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Spin-orbital liquids are quantum disordered states in systems with entangled spin and orbital degrees of
freedom. We study exactly solvable spin-orbital models in two dimensions with selected Heisenberg-, Kitaev-,
and �-type interactions, as well as external magnetic fields. These models realize a variety of spin-orbital-liquid
phases featuring dispersing Majorana fermions with Fermi surfaces, nodal Dirac or quadratic band touching
points, or full gaps. In particular, we show that Zeeman magnetic fields can stabilize nontrivial flux patterns and
induce metamagnetic transitions between states with different topological character. Solvable nearest-neighbor
biquadratic spin-orbital perturbations can be tuned to stabilize zero-energy flat bands. We discuss in detail the
examples of SO(2)- and SO(3)-symmetric spin-orbital models on the square and honeycomb lattices, and use
group-theoretical arguments to generalize to SO(ν )-symmetric models with arbitrary integer ν > 1. These results
extend the list of exactly solvable models with spin-orbital-liquid ground states and highlight the intriguing
general features of such exotic phases. Our models are thus excellent starting points for more realistic modelling
of candidate materials.
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I. INTRODUCTION

Quantum spin liquids [1] are fascinating phases of mat-
ter in which strong fluctuations stabilize highly nontrivial
“quantum-disordered” ground states. They feature long-range
entanglement and fractionalized excitations, such as emer-
gent fermions and deconfined gauge fields. Such ground
states are expected, for instance, in systems of antiferromag-
netically coupled spin-1/2 local moments with Heisenberg
spin-rotational symmetry on geometrically frustrated lattices.
While several candidate materials in this regard are available
experimentally, only few reliable theoretical results for the
relevant models exist and one often has to resort to compu-
tationally intensive numerical approaches.

A rare example for an exactly solvable model realizing a
quantum spin liquid was introduced by Kitaev [2]. It consists
of spins-1/2 on a honeycomb lattice with bond-dependent
exchange interactions, which thus break the Heisenberg sym-
metry and frustrate the system. The exact solution yields
gapless itinerant Majorana fermions coupled to a static Z2

gauge field. On opening up a topologically nontrivial gap, the
superselection sectors of the system are given by non-Abelian
anyons. Remarkably, it was later realized that bond-dependent
exchange interactions of the Kitaev type naturally occur in
transition-metal oxides with strong spin-orbit coupling [3],
paving the way to the experimental study of the so-called
Kitaev materials [4,5].

While the Kitaev model assumes a single spin-1/2 degree
of freedom per site, systems with interacting spin and orbital

degrees of freedom have found renewed interest in recent
years. First studied in the context of transition-metal oxides
with doubly degenerate eg orbitals, relevant Kugel-Khomskii
models [6–8] have lately been applied to 4d and 5d sys-
tems, in which strong spin-orbit coupling leads to interacting
insulators with effective jeff = 3/2 moments [9–11] to iron
pnictides [12] as well as to correlated metallic, insulating,
and superconducting states, and corresponding transitions,
observed in twisted bi- and trilayer structures [13–20].

Two key considerations make the search for quantum-
disordered phases in spin-orbital systems particularly promis-
ing [21–26]: On one hand [1], some spin-orbital models
may have SU(4)-symmetric points in their parameter space
[7,11,23,27,28]. It is expected that near such high-symmetry
points, quantum fluctuations become enhanced, as magnetic
order in generalized Heisenberg antiferromagnets with SU(N )
or Sp(N ) symmetry has been shown to become increas-
ingly unstable on enlarging the symmetry group, even on
unfrustrated lattices either to spin liquid or bond-ordered
states [29,30], as found also, e.g., in continuous-N quan-
tum Monte Carlo studies of the square lattice Heisenberg
model [31]. Indeed, numerical studies [32,33] suggest that
the SU(4)-symmetric Kugel-Khomskii model on the honey-
comb lattice hosts an algebraic spin-orbital liquid, which may
explain the disordered ground state in the spin-orbital sys-
tem Ba3CuSb2O9 observed experimentally [34]. On the other
hand, the anisotropic spatial extent of d orbitals often implies
that orbital-orbital interactions in the degenerate subspace
are inherently frustrated [9,35]. Indeed, the Kitaev model is

2469-9950/2021/103(7)/075144(18) 075144-1 ©2021 American Physical Society

https://orcid.org/0000-0001-7934-1753
https://orcid.org/0000-0003-4919-796X
https://orcid.org/0000-0003-0047-6087
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.075144&domain=pdf&date_stamp=2021-02-24
https://doi.org/10.1103/PhysRevB.103.075144


SREEJITH CHULLIPARAMBIL et al. PHYSICAL REVIEW B 103, 075144 (2021)

understood to belong to a large class of “compass” models
[36] with bond-dependent orbital-orbital interactions, first dis-
cussed by Khomskii and Kugel [37]. One may thus expect that
appropriate systems with frustrated interorbital interactions
may host quantum-disordered ground states. A prominent
example is the double perovskite Ba2YMoO6, which has
effective jeff = 3/2 moments as a result of degenerate t2g

orbitals and spin-orbit coupling, and does not order down
to low temperatures [38–41]. Theoretical analyses show that
frustration due to certain bond-dependent interactions indeed
destabilizes order [9], and put forward (not exactly solvable)
Kitaev-type spin liquids as candidate ground states [10].

In this work, we study models for spin-orbital liquids
defined on square and honeycomb lattices. These models be-
long to a family of generalized Kitaev models that can be
solved exactly [42]. They feature bond-dependent biquadratic
spin-orbital interactions, while possessing global SO(ν) spin-
rotational symmetry with integer ν > 1. We show that these
models can be amended by a large number of realistic (and
not necessarily small) microscopic perturbations, under which
the system remains exactly solvable in terms of dispersing
Majorana fermions and static Z2 gauge fields. These perturba-
tions include onsite Zeeman magnetic fields as well as further
bond-dependent Kitaev- and off-diagonal �-type exchange
interactions, which break the global spin-rotational symmetry.
In particular we find that, as a function of magnetic field,
a series of metamagnetic transitions occur due to changes
in the ground-state flux configuration. Various states with
metallic or semimetallic Majorana Fermi surfaces, such as
“Majorana metals” [43] and Dirac or quadratic-band-touching
semimetals, as well as fully gapped states, are stabilized
during the magnetization process. The different states and
the corresponding transitions can be characterized via the
topology of the pertinent Majorana Bloch wave functions.
This implies that on adding a small time-reversal symmetry-
breaking three-body interaction [2], the semimetallic states
acquire a topologically nontrivial gap: At zero external mag-
netic field, the SO(ν)-symmetric model is characterized by a
nontrivial Chern number C = ν. For even (odd) ν, it hosts
Abelian (non-Abelian) anyonic excitations with topological
spin θ = π

8 (ν mod 16) [42]. On increasing the field strength,
we find that the ν = 2 model on the square lattice features a
second C = 2 state at finite fields, while in the ν = 3 model on
the honeycomb lattice, a field-induced Abelian C = 4 phase
is encountered. This is in resemblance to the higher-Chern-
number states found in the original Kitaev model perturbed by
additional exchange interactions and magnetic fields [44–47].
Beyond a certain field strength, the ν = 2 model exhibits a
macroscopic ground-state degeneracy with a trivial fermionic
spectrum, while the ν = 3 model features a single dispersing
Majorana fermion coupled to static Z2 fluxes, corresponding
to a Chern number C = 1. We furthermore show how some
of our explicit results for ν = 2 and ν = 3 generalize to the
SO(ν)-symmetric models with ν > 3. In particular, we find
that onsite terms (such as generalized magnetic fields) provide
a systematic way to reduce the Chern number C → C − 2
in the topologically ordered phases realized in arbitrary-ν
models.

We thus significantly expand the list of exactly solv-
able spin-orbital models, for which rigorous results can be

established [48,49]. While the exchange interactions in candi-
date materials contain additional perturbations that spoil the
exact solvability of the fine-tuned models considered here,
our results can help to highlight the general characteristics
of spin-orbital models with bond-dependent interactions and
reveal the exotic properties of quantum spin-orbital liquids.

The rest of the paper is organized as follows. We dis-
cuss the models, relevant symmetries, as well as previously
established results in Sec. II. Section III contains a classi-
fication of perturbations that preserve the solvability of the
models. In Sec. IV, we study the effects of a Zeeman mag-
netic field that couples to the spin degrees of freedom, and
we characterize occurring topological transitions. We discuss
selected nearest-neighbor spin-orbital interactions that break
the spin-rotational symmetry in Sec. V. The generalization
to SO(ν)-symmetric models with arbitrary ν > 1 is given in
Sec. VI. Section VII concludes the paper. Technical details on
the variational ground-state-flux-sector search are deferred to
the Appendix.

II. SOLVABLE KITAEV SPIN-ORBITAL LIQUIDS

A. Models and symmetries

The spin-orbital liquids considered here are the ν = 2
and ν = 3 instances of a family of exactly solvable SO(ν)-
symmetric generalizations of Kitaev’s Z2 spin liquid recently
proposed [42]. They are defined on the square and honey-
comb lattices, respectively, and feature ν itinerant Majorana
fermions coupled to the same Z2 gauge field. For even ν = 2q
(odd ν = 2q + 1) with integer q � 0, the Hamiltonian reads

H(ν)
J = −

∑
〈i j〉γ

Jγ

(
�

γ
i �

γ
j +

2q+3∑
β=γm+1

�
γβ
i �

γβ
j

)
, (1)

where 〈i j〉γ denotes a nearest-neighbor γ -type bond on the
square (honeycomb) lattice, with γ = 1, . . . , γm and γm = 4
(3) the lattice coordination number. The Gamma matrices
�α , α = 1, . . . , 2q + 3, form a 2q+1-dimensional represen-
tation of the Clifford algebra, and �αβ = i[�α, �β ]/2 for
α < β. The Kitaev honeycomb model is recovered for q =
0 and ν = 1, with the usual three Pauli matrices as two-
dimensional Gamma-matrix representation, (�α )α=1,2,3 =
(σ x, σ y, σ z ). The exact solvability of the model relies on rep-
resenting the Gamma matrices in terms of 2q + 4 Majorana
fermions c, bα as �α = ibαc [50–52], yielding a problem of
ν Majorana fermions dispersing in the background of a static
Z2 gauge field ui j = ibγ

i bγ
j on a 〈i j〉γ link,

H̃(ν)
J =

∑
〈i j〉γ

Jγ ui j

(
icic j +

2q+3∑
β=γm+1

ibβ
i bβ

j

)
. (2)

The representation of the Gamma matrices in terms of Majo-
rana fermions introduces additional unphysical states which
can be projected out by demanding the constraint Dj =
iq+2b1

j . . . b2q+3
j c j = −1 that holds only in the subspace of

physical states. Note that H̃(ν) possesses an O(ν) symmetry
of rotations of the ν-component spinor (ci, bγm

i , . . . , b2q+3
i )�.

