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Excitation spectra of quantum matter without quasiparticles. I. Sachdev-Ye-Kitaev models
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We study the low-frequency spectra of complex Sachdev-Ye-Kitaev models at general densities. The analysis
applies also to SU(M ) magnets with random exchange at large M. The spectral densities are computed by numer-
ical analysis of the saddle-point equations on the real frequency ω axis at zero temperature T . The asymptotic
low-ω behaviors are found to be in excellent agreement with the scaling dimensions of irrelevant operators
which perturb the conformally invariant critical states. Of possible experimental interest is our computation of
the universal spin spectral weight of the SU(M ) magnets at low ω and T ; this includes a contribution from the
time reparametrization mode, which is the boundary graviton of the holographic dual. This analysis is extended
to a random t-J model in the following paper [M. Tikhanovskaya et al., following paper, Phys. Rev. B 103,
075142 (2021)].
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I. INTRODUCTION

There has been much recent interest in solvable models
[1–3] in the Sachdev-Ye-Kitaev (SYK) class as descriptions of
compressible quantum many-body systems without quasipar-
ticle excitations. These are models with random and all-to-all
interactions, and their low-energy limit has the structure of
(0+1)-dimensional conformal field theory [4]. Instead of
quasiparticles, there are infinite towers of primary operators
[5–8], all but a few of which have irrational scaling dimen-
sions, and these describe the long-time dynamics of all local
observables. We will examine a number of models of bosons
and/or fermions in this paper; the boson or fermion, a = b, f ,
has a zero-temperature (T = 0) spectral density as a function
of frequency ω of the form (for the case with q = 4 particle
terms in the Hamiltonian)

ρa(ω) =
{ ga+(ω)√

ω
, ω > 0

ga−(−ω)√−ω
, ω < 0.

(1.1)

Here ga±(ω → 0) = const and the main purpose of the
present article is to describe the small-ω expansions of ga±(ω)
for a number of models of physical interest. These expansions
depend upon the scaling dimensions and operator product
expansions of the irrelevant primary operators and are also
constrained by Luttinger-like theorems [9–11] and an emer-
gent time-reparametrization symmetry [6,7]. We will compare
conformal theory predictions with accurate numerical solu-
tions of the SYK equations carried out directly on the real ω

axis at T = 0 (as in the original paper of Ref. [1]) and find
excellent agreement.

A related analysis has been carried out by Maldacena
and Stanford [6]. They examined the particle-hole symmetric
Majorana SYK model using numerical solutions of the SYK
equations in imaginary time. All of our numerical analysis
will be carried out in real time, using real-frequency spec-

tral functions; we will show that this allows higher precision
and enables us to identify various subleading and nonlinear
corrections. We also examine fermionic and bosonic models
without particle-hole symmetry; the scaling dimensions for
the particle-hole asymmetric fermionic models were obtained
in Ref. [11].

Our results will also apply to the random quantum magnets
with SU(M ) symmetry which were studied in Ref. [1] in the
limit of large M. Such models are of interest to condensed
matter physics because of their “Mottness”: They have con-
straints associated with strong on-site interactions, in contrast
to the infinite-range interactions of the SYK models. For these
magnets, we compute the local dynamic spin susceptibility
χL(ω). This quantity is potentially of experimental interest
as a description of a quantum critical point in a disordered
magnetic system studied by neutron scattering [12–16]. The
time-reparametrization mode is the leading irrelevant operator
determining the frequency dependence of χL and we find

ImχL(ω) ∼ tanh
( ω

2T

)[
1 − Cγω tanh

( ω

2T

)
− · · ·

]
, (1.2)

where the specific heat per spin component is equal to γ T
and C is a dimensionless number which is specified in (5.12)
and (5.13) for our models. The leading term in (1.2) has been
obtained earlier [4]. We obtain here the term proportional
to C; this is the contribution of the time-reparametrization
mode, i.e., the boundary graviton in the holographic dual.
Notice that this term has a prefactor of ω without a cor-
responding factor of 1/T , which indicates the violation of
scaling induced by an irrelevant operator. We show a plot of
ImχL in Fig. 1; it is curious that this resembles observations
in Refs. [13,14], and it would be worthwhile to investigate
this further, especially in systems with greater randomness.
Similar spectra should also apply to anomalous density fluctu-
ations in the model of Ref. [17], and density fluctuations have
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FIG. 1. Plot of the local dynamic spin susceptibility. The blue
solid line is obtained from the numerical solution of the Schwinger-
Dyson Eqs. (2.13) for T/J = 0.1. The black dashed line is the
analytical result in (1.2) for Cγ T � 0.05 with three higher-order
terms in (1.3) included with their T = 0 expressions.

been investigated in momentum-resolved electron energy-loss
spectroscopy [18,19] but for ω � T .

In the limit of T → 0, Eq. (1.2) predicts a discontinuous
spectral density at zero frequency. We have computed higher-
order terms at T = 0 for the particle-hole symmetric case [see
Eq. (5.10)]

ImχL(ω) ∼ sgn(ω)

[
1 − Cγ |ω| − 7

16
(Cγ )2|ω|2

− C ′|ω|2.773 54... + 37

48
(Cγ )3|ω|3 − · · ·

]
, (1.3)

where the |ω|2 and |ω|3 terms are nonlinear corrections from
the time-reparametrization mode and C ′ mode is a linear
contribution of a second irrelevant operator with scaling di-
mension h = 3.773 54 . . .. The T > 0 form of the C ′ term can
be deduced from the imaginary part of (D24).

We have attempted to write this paper in a self-contained
manner for condensed matter physicists. We will begin in
Sec. II by defining the models of interest and recalling the
leading conformally invariant results. A diagrammatic anal-
ysis of the conformal perturbation theory is presented in
Sec. III, where we obtain the scaling dimensions of all pri-
mary operators and identify the operators associated with
time reparametrization and an emergent U(1) gauge invari-
ance. Section IV employs an alternative functional approach
of Kitaev and Suh [7] which allows efficient treatment of
particle-hole asymmetry, nonlinear corrections, and nonzero
temperatures. Section V transforms our results from imagi-
nary time to the spectral densities on the real-frequency axis.
Section VI extends our analysis to models of bosonic random
rotors, which have appeared in some recent studies of quan-
tum phase transitions. Finally, our main numerical results are
presented in Sec. VII, where we compare numerical solutions
of the SYK equations on the real-frequency axis with the
predictions of the conformal perturbation analysis.

