form

HSR
exch =

⎛
⎜⎜⎝

HSR
db HSR

odb 0 0
c.c. HSR

db 0 0
0 0 HSR

dd HSR
odd

0 0 c.c. HSR
dd

⎞
⎟⎟⎠. (12)

One expresses the nonzero matrix elements of HSR
exch as

HSR
α = DSαδ(re − rh)δ(re − r′

e)δ(rh − r′
h), (13)

α being α = db, odb, dd , odd . The SR exchange con-
stant is defined as D = (3/4)πa3

X SR, where aX is the bulk
Bohr radius (aX = [4πε0εX μ/e2] = 14.5 nm, in which μ−1 =
[m−1

e + γ1m−1
0 ] (γ1 being the Luttinger parameter) and the

electron mass is taken as me = 0.067m0 [56]) and SR is
the analytical exchange constant as defined in Ref. [57].
From now, D has been fixed at 57.8 meV nm3, in agreement
with the experimental values obtained in GaAs bulk [57] and
GaAs/AlGaAs quantum wells [58]. The Sα expressions in
Eq. (13) can approximately be written:

Sdb = η2 + 1

3

[
1

(E
h − Ehh)
+ 2

(Eso − Ehh)

]2

|C|2 (14)

Sodb = − 2√
3

[
1

(E
h − Ehh)
+ 2

(Eso − Ehh)

]
ηC (15)

Sdd = 2

3

[
1

(E
h − Ehh)
− 1

(Eso − Ehh)

]2

|C|2 (16)

Sodd = −2

3

[
1

(E
h − Ehh)
− 1

(Eso − Ehh)

]2

C2. (17)

The term without C in expressions (8)–(11) and (14)–(17)
originates from the HH band whereas the terms with C in
these expressions are associated to the (HH-LH) and (HH-SO)
couplings. Putting together HLR

exch and HSR
exch, we deduce an

exchange Hamiltonian which has the same shape as the one
obtained in C2v symmetry [59]. From the (HLR

exch + HSR
exch)

matrix form, one can see that the excitonic states are split into
four energy sublevels as a result of the exchange interaction
between electron and hole spins [see Fig. 1(a)]. The quadru-
plet is splits into two doublets, bright and dark doublets, with
the bright one situated above the dark one. The off-diagonal
matrix elements (HLR

odb + HSR
odb) and (HLR

odd + HSR
odd) describe

the BB and DD energy splitting, respectively. Note that, due
to the C2 dependence of Lodd and Sodd, the perturbation the-
ory applied at first order does not provide the dark exciton
doublet splitting and the second-order perturbation theory is

FIG. 3. Measured bright-dark splittings [21,22] and calculated
values as a function of the bright exciton energy for different
anisotropy factor β.

then needed to calculate the DD splitting. For the DB exciton
splitting, all the matrix elements of (HLR

exch + HSR
exch) contribute

to the energy difference between the lowest BE state and the
uppermost DE state.

III. RESULTS

Few groups are able to grow strain-free QDs in the
nanohole discussed in this paper, but recent progress has per-
mitted to evidence the FSS, including either bright or dark
states [21,22,37]. DE states were revealed in QDs placed near
a cleaved edge [21] or by applying an in-plane magnetic field
[22]. In Ref. [21], the two dark states were visible, meanwhile
only the upper dark state, |DE+〉, was brightened. Following
the modelization described in the previous section, we have
compared the published experimental results with the FSS
deduced from the theory.