This global O(ν) symmetry is also present in the micro-
scopic Hamiltonian H(ν): The (normal) SO(ν) subgroup of
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O(ν) is generated by
∑

j �
α
j and

∑
j �

αβ
j with α, β = γm +

1, . . . , 2q + 3. More details on the SO(ν) symmetry alge-
bra are given in the supplemental material to Ref. [42]. For
the second connected component of O(ν) = Z2�SO(ν), it
is sufficient for us to find a single symmetry operation ρ ∈
O(ν)/SO(ν) with det ρ = −1, as all other elements then lie in
the orbit of ρ under SO(ν). This ρ is given by a generalization
of the global dihedral D2 spin-rotational symmetry in the
ν = 1 Kitaev model, and we choose it to act on any Gamma
matrix �α as ρ : �α �→ �1�α�1 for α = 1, . . . , 2q + 3, such
that �1 �→ �1 and �α �→ −�α for α �= 1, as well as �1β �→
−�1β and �αβ �→ �αβ for 1 < α < β. It is easily verified that
ρ is unitary. In the Majorana parton basis, this generalized
dihedral symmetry acts as b1

i �→ −b1
i and ci �→ −ci, with the

remaining Majoranas bβ , β = 2, . . . , 2q + 3, being invariant,
so that model’s fermion parity is not changed by the symmetry
transformation. This implies that also ui j = ib1

i b1
j �→ ui j on

〈i j〉1 links, such that the gauge field ui j is invariant under ρ

on all links 〈i j〉γ . As the transformation acts on the itinerant
Majorana fermion spinor as

ρ :
(
ci, bγm

i , . . . , b2q+3
i

)� �→
diag(−1, 1, . . . , 1)

(
ci, bγm

i , . . . , b2q+3
i

)�
, (3)

we conclude that ρ is orthogonal, ρ ∈ O(ν), and fulfills
det ρ = −1, such that ρ ∈ O(ν)/SO(ν), as required. For more
details on the exact solution of H(ν), we refer to Ref. [42].

The ν = 2 and ν = 3 models have a four-dimensional lo-
cal Hilbert space, and the mapping to spin-orbital models is
achieved by representing the 4×4 Gamma matrices as �α =
−σ y ⊗ τα for α = x, y, z, �4 = σ x ⊗ 1, and �5 = −σ z ⊗ 1.
Here (σ x, σ y, σ z ) and (τ x, τ y, τ z ) denote two sets of usual
2×2 Pauli matrices and are assumed to act on the spin and
orbital degrees of freedom, respectively. It is convenient to
relabel the itinerant Majorana fermions as b5 → cx, c → cy,
and further on the honeycomb lattice b4 → cz, so that on the
square lattice the z component of the spin operator is ex-
pressed in terms of the two itinerant Majorana fermions, σ z ⊗
1 = −icxcy. Further, on the honeycomb lattice, the spin oper-
ators are expressed in terms of itinerant Majorana fermions as

σα ⊗ 1 = − i

2
εαβγ cβcγ ≡ 1

2
c�Lαc (4)

with the SO(3) generators Lα
βγ = −iεαβγ in the fundamental

representation, and where we have assumed the summation
convention over repeated indices α, β, γ ∈ {x, y, z}. Note that
Eq. (4) has previously been employed in parton decomposi-
tions of spin-1/2 systems [53–55], in which case the local
Hilbert space is enlarged by redundant states. In the spin-
orbital systems we study here, redundant states are projected
out in the exact solution by demanding Z2 gauge invariance of
physical states and spectrum [2,42]. Operators that act trivially
in the spin sector and nontrivially in the orbital sector involve
only “gauge” Majoranas when mapped to the Majorana repre-
sentation,

1 ⊗ τα = − 1
2εαβγ �βγ = − 1

2εαβγ ibβbγ , (5)

where indices are defined analogous to Eq. (4).

FIG. 1. Illustration of square- and honeycomb-lattice Kitaev
spin-orbital models. (a) In the ν = 2 model, there are two itinerant
Majorana fermions per site. The bond-dependent exchange interac-
tions double the elementary unit cell of the square lattice, and thus
there are two inequivalent elementary plaquettes p (shaded) and p′

(hatched). (b) In the ν = 3 model on the honeycomb lattice, there are
three itinerant Majorana fermions per site, and there is only one type
of elementary plaquette p.

1. ν = 2 model on the square lattice

On the square lattice, one obtains in the spin-orbital basis

H(2)
J = −

∑
〈i j〉γ

Jγ

(
σ x

i σ x
j + σ

y
i σ

y
j

) ⊗ τ
γ
i τ

γ
j , (6)

where γ = 1, 2, 3, 4 denotes the four inequivalent bonds in a
two-site unit cell and (τ γ ) = (τ x, τ y, τ z,1). In the following,
we will restrict to isotropic Jγ ≡ J > 0 for simplicity. It is
straightforward to see that the Hamiltonian (6) possesses a
global SO(2) symmetry of spin rotations about the z axis. Due
to the bond-dependent nature of the Kitaev-type orbital inter-
actions, lattice symmetry operations also act simultaneously
on the orbital degrees of freedom. Specifically, we consider
perturbations that preserve the following symmetries of H(2):

(1) A fourfold rotational symmetry about the center of a
plaquette, which also acts on the orbitals as 1 �→ τ x �→ τ y �→
τ z �→ 1.

(2) A reflection across an axis perpendicular to the 3- and
4-bonds, which maps τ x �→ −τ y, τ y �→ −τ x and τ z �→ −τ z

and 1 �→ 1.
We further allow the SO(2) spin-rotational symmetry to be

broken but assume that spin interactions along each bond 〈i j〉γ
are invariant under

(3) Inversion with σα
i ↔ σα

j for all α = x, y, z.
(4) Rotations of π/2 about the z axis, which maps σ x �→

−σ y, σ y �→ σ x and σ z �→ σ z.
Importantly, we note that the model defined in Eq. (6)

possesses an extensive number of conserved quantities given
by the plaquette operators

Wp = −�23
i �31

j �14
k �42

n and Wp′ = −�42
k �23

l �31
m �14

n (7)

on the two inequivalent elementary plaquettes of the square
lattice, as shown in Fig. 1(a). Rewriting the Gamma matrices
in terms of spin and orbital degrees of freedom yields

Wp = σ z
k σ z

n ⊗ τ x
i τ

y
j τ

x
k τ y

n , (8a)

Wp′ = σ z
k σ z

n ⊗ τ
y
k τ x

l τ y
mτ x

n . (8b)

Note that the orbital components of the above operators are
equivalent to the plaquette operators of Wen’s exactly soluble
model for Z2 gauge theory [56].
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2. ν = 3 model on the honeycomb lattice

The ν = 3 model on the honeycomb lattice, rewritten in the
spin-orbital basis, reads

H(3)
J = −

∑
〈i j〉γ

Jγ (σi · σ j ) ⊗ τ
γ

i τ
γ

j , (9)

where γ = x, y, z, σ = (σ x, σ y, σ z ) and we again assume
isotropic Jγ ≡ J > 0. In this spin-orbital basis, the global
SO(3) symmetry hence corresponds to an SO(3) spin-
rotational symmetry. As in the square-lattice model, the highly
anisotropic interactions in the orbital sector imply that lattice
symmetry operations also act on the orbital degrees of free-
dom. We take the point group C6v � D3d to be generated by

(1) A sixfold rotational symmetry C6 about the center of
a hexagonal plaquette, which also maps the components of
orbital operators (x, y, z) �→ (y, z, x). We further assume that
the spin degrees of freedom are also coupled to the lattice and
thus also transform under C6 as (x, y, z) �→ (y, z, x).

(2) A reflection symmetry σ across an axis perpendicular
to the z bonds, which acts on both orbital and spin operators
as (x, y, z) �→ (y, x,−z).

Note that our assumption that the spin degrees of freedom
are coupled to the lattice and thus also transform under C6

is due to the convenient fact that in the ν = 3 model, there
are three Pauli matrices (spin components) which may be
distributed on the three links of the honeycomb lattice. Note
that this is different from the situation of the ν = 2 model,
but an analogous property can be found in the ν = 4 model
on the square lattice, for which the natural four-dimensional
representation of SO(4) can be placed on the four distinct link
types.

The conserved plaquette operators on the honeycomb lat-
tice, which ensure that the fluxes are static read

Wp = 1 ⊗ τ x
i τ

y
j τ

z
k τ

x
l τ y

mτ z
n , (10)

see Fig. 1(b). This makes explicit that the flux operators
only involve orbital degrees of freedom, as previously noted
[49,57].

B. Review of previous results for Kitaev-type spin-orbital liquids

We note that our ν = 2 model has been previously studied
in the basis of jeff = 3/2 operators by Yao, Zhang, and Kivel-
son [50], as well as Nakai, Ryu, and Furusaki [58]. The ν = 3
model on a decorated honeycomb lattice, leading to sponta-
neous time-reversal symmetry breaking, was studied by Yao
and Lee [57]. Few subsequent works have utilized the exact
solvability of these models and established rigorous results,
which we review here. These results can straightforwardly be
extended to the perturbed models we discuss below.

In Ref. [48], the ν = 3 model was studied on the honey-
comb lattices with zigzag edge terminations. Flat edge states
and algebraically decaying spin-spin correlations 〈σ (x) ·
σ (0)〉 ∼ 1/|x|4 were found to generate a nonlocal edge mag-
netization on applying local magnetic fields. Since the model
possesses an SO(3) spin-rotational symmetry, the Majorana
excitations carry spin, in contrast to the ν = 1 Kitaev model.
This might allow one to probe spin transport properties in
heterostructures consisting of spin-orbital liquids sandwiched
between two metallic plates. It is found that the spin current

shows a power-law dependence on the applied spin potential
V = μ↑ − μ↓, with the exponent allowing the distinction of
semimetallic nodal structures from the fully gapped spectrum
of the chiral Kitaev spin-orbital liquid. Furthermore, a lon-
gitudinal spin Seebeck effect is predicted, i.e., a finite spin
current that is mainly due to edge states and being driven by
a temperature gradient between the two edges in the presence
of a magnetic field.