The formalism developed in this paper for the SYK mod-
els will be applied to the t-J model in the following paper

[20]. We will dope the large-M SU(M ) insulating quantum
magnets described in the present paper by mobile charge
carriers. The resulting theory of fractionalized particles, the
spinons and holons, is described [21] by a set of Schwinger-
Dyson equations similar to those presented in Sec. II. The
following paper [20] presents the conformal corrections to a
variety of gauge-invariant observables, including the electron
spectral functions and the optical conductivity.

II. CONFORMAL SOLUTIONS FOR THE SYK MODELS

We begin by recalling the less-familiar models considered
originally in Ref. [1], as these will connect directly to the
t-J models considered in the following paper [20]. These are
SU(M ) spin models with the Hamiltonian

HJ =
∑

〈i j〉,αβ

Ji j

(
SiαβS jβα − 1

M
SiααS jββ

)
. (2.1)

Here α = 1, . . . , M is an SU(M ) spin index, Siαβ = S†
iβα is

the spin operator on site i, and the 1/M term (which will be
dropped in the large-M limit) is added to ensure it transforms
in the adjoint of SU(M ). Here we have chosen [4] to place the
sites i on a high-dimensional lattice with coordination number
z, and the Ji j are nearest-neighbor exchange interactions and
Gaussian random variables with

Ji j = 0, J2
i j = J2

Mz . (2.2)

We will examine the model HJ in the limit of large z, followed
by large M. Alternatively, we can consider the model on an N-
site cluster, with all-to-all random exchange interactions; this
was the model considered in Ref. [1], and the large-N limit
leads to the same saddle-point equations as the large-z limit.
However, the large-z limit allows us to consider transport
properties of electrons in a lattice [4,22] using a t-J model,
which we will described in the following paper.

The properties of the SU(M ) spin models depend upon the
representation of SU(M ) realized by the states on each site i.
The most common choices correspond to the formulations in
terms of fermionic and bosonic spinons. The fermionic spinon
case corresponds to the representation with a single column of
boxes in the SU(M ) Young tableaux, with the spin operator

Siαβ = f †
iα fiβ (2.3)

expressed in terms of fermionic spinons fiα . This induces a
U(1) gauge symmetry

fiα (τ ) → fiα (τ )eiφi (τ ). (2.4)

The physical Hilbert space must be U(1) gauge symmetric,
which implies that the gauge charge is conserved, and we
consider the representation∑

α

f †
iα fiα = κM, (2.5)

with κM boxes in the Young tableaux. We will take the large-
M limit at fixed κ .

Similarly, the bosonic spinon case corresponds to a differ-
ent SU(M ) representation with a Young tableaux of a single
row of boxes, and the spin operator

Siαβ = b
†
iαbiβ, (2.6)
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with the U(1) gauge charge constraint∑
α

b
†
iαbiα = κM. (2.7)

The fermionic spinon representation defined by (2.3) and (2.5)
and the bosonic spinon representation defined by (2.6) and
(2.7) are the same only for κM = 1.

Along with the SU(M ) spin models recalled above, our
results apply also to the complex SYK model (with a q = 4
fermion Hamiltonian)

HSYK = 1

2N3/2

N∑
i, j,k,�=1

Ji j;k� f †
i f †

j fk f� − μ f

∑
i

f †
i fi, (2.8)

where Ji j;k� are independent random numbers with |Ji j;k�|2 =
J2. The advantage of this model is that only a single large-
N limit is required, and there is no analog of the subsequent
large-M limit required for the models above. However, as we
discussed in Sec. I, this simplicity comes at a cost: We lose
the Mottness that is present in the spin (and t-J) models and
is important for condensed matter applications. The analog of
the fermion constraint in (2.5) is now

〈 f †
i fi〉 = κ, (2.9)

with no sum over i. Analogously to the fermionic SYK model,
we can define the bosonic SYK model as

HSYK = 1

2N3/2

N∑
i, j,k,�=1

Ji j;k�b
†
i b

†
jbkb� − μb

∑
i

b
†
i bi, (2.10)

along with the constraint

〈b†
i bi〉 = κ. (2.11)

We remark that the bosonic models defined above have a
kinetic term b†∂τb in the Lagrangian formalism.

All of the above models have a common set of saddle-
point equations, which we now describe. We introduce a
two-point Green’s function in imaginary time τ at a finite
temperature T :

G f (τ ) = −〈Tτ ( f (τ ) f †(0))〉,
Gb(τ ) = −〈Tτ (b(τ )b†(0))〉.

(2.12)

In both cases the large-N Schwinger-Dyson (SD) equations
look identical and read, for τ ∈ (0, β ),

Ga(iωn) = 1

iωn + μa − 
a(iωn)
,


a(τ ) = J2Ga(τ )q/2Ga(β − τ )q/2−1,

(2.13)

where the index a = f , b denotes fermions or bosons, β =
1/T is the inverse temperature, μa is the chemical potential,
and we assume that q is an even integer. The models described
above have q = 4, but we will also present some results for
general q. For the fermionic case the Matsubara frequency is
ωn = 2π

β
(n + 1

2 ) and for the bosonic case ωn = 2π
β

n. The two-
point Green’s function satisfies the Kubo-Martin-Schwinger
condition Ga(τ ) = ζaGa(β + τ ), where ζb = 1 and ζ f = −1.

It is well known that Eqs. (2.13) admit a conformal solution
in the IR region, where 1/J � τ � β − 1/J ,

Gc
a(τ ) = −b�

a

(
βJ

π
sin

πτ

β

)−2�

e2πEa (1/2−τ/β ),


c
a(τ ) = −J2b1−�

a

(
βJ

π
sin

πτ

β

)−2(1−�)

e2πEa (1/2−τ/β ),

(2.14)

where � = 1/q, Ea is the asymmetry parameter which
implicitly depends on μ, and the dimensionless constant
prefactor ba is

b f = (1 − 2�) sin 2π�

4π cos π (� + iE f ) cos π (� − iE f )
,

bb = (1 − 2�) sin 2π�

4π sin π (� + iEb) sin π (� − iEb)
.

(2.15)

When we work in frequency space, it turns out to be conve-
nient to use the asymmetry angles θa related to Ea by

e2πEa = ζa
sin(θa + π�)

sin(θa − π�)
,

e−2iθ f = cos π (� + iE f )

cos π (� − iE f )
,

e−2iθb = − sin π (� + iEb)

sin π (� − iEb)
.