We first consider the splitting δBD between the lowest en-
ergy BE state, |BE−〉, and the highest energy DE state, |DE+〉,
following the convention of Refs. [21,60]. Two different QD
series are considered: In Ref. [21], the QDs are grown in
round nanoholes, while in Ref. [22], the nanoholes are highly
anisotropic. Theoretical curves and data of Refs. [21,22] are
represented versus exciton energy in Fig. 3. The theoretical
δBD curves are given for isotropic (β = 1) and anisotropic
(β > 1) nanoholes. For isotropic QDs [21], within the ex-
perimental dispersion, the splitting δBD is well reproduced
with an in-plane anisotropy parameter close to unity, in very
good agreement with the nanohole shape. All the data being
at higher energy than the β = 1.5 curve, one can explain the
δBD dispersion by a small dispersion in the in-plane shape
and in the β parameter (β < 1.5). For the highly anisotropic
nanoholes [22], the average of the δBD values is close to the
β = 2.5 curve. The dispersion in the δBD values might be
explained by a dispersion in β (= 2.5 ± 0.7) in these very
anisotropic QDs. The energy emission is mainly fixed by the
QD thickness hQD, while δBD will strongly vary with β. Note
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FIG. 4. Measured dark-dark splittings [22] and calculated values
as a function of the bright exciton energy for different anisotropy
factor β.

that the LR contribution in δBD varies from about 70% to 10%
when β varies from 1 to 3.

Being able to model the BD splitting by correlating δBD

with emission energy and shape, we have then considered the
splitting δDD between the two DE states, rarely observed for
such a QD family. This doublet is clearly visible in Ref. [22],
by applying in-plane magnetic field, while only one transition
has been observed in QDs placed near a cleaved edged [21].
This splitting δDD is small (10–25 μeV) and depends on LR
and SR second-order contributions (see the Lodd and Sodd

expressions) which are related to the valence band mixing,
particularly the HH-LH mixing. As already observed in other
QDs, such as InAs/InP, the DD splitting is very sensitive to
the HH-LH coupling [32]. The theoretical curves (see Fig. 4)
are very sensitive to β (the β = 1 curve is not represented).
For the same QD parameters as in Fig. 3, a good agreement
is obtained between the average of δDD experimental values
and the β ≈ 2 curve (see Fig. 4), a value very close to the
one estimated from δBD (Fig. 3). The experimental dispersion
might be explained by a fluctuation in the anisotropy parame-
ter and/or on the fluctuation HH-LH mixing values from one
QD to another QD.

Finally, keeping the same parameters (hQD, β ) as for δBD

and δDD, we have calculated the splitting δBB between the two
BE states, commonly observed in QD. We have reported in
Fig. 5 the experimental values of δBB obtained on three series
of GaAs/AlGaAs QD grown in nanoholes [21,22,37]: QDs
of Refs. [22,37] are anisotropic, while those of Ref. [21] are
mainly isotropic. Theoretical predictions, for β values from
1.5 to 3, are reported in order to take into account the small
or large anisotropy observed by AFM/STM microscopy (the
β = 1 curve is not represented, δBB being zero in our theoret-
ical approach).

For the isotropic QDs, whose δBD splittings are well re-
produced for β = 1 (see Fig. 3), one observes a theoretical
underestimation of the δBB splittings, the experimental values
being 20 to 40 μeV larger. Nonzero δBB values have already
been observed on isotropic droplet GaAs QDs; the smallest
values observed in literature are given in Ref. [18]. For the

FIG. 5. Measured bright-bright splittings [21,22,37] and calcu-
lated values as a function of the bright exciton energy for different
anisotropy factor β.

anisotropic QDs (β = 3), one also observes a discrepancy, the
experimental values being up to 70 μeV larger, for the highest
emission energies. These discrepancies may be attributed to
contributions not considered in our model and discussed in
the literature:

(i) alloy fluctuations [61];
(ii) effects induced by atomic ordering at the interface as

discussed for InGaAs/GaAs QDs [43];
(iii) effects due to the zinc-blende symmetry and nonequiv-

alent [110] and [1-10] axes [42];
(iv) configuration interaction (or coupling with excited

states) [32];
(v) C2v broken symmetry in the QD shape [44].
The alloy effect (i) is weak, in the order of few μeV for

GaAs/AlGaAs or InAs/GaAs as discussed in Refs. [35,61].
The contribution of interface ordering (ii) is also strongly
reduced by any alloy randomness at the interface. But other
contributions can be larger (few tens of μeV). For instance,
from atomistic many-body theory, for highly isotropic droplet
GaAs QDs, Luo and Zunger [42] have considered the intrinsic
C2v symmetry of the zinc-blende crystal [contribution (iii)]
and evidenced splittings of several tens of μeV in the emission
range considered.