In a recent work, Natori and Knolle studied the dynamic
and spectroscopic properties of the ν = 3 model on the hon-
eycomb lattice [49], utilizing a mapping to quantum quenches
previously developed for the ν = 1 Kitaev model [59]. They
find that the dynamic structure factor consists of two contribu-
tions: The first is given by the dynamic spin-spin correlation
function 〈σα

i (t )σβ
j (0)〉, which maps onto density-density cor-

relation function of the itinerant Majorana fermions and has an
algebraic (exponential) decay in the gapless (gapped) phases.
The second contribution is given by spin-orbital correlation
functions, which involve the excitations of Z2 gauge fluxes
and thus has an exponential form, with the corresponding
gap being three times as large as in the ν = 1 Kitaev model.
While the structure factor is probed in neutron scattering
experiments, the authors suggest that the spin dynamics in
the relevant 4d1 and 5d1 Mott insulators may be separately
probed using resonant inelastic x-ray scattering [49].

III. SOLVABLE PERTURBATIONS

It is straightforward to see from the representation of the
plaquette operators in the spin-orbital basis in Eqs. (8) and
(10) that, in addition to the pure Kitaev interactions, there
are many possible perturbations that commute with the flux
operators and thus keep the gauge field static. For the ν = 3
model on the honeycomb lattice, this in particular applies to
interactions that only couple to the spin degrees of freedom.
For the ν = 2 model on the square lattice, spin interactions
that commute with σ z

i σ z
j on 〈i j〉4 links maintain this property

of the unperturbed model. In this section, we classify such
solvable (not necessarily small) perturbations with respect to
their symmetry properties and the range of interaction.

We emphasize that the majority of perturbations of this
form generically lead to interactions among the itinerant Ma-
jorana degrees of freedom. In the strongly interacting regime,
such perturbations may induce fractionalized quantum critical
points between the disordered spin-orbital-liquid and partially
ordered phases [60]. By contrast, here we consider pertur-
bations that are quadratic in the dispersing Majoranas and
thus preserve the exact solvability of the model. As different
species of itinerant Majorana fermions cα

i couple identically to
the gauge field ui j , any Z2 gauge transformation ui j �→ siui js j

with si = ±1 acts identically on all flavors α, cα
i �→ sicα

i .
Gauge invariance then demands that any solvable perturba-
tion, involving a bilinear of itinerant Majorana fermions at
sites i and i + l , will be of the form

H̃′ ∼ f αβ

i,i+l ic
α
i

[ ∏
〈 jk〉∈L

u jk

]
cβ

i+l , (11)

where L denotes a path through the lattice connecting sites
i and i + l . The couplings f αβ

i,i+l depend on the microscopic
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nature of the interactions and can be constrained by symmetry.
Here we focus mainly on onsite (l = 0) and nearest-neighbor
(l = 1) perturbations. Perturbations that lead to longer-ranged
hopping of a single Majorana flavor (on the honeycomb lat-
tice) have been discussed previously by Kitaev (l = 2) [2] and
Zhang et al. (l = 3) [44] for the original Kitaev model and
may be easily generalized to the spin-orbital models discussed
here.

Once the ground state of the gauge field is known (la-
belled in a gauge-invariant manner by a configuration of the
plaquette operators Wp = ±1), the full Hamiltonian H̃ + H̃′
describes a problem of noninteracting hopping fermions and
can be diagonalized straightforwardly. We emphasize that
at finite perturbation strengths, the system in general does
not possess reflection symmetry, and thus Lieb’s theorem
[61] no longer holds, implying that the π -flux (flux-free)
phase may be no longer the ground state of the square-lattice
(honeycomb-lattice) model. Therefore, to find the optimal
configuration of the Z2 gauge field for a given parameter set,
we diagonalize the respective fermionic hopping problems
on finite-size lattices of 48×48 unit cells in the background
of a variety of flux configurations in order to uncover the
ground-state flux pattern. The flux sectors considered are
shown together with an exemplary corresponding gauge-field
configuration {ui j} in the Appendix.

We have verified that the obtained phase boundaries vary
only slightly on further increasing the system sizes up to
60×60 unit cells for selected points in parameter space.

A. Onsite terms: Magnetic fields

We first discuss solvable onsite perturbations to the spin-
orbital liquids introduced above. As shown below, these terms
correspond to Zeeman magnetic fields that couple only to
the spin degrees of freedom. Such a spin-only coupling has
previously been shown to result from a strong-coupling ex-
pansion of a Hubbard model with twofold orbital degeneracy
[6]. We note that in general, spin-orbital coupling will lead
to additional terms that couple the orbital degrees of freedom
to the external field. However, such terms will involve single
τ operators that do not commute with the plaquette operators
Wp and thus lead to dynamics of the fluxes, spoiling the exact
solvability of the model. We therefore leave an analysis of the
effects of this orbital coupling for further studies.

1. ν = 2 model on the square lattice

On the square lattice, we consider a Zeeman field in the z
direction, coupling to the spin degrees of freedom as

H(2)
h = −hz

∑
i

σ z
i ⊗ 1. (12)

H(2)
h indeed commutes with the flux operators in Eq. (8) and

is seen to be quadratic in the itinerant Majorana fermions on
writing σ z ⊗ 1 = −�5 = −icxcy, yielding

H̃(2)
h = hz

∑
i

icx
i cy

i , (13)

such that a finite hz hybridizes the two Majorana flavors. The
comparison with Eq. (11) shows that no further solvable onsite
terms exist.

Note that the ν = 2 model in the presence of a finite hz field
has been previously studied in Ref. [50]. However, their study
primarily covers the two limiting cases of small hz � J and
large fields hz � J . In the former case, the π -flux gauge-field
configuration was argued to be protected by a finite flux gap,
such that a small field only alters the dispersion of itinerant
Majorana fermions, while in the latter limit of large fields and
anisotropy in the Kitaev couplings J , the model was mapped
onto a pure Z2 gauge theory with a π flux in every plaquette.
These results led the authors to conjecture that these two limits
are adiabatically connected. We show below, however, that
there are first-order transitions at intermediate field strengths
associated with other flux patterns having lower energy than
the π -flux configuration. Further, we clarify that at hz � J
and isotropic couplings, the system possesses an extensive
degeneracy making it unstable toward confinement.

2. ν = 3 model on the honeycomb lattice

Similarly to the square-lattice case, onsite terms quadratic
in the itinerant Majorana fermions are generated by coupling
the spin operators to a magnetic field,

H(3)
h = −h ·

∑
i

σi ⊗ 1. (14)

Mapping the spin operators to Majorana fermions, it is
straightforward to see that the above term exhausts all gauge-
invariant quadratic onsite terms,

H̃(3)
h =

∑
i

(
hxicy

i cz
i + hyicz

i c
x
i + hzicx

i cy
i

)
. (15)

B. Nearest-neighbor interactions

Nearest-neighbor terms H′ in Eq. (11) on 〈i j〉γ bonds
generically result from products of the spin-orbital opera-
tors σ y ⊗ τ γ ≡ −�γ = −ibγ cy, σ x ⊗ τ γ = −�γ 5 = −ibγ cx,
and, on the honeycomb lattice, σ z ⊗ τ γ ≡ −�γ 4 = −ibγ cz,
on two adjacent sites, such that ibγ

i bγ

j = ui j forms the Z2

gauge field. It thus becomes clear that any nearest-neighbor
spin interaction paired with a bond-dependent orbital Ising
interaction preserves the conservation of the flux operator and
is furthermore quadratic in the itinerant fermions. A distinc-
tive feature of these additional interactions is that they break
the system’s SO(ν) spin-rotational symmetry and may thus be
useful to study properties of spin-orbital liquids away from
highly symmetric points.

1. ν = 2 model on the square lattice

The symmetries given in Sec. II A 1 constrain solvable
nearest-neighbor perturbations to be given by

H(2)
�̄

= �̄
∑
〈i j〉γ

(
σ x

i σ
y
j + σ

y
i σ x

j

) ⊗ τ
γ

i τ
γ

j , (16)

which retains a global discrete spin-rotational symmetry.

2. ν = 3 model on the honeycomb lattice

Within the symmetry group given in Sec. II A 2, the set
of solvable nearest-neighbor spin-orbital perturbations to H(3)

J
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can be constrained to be of the form

H(3)
K��′ =

∑
〈i j〉γ

[ − Kσ
γ

i σ
γ

j + �
(
σα

i σ
β
j + σ

β
i σα

j

)

+�′(σγ
i σα

j + σα
i σ

γ
j + σ

γ
i σ

β
j + σ

β
i σ

γ
j

)] ⊗ τ
γ
i τ

γ
j ,

(17)

where (α, β, γ ) = (y, z, x), (z, x, y), and (x, y, z) on x, y, and
z bonds, respectively. The full Hamiltonian H(3)

J + H(3)
K��′ thus

corresponds to a Kitaev-Heisenberg-Gamma-Gamma′ model
in the spin sector coupled to an orbital Kitaev model. It is
exactly solvable at every point in parameter space, thus signif-
icantly extending the list of rare examples of exactly soluble
spin-orbital liquids.

IV. FIELD-INDUCED PHASES

In the following, we discuss the phases obtained in the ν =
2 and ν = 3 models on coupling the spin degrees of freedom
to external magnetic fields. We first discuss the ground-state
flux sectors and magnetization, and then characterize the oc-
curring phases according to the topology of the free-fermion
wave functions in the respective lowest-energy flux sectors.

A. Flux patterns

1. ν = 2 model on the square lattice

The ground-state flux configuration of the ν = 2 model
in a Zeeman magnetic field is displayed in Fig. 2, together
with the longitudinal magnetization per site mz = 〈σ z

i 〉. For a
given flux configuration, the spectra of H(2)

J + H(2)
h at finite

hz can be studied easily by noting that the two Majorana
fermions cx

i and cy
i at each site can be combined into a complex

fermion fi as fi = (cx
i + icy

i )/2, such that icx
i cy

i = 2 f †
i fi − 1.