(2.16)

Therefore, we can find

ba = ζa
1 − 2�

π

sin(θa + π�) sin(θa − π�)

sin 2π�
. (2.17)

Notice that Eb = 0 for θb = π/2 and E f = 0 for θ f = 0. Also,
π� < θb < π/2 and −π� < θ f < π�.

Below we will study the structure of the conformal cor-
rections to the large-z and large-M saddle point of HJ in (2.1)
and the large-N saddle point of HSYK in (2.8). The Schwinger-
Dyson equations at the saddle point are identical in the two
models, so the conformal corrections will also be the same.
However, once we go beyond the saddle point and examine
four-point correlators, there will be differences between the
two models. We will not address these differences here.

III. CONFORMAL PERTURBATIONS

In this section we describe a useful view point on the SYK
models as a conformal field theory (CFT) perturbed by infi-
nite set of irrelevant operators. Although this approach is not
rigorous and has caveats, which we mention below, it clarifies
understanding of some results and can correctly predict 1/βJ
and 1/(βJ )2 corrections to the free energy (see Appendix A).
We will turn to a more complete approach to similar results in
Sec. IV.

For simplicity, in this section we consider only the
fermionic SYK model (2.8) with zero chemical potential μ =
0, as the generalization to μ �= 0 is described in Sec. IV. It
was shown in Refs. [23–25] that this model has an infinite
set of bilinear primary operators OA

h (τ ) and OS
h (τ ), which

can be schematically represented as OA
hn

= f †
i ∂2n+1

τ fi and

OS
hn

= f †
i ∂2n

τ fi for n = 0, 1, 2, . . . . To compute the scaling
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FIG. 2. Diagrammatic representation of the Dyson-Schwinger
Eqs. (3.2), after dropping the bare terms. The internal loop has q − 2
powers of Gc (this diagram is for q = 6).

dimensions of the operators OA/S
h (τ ) we consider three-point

functions

v
A/S
h (τ1, τ2, τ0) = 〈

f (τ1) f †(τ2)OA/S
h (τ0)

〉
. (3.1)

Then we can derive the Dyson-Schwinger equations for the
three-point functions in the IR region and we can drop the
bare terms to obtain [23]

v
A/S
h (τ1, τ2, τ0) =

∫
dτ3dτ4KA/S(τ1, τ2; τ3, τ4)vA/S

h

× (τ3, τ4, τ0), (3.2)

where the kernels KA/S are

KA/S(τ1, τ2; τ3, τ4)

= −
[

q

2
±

(
q

2
− 1

)]
J2Gc(τ13)Gc(τ24)Gc(τ34)q−2. (3.3)

Diagrammatically, Eqs. (3.2) are represented in Fig. 2.
Emergent conformal symmetry in the IR region fixes the

functional form of the three-point functions up to the structure
constants cA

h and cS
h ,

vA
h (τ1, τ2, τ0) = cA

h b�sgn(τ12)

|Jτ12|2�−h|Jτ10|h|Jτ20|h ,

vS
h (τ1, τ2, τ0) = cS

hb�sgn(τ10)sgn(τ20)

|Jτ12|2�−h|Jτ10|h|Jτ20|h .

(3.4)

It can be shown that for arbitrary h the three-point functions
v

A/S
h satisfy the equation [6,7,24,25]∫

dτ3dτ4KA/S(τ1, τ2; τ3, τ4)vA/S
h (τ3, τ4, τ0)

= kA/S(h)vA/S
h (τ1, τ2, τ0), (3.5)

where kA/S(h) are given by the formulas

kA(h) = �(2� − h)�(2� + h − 1)

�(2� − 2)�(2� + 1)

(
1 − sin πh

sin 2π�

)
,

kS(h) = �(2� − h)�(2� + h − 1)

�(2� − 1)�(2�)

(
1 + sin πh

sin 2π�

)
.

(3.6)

These formulas can be verified by taking the limit |τ0| → ∞
in (3.5) and then evaluating the integrals over τ3,4. Therefore,
comparing (3.5) with (3.2), we have to set

kA(h) = 1, kS(h) = 1, (3.7)

which define the anomalous scaling dimensions of the
operators OA/S

h (τ ).

The SYK model can be viewed as some conformal field
theory perturbed by this infinite set of irrelevant primary oper-
ators. In the case of zero chemical potential μ = 0 there is an
exact particle-hole symmetry and thus only OA

h operators can
appear in the action. This situation exactly coincides with the
case of the Majorana SYK model, where instead of complex
fermions fi we have Majorana fermions χi. Therefore, in what
follows we omit letter A for brevity and write for the effective
action of the Majorana SYK model

SSYK = SCFT +
∑

h

gh

∫ β

0
dτ Oh(τ ), (3.8)

where Oh has anomalous dimensions h = h0, h1, h2, h3, . . .

and h0 = 2, h1 � 3.77, h2 � 5.68, etc., which are found from
the equation kA(h) = 1. (Note that we will often use the sub-
script i to represent the subscript hi, e.g., gh2 ≡ g2).

The expression for the full two-point function reads

G(τ12) = − 1

Z

∫
Dχ

1

N
χi(τ1)χi(τ2)e−SSYK . (3.9)

Therefore, using conformal perturbation theory, we find

G(τ12) = Gc(τ12) +
∑

h

gh

∫
dτ3

1

N
〈χi(τ1)χi(τ2)Oh(τ3)〉

− 1

2

∑
h,h′

ghgh′

∫
dτ3dτ4

1

N
〈χi(τ1)χi(τ2)

× Oh(τ3)Oh′ (τ4)〉 + · · · , (3.10)

where we used that Gc(τ12) = − 1
N 〈χi(τ1)χi(τ2)〉 and averag-

ing of the correlation functions is implicitly performed with
the action SCFT and involves only connected diagrams. The
higher correlation functions are fixed by conformal invariance
up to the structure constants ch and ch1h2h3 ,

1

N
〈χi(τ1)χi(τ2)Oh(τ3)〉 = chb�sgn(τ12)

|Jτ12|2�−h|Jτ13|h|Jτ23|h ,

1

N
〈χi(τ1)χi(τ2)Oh1 (τ3)Oh2 (τ4)〉

=
∑

h

chchh1h2 b�sgn(τ12)|τ14|h12

|Jτ12|2�|Jτ34|h1+h2 |τ13|h12
xh

2F1(h, h + h12, 2h, x),

(3.11)

where h12 = h1 − h2 and x = τ12τ34
τ13τ24

. Alternatively, they can be
found from the operator product expansion (OPE)