Another contribution (iv) may come from a coupling
between the s ground states and excited states, currently con-
sidered on the CI calculations. As shown in Ref. [36], the
CI contribution induces a small correction on the emission
energy, and in the absence of anisotropy it has no effect on
the FSS [62]. Nonetheless, very recent studies on InAs/InP
QDs have evidenced the role of CI even for isotropic QDs
[32]. For the particular system, InAs/InP elongated along the
[1-10] axis with strain and a small volume (hQD = 3 nm and√

r0xr0y = 20 nm), CI has a vanishing effect on δDD for β < 4
(t = 0 − 0.9 in Ref. [32]), while for β = 4, δBB and δBD can
be increased by up to 80% and 40%, respectively.

Finally, for the QDs grown in anisotropic and certainly
imperfect nanoholes, a small contribution could also come
from the reduction of the C2v symmetry as discussed by
Zielinski et al. [44]. For example, Fuster et al. [63] have
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TABLE I. Summarized theoretical results of δ0 splitting (see Ref. [60]) for different kinds of GaAs QDs: nanocrystals (with spherical
shape), interfacial QDs (with rectangular parallelepipedic shape), and GaAs droplet QDs (with shape defined in this work). The contributions
of LR and SR are also given. The results of Refs. [64] and [65] are computed from empirical pseudopotential approach.

GaAs nanocrystalsa

Radius (nm) Volume (nm3) LR (meV) SR (meV) δ0 (meV) [LR/δ0] (%)

1.9 28.73 4.1 2.3 6.4 64
2 33.51 3.7 1.8 5.5 67.3
2.5 65.45 2.4 1.2 3.6 66.7
3 113.1 1.8 0.4 2.2 81.8
4 268.1 1.1 0.2 1.3 84.6

Interface GaAs QDsb

Size (nm) Volume (nm3) LR (μ eV) SR (μ eV) δ0 (μ eV) [LR/δ0] (%)
20 × 20 × 3.1 1240 6 2.8 8.8 68.2
40 × 20 × 3.1 2480 5.2 2 7.2 72.2
40 × 40 × 3.1 4960 3.6 1.6 5.2 69.2

GaAs droplet QD (this work)
Size (nm)r0x = r0y = 30 nm hQD Volume (nm3) LR (μ eV) SR (μ eV) δ0 (μ eV) [LR/δ0] (%)
3.1 5843 154.7 72.3 227 68.2
4.28 8068 149.8 70.7 220.5 67.9
4.93 9293 142.2 69.9 212.1 67
5.38 10141 133.3 65.7 199 67
6.03 11366 122.1 61.5 183.6 66.5
6.8 12818 111.3 55 166.3 66.9
7.42 13986 99.3 50 149.3 66.5

aRef. [64].
bRef. [65].

evidenced by AFM images an asymmetry of the hole profile
along the [1-10] axis reducing the C2v symmetry. One of the
consequences of this symmetry reduction is the mixing of dark
and bright states via nonzero terms in the off-diagonal dark
and bright subspaces in the matrix describing the exchange
Hamiltonian and resulting from the addition of matrices given
by equations (6) and (12). Then, this symmetry reduction acts
as an effective in-plane magnetic field.

In summary, for the isotropic QDs (β = 1), the contri-
butions (iii) and (iv) could explain our underestimation of
δBB, by 20 to 40 μeV. For anisotropic QDs (β > 1), con-
tributions (iii), (iv), and (v) cannot be excluded and taking
into account these contributions could improve the agreement
theory experiment. For the anisotropic QDs, one may expect
an increasing CI correction when the anisotropy increases (the
influence of the thickness having to be explored). Modeliza-
tion of the symmetry breaking would need to consider more
complex shapes than the one given in Fig. 1 (as including a
truncated facet, tilting or shifting the ellipsoid P2...). Taking
into account this symmetry breaking increases the numerical
demand and is beyond the scope of this paper. Moreover,
authors of Ref. [22] did not observe luminescence at zero
magnetic field coming from dark states in the limit of sensitiv-
ity of their experiment, meaning that C2v symmetry breaking,
in this case, is not very important. We underline also that
the discussed contributions impact especially the excitonic
splitting δBB, in agreement with the results shown in Figs. 3–5.