It is straightforward to see that the SO(2) symmetry of mixing
cx and cy then becomes the U(1) phase-rotational symmetry
fi �→ eiϕ fi, φ ∈ [0, 2π ). In this formulation, the Hamiltonian
reads

H̃(2)
J + H̃(2)

h = J
∑
〈i j〉

ui j (2i f †
i f j + H.c.)

+ hz
∑

i

(2 f †
i fi − 1), (18)

where H.c. stands for Hermitian conjugation, such that the
magnetic field hz takes the role of a chemical potential for
the spinless complex fermions hopping in the background of
the static Z2 gauge field.

By Lieb’s theorem [61], the ground state at hz = 0 lives
in the π -flux sector with Wp = Wp′ = −1 on all plaquettes p
and p′. We fix a gauge such that ui j = +1 for i ∈ A, j ∈ B
sublattices on 〈i j〉γ=1,2,3 links and ui j = −1 on 〈i j〉4 links.
Introducing Fourier modes fs,k = N−1/2 ∑

i eik·xi fs,i on the
respective sublattices s = 1, 2 and diagonalizing the resulting
2×2 Hamiltonian yields the dispersion ε1,2(k) = 2hz ± |g(k)|
with g(k) = 2J (1 + eik·n1 + eik·n2 − eik·(n1+n2 ) ), where n1,2 =
(±1, 1) denote the lattice vectors on the square lattice with a
two-site unit cell. A small magnetic field thus shifts the Fermi
level away from the nodal Dirac points, leading to a metallic

FIG. 2. Ground-state flux configuration and magnetization m per
site for the square-lattice spin-orbital liquid as a function of magnetic
field along the z axis. The continuous black line corresponds to
the magnetization in the respective lowest-energy flux sector, while
the dashed lines indicate the magnetizations in the three indicated
flux sectors. Here, we have used a lattice with 48×48 unit cells
and employed a small finite temperature T = 0.001J for numerical
stability. Small jumps in the magnetization are due to finite-size
effects. The insets indicate the corresponding flux patterns, where
gray (white) squares correspond to π -flux (0-flux) plaquettes. At
low fields, the π -flux state is stable (blue area). Intermediate fields
1.1 � hz/J � 2.0 induce a checkerboard flux pattern (violet area),
while a flux-free state is stabilized for 2.0 � hz/J < 4 (white area).
For hz/J > 4, all flux configurations become degenerate (hatched
area).

Majorana Fermi surface and finite magnetization, as shown in
Fig. 2.

At hz ≈ 1.1J the system undergoes a first-order transition,
due to the checkerboard-flux crystal becoming the lowest-
energy flux configuration. The checkerboard-flux crystal is
characterized by alternating 0-flux and π -flux plaquettes in
a physical unit cell with two sites. However, due to the pro-
jective implementation of the translational symmetry, the unit
cell for the Majorana-fermion-hopping problem is enlarged
and consists of four sites. This leads to the f -fermion spec-
trum consisting of four bands, with the Fermi level (set by hz)
located in the second-lowest band.

Further increasing hz, another first-order phase transition is
encountered at hz ≈ 2.03J , with the gauge field now ordering
in the flux-free state with Wp = Wp′ = +1 on all plaquettes p
and p′. The dispersion in this flux-free background is given by
a single band ε(k) = 4J (cos kx + cos ky) + 2hz. As no further
first-order transitions intervene, it is thus clear that for hz � 4J
no fermionic states are occupied, and the spins are now fully
polarized, 〈σ z

i 〉 = +1, as also visible from Fig. 2. Impor-
tantly, the Fermi level lying outside the band, and thus the
entire band being completely empty, implies that a variation
of the background gauge field’s flux configuration no longer
leads to changes in the ground-state energy. Hence, all flux
configurations {Wp = ±1} become degenerate for hz > 4J ,
and the system possesses an extensive quantum ground state

075144-6



FLUX CRYSTALS, MAJORANA METALS, AND FLAT … PHYSICAL REVIEW B 103, 075144 (2021)

degeneracy scaling as ∼2N . This originates from the disor-
dered orbital degrees of freedom, with spin sector being fully
polarized. In fact, in the limit J/hz → 0, the ground state is
determined by H(2)

h as a manifold of spin-polarized orbital-
degenerate ground states |ψ↑〉 = ∏

i |↑〉i ⊗ |{τi}〉. At small,
but finite 0 < J/hz � 1, we find that the degeneracy is not
lifted in perturbation theory, because the field-polarized state
is an eigenstate of H(2)

J with H(2)
J |ψ↑〉 = 0. The extensive

degeneracy may be lifted by a perturbation Hλ that couples
to the orbital degrees of freedom, and acts nontrivially on the
spin degrees of freedom. One may then consider two distinct
scenarios:

(1) The perturbation commutes with the plaquette opera-
tors, [Hλ,Wp| = 0, such that the Z2 gauge theory remains in
the deconfined phase with a finite flux gap. This scenario was
implicitly discussed in Ref. [50], where in the limit analogous
to our large magnetic fields, introducing anisotropies in the
Kitaev couplings, the system gave way to an effective Wen
plaquette model [56], which is equivalent to the toric code
[62].

(2) The extensive degeneracy implies that the flux gap
vanishes and thus the spin-polarized spin-orbital liquid is
unstable to confinement, if one adds small perturbations that
spoil the conservation of the plaquette operators, [Hλ,Wp] �=
0. In this confined phase, the effective excitations are usual
bosonic modes associated with the resulting ordered state,
e.g., magnons. For example, one may consider exchange inter-
actions ∼τi · τ j among the orbital degrees of freedom, leading
to long-range orbital order. Corresponding microscopic spin-
orbital models and their ordered phases have been discussed
by Kugel and Khomskii [7].

We further note that the problem of spinless complex
fermions at finite chemical potential coupled to a Z2 gauge
field, i.e., H̃ (2)

J + H̃ (2)
h in Eq. (18) was studied in a recent

preprint [63], finding flux-free phases for large fields/chemical
potential (however below the critical hz � 4.0 for the degen-
erate phase), consistent with our results. Moreover the authors
argue that the limits hz ∼ μ → ±∞ with zero (one) fermion
per site lead to the emergence of a pure even (odd) Z2 Ising
lattice gauge theory with no (one) Z2 background charge per
site. We note that this difference emerges after projecting to
the physical subspace by imposing the local fermion parity
constraint Dj = −1 on each site.

2. ν = 3 model on the honeycomb lattice

We present the ground-state flux configuration and the
magnetization curve of the ν = 3 honeycomb-lattice model in
an external magnetic field in Fig. 3. While the ν = 2 system
can be mapped to a tight-binding model of spinless complex
fermions, we note that an analogous mapping in the ν = 3
model needs to select two out of the three Majorana fermions,
such that the model’s SO(3) symmetry is no longer mani-
fest. For notational clarity, here, we determine the spectrum
in a manifestly SO(3)-invariant manner. We utilize that in
crystalline flux sectors we can employ (residual) translational
invariance to Fourier-transform the Majorana fermions as

cα
s, j =

√
2

N

∑
k∈BZ/2

[
cα

s,keik·x j + cα
s,k

†e−ik·x j
]
, (19)

FIG. 3. Same as Fig. 2, but for the honeycomb spin-orbital liquid
as a function of magnetic field |h|. At low fields, the 0-flux state is
stable (white area). Intermediate fields 0.84 � |h|/J � 1.21 induce a
1/3-flux crystal (green area) with an enlarged physical unit cell, as
indicated by the dashed hexagon, while a π -flux state is stabilized for
1.21 � |h|/J � 1.86 (blue area). For |h|/J � 1.86, the ground state
is again flux free (white area).

where the Fourier modes cα
s,k are canonical fermionic opera-

tors in the half Brillouin zone (BZ/2), with flavor index α =
x, y, z and sublattice index s = 1, . . . , Ns, where Ns denotes
the number of sites in the Majorana unit cell corresponding to
the respective flux sector [64]. The spectrum of the Hamilto-
nian can then be found straightforwardly.

In the 0-flux sector, fixing the gauge ui j = +1 for all i ∈ A,
j ∈ B, the Hamiltonian is then written as

H̃(3)
J + H̃(3)

h = −
∑

k∈BZ/2

ψ
†
k {[Re f (k) �y

+ Im f (k) �x] ⊗ 13 + 12 ⊗ 2h · L}ψk,

(20)

with the six-component spinor ψk = (cx
A,k, cy

A,k, . . . , cz
B,k )�

and f (k) = 2J (1 + eik·n1 + eik·n2 ), where n1,2 = (± 1
2 ,

√
3

2 ) are
the honeycomb lattice vectors. �x and �y denote 2×2 Pauli
matrices. The spin-1 matrices L = (Lα ) have been defined
in the context of Eq. (4). The above Hamiltonian is readily
diagonalized, yielding six bands in the half Brillouin zone,

ε1,2(k) = 2|h| ± | f (k)|, ε3,4(k) = −2|h| ± | f (k)|,
and ε5,6(k) = ±| f (k)|. (21)

We thus find that a finite magnetic field shifts two Dirac
cones of the three dispersing Majoranas away from half filling,
leading to Fermi pockets for intermediate field strengths [65],
while ε5,6 give rise to a single Dirac cone (equivalent to two
Majorana cones) that remains at half filling.

In fact, the property of two Majorana bands being indepen-
dent of the field holds also in other flux sectors: For general
flux configurations, the spinor ψk has 3Ns components, where
Ns again denotes the number of sites in the corresponding
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(enlarged) unit cell. The kinetic energy of the three dispersing
Majoranas can then be written in terms of a 3Ns×3Ns matrix
Mk ⊗ 13. Block diagonalizing with some unitary 1Ns ⊗ U
gives

H̃(3)
J + H̃(3)

h =
∑

k∈BZ/2

ψ
†
k [(Mk + 2|h|1) ⊕ Mk

⊕ (Mk − 2|h|1)]ψk, (22)

which reveals that |h| acts generally as a chemical potential for
two of the three sets of (otherweise identical) fermion bands,
while one set of bands remains unaffected by the field in a
given flux sector.