1

N
χi(τ1)χ†

i (τ2) = b�sgn(τ12)

|Jτ12|2�
+ 1

N

∑
h

chb�sgn(τ12)

|Jτ12|2�−h

× Ch(τ12, ∂2)Oh(τ2),

Oh1 (τ1)Oh2 (τ2) = Nδhh′

|Jτ12|2h
+

∑
h′′

ch1h2h3 |Jτ12|h3−h1−h2

× C123(τ12, ∂2)Oh3 (τ2), (3.12)

where b = 1
2π

(1 − 2�) tan π� and the operators Ch and C123

generate all descendants and are determined by the functional
form of the three-point functions. The structure constants ch
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are [6]

c2
h = 1

(q − 1)b�

h − 1/2

π tan(πh/2)

�(h)2

�(2h)

1

k′
A(h)

(3.13)

and chh′h′′ have a much more complicated form and were
computed in Refs. [8,26]. The OPE formulas (3.12) should
not include the h0 = 2 operator, since it was shown in [6] that
this operator breaks conformal symmetry in the SYK model.
Moreover, we note that ch is divergent for h0 = 2. Neverthe-
less, let us assume that we deal with unbroken CFT and can
include the operator Oh0 in the OPE formulas assuming the
limit h0 → 2.1

For the first-order correction to the two-point function at
zero temperature β = ∞ we find

δGh(τ12) = gh

∫ +∞

−∞
dτ3

chb�sgn(τ12)

|Jτ12|2�−h|Jτ13|h|Jτ23|h

= −Gc(τ12)
αh

|Jτ12|h−1
, (3.14)

where αh and gh are related as

g2
h = J2(q − 1)b�k′

A(h)
h − 1/2

π tan(πh/2)

�(h)2

�(2h)
α2

h . (3.15)

We note that g0 has to be divergent for h0 = 2 in order for α0

to be finite. Also, we remark that all gh ∝ J are dimensionful
couplings, whereas αh are dimensionless constants. The anal-
ysis in Sec. IV establishes that α0 is indeed finite, and we will
confirm this in our numerical results.

For the second-order correction we find, using (3.11),

δ2Ghh′ (τ12) = −1

2
ghgh′

∫
dτ3dτ4

1

N
〈χi(τ1)χi(τ2)Oh(τ3)

× Oh′ (τ4)〉
= −Gc(τ12)

ahh′αhαh′

2|Jτ12|h+h′−2
, (3.16)

where the coefficients ahh′ are functions of h, h′, and � and we
will find some of them explicitly in Sec. IV using resonance
theory.

It is instructive to use these conformal perturbation meth-
ods to also compute the free energy. We describe this
in Appendix A; one term is at variance with another
discussion [28].

IV. KITAEV-SUH RESONANCE THEORY

In this section we review the renormalization and res-
onance formalism developed in [7,11,22] and extend it to
nonlinear order. The theory provides a framework for under-
standing the corrections due to physics at higher-energy scales
in SYK-type models.

1Perhaps this approach can be justified if the SYK model is consid-
ered as a limit of some conformal SYK model for which h0 = 2 − ε0

and ε0 → 0 (see [27] and Appendix H in [6]).

To linear order, the corrected Green’s function in (3.10),
G(τ ) = −〈Tτ f (τ ) f †(0)〉, can be written as

G(τ ) = Gc(τ )

(
1 −

∑
h

αh

(βJ )h−1
Fh(τ/β ) + · · ·

)
. (4.1)

Here recall that Gc(τ ) is the conformal Green’s function, β is
the inverse temperature, and J denotes some UV energy scale,
which is usually taken to be the SYK coupling. In addition,
Fh is some universal scaling functions that will be computed
later in (4.55). The sum runs over a set of discrete numbers
{hi} that will be determined in Sec. IV A. Although the reso-
nance formalism is a direct consequence of Schwinger-Dyson
equations, the structure of the corrections is consistent with
the CFT interpretation of the SYK-type model. The numbers
{hi} can be interpreted as the scaling dimensions of primary
operators {Oh} in the SYK CFT that appears in the OPE of
f (τ ) f †(0). The dimensionless coefficients αh parametrize the
deformation away from the SYK CFT, as in (3.8). The exact
values of αh require solving the full Schwinger-Dyson equa-
tions in the UV and they are usually extracted from numerics.

In SYK-type models, the operators OS
0 (there may be

several) of scaling dimension hS
0 = 1 and OA

0 of scaling di-
mension hA

0 = 2 are special: They are the conserved charges
of U(1) and time-reparametrization symmetry, respectively.
These symmetries are emergent and spontaneously broken
in the IR, but also explicitly broken by the deformation δS
which exists in the UV. Therefore, δS provides the effective
action for the these pseudo-Nambu-Goldstone modes. For
the time-reparametrization symmetry, this is the well-known
Schwarzian action.

The resonance formalism was first developed in [7] for the
Majorana SYK model, where the Green’s function is always
antisymmetric in time and Fh is obtained for generic tem-
perature. In [11] the formalism was extended to the complex
SYK model which has a U(1) symmetry, and Fh is obtained at
zero temperature for generic U(1) charge. In [22] the theory
was further extended to the t-J model, a coupled system of
both fermions and bosons, and the scaling function Fh was
obtained for generic temperature and U(1) charge. In all these
previous works, the correction is only calculated for linear
order in αh, which only provides information about the spec-
tral weight ρa(ω) around ω = 0. In this paper we extend the
formalism to arbitrary nonlinear order in αh, which shows
excellent agreement with large-q expansion and numerics at
finite q; it can now extrapolate the spectral weight ρa(ω) up to
finite ω/J .

A. Linear order correction

We summarize previous works on linear order resonance
theory [7,11,22]. Our discussion will be based on the SD
equation, abstractly written as

G = G∗[
], 
 = 
∗[G] + σ. (4.2)

Here G and 
 are regarded as bilocal fields and G∗ and 
∗
are functionals that define the saddle point. In addition, σ

is a bilocal field referred to as the UV source. The confor-
mal solution (Gc, 
c) is exact if σ = 0. In the bosonic and
fermionic SYKq models, G∗[
](τ1, τ2) = −(1/
)(τ1, τ2)
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(in the sense of functional inverse), 
∗[G](τ1, τ2) =
(−)εa J2G(τ1, τ2)q/2[−G(τ2, τ1)]q/2−1, and σ (τ1, τ2) = (∂τ1 −
μ)δ(τ1 − τ2). Here σ is referred to as the UV source because
it contains high-frequency Fourier components. We also note
that the self-energy 
 is shifted from the usual definition
by σ .