Figures 6(a)–6(c) show the values of the BD, BB, and DD
splittings and their respective LR and SR contributions as a
function of the anisotropy parameter β for a size of hQD =
4.93 nm in the middle of the explored size domain. The LR

contribution represents almost 68% to 5% of the total BD
splitting and around 70% of the total BB splitting for β 	= 1
and constitutes, once again for β 	= 1, the greater part (86%)
of the DD splitting. We underline that SR contribution to BB
splitting is negative. The trend is that the LR contribution
weight to the total BD splitting decreases as the anisotropy
of the droplet QD increases meanwhile the LR contribution
weight to BB and DD splittings remains almost constant. We
show that LR contribution is essential to well describe not
only the BB and DD splittings but also the BD splitting.
Finally, we point out that on the frame of hypothesis of this
work, i.e., on the frame of C2v symmetry for QDs, the LR
contribution plays a major role on the DD splitting evaluation.

Table I summarizes theoretical results of BD splitting and
contributions of SR and LR for different kinds of GaAs QDs
[64,65]. Only symmetric QDs are considered. In order to
compare with other authors, we use δ0 (see Ref. [60]), but
for symmetric QDs the difference between δBD and δ0 is
very small. We find that δ0 takes very different values cov-
ering several orders of magnitude from 0.01 to 10 meV. The
smallest values are found for thickness fluctuations QDs and
the largest ones for GaAs nanocrystals. The LR contribution
is very important for all the compared QDs, representing in
general 64–85% of the total BD splitting. For a given kind
of QD, δ0 increases with decreasing volume or increasing
quantum confinement. Very different values of δ0 are found
for QDs having similar volumes. These results highlight the
fact that the relative importance of LR and SR part in the BD
splitting and their dependences in size, shape, or confinement
potential are complex questions that cannot be addressed with
simplified models.
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FIG. 6. (a) BD splitting and the respective LR and SR contribu-
tions, versus the anisotropy parameter β. (b) BB splitting and the
respective LR and SR contributions. (c) LR and SR contributions
in DD splitting versus the anisotropy parameter β. All the splittings
have been obtained for hQD = 4.93 nm.

IV. CONCLUSIONS

We studied the full excitonic fine structure of
GaAs/AlGaAs QDs, and the three splittings involved δBB,
δBD, and δDD. We have taken into consideration nanohole
shape, Coulomb interaction, LR and SR coupling, including
the first and the second-order contribution when necessary.
Following the shape anisotropy deduced from AFM images,
we have reproduced with the same QD parameters either
δBD and δDD. The dark-dark exciton splitting δDD, never
calculated in such strain-free GaAs/AlGaAs QD, can only be
reproduced when the second order long-range and short-range
contributions are considered, including then the valence band
mixing. The difference between our calculations and the
experimental δBB splittings may evidence the role of extra
contributions not taken into account in our model: an intrinsic

effect related to the nonequivalent [110] and [1-10] axes in
zinc-blende crystal [42] and/or the configuration interaction
contribution, particularly sensitive to the QD anisotropy [32].
The QD model and calculations developed for strain-free
QDs synthesized by droplet epitaxy is validated by the very
good agreement obtained between experiment and theory
for both splittings, δDD and δBD, while taking into account
the observed nanohole shape. Future modelization, including
intrinsic contributions, such as configuration interaction, or
extrinsic contributions, such as C2v shape symmetry breaking,
should lead to an even more accurate modelization of the
nanostructures (photon-source and quantum bits) based on
droplet epitaxied QD.
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APPENDIX A: CONFINED STATES

We calculate the charge carrier states in the framework of
the effective mass approximation. The Hamiltonian describing
a single carrier [electron (e) or hole (h)] is given by