As we increase the field strength |h|, we find that at |h| ≈
0.83J , there is a first-order transition out of the flux-free sector
to a flux-crystal phase with 1/3 flux density, leading to a
discontinuity in the magnetization curve, see Fig. 3. We find
that in this flux-crystal phase, all Majorana bands become
gapped. This is similar to the situation in the ν = 1 Kitaev
model [44]. Consequently, as the occupancy of the respective
bands does not change for variations in |h|, the magnetization
m = 〈σ 〉 remains constant, leading to a magnetization plateau
throughout the 1/3-flux phase. Further increasing |h|, a first-
order transition occurs at h ≈ 1.23J , which is associated with
the π -flux state with Wp = −1 on all plaquettes p becoming
the lowest-energy configuration. The Majorana dispersion in
this sector is gapless, but the magnetization is found to in-
crease only slowly with |h|. Another first-order transition at
|h| ≈ 1.88J then gives way to a flux-free ground state at high
fields, with an approximately linear increase of the magneti-
zation | m| as a function of |h| up to |h| = 3J , above which
the magnetization is fully saturated. This saturation can be
understood by considering the spectra in the flux-free phase
given in Eq. (21): For |h| > 1

2 maxk | f (k)| = 3J , the Fermi
level lies outside the respective bands, and all states associated
with two of the three dispersing Majorana flavors can be
considered to be fully occupied and empty, respectively.

We emphasize that for |h| > 3J , a gapless band persists
with the dispersion ε5,6 in Eq. (21) being independent of |h|.
This band leads to the stabilization of the flux-free ground
state of the gauge field by Lieb’s theorem, and the spin-
polarized orbital liquid is protected by the finite flux gap. This
is in contrast to the square-lattice model, which becomes un-
stable at large fields, as described in the previous subsection.

B. Majorana spectra and topological transitions

The magnetization curves of the ν = 2 and ν = 3 models
shown in Figs. 2 and 3 reveal first-order phase transitions
between different flux sectors. While the 1/3-flux crystal in
the honeycomb-lattice model is fully gapped, the other phases
have gapless spinon bands. The gapless phases differ in the
momentum-space topology of the respective wave functions
in that some of them feature Dirac points that possess a
topological charge (“vorticity”). This implies that, on adding
a small time-reversal symmetry-breaking perturbation that
gaps out the respective Dirac nodes, the system realizes a
topologically nontrivial gap and supports chiral edge modes.
Such topologically ordered states realize the sixteen different

anyon theories [42], as classified by Kitaev [2]. For the mod-
els defined by Eq. (1) at zero external fields, such gaps are
opened by including three-site couplings that lead to chiral
next-nearest-neighbor hopping,

H̃(ν)
κ = κ

∑
�〈i jk〉γ γ ′

ui ju jk

(
icick +

2q+3∑
β=γm+1

ibβ
i bβ

k

)
, (23)

where � 〈i jk〉γ γ ′ refers to clockwise summation over three
sites within the same plaquette, where i and j ( j and k) are
connected via a γ -type (γ ′-type) bond [42].

Following Kitaev [2], the gapped topological states can be
classified in terms of the Chern number,

C = 1

π

∫
BZ/2

d2ktrFxy(k) ∈ Z. (24)

Here Fxy ≡ (F ab
xy ) denotes the Berry curvature F ab

xy (k) =
∂kx A

ab
ky

− ∂ky A
ab
kx

+ i([Ax, Ay])ab of the non-Abelian Berry

connection Aab = (Aab
kx

, Aab
ky

) = 〈ψa(k)|(−i∇k)|ψb(k)〉, where
a, b index occupied bands defined in the half Brillouin zone
(BZ/2) [66]. By writing Eq. (24) in terms of the non-Abelian
Berry connection, we anticipate that occurring bands are de-
generate. Working in the half Brillouin zone allows us to use
canonical complex fermionic operators in reciprocal space.
We further note that the above definition for C agrees with
Kitaev’s convention in the ν = 1 case [2]. The corresponding
canonical Chern number for complex spinless fermions is then
given as C(D) = 1

2C. Consider, for instance, a single Dirac
cone at the K point in BZ/2 (corresponding to two Majorana
cones at K and −K in the full Brillouin zone) as in the original
ν = 1 Kitaev model on the honeycomb lattice. The corre-
sponding topological charge then is C = 1

π

∮
C(K ) trA · dk ≡ 1

mod 2, where we have integrated over a closed path C(K )
around K.

For the following discussion, we evaluate Eq. (24) using
the Fukui-Hatsugai-Suzuki algorithm [67] for the wave func-
tions obtained by diagonalizing the respective free-fermion
problem H̃(ν) + H̃(ν)

h + H̃(ν)
κ in momentum space for a given

flux sector. We have also computed the Bott index [68] di-
rectly for the finite-size systems that were used for finding the
lowest-energy flux sector, and we have verified consistency
with the momentum-space formulas Eq. (24).

1. ν = 2 model on the square lattice

On the square lattice, we utilize the mapping to complex
spinless fermions, under which the time-reversal symmetry-
breaking perturbation in Eq. (23) becomes

H̃(ν)
κ = κ

∑
�〈i jk〉γ γ ′

2ui ju jk (i f †
i fk + H.c.). (25)

We can thus analyze the topology of the complex-fermion
wave functions in the full Brillouin zone, arising from eval-
uating Eq. (18) in a given flux background. If a nontrivial gap
opens up with finite Chern number C(D), the system’s corre-
sponding Majorana Chern number is obtained as C = 2C(D).
An overview of the topological transitions associated with
a change in the free-fermion topology in the respective flux
sectors is given in Fig. 4.
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FIG. 4. Topological phase diagram of the ν = 2 model on the square lattice as a function of applied external field hz. The gray shaded
areas near hz = 0 and 2 indicate topological phases obtained by applying a small time-reversal symmetry-breaking perturbation 0 < κ � 1.
The spectrum changes discontinuously at first-order transitions between different flux sectors. The color plots in the insets show representative
dispersions ε(k) of the lowest fermion band in the full Brillouin zone for selected values of hz/J in the Majorana metal phases, using hz/J = 0.8,
1.5, and 2.5. For hz > 4J , all quasiparticle bands are empty and all flux sectors become degenerate, which is unstable toward confinement. The
reciprocal lattice vectors are u1,2 = (±π, π ) in the π -flux phase and v1 = (2π, 0), v2 = (0, 2π ) in the 0-flux phase.

At h = 0, the spectrum of complex fermions posses two
Dirac cones at Ks = (π/2, 0) and K ′

s = (−π/2, 0) in the
full Brillouin zone. They are gapped out by an small κ > 0,
yielding a Majorana Chern number of C = 2C(D) = 2 ≡ ν

as required by construction for Kitaev’s 16-fold way [2,42].
At finite (but small) hz > 0, the Fermi level is shifted away
from f -fermion particle-hole symmetry, yielding two Fermi
pockets encirculating the K and K ′ points and an infinites-
imal 0 < κ � 1 no longer opens up a gap, i.e., the gapless
Majorana-metal state is stable. Increasing hz further beyond
the first-order transition to the checkerboard-flux crystal, the
dispersion again features two circular Fermi surfaces encir-
cling ±(π, π )/4, which shrink to Dirac points on increasing
the field toward hz = 2J . These Dirac cones at hz = 2J be-
come gapped out for small finite κ and again yield CM = 2.
Note that on plaquettes with zero flux, Wp = +1, the next-
nearest-neighbor hoppings in Eq. (25) interfere destructively,
such that for hz > 2J , when the lowest-energy sector is given
by the flux-free ground state and the Fermi level lies inside
the cosine-like band, an infinitesimal κ does not gap out the
dispersion. For hz > 4J , we find that all bands lie above the
Fermi level and thus the fermionic spectrum is trivial, similar
to the strong-pairing phase in p-wave superconductors [69].

2. ν = 3 model on the honeycomb lattice

The topological phase diagram on the honeycomb lattice is
shown in Fig. 5. At h = 0, the three degenerate Dirac cones
at K = (2π/3, 2π/

√
3) in BZ/2 become gapped out and give

rise to the finite Chern number C = 3 [42]. For 0 < |h|/J �
0.84, two of the three Dirac cones are shifted away from zero
energy and thus give rise to a finite Fermi surface, while the
third Dirac cone remains protected. On breaking time-reversal
symmetry with a finite small κ � 1, the Dirac cone is gapped
out, while the Fermi-surface state remains gapless. This is in
contrast to the nodal lines found in the ν = 1 Kitaev model
with additional fourth-nearest neighbor interactions, which
become gapped out for infinitesimal κ [44,45]. In the 1/3-
flux crystal, the system possesses a trivial gap, while in the
π -flux crystal for |h| � 1.21J , the spectrum in the reduced
half Brillouin zone, corresponding to the residual translational
symmetry, features two Dirac cones and a Fermi surface. This
Fermi surface is formed by the intersection of a Dirac node
at M ′/2 = (π, π/

√
3)/2, centered at some nonzero elevated

energy with its particle-hole-symmetric counterpart. On fur-
ther increasing the field, these two Dirac cones move to the
Fermi level and become degenerate at |h| = 1.75J , at which
the Fermi surface shrinks to an isolated point. Thus, at |h| =
1.75J , an infinitesimal κ suffices to gap out the dispersion and
gives rise to topological gap with Majorana Chern number
C = 4. For 1.75 < |h|/J � 1.86, the two Dirac cones at M ′/2
again move to higher and lower energies, respectively, and
thus a Fermi surface is formed by their intersection, analogous
to the case |h|/J < 1.75. Above |h|/J ≈ 1.86, the flux-free
sector is again stabilized. As in the low-field limit, the spec-
trum for 1.86 � |h|/J < 3 features a Dirac cone and a Fermi
surface that is stable for small κ . On approaching |h| = 3J ,

FIG. 5. Topological phase diagram of the ν = 3 model on the honeycomb lattice as function of applied external field |h|. The gray shaded
areas near |h|/J = 0, 1.75, and above 3 indicate topological phases obtained by applying a small time-reversal symmetry-breaking perturbation
0 < κ � 1. The color plots in the insets show representative dispersions ε(k) of the lowest fermion band in the half Brillouin zones for selected
values of |h|/J in the Majorana metal phases, using |h|/J = 0.5, 1.3, and 2.5. The reciprocal lattice vectors are g1,2 = 2π (±1,

√
3) in the 0-flux

phase and l1 = (0, 4π/
√

3), l2 = (π,−π/
√

3) for the π -flux phase.
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the maxima and minima, respectively, of the two metallic
Majorana bands are shifted toward the Fermi level, such that
the Fermi surfaces shrink to isolated points with quadratic
dispersion at the � = (0, 0) point in BZ/2. As the perturbation
is odd in momentum, this quadratic band touching remains
gapless, while the Dirac cone becomes gapped out. For hz >

3J , two of the three bands are completely filled and empty,
respectively, and only the Dirac cone at K remains, yielding
C = 1 throughout the high-field phase for small κ > 0.