If we are interested in the IR physics J−1 � |τ | � β, the
UV source σ can be treated as a small perturbation, the
small parameter being the ratio between IR and UV scales
1/(βJ )h−1 or 1/|Jτ |h−1. To calculate the linear response, we
expand the SD Eqs. (4.2) around the conformal saddle point
(Gc, 
c) to linear order

G = Gc + δG, 
 = 
c + δ
 (4.3)

and obtain

δG = W
δ
, δ
 = WGδG + σ, (4.4)

where we defined W
 and WG as

W
 = δG∗
δ


∣∣∣∣

c

, WG = δ
∗
δG

∣∣∣∣
Gc

. (4.5)

Finally, a simple analysis yields [11]

δG = (1 − W
WG︸ ︷︷ ︸
KG

)−1W
σ, δ
 = (1 − WGW
︸ ︷︷ ︸
K


)−1σ. (4.6)

Here we defined two kernels KG = W
WG and K
 = WGW
 .
We remark that KG is exactly the one-rung diagrams that one
needs to sum to compute the four-point functions [6,7]. By
construction, the nonzero spectra of KG and K
 are the same.

In what follows we adopt a convenient notation used in
Ref. [11] for writing functions which have discontinuity at
τ = 0 and different behavior for negative and positive τ .
Namely, we write all functions as two component vectors,
where the first component is for τ > 0 and the second one is
for τ < 0. We refer to this as a plus/minus basis. For example,
the conformal solution for the Green’s function Gc

a(τ ) and
self-energy 
c

a(τ ) at zero temperature can be written as

Gc
a(τ ) = −

(
eπEa , τ > 0
ζae−πEa , τ < 0

)
b�

a

|Jτ |2�
,


c
a(τ ) = −

(
eπEa , τ > 0
ζae−πEa , τ < 0

)
J2b1−�

a

|Jτ |2(1−�)
,

(4.7)

where the constant ba is given in (2.17), ζb = 1, and ζ f =
−1. In what follows we suppress the index a = f , b in various
functions for brevity and only keep ζ factors where they are
needed.

To proceed with the analysis, we note that the conformal
saddle point possesses SL(2, R) symmetry and therefore we
can break up (4.6) into irreducible representations of SL(2, R)
labeled by h, and a convenient basis for this purpose at zero
temperature is

δG(τ ) = δ �G|Jτ |1−hGc(τ ),

δ
(τ ) = δ �
|Jτ |1−h
c(τ ),

σ (τ ) =
∑

h

�σh|Jτ |1−h
c(τ )u(τ ),

(4.8)

where δ �G = (δG+, δG−)T, δ �
 = (δ
+, δ
−)T, and �σh =
(σh+, σh−)T are all two-component columns according to our
new notation and the source σ (τ ) is written in the IR region
with the window function u(τ ) and positive real numbers
h (for details about this representation of the source σ see
Ref. [7]). In this basis, W
 and WG, and KG and K
 be-
come (2 × 2)-dimensional matrices. So for the fermionic and
bosonic SYKq models (2.13), we can find

δ
∗(τ )|Gc =
[

q

2

δG(τ )

Gc(τ )
+

(
q

2
− 1

)
δG(−τ )

Gc(−τ )

]

c(τ ), (4.9)

and using the basis (4.8) we write it as

δ
∗(τ )|Gc = WGδ �G|Jτ |1−h
c(τ ), (4.10)

where WG becomes a 2 × 2 matrix given by the formula

WG =
(

q/2 q/2 − 1
q/2 − 1 q/2

)
. (4.11)

To find expression for the operator W
 we use the Fourier
transform written in our convenient plus/minus basis(

a+|τ |−α, τ > 0
a−|τ |−α, τ < 0

)
eiωτ dτ =

(
a′

+|ω|α−1, ω > 0
a′

−|ω|α−1, ω < 0

)
,(

a′
+

a′
−

)
= M(α)

(
a+
a−

)
, (4.12)

where the 2 × 2 matrix M(α) has the form

M(α) = �(1 − α)

(
i1−α iα−1

iα−1 i1−α

)
,

M(α)−1 = �(α)

2π

(
i−α iα

iα i−α

)
.

(4.13)

In the Fourier space the basis (4.8) takes the form

δG(iω) = F (h)δ �G|ω/J|h−1Gc(iω),

δ
(iω) = �(h)δ �
|ω/J|h−1
c(iω),
(4.14)

where the matrices F (h) and �(h) are

F (h) = −i

√
�(2�)

�(2 − 2�)
b1/2

(
eiθ 0
0 −e−iθ

)
M(2� − 1 + h)

×
(

eπE 0
0 ζe−πE

)
,

�(h) = −i

√
�(2 − 2�)

�(2�)
b1/2

(
e−iθ 0

0 −eiθ

)
M(1 − 2� + h)

×
(

eπE 0
0 ζe−πE

)
(4.15)

and we used formulas for Gc(iω) and 
c(iω) in the Fourier
space at zero temperature

Gc(iω) = − iC

J

(
e−iθ

−eiθ

)
|ω/J|2�−1,


c(iω) = − iJ

C

(
eiθ

−e−iθ

)
|ω/J|1−2�,

(4.16)
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where we defined C ≡ √
�(2 − 2�)/�(2�)b�−1/2. Notice

that there are no ζ factors in (4.16). The operator W
 connects
linear corrections δ
 and δG as δG = W
δ
 and has a simple
form in the Fourier space

δG∗(iω)|
c = Gc(iω)2δ
(iω). (4.17)

Thus, using (4.14) and Gc(iω)
c(iω) = −1, we find

F (h)δ �G = −�(h)δ �
 (4.18)

and therefore W
 acts on δ �
 as a matrix W
 (h) =
−F (h)−1�(h) and is given by the formula [11]

W
 (h) = �(2� − 1 + h)�(2� − h)

�(2�)�(2� − 1) sin(2π�)

(
sin(πh + 2θ ) − sin(2π�) + sin(2θ )

− sin(2π�) − sin(2θ ) sin(πh − 2θ )

)
. (4.19)

We note that the matrix W
 (h) has the same form for bosonic
and fermionic SYK models and the only difference is the
range of asymmetry angle θ in these two cases. The matrix
KG(h) is a product of two matrices W
 (h) and WG, so KG(h) =
W
 (h)WG. Therefore, (4.6) reads

δG = 1

1 − KG(h)
W
 (h)σ. (4.20)

For generic h, 1 − KG(h) is nonsingular and therefore the
response δG is negligible at IR scales. We need to recall that
a physical source σ is supported only in the UV and we
expect that a nonsingular response δG is also constrained in
the UV region. To get an IR response, 1 − KG(h) should be
singular, so the possible h that appears in (4.1) is selected by
the condition

det[1 − KG(h)] = 0. (4.21)

For the particle-hole symmetric case μ = 0, this equation
is equivalent to kA/S(h) = 1, where kA/S(h) are defined
in (3.6).