Hν = Tν (rν ) + Vν (rν ) (A1)

in which ν = e, h, Vν is the carrier confinement potential, and
Tν denotes the carrier kinetic operator. Taking into account the
cylindrical symmetry breaking, we can decompose the kinetic
energy operator into three components: Tν = T z

ν + T ρ
ν + T θ

ν ,
with

T z
ν = − h̄2

2

[
∂

∂z

1

mz
ν

∂

∂z

]

T ρ
ν = − h̄2

2

[
1

ρ

∂

∂ρ

1

mρ
ν

∂

∂ρ

]

T θ
ν = − h̄2

2

[
1

ρ2

∂

∂θ

1

mρ
ν

∂

∂θ

]
, (A2)

where (ρ, θ, z) denotes cylindrical coordinates. mz
ν and mρ

ν are
the carriers effective masses by z and ρ directions, respec-
tively.

The eigenfunctions of the Hamiltonian are ex-
panded in a Fourier-Bessel finite series as �ν

n (rν ) =∑
max,mmax

>0,m>0 Cn


mφn

,m(ρν, θν, zν ), where Cn


m are the basis
coefficients. The φn


,m(ρν, θν, zν ) functions correspond
to the eigenbasis of a large cylinder having ZC as a

height and RC (θ ) = [
√

(cos2 θ )/A2 + (sin2 θ )/B2]
−1

as
an elliptical base radius. A and B denote the dimensions
along x and y directions of the elongated cylinder,
respectively. The normalization condition of the carriers
wave functions leads to the condition A/B = β = 2.5.
The z-axis origin is taken at the midpoint of the cylinder.
For the s state, we take the following eigenbasis:
φ0


,m(ρν, θν, zν ) = α0

J0(λ


0ρν/RC (θ )) sin (πmzν/ZC ), in
which λ


0 is the 
th root of the J0 Bessel function and α0

 are

the normalization constants.
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APPENDIX B: SIX-BAND k · p HOLE HAMILTONIAN

We denote the hole Bloch states as

|3/2, 3/2〉 = − 1√
2
|(X + iY ) ↑〉

|3/2, 1/2〉 = − 1√
6
|[(X + iY ) ↓ −2Z ↑]〉

|3/2,−1/2〉 = 1√
6
|[(X − iY ) ↑ +2Z ↓]〉

|3/2,−3/2〉 = 1√
2
||(X − iY ) ↓〉〉

|1/2, 1/2〉 = − 1√
3
|[(X + iY ) ↓ +Z ↑]〉

|1/2,−1/2〉 = − 1√
3
|[(X − iY ) ↑ −Z ↓]〉, (B1)

where ↑ (↓) denotes the spin-up (spin-down) states and |X 〉, |Y 〉, |Z〉 represent the components of the p-like valence-band Bloch
wave functions (derived from atomic px, py, pz orbitals).

In the {|3/2, 3/2〉, |3/2, 1/2〉, |3/2,−1/2〉, |3/2,−3/2〉, |1/2, 1/2〉, |1/2,−1/2〉} basis, the six-band hole Hamiltonian takes
the following expression:

HLK =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
γ1k̃2 − A

) −B −C 0 1√
2
B

√
2C(

γ1k̃2 + A
)

0 −C −√
2A −

√
3
2B(

γ1k̃2 + A
)

B −
√

3
2B

∗


√
2A(

γ1k̃2 − A
) −√

2C∗


1√
2
B∗

(
so + γ1k̃2

)
0(

so + γ1k̃2
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

The other half of the matrix is obtained by taking the Hermitian conjugate. The nonzero elements of the matrix HLK, namely
(A,B,C), read as

A = γ2
(
2̃k2

z − k̃2
ρ

)
B = 2

√
3γ3k̃zk̃−

C =
√

3
[
γ2

(̃
k2

x − k̃2
y

) − 2iγ3k̃xk̃y
]

(B3)

in which k̃2 = (h̄2/2m0)k2, k̃2
ρ = (̃k2

x + k̃2
y ), and k̃± = (̃kx ± ĩky).