V. SOLVABLE NEAREST-NEIGHBOR COUPLINGS

In this section, we discuss the effect of solvable nearest-
neighbor terms as given in Sec. III B. Instead of mapping
out the full phase diagram in the respective high-dimensional
parameter spaces, we rather highlight characteristic features
of individual perturbations.

As a general remark, we note that in particular the inclusion
of additional Kitaev- and �-type interactions lead in the limits
of large |K|/J and large |�|/J , respectively, to increasingly
localized states. This may be understood by noting that in the
Majorana representation, such highly frustrated [70,71] bond-
dependent interactions only facilitate disconnected hopping
paths for the distinct Majorana flavors, σα

i σ
β
j ⊗ · · · �→ cα

i cβ
j ,

resulting in flat bands in the Majorana spectrum.

A. ν = 2 model on the square lattice

Spatially isotropic �̄ interaction

We map the spatially isotropic �̄ interaction in Eq. (16) to
Majorana fermions, obtaining

H̃(2)
J + H̃(2)

�̄
=

∑
〈i j〉

iui j
(
cx

i cy
i

)( J −�̄

−�̄ J

)(
cx

j

cy
j

)
. (26)

The above 2×2 matrix is readily diagonalized by form-
ing new Majorana operators d1

i = (cx
i + cy

i )/
√

2 and d2
i =

(cx
i − cy

i )/
√

2, yielding the eigenvalues J ∓ �̄. It is straight-
forward to verify that the operators d1,2

i satisfy the Majorana
anticommutation relations {dα

i , dβ
j } = 2δαβδi j . The Hamilto-

nian then maps to a two-flavor Majorana hopping problem on
the square lattice in the background of a static Z2 gauge field
with two different hopping parameters for the two flavors,

H̃(2)
J + H̃(2)

�̄
=

∑
〈i j〉

iui j
[
(J − �̄)d1

i d1
j + (J + �̄)d2

i d2
j

]
. (27)

Using Lieb’s theorem for the two individual hopping prob-
lems [61], we deduce that the ground state is always in the
π -flux sector. Note that, due to the broken SO(2) � U(1)
symmetry, using the mapping to complex fermions introduced
in Sec. IV A 1 on Eq. (27) would introduce pairing terms
∼( f †

i f †
j + H.c.).

For J = �̄ or J = −�̄, one of the two Majorana modes
drops out from Eq. (27) and thus forms a completely flat band
at zero energy. Here, the remaining dispersing Majorana mode
still stabilizes the π -flux ground state. The degeneracy of the
nondispersing band may either be lifted by further Majorana
hopping processes, or makes the system particularly suscep-
tible to spontaneous symmetry breaking on the inclusion of

interactions between the Majoranas [60]. This interesting di-
rection is left for future work.

B. ν = 3 model on the honeycomb lattice

1. Spatially isotropic �̄ interaction

A spatially isotropic flavor-off-diagonal interaction is also
possible in the ν = 3 model, by assuming � = �′ ≡ �̄ and
K = 0 in Eq. (17). The Hamiltonian may then be written in
the Majorana representation as

H̃(3)
J + H̃(3)

�̄
=

∑
〈i j〉

iui j

[
J

∑
α

cα
i cα

j − �̄
∑
α<β

(
cα

i cβ
j + cβ

i cα
j

)]
.

(28)
Using arguments similar to those presented in Sec. IV A 2, the
Fourier transformation in a given flux sector yields

H̃(3)
J + H̃(3)

�̄
=

∑
k∈BZ/2

ψ
†
k

[
Mk ⊗

⎛
⎝ J −�̄ −�̄

−�̄ J −�̄

−�̄ −�̄ J

⎞
⎠]

ψk,

(29)
where ψk = (cx

A,k, cy
A,k, . . . , cz

Ns,k
)�. By means of a global uni-

tary transformation ψk �→ (1Ns ⊗ U )ψk with the unitary 3×3
matrix U , the square bracket [ · · · ] on the right-hand-side of
Eq. (29) can be block-diagonalized,

[ · · · ] = (J − 2�̄)Mk ⊕ (J + �̄)Mk ⊕ (J + �̄)Mk. (30)

The dispersion hence decomposes into three blocks with iden-
tical momentum dependence, but different prefactors. As each
block is proportional to the Hamiltonian of free Majorana
fermions hopping on the honeycomb lattice in the background
of the respective flux configuration, it follows that the ground
state of Eq. (29) is in the flux-free sector and thus Mk =
− Re f (k)�y − Im f (k)�x, as in Sec. IV A 2 for vanishing
fields.

Equation (30) reveals that at J = −�̄ (J = 2�̄) two blocks
(one block) vanish(es) identically and thus give(s) rise to four
(two) degenerate flat bands at zero energy. The remaining
bands realize one (two) Dirac node(s), in analogy to the result
on the square-lattice model.

For all other values of �/J , the dispersion features three
Dirac cones, two of which have an identical Fermi velocity
due to two Majorana flavors being degenerate. As can be seen
from Eq. (30), H̃(3)

J + H̃(3)
�̄

has a hidden O(2) symmetry that
mixes the two degenerate modes.

2. Bond-dependent diagonal K interaction

The ν = 3 model allows additional spin-orbital interac-
tions that are bond dependent also in the spin sector and
preserve solvability. Taking � = �′ = 0 in Eq. (17) and trans-
forming to the Majorana representation yields

H̃(3)
J + H̃(3)

K =
∑
〈i j〉γ

iui j

[
(J + K )cγ

i cγ

j +
∑
α �=γ

Jcα
i cα

j

]
. (31)

Clearly, a finite K spoils the system’s SO(3) spin-rotational
symmetry. From the Majorana representation, it is apparent
that in the limit K/J → ∞ the γ -type Majorana fermions are
localized at the respective γ -type bonds, leading to a gapped
dispersion and flat bands. For intermediate values of K/J , the
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FIG. 6. (a) Majorana dispersion along high-symmetry path in the
Brillouin zone for the J-K model on the honeycomb lattice defined
by H̃(3)

J + H̃(3)
K for K = 0.4J . (b) Dispersion of the lowest-energy

band for K = 0.4J . Red dashed lines denote the hexagonal Brillouin
zone; black dashed lines denote BZ/2 as used in Fig. 5. (c) Same as
(a) for K = 0.9J , showing that the Dirac cones move away from the
K point toward the M points. (d) Same as (b) for K = 0.9J .

ground state remains in the flux-free sector. Using Eq. (19),
the spectrum is found to be given by εα

±(k) = ±| f (k) +
2Keik·δα |, with α = 1, 2, 3 and (δ1, δ2, δ3) = (n1, n2, 0). The
spin-orbital interaction parametrized by K is thus a C3-
symmetric version of the bond anisotropy discussed by Kitaev
[2]. For small K/J , each of the three Dirac cones moves
away from the K point along three inequivalent directions in
momentum space, as shown in Fig. 6. For K/J = 1, they gap
out at the M points by merging with the Dirac cones from
the other half of the full Brillouin zone. Generalizing Kitaev’s
arguments [2], the system at K � J may be mapped to the
toric code [62], which is described by an exactly soluble Z2

gauge theory with a full gap.

3. Bond-dependent off-diagonal � interaction

Considering �′ = K ≡ 0 in Eq. (17), the remaining per-
turbation to the SO(3)-symmetric model on the honeycomb
lattice is given by off-diagonal exchange interactions. In the
Majorana representation, the perturbed Hamiltonian reads

H̃(3)
J + H̃(3)

� =
∑
〈i j〉γ

iui j
[
Jcγ

i cγ

j − �
(
cα

i cβ
j + cβ

i cα
j

)]
, (32)

where (α, β, γ ) = (y, z, x), (z, x, y), and (x, y, z) on x, y, and z
bonds, respectively. Performing a variational study for various
values of �/J , we find that the 0-flux sector has the lowest
ground-state energy, except for a small parameter window
centered at �/J = 1, where the lowest flux sector is given by
a “stripy” flux pattern with 1/4 flux density, cf. Fig. 9. We

FIG. 7. (a) Majorana dispersion along high-symmetry path in the
Brillouin zone for the J-� model on the honeycomb lattice defined by
H(3)

J + H(3)
� , using �/J = 0.6. (b) Dispersion of the lowest-energy

band for �/J = 0.6. Red dashed lines denote the hexagonal Brillouin
zone, black dashed lines denote BZ/2 as used in Fig. 5. (c) Same as
(a) for �/J = 1.5. (d) Same as (b) for �/J = 1.5.

note, however, that several other flux sectors, including the
1/4-flux crystal and the flux-free phase, are close in energy at
this point, with relative differences �E/E ∼ 10−6 (see also
Fig. 11 in the Appendix for more details on the flux sectors’
energies), requiring a systematic study with higher numeri-
cal accuracy to fully resolve the ground state near �/J � 1.
This is left for future work. Here we instead describe the
features of the Majorana dispersion in the 0-flux sector as
a function of �/J: For small �/J , we find that the Dirac
cones move away from the K points toward the center � of
the Brillouin zone, as shown in Figs. 7(a) and 7(b). For the
particular value of �/J = 1, the flux-free sector features nodal
lines. This large number of gapless degrees of freedom is
energetically unfavourable and explains the fact that several
other flux sectors are found to have competing energies near
this point. At �/J = 1.5, the dispersion features an additional
quadratic band touching at the � point, see Figs. 7(c) and 7(d).
Increasing �/J , the quadratic band touching at � splits into
Dirac cones, which move along the high-symmetry lines �-K
and �-K ′. At �/J = 1.60, these Dirac points annihilate with
the Dirac cones that have moved from the K and K ′ points,
and the Majorana dispersion becomes fully gapped. Similarly
to the case discussed in the previous subsection, we expect
that in this limit, integrating out the gapped itinerant fermions
yields an Abelian Z2 gauge theory. In the limit �/J → ∞,
flat bands are formed, corresponding to the localization of the
itinerant Majorana fermions, because the � interaction does
not facilitate hopping of γ -type Majorana fermions along a
γ -type bond.
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VI. GENERALIZATION TO SO(ν) MODELS

In this section, we generalize some of the above results to
the SO(ν)-symmetric models with arbitrary ν > 1 [42]. (For
a detailed discussion of the ν = 2 and ν = 3 models we refer
the reader to Secs. IV and V.) We again start by discussing
solvable onsite terms, which can be understood as generalized
Zeeman couplings to an external field.