For the resonant values of h = h∗, the apparent singularity
in (4.20) is regulated by the window function u(τ ) which
restricts σ to be supported only on UV scales. Following
[7,11], we obtain

δG(τ ) =
∑
h=h∗

1

K ′
G(h)

W
 (h)�σh|Jτ |1−hGc(τ ), (4.22)

where the sum goes over all resonances h∗ which are the
solutions of (4.21). The derivative of matrix K ′

G(h) is

1

K ′
G(h)

= vhwh

k′
G(h)

, (4.23)

where vh and wh are the corresponding right and left eigen-
vectors of KG(h), respectively, which have the eigenvalue
kG(h) = 1 and are normalized as whvh = 1. Finally, we can
rewrite (4.22) in the form

δG(τ ) = −
∑
h=h∗

αhvh
Gc(τ )

|Jτ |h−1
,

αh = −whW
 (h)�σh

k′
G(h)

.

(4.24)

We remark that the values of �σh and thus αh are not accessi-
ble in the IR because a physical UV source such as σ (τ ) =
(∂τ − μ)δ(τ ) is highly singular and the task of decomposing
it into asymptotic power laws perhaps is equivalent to solving
the full Schwinger-Dyson equations. Below in Sec. VII we
present numerical results for αh of the first few resonances in
the bosonic and fermionic SYK4 models. The UV parameters
αh depend on the asymmetry angle θ and q.2 Below we present
explicit formulas for the eigenvalues and eigenvectors of the
matrix KG(h),

kA/S(h, θ ) = �(2� − h)�(2� + h − 1)

�(2� + 1)�(2� − 1)

(
2� − 1 + cos 2θ sin πh

sin 2π�
∓

√
P

)
,

v
A/S
h (θ ) = 1

1 + (2� − 1) sin πh
sin 2π�

(
sin 2θ

sin 2π�
(2� − 1 − cos πh) ± √

P

1 + sin 2θ
sin 2π�

+ (2� − 1) sin(πh−2θ )
sin 2π�

)
,

(4.25)

where

P = sin(2θ )2

(
1 − sin(πh)2

sin(2π�)2

)
+

(
cos(2θ ) + (2� − 1)

sin πh

sin 2π�

)2

. (4.26)

Also w
A/S
h (θ ) can be expressed through v

S/A
h (θ ) as w

A/S
h (θ ) =

v
S/A
h (−θ )Tσz/[vS/A

h (−θ )Tσzv
A/S
h (θ )], where σz is the third

2We note that α0 for the h0 = 2 resonance in the Majorana SYK
model was computed numerically in Ref. [6] and denoted there by
αG. Moreover, αG was defined with respect to J = 2(1−q)/2√qJ and
therefore for q = 4 we have α0 = √

2αG.

Pauli matrix and one can check that w
A/S
h v

S/A
h = 0. We note

that for θ = 0 the eigenvalues kA/S(h) in (4.25) coincide with
the definition (3.6). Though for the nonzero asymmetry angle
θ there is no symmetry under τ → −τ , we still label eigen-
values and eigenvectors with A/S indices. We denote by hA/S

solutions of the equations kA/S(h, θ ) = 1 and numerate them
as hA/S

0 , hA/S
1 , hA/S

2 , . . . . For these solutions we denote αh by
α

A/S
0 , α

A/S
1 , . . . and similarly v

A/S
0 , v

A/S
1 , . . . . In Fig. 3 we plot
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FIG. 3. Plots of the resonance values hA/S and corresponding
k′

A/S(hA/S) for the fermionic and bosonic q = 4 SYK models as
functions of the asymmetry angles θ f and θb. Here hA/S are solutions
of the equations kA/S(h, θ ) = 1, where kA/S are defined in (4.25).
The red and blue lines are solutions of the equations kS(h) = 1 and
kA(h) = 1, respectively.

hA/S and the corresponding k′
A/S(hA/S) for the fermionic and

bosonic SYK4 models as functions of the asymmetry angles
θ f and θb. We remark that in the fermionic model for θ f =
π/6 some solutions of the equation kS(h) = 1 (red lines) go
into solutions of kA(h) = 1 (blue lines); nevertheless, we still
denote the dimension of the whole line by hA. In the bosonic
case this happens for θb = π/3. The resonances hA

0 = 2 and
hS

0 = 1 are related to reparametrization and U(1) symmetries,
respectively, and do not depend on the asymmetry angle θ f or
θb. According to Eq. (4.24), the mode hS

0 = 1 gives a constant
correction to the Green’s function and represents a response of
the asymmetry parameter E (or θ ) to a change of the chemical
potential μ. Therefore, in the conformal two-point function
(4.7) this mode is already taken into account. Moreover, it was
shown in [11] that the hS

0 = 1 resonance leads to the Luttinger
relations

Q ≡ 1

2
− 1

NM

∑
iα

〈 f †
iα fiα〉 = θ f

π
+

(
1

2
− �

)
sin 2θ f

sin 2π�
,

S ≡ 1

NM

∑
iα

〈b†
iαbiα〉 = θb

π
+

(
1

2
− �

)
sin 2θb

sin 2π�
− 1

2
.

(4.27)

We note an interesting behavior of the operator hA
1 in the

bosonic SYK model. For θb > 0.284π [exact value θb1 =
1
2 cos−1( −2

3π
)] the resonance hA

1 is less than the hA
0 = 2 mode

and becomes the leading contribution to the Green’s function.
At θb = π/3 we have hA

1 = 3/2 and for θb = 0.360π [exact
value θb2 = 1

2 cos−1( −2
π

)] we find that hA
1 = 1 and therefore

we should expect violation of the Luttinger relations (4.27).
We indeed confirm this numerically below in Sec. VII. For
θb > 0.360π the resonance hA

1 becomes less than one and
therefore gives a divergent contribution to the Green’s func-
tion for large τ . In terms of the discussion of Sec. III, this
means that the operator OhA

1
becomes relevant and thus it vio-

lates the basis of the analysis of Secs. III and IV. Interestingly,
for θb > 0.360π we see that another operator of dimension
1 − hA

1 appears and both operators merge at θb = 0.369π

[exact value θb3 = 1
2 cos−1( 1

2 − 3
8π

)] and h = 1/2 and go to
the complex plane. This is a well-known scenario, discussed
in [29–31]. In the context of the SYK-like models it was also
found in [32].