Formally, this HLK Hamiltonian has the same structure as the Luttinger-Kohn Hamiltonian [54]. (A,B,C) take similar
expressions to (A,B,C) in which the Luttinger parameters, (γ1, γ2, γ3), are substituted by the Luttinger-like parameters [66],
(γ1, γ2, γ3 ). Adopting the 14-band k · p model [67] which includes the p-like valence bands and s- and p-like conduction
bands, one can obtain:

γ1 = γ1 − EP

3

(
1

Eg
− 1

Eg + so

)
+ EPX

3

(
2

Eg + EGC + so + C
− 1

Eg + EGC
− 1

Eg + EGC + C

)

γ2 = γ2 − EP

12

(
1

Eg
− 1

Eg + so

)
+ EPX

12

(
2

Eg + EGC
− 1

Eg + EGC + C
− 1

Eg + EGC + so + C

)

γ3 = γ3 − EP

12

(
1

Eg
− 1

Eg + so

)
− EPX

12

(
2

Eg + EGC
− 1

Eg + EGC + C
− 1

EG + EGC + so + C

)
. (B4)

By adopting the numerical values of GaAs material parameters given in Ref. [68], more precisely (γ1, γ2, γ3) =
(7.03, 2.33, 3.03), (Eg, EGC,so,C ) = (1.519 eV, 3.0 eV, 0.341 eV, 0.18 eV), (EP, EPX ) = (23.81 eV, 15.79 eV), one ob-
tains (γ1, γ2, γ3 ) = (5.88, 2.13, 2.75). As a result, we get mso = m0/ γ1 = 0.17 m0 which is very close to the recommended
value of the split-off-hole effective mass given in Ref. [69]. Additionally, as (γ2, γ3 ) ≈ (γ2, γ3), we can assume C ≈ C into
the present analysis of the fine structure of bound excitons.
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APPENDIX C: ELECTRON-HOLE EXCHANGE INTERACTION IN BULK

Here, we present details of the calculations of various exchange energy terms of Sec. II D. For this purpose, we express the
long-range part (also called nonanalytical part) and the short-range part (also known as the analytical part) of the exchange for
one bulk semiconductor.

The band relevant part of the LR exchange Hamiltonian is defined as

Qm′n′
m n

(q) =
∑
i, j

Q
i j
m′Kn
Kn′ m

qiq j (C1)

in which

Q
i j
m′Kn
Kn′ m

= h̄2

m2
0

〈m′|pi|Kn′〉〈Kn|p j |m〉(
E0

m − E0
n

)(
E0

m′ − E0
n′
) , (C2)

where pi (p j ) is the i ( j) component of the p momentum, K being the time-reversal operator, and E0
λ (λ = m, m′, n, n′) is the

λth band energy.
We denote the conduction band Bloch wave function as |C±〉 = |1/2,±1/2〉, and the hole Bloch wave function as |W1〉 =

|3/2, 3/2〉, |W2〉 = |3/2, 1/2〉, |W3〉 = |3/2,−1/2〉, |W4〉 = |3/2,−3/2〉, |W5〉 = |1/2, 1/2〉, |W6〉 = |1/2,−1/2〉.
For representing the Q

i j
m′n′
m n

(q) matrix, we use the following electron-hole states { |C+W1〉, |C−W1〉, |C+W2〉, |C−W2〉, |C+W3〉, |C−W3〉,
|C+W4〉, |C−W4〉, |C+W5〉, |C−W5〉, |C+W6〉, |C−W6〉 } as