A. Onsite perturbations

Onsite terms that couple the itinerant Majorana fermions
in Eq. (2) to external fields can be written as linear combina-
tions of

∑
j �

α
j and

∑
j �

αβ
j with α, β = γm + 1, . . . , 2q + 3,

α < β, where γm = 4 (3) in the square-lattice (honeycomb-
lattice) model for even ν = 2q (odd ν = 2q + 1). These are
the generators of the SO(ν) symmetry. Mapping to Majorana
fermions and relabelling the itinerant Majorana fermions in
analogy to Sec. II A, the onsite terms map onto

H̃(ν)
h = −

∑
j

∑
a<b

hab 1

2
c�

j Labc j (33)

with real coupling constants hab, 1 � a < b � ν, which can
be understood as generalized Zeeman field strengths. Here
the Lab are ν(ν − 1)/2 traceless antisymmetric ν×ν matrices,
which form a SO(ν) algebra in the defining representation,
and c j ≡ (c1

j , . . . , cν
j )� denotes a ν-dimensional Majorana

spinor. However, since the different Lab do not commute in
general, distinct choices of hab may be related by SO(ν)
symmetry. We may therefore, without loss of generality
[72], focus on the maximal set of the commuting generators
[H p, H p′

] = 0 spanned by the Cartan subalgebra {H p}p=1,...,q

of SO(ν).
For even ν = 2q, the Cartan generators are 2q×2q matrices

consisting of q blocks with the Pauli matrix �y inserted in the
pth block and otherwise zero matrices,

H p = 02×2
1 ⊕ · · · ⊕ �y

p ⊕ · · · ⊕ 02×2
q . (34)

For odd ν = 2q + 1, the Cartan generators are (2q +
1)×(2q + 1) matrices that contain an additional one-
dimensional block,

H p = 02×2
1 ⊕ · · · ⊕ �y

p ⊕ · · · ⊕ 02×2
q ⊕ 01×1

q+1. (35)

Hence, the onsite Hamiltonian in Eq. (33) is uniquely
written as

H̃(ν)
h = −

∑
j

q∑
p=1

hp 1

2
c�

j H pc j, (36)

where the hp, p = 1, . . . , q, are now field strengths associated
with the Cartan generators and can be expressed in terms of
the hab introduced above. Crucially, each Cartan generator
contains exactly one block with �

y
p. This suggests to pair

the (2p − 1)th and 2pth Majorana flavors at each site into a
complex fermion f p

j = (c2p−1
j + ic2p

j )/2, yielding

1
2 c�

j

[
02×2

1 ⊕ · · · ⊕ �y
p ⊕ . . .

]
c j = −(

2 f p
j

† f p
j − 1

)
. (37)

1. ν = 2q models on the square lattice

For the ν = 2q model, the onsite terms together with the
unperturbed Hamiltonian in Eq. (2) map onto q bands of
complex fermions coupled to the Z2 background gauge fields,

H̃(2q) + H̃(2q)
h =

q∑
p=1

[
J

∑
〈i j〉

ui j
(
2i f p

i
† f p

j + H.c.
)

+ hp
∑

i

(
2 f p

i
† f p

i − 1
)]

, (38)

with the generalized field strengths hp corresponding to a
band-dependent chemical potential. Choosing one particu-
lar hr � 4J and hp = 0 for all p �= r and using the results
of Sec. IV A 1 leads to all f r-fermion states being unoccu-
pied. The system thus realizes a generalized Kitaev model
[42] with (ν − 2) itinerant Majorana fermions and a residual
SO(ν − 2)×SO(2) symmetry. Note that for each finite hp

there is a residual SO(2) � U(1) symmetry generated by H p,
which cannot be broken explicitly by solvable onsite terms.
(This may be achieved, for instance, by choosing distinct
Kitaev couplings for the different Majorana flavors, which
generates nearest-neighbor pairing terms ∼ f p

i f p
j .) Choosing

hp � 4J for all p = 1, . . . , q, all bands are shifted above the
Fermi level, and the Z2 gauge field is unstable toward confine-
ment due to the degeneracy of all flux configurations, unless
explicitly stabilized by additional interactions that preserve
the gauge structure. This general result is consistent with our
findings for the ν = 2 model.

2. ν = 2q + 1 models on the honeycomb lattice

For the ν = 2q + 1 model, the above mapping to spinless
complex fermions can be performed analogously for the first
q blocks of the Cartan generators by pairing the first 2q entries
of the (2q + 1)-dimensional Majorana spinor. However, there
remains a single Majorana fermion c2p+1 associated with the
zero weight state of SO(2q + 1), such that the Hamiltonian
reads

H̃(2q+1) + H̃(2q+1)
h =

q∑
p=1

[
J

∑
〈i j〉

ui j
(
2i f p

i
† f p

j + H.c.
)

+ hp
∑

i

(
2 f p

i
† f p

i − 1
)]

+ J
∑
〈i j〉

iui jc
2p+1
i c2p+1

j . (39)

Choosing any one of the fields hr � 3J and using the re-
sults from Sec. IV A 2 leads to the associated f r bands
becoming fully unoccupied. This way, one again obtains a
generalized Kitaev model with (ν − 2) itinerant Majorana
fermions, with the symmetry group reduced as SO(ν) →
SO(ν − 2)×SO(2), in analogy to the square-lattice case. Im-
portantly, fully breaking the SO(ν) symmetry by choosing
hp � 3J for p = 1, . . . , q moves all complex modes above
the Fermi level, but leaves a single Majorana fermion at zero
energy. The latter corresponds to the last term in Eq. (39),
which is invariant under variations of the hp, giving way to a
ν = 1 Kitaev orbital liquid ground state in this phase. Thus,
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the flux-free ground state is stabilized for sufficiently strong
fields hp � J for all p, in agreement with our findings in the
ν = 3 model.

B. Nearest-neighbor perturbations

We now discuss the effects of solvable nearest-neighbor
interactions which break the global SO(ν) rotation symmetry
in the generalized models. For simplicity, we focus only the
generalization of the �̄ interaction which can be realized both
in the square-lattice as well as honeycomb-lattice models. We
expect that our analysis can be readily extended for other
SO(ν)-breaking perturbations which can be defined for arbi-
trary ν.

The effects of the generalized �̄ interaction for the cases
of the ν = 2 and ν = 3 models can be understood within
a group-theoretical analysis: To this end, we note that the
presence of a finite �̄ breaks the global O(2) symmetry in
the ν = 2 model on the square lattice. However, the sym-
metric group of two elements S2 � Z2 ⊂ O(2) remains a
symmetry, which acts in a two-dimensional reducible rep-
resentation on (cx, cy)�. Similarly, in the ν = 3 model on
the honeycomb lattice, we analogously find that the re-
maining S3 ⊂ O(3) symmetry acts in the three-dimensional
reducible representation on the flavor degrees of freedom
(cx, cy, cz )�. (Block-)diagonalizing the ν = 2 (ν = 3) Hamil-
tonian in Eq. (27) [Eq. (30)] is then equivalent to splitting
the reducible representation into the trivial one-dimensional
irreducible representation and a further one-dimensional
(two-dimensional) irreducible representation. The trivial rep-
resentation has eigenvector (1, 1)�/

√
2 [(1, 1, 1)�/

√
3],

while the additional one-dimensional (two-dimensional)
irreducible representation is (1,−1)�/

√
2 [spanned by

{(2,−1,−1)�/
√

6, (0, 1,−1)�/
√

2}, corresponding to the
twofold degenerate Majorana modes].

The above group-theoretical understanding allows the gen-
eralization of the results to arbitrary ν. The generalized �̄

interaction is given by

H(ν)
�̄

= �̄
∑
〈i j〉γ

2q+3∑
α=γm+1

[
�

γ

i �
γα

j + �
γα

i �
γ

j

+
∑
β<α

(
�

γα
i �

γβ
j + �

γβ
i �

γα
j

)]
. (40)

where again γm = 4 (3) in the square-lattice (honeycomb-
lattice) model for even ν = 2q (odd ν = 2q + 1). This term
breaks the O(ν) symmetry, while the symmetric group Sν of
ν elements remains a symmetry that acts in the ν-dimensional
reducible natural representation on the itinerant Majorana
fermions.

Mapping to Majorana fermions and introducing a ν-
component spinor, it becomes clear that the task of block-
diagonalizing the hopping Hamiltonian defined by H̃(ν)

J +
H̃(ν)

�̄
requires diagonalizing the ν×ν matrix F = (Fαβ ) with

components Fαβ = Jδαβ + (δαβ − 1)�̄, α, β = 1, . . . , ν. Us-
ing the generalized matrix determinant lemma, it is easy to
see that F possesses the eigenvalues

λ1 = J − (ν − 1)�̄ and λi = J + �̄ i = 2, . . . , ν. (41)

The corresponding one-dimensional eigenspace given by
(1, . . . , 1) is the trivial representation, while the orthogonal
complement, associated with the eigenvalues λ2,...,ν , defines
the (ν − 1)-dimensional irreducible standard representation
of Sν . We note that there is an O(ν − 1) symmetry corre-
sponding to global basis rotation in the (ν − 1)-dimensional
degenerate subspace.

We thus conclude that H̃(ν)
J + H̃(ν)

�̄
features, for arbitrary

values of �̄/J , ν Dirac cones, out of which (ν − 1) are
degenerate. For the special case of J = (ν − 1)�̄, a single
zero-energy flat band and (ν − 1)-degenerate Dirac cones are
formed, while for �̄ = −J the spectrum consists of a single
Dirac cone and a (ν − 1)-fold-degenerate flat band at zero
energy. Specifying to ν = 2 and ν = 3, respectively, these
general results agree with our previous explicit findings for
the perturbed SO(2)- and SO(3)-symmetric models.