We chose normalization of v
A/S
h in (4.25) such that at θ = 0

it is v
A/S
h = (±1, 1)T and w

A/S
h = 1

2 (±1, 1) for arbitrary h and
thus the value of α0 for hA

0 = 2 mode is in agreement with the
previous works [6,7].

We remark that for the fermionic SYK model at zero chem-
ical potential μ = 0 (θ f = 0) we have

αS
h = σ S

h+ − σ S
h−

k′
S(h)

= 0, (4.28)

where we used that the source σ (τ ) has to be antisymmet-
ric under τ → −τ due to the particle-hole symmetry. Thus,
in this case only hA operators contribute to the two-point
function.

B. Nonlinear order corrections

In this section we present the generalization of the above
resonance formalism to linear in αh order. In the CFT
interpretation, we are computing corrections to Green’s func-
tions due to double insertion of irrelevant operators, for
example,

∫∫
dτ3dτ4〈 f (τ1) f †(τ2)Oh(τ3)Oh′ (τ4)〉, which is ex-

pected to be proportional to 1/|τ12|2�+h+h′−2. In terms of
the Schwinger-Dyson equation, this corresponds to double
insertion of the UV source σ . We will develop a recursive pro-
cedure that enables computation of correction up to arbitrary
order.

For simplicity, we will restrict the procedure to zero tem-
perature and comment on finite temperature later. Our strategy
is to treat (4.2) as a perturbation problem and expand G and

 to nth order in σ :

G = Gc + δG + δ2G + · · · + δnG,


 = 
c + δ
 + δ2
 + · · · + δn
.
(4.29)

Expanding (4.2) accordingly and matching order by order, we
have

δkG = δkG∗[
], δk
 = δk
∗[G], k � 2. (4.30)
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We can calculate δkG and δk
 order by order recursively. To
do so we rewrite the above equations as

δkG = W
δk
 + δ̄kG∗[
], δk
 = WGδkG + δ̄k
∗[G],
(4.31)

where we have explicitly separated out the pieces depending
on δkG and δk
, which are all linear. The rest are written as
δ̄kG∗ and δ̄k
∗ and they depend nonlinearly on the corrections
of order 1 through k − 1. We can readily write down the
solution for δkG and δk
:

δkG = 1

1 − W
WG
(W
δ̄k
∗[G] + δ̄kG∗[
]), (4.32)

δk
 = 1

1 − WGW


(WGδ̄kG∗[
] + δ̄k
∗[G]). (4.33)

The starting point of the recursion is the δG and δ
 computed
from linear resonance theory. Because all δkG and δk
 are
power laws in both the time and frequency domains, the
expansion of δ̄kG∗ and δ̄k
∗ and the action of W
 and WG

can be carried out analytically and automated on a computer.
At finite temperature, the recursion is harder to implement
because δkG and δk
 are usually hypergeometric functions
whose complexity increases with k.

As an example, we find the second-order correction for the
bosonic and fermionic SYKq models. The Schwinger-Dyson
Eqs. (4.2) take the forms

G∗[
](iω) = −1


(iω)
,

(4.34)


∗[G](τ ) = (−)εa J2G(τ )q/2G(−τ )q/2−1.

In Sec. IV A we derived the linear order response for the
resonance h,

δhG(τ ) = −αhvh
Gc(τ )

|Jτ |h−1
, (4.35)

where vh = (vh+, vh−) is the right eigenvector of the ma-
trix KG(h) = W
 (h)WG with the eigenvalue kG(h) = 1, so
KG(h)vh = vh. Using (4.34), we can calculate

δ̄2G∗ = −
∑
h,h′

δh
(iω)δh′
(iω)


c(iω)3
=

∑
h,h′

δhG(iω)δh′G(iω)

Gc(iω)
,

(4.36)

where we used that Gc(iω)
c(iω) = −1 and δhG(iω) =
Gc(iω)2δh
(iω) and the sum over h and h′ goes over all reso-
nances. Using (4.14), we find, for the linear order response in
the Fourier space,

δhG(iω) = −αhF (h)vh|ω/J|h−1Gc(iω), (4.37)

where the matrix F (h) is given in (4.15) and acts on the vector
vh. Therefore, we find

δhG(iω)δh′G(iω)

Gc(iω)
= αhαh′[F (h)vhF (h′)vh′ ]|ω/J|h+h′−2Gc(iω),

(4.38)

where we introduced the special notation vhvh′ ≡
(vh+vh′+, vh−vh′−). Finally, we return to the coordinate
space and obtain, for the second variation of δ̄2G∗,

δ̄2G∗(τ )

Gc(τ )
=

∑
h,h′

F (h + h′ − 1)−1[F (h)vhF (h′)vh′ ]
αhαh′

|Jτ |h+h′−2
.

(4.39)

The second variation of 
∗[Gc] reads

δ̄2
∗(τ )


c(τ )
= q − 2

8

(
q
δhG(τ )δh′G(τ )

Gc(τ )Gc(τ )
+ (q − 4)

δhG(−τ )δh′G(−τ )

Gc(−τ )Gc(−τ )
+ q

δhG(τ )δh′G(−τ )

Gc(τ )Gc(−τ )
+ q

δhG(−τ )δh′G(τ )

Gc(−τ )Gc(τ )

)
. (4.40)

Using our vector notation for vh = (vh+, vh−) and v̄h = (vh−, vh+), we obtain

δ̄2
∗(τ )


c(τ )
=

∑
h,h′

1

8
(q − 2)[q(vh + v̄h)(vh′ + v̄h′ ) − 4v̄hv̄h′]

αhαh′

|Jτ |h+h′−2
. (4.41)

Therefore, the full second correction to G(τ ) reads

δ2G(τ )

Gc(τ )
= − ahh′αhαh′

|Jτ |h+h′−2
, (4.42)

where the two-component vector ahh′ is given by the formula

ahh′ = −[1 − W
 (h + h′ − 1)WG]−1{F (h + h′ − 1)−1[F (h)vhF (h′)vh′ ]