basis. The matrix describing Qm′n′
m n

(q) is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0

0 AK2 −AK2√
3

−2AK−qz√
3

2AK−qz√
3

−AK2
−√

3
AK2

− 0 −BK2√
6

BK−qz√
6

BK−qz√
6

BK2
−√
6

0 c.c. AK2

3
2AK−qz

3
−2AK−qz

3
AK2

−
3

−AK2
−√

3
0 BK2

3
√

2
−BK−qz

3
√

2
−BK−qz

3
√

2

−BK2
−

3
√

2

0 c.c. c.c. 4Aq2
z

3
−4Aq2

z

3
2AK−qz

3
−2AK−qz√

3
0

√
2BK+qz

3
−√

2Bq2
z

3
−√

2Bq2
z

3
−√

2BK−qz

3

0 c.c. c.c. c.c. 4Aq2
z

3
−2AK−qz

3
2AK−qz√

3
0 −√

2BK+qz

3

√
2Bq2

z

3

√
2Bq2

z

3

√
2BK−qz

3

0 c.c. c.c. c.c. c.c. AK2

3
−AK2√

3
0 BK2

+
3
√

2
−BK+qz

3
√

2
−BK+qz

3
√

2
−BK2

3
√

2

0 c.c. c.c. c.c. c.c. c.c. AK2 0 −BK2
+√

6
BK+qz√

6
BK+qz√

6
BK2√

6
0 0 0 0 0 0 0 0 0 0 0 0

0 c.c. c.c. c.c. c.c. c.c. c.c. 0 CK2

3
−CK−qz

3
−CK−qz

3
−CK2

−
3

0 c.c. c.c. c.c. c.c. c.c. c.c. 0 c.c. Cq2
z

3
Cq2

z

3
CK−qz

3

0 c.c. c.c. c.c. c.c. c.c. c.c. 0 c.c. c.c. Cq2
z

3
CK−qz

3

0 c.c. c.c. c.c. c.c. c.c. c.c. 0 c.c. c.c. c.c. CK2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C3)

where c.c. denotes the complex conjugate, K2 = (q2
x + q2

y ), K± = (qx ± iqy), A = (h̄2/4m0)(EP/E2
g ), B =

(h̄2/2m0)(EP/Eg(Eg + so)), and C = (h̄2/2m0)(EP/(Eg + so)2). This matrix is identical to the one given by Eq. (8) of
the Erratum [70] of Ref. [40].

Again using the basis of electron-hole states from the long-range part, the matrix describing the short-range exchange term in
this 12 × 12 representation is given as

HSR
m′n′
mn

= K

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1√
3

0 0 0 0 0 −
√

2
3 0 0 0

0 c.c. 1
3 0 0 0 0 0

√
2

3 0 0 0

0 0 0 2
3

−2
3 0 0 0 0 −√

2
3

−√
2

3 0

0 0 0 c.c. 2
3 0 0 0 0

√
2

3

√
2

3 0

0 0 0 0 0 1
3

−1√
3

0 0 0 0 −√
2

3

0 0 0 0 0 c.c. 1 0 0 0 0
√

2
3

0 0 0 0 0 0 0 0 0 0 0 0
0 c.c. c.c. 0 0 0 0 0 2

3 0 0 0
0 0 0 c.c. c.c. 0 0 0 0 1

3
1
3 0

0 0 0 c.c. c.c. 0 0 0 0 c.c. 1
3 0

0 0 0 0 0 c.c. c.c. 0 0 0 0 2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C4)
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in which K = Dδ(re − rh)δ(re − r′
e)δ(rh − r′

h), D being the short-range exchange constant. Similar matrix representation of the
short-range part of exchange interaction is obtained by Tong and Wu (see Eq. (9) of Ref. [40]).
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Kumar, A. Rastelli, and O. G. Schmidt, Phys. Rev. B 87, 075311
(2013).

[24] L. C. Lew, Yan Voon and M. Willatzen, The k.p Method : Elec-
tronic Properties of Semiconductors (Springer-Verlag, Berlin,
Heidelberg, 2009).

[25] H. Fu, L-W. Wang, and A. Zunger, Phys. Rev. B 59, 5568
(1999).

[26] J-W Luo, G. Bester, and A. Zunger, Phys. Rev. B 79, 125329
(2009).

[27] P. A. Labud, A. Ludwig, A. D. Wieck, G. Bester, and D. Reuter,
Phys. Rev. Lett. 112, 046803 (2014).

[28] H. Bui, A. Karpulevich, and G. Bester, Phys. Rev. B 101,
115414 (2020).

[29] J-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B
57, 6493 (1998).
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