VII. DISCUSSION AND OUTLOOK

In this work, we have considered spin-orbital models on
the square and honeycomb lattices that exhibit quantum-spin-
orbital-liquid ground states. They can be solved exactly in
analogy to Kitaev’s honeycomb model [2] and feature Majo-
rana fermions hopping in the background of a static Z2 gauge
field. Guided by gauge invariance and symmetry considera-
tions, we have systematically investigated the possible onsite
and nearest-neighbor interaction terms that preserve the solv-
ability of the models. In particular, we have studied in detail
the physically important case of external magnetic fields that
couple to the spin degrees of freedom. These induce a series
of metamagnetic transitions and stabilize Majorana-Fermi-
surface states, as well as semimetallic states with Dirac and/or
quadratic band touching points in the Majorana spectrum.
On applying small time-reversal symmetry-breaking pertur-
bations, one can open up a topologically nontrivial band gap
for the Majorana fermions. The resulting low-energy theories
are classified in Kitaev’s sixteenfold way [2,42]. In the limit
of strong magnetic fields, the spin-orbital models are field po-
larized in the spin sector, while the orbital degrees of freedom
are either in a macroscopically degenerate state on the square
lattice or realize a single-Majorana Kitaev orbital liquid on the
honeycomb lattice.

A. Nonsolvable perturbations

While materials harboring two-dimensional Kitaev spin-
orbital liquids have so far not been uniquely identified,
three-dimensional double perovskites such as Ba2YMoO6
realize similar bond-dependent interactions [9,10,38]. We
emphasize that in candidate materials, a sizable spin-orbit
coupling will be present, such that an external field invariably
also couples to the orbital degrees of freedom. This leads to
additional onsite terms of the form ∼σα

i ⊗ τ
β
i , as also ob-

tained from symmetry arguments for jeff = 3/2 systems [49].
Moreover, the presence of further interorbital interactions
∼τα

i τ
β
j may be generically expected in spin-orbital systems

[7]. As discussed by Kugel and Khomskii, external pressure
may give further rise to terms involving a single orbital op-
erator and could thus “polarize” the orbitals [7]. All those
operators generally do not commute with the plaquette flux
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FIG. 8. (a)–(k) Flux patterns considered in the variational determination of the ground state for the ν = 2 model, and a representative fixed
configuration of the gauge field ui j . Red (bold) bonds indicate “flipped” bonds ui j = −1 on the background of the canonical flux-free gauge
configuration ui j = +1 for i ∈ A, j ∈ B sublattices, as indicated by the arrows in panels (a) and (b). Dashed lines denote the physical unit cells.

operators Wp and hence lead to dynamics of the Z2 gauge
field resulting, e.g., in the disperson of visons. This is also
visible from, the Majorana representation [see, e.g., Eq. (5)],
which places bα Majoranas on non-α bonds, rendering a
rewriting in terms of local ui j gauge field variables impossible.
These terms are expected to eventually drive confinement
transitions which are interesting subjects for further study and
received recent attention [63,73,74]. Note that there are per-
turbations that do commute with the plaquette operators (such
as 1 ⊗ τατα on 〈i j〉 = α-links of the honeycomb lattice), but
are not exactly solvable: From the Majorana representation
(5) it becomes apparent that they either give rise to terms
which involve bα Majoranas on 〈i j〉 �= α bonds (and thus
cannot be rewritten in terms of the gauge field ui j), or lead
to quartic (or higher) fermion interactions—an example of
the latter case has recently been studied in Ref. [60]. If these
nonsolvable perturbations are small compared to J , they can
in principle be analyzed in perturbation theory and projected
to the ground-state flux sector. We expect the most relevant
(by power-counting) terms to modify the dispersion of the
itinerant Majorana fermions and lead to hybridization of the
respective flavors, in similarity to Kitaev’s analysis of an
applied magnetic field in the S = 1/2 honeycomb model [2].
Furthermore we note that the only gauge-invariant terms to
be generated which do not involve the itinerant Majorana
fermions will be given by Wilson loop operators of the gauge
field ui j . The study of these more realistic models beyond
the perturbative regime requires appropriate numerical tech-

niques. In this sense, our study reveals general features of
spin-orbital liquids in appropriately fine-tuned models that
preserve exact solvability, and as such can serve as useful
starting points for more detailed investigations of material-
specific models.

B. Outlook

Our study opens up several avenues for further theoretical
work: The models constructed host a variety of different par-
ton states, including Majorana metals, semimetallic states, or
fully gapped states. These should be expected to yield distinct
features in the corresponding thermalization processes, which
can be mapped out using sign-problem-free quantum Monte
Carlo methods in the Majorana basis [75,76]: For example,
while the original Kitaev model shows a characteristic two-
crossover behavior that is indicative of the fractionalization
process [77], we expect that in the ν = 3 model with strong
magnetic fields |h| � J , a third peak in the specific heat Cv

will occur at temperatures on the order of |h|, associated with a
thermal disordering of the field-polarized spins. Furthermore,
in this regime, the lowest-temperature crossover associated
with flux ordering will take place at lower temperatures as
compared to the h = 0 case, since the flux gap is reduced by
a factor of 1/3. We note that a theoretical work in a similar
spirit was recently carried out in Ref. [76], in which the
finite-temperature behavior of a jeff = 3/2 Kitaev-type spin-
orbital liquid on the Shastry-Sutherland lattice was studied.
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FIG. 9. Same as Fig. 8, but for the ν = 3 model.

Moreover, the fact that Zeeman fields, as solvable onsite
perturbations, lead to Majorana-metal ground states in a wide
parameter regime allows for intriguing further directions: Z2

spin liquids with Majorana Fermi surfaces have been previ-
ously found as ground states of the spin-1/2 Kitaev model
on two-dimensional lattices in the presence of additional per-
turbations [16,78], as well as on three-dimensional lattices
[43,79]. In the latter case, it was found that these Majorana
Fermi surfaces are generically unstable on the inclusion of
interactions, breaking some of the spatial symmetries of the
system and giving way to line nodes. A study of the pos-
sible instabilities of the Majorana-Fermi-surface states and
the resulting symmetry-broken phases in our two-dimensional
spin-orbital models, augmented by generic interactions, ap-
pears to be similarly promising.

Note added in proof. After the completion of this work
Ref. [63] appeared in which the phases of spinless fermions
coupled to Z2 lattice gauge theory were studied. The model
reduces (in the limit of a static gauge field) to the (exact)
parton construction of our square-lattice quantum spin-orbital
liquid, yielding results largely consisted with our findings.
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APPENDIX: FLUX CONFIGURATIONS USED IN
VARIATIONAL TREATMENT

We obtain the ground-state flux sector by fixing an appro-
priate gauge for the {ui j} and then comparing the ground-state
energies of resulting free-fermion Hamiltonian in the respec-
tive flux sector, following the method by Kitaev [2]. The
various flux patterns considered in the search for the ground-
state flux sector are shown in Fig. 8 for the square lattice
and Fig. 9 on the honeycomb lattice. We note that in flux
sectors with a total Z2 flux per physical unit cell, translation
symmetry is implemented projectively, and thus any particular
gauge-fixed configuration {ui j}, giving rise to these respec-
tive flux sectors, enlarges the size of the Majorana unit cell
[2,16,20].

After gauge-fixing, the Majorana-fermion tight-binding
Hamiltonian can be written in the form

H = i

4

∑
α,i,s1; β, j,s2

cα,i,s1Aα,i,s1;β, j,s2 cβ, j,s2 , (A1)
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FIG. 10. (a) Energy per unit cell in the respective flux sectors
for the ν = 2 model (square lattice) relative to the π -flux sector
energy. The labels in the legend refer to the configurations displayed
in Fig. 8. (b) As (a), but for the ν = 3 model (honeycomb lattice)
relative to the flux-free sector’s energy. The labels in the legend refer
to the configurations displayed in Fig. 9.

where α, β = x, y(z) indexes the Majorana flavours for the
square (honeycomb) lattice.. We enumerate two-site unit cells
on the bipartite square and honeycomb lattices by i, j =
1, . . . , N2, and let s1, s2 = A, B denote the sublattice degrees
of freedom. Note that the fermionic statistics imply that A is
skew symmetric. As shown by Kitaev, the ground-state energy
of H in (A1) (per unit cell) is given by the sum over all
negative eigenvalues εμ < 0 of the matrix iA,

E/N2 = 1

2N2

∑
μ:εμ<0

εμ. (A2)

Determining the ground-state energy of (A1) thus amounts
to diagonalizing a 4N2×4N2 (6N2×6N2) matrix for the
ν = 2(3) models, respectively.

To minimize the computational time required, we first
determine the ground-state energies in all flux sectors for
smaller lattice sizes, and subsequently consider only the
lowest-energy flux sectors to determine the respective phase
boundaries on lattices with N2 = 48×48 unit cells. The re-
sulting energies (per unit cell) as a function of the applied
Zeeman field are given in Fig. 10. For the off-diagonal �-type

FIG. 11. Energies of H̃(3)
J + H̃(3)

� in the various flux sectors,
relative to the 0-flux sector, as a function of �/J obtained by diago-
nalization on a lattice with 36×36 unit cells. The labels 1/3 etc. refer
to the corresponding flux crystals displayed in Fig. 9, and (1/3)a,
etc., denote stripy flux configurations with stripes perpendicular to
a-type bonds. Inset: Energies at � = J .

interaction on the honeycomb lattice, we find that the flux-free
sector to be the optimal flux configuration every except at
� = J , where many flux sectors are close in energy as dis-
played in Fig. 11. Since at � = J the flux-free sector’s energy
per unit cell E0 = −5.5798J , reliably determining the optimal
ground-state flux sector requires a more systematic study with
higher numerical accuracy.

Having diagonalized iA with an unitary transformations
U such that U †iAU = diag(ε1, . . . ), the magnetization mα =
1/(4N2)

∑
i〈σα

i 〉 induced by a nonzero Zeeman field can be
straightforwardly obtained. The required fermionic bilinear
expectation values can be computed by expanding the Ma-
jorana fermions in terms of the normal modes as cα,i,s =∑

μ:εμ<0 Uα,i,s;μγμ + U ∗
α,i,s;μγ †

μ . Note that the sum extends
over only the negative eigenvalues to avoid the redundancy of
the Majorana spectrum [2]. The expectation values then read

〈
icα

s,ic
β
s,i

〉 =
∑

μ:εμ<0

[iUα,i,s;μU ∗
μ;β,i,s fD(εμ) + H.c.], (A3)

where fD denotes the Fermi Dirac distribution with
limT →0 fD(ε) = �(−ε).
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