+ 1
8 (q − 2)W
 (h + h′ − 1)[q(vh + v̄h)(vh′ + v̄h′ ) − 4v̄hv̄h′ ]}. (4.43)

The general formula for the two-point function can be written as

G(τ ) = Gc(τ )

(
1 −

∑
h

αhvh

|Jτ |h−1
−

∑
h,h′

ahh′αhαh′

|Jτ |h+h′−2
−

∑
h,h′,h′′

ahh′h′′αhαh′αh′′

|Jτ |h+h′+h′′−3
− · · ·

)
, (4.44)
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where vh, ahh′ , ahh′h′′ , etc., are two-component vectors. For example, for the hA
0 = 2 mode and the q = 4 case we find

vA
0 =

(
1 − 3

2 sin 2θ

1 + 3
2 sin 2θ

)
, aA

00 =
(

3
16 (17 cos 4θ − 5 + 24 sin 2θ )
3

16 (17 cos 4θ − 5 − 24 sin 2θ )

)
. (4.45)

For the fermionic SYKq model at zero chemical potential we have θ = 0 and we omit all upper subscripts A for brevity,
since as we explained in (4.28) the hS modes do not contribute to the two-point function in this case. Then vh = (1, 1)T and also
ahh′ ∝ (1, 1)T, ahh′h′′ ∝ (1, 1)T, etc., and we can omit the vector notation so the coefficients ahh′ , ahh′h′′ , etc., become just real
numbers and thus the leading terms for the two-point function can be written as

G(τ ) = Gc(τ )

(
1 − α0

|Jτ | − α1

|Jτ |h1−1
− a00α

2
0

|Jτ |2 − 2a01α0α1

|Jτ |h1
− a11α

2
1

|Jτ |2h1−2
− a000α

3
0

|Jτ |3 + · · ·
)

, (4.46)

where h0 = 2 and h1 � 3.77. Using (4.43) for vh = (1, 1) and
θ = 0, we find explicitly

a00 = (2� + 1)(2 − 2� − cos 2π�)

8� cos2 π�
. (4.47)

In general, it is possible to obtain corrections up to an arbitrary
order. As an example for the cubic order in α0 the result takes
the form, for θ = 0,

a000 = (� + 1)(2� + 1)(6� − 8 + cos 2π�)

24�2 cos2 π�
. (4.48)

We checked that the results for ahh′ and a000 in (4.43) and
(4.48) for θ = 0 exactly match with the large-q and q → 2
expansions discussed in Appendixes B and C.

C. Finite-temperature generalization

The results described above are only applicable at zero
temperature. To generalize to finite temperature, we use the
U(1) and time-reparametrization symmetry of the conformal
saddle-point equations. In the presence of the symmetry, G,

, WG, and W
 are all covariant under time reparametrization
and U(1). Therefore, the coefficients αh should be temperature
independent, and all we need is the finite-temperature form of
the scaling function Fh.

As we already discussed in Sec. III, in general, for the com-
plex fermions with the particle-hole symmetry the three-point
function has two independent structures [24,33]

〈 f (τ1) f †(τ2)Oh(τ0)〉

= b�
[
cA

h sgn(τ12) + cS
hsgn(τ10)sgn(τ20)

]∣∣ βJ
π

sin πτ12
β

∣∣2�−h∣∣ βJ
π

sin πτ10
β

|h∣∣ βJ
π

sin πτ20
β

∣∣h
, (4.49)

where cA
h and cS

h are independent structure constants and
the sign function is antiperiodic on the thermal circle
sgn(τ + β ) = −sgn(τ ). This form is consistent with higher-
dimensional CFT results for fermions (see, for example,
[34,35]) and gives correct statistics for the fermionic and
bosonic fields, when one of the fields is moved over the full
thermal circle. For a nonzero chemical potential this result was
generalized in [22] and takes the form

〈 f (τ1) f †(τ2)Oh(τ0)〉

= −Gc
f (τ12)

cA
h + cS

hsgn(τ12)sgn(τ10)sgn(τ20)∣∣sin πτ12
β

∣∣−h∣∣ βJ
π

sin πτ10
β

sin πτ20
β

∣∣h
, (4.50)

where we used conformal Green’s functions Gc
f (τ ) to write

the three-point function compactly. For the bosonic case we
have to replace Gc

f (τ ) by Gc
b

(τ ). For a domain τ ∈ [−β, β]
the formulas for the conformal two-point functions are

G f (τ ) = −eπE f sgn(τ )
b�

f sgn(τ )∣∣ βJ
π

sin πτ
β

∣∣2�
e−(2π/E f β )τ ,

Gb(τ ) = −eπEbsgn(τ ) b�
b∣∣ βJ

π
sin πτ

β

∣∣2�
e−(2π/Ebβ )τ .

(4.51)

The appearance of the factors exp(− 2πE
β

τ ) in the three-point
functions can be derived by applying the U(1) transformation
on f and f †, assuming Oh is neutral under U(1). One can
check that the expression (4.50) agrees with (3.11) upon tak-
ing the β → ∞ limit and setting E f = cS

h = 0. We also remark
that the three-point functions (4.50) represent a basis for the
kernel KG. This A/S basis is related to the previously used
plus/minus basis by some transformation matrix.

Analogously to the discussion in Sec. III, the linear correc-
tion to the two-point function can be computed as

δhG(τ12) = gh

∫ β

0
dτ0〈 f (τ1) f †(τ2)Oh(τ0)〉, (4.52)

where we recall that gh ∝ J is dimensionful coupling.
The correction is split into two parts δhG(τ ) = δhGA(τ ) +
sgn(τ )δhGS(τ ) and to match our result (4.24) for zero tem-
perature we have

δhGA(τ )

Gc(τ )
= −1

2
(vh+ + vh−)

αh

(βJ )h−1
f A
h (τ ),

δhGS(τ )

Gc(τ )
= −1

2
(vh+ − vh−)

αh

(βJ )h−1
f S
h (τ ),

(4.53)

where

f A
h (τ12) ∝

∫ β

0
dτ0

∣∣sin πτ12
β

∣∣h∣∣sin πτ10
β

sin πτ20
β

∣∣h
,

f S
h (τ12) ∝

∫ β

0
dτ0

∣∣sin πτ12
β

∣∣h
sgn(τ10)sgn(τ20)∣∣sin πτ10
β

sin πτ20
β

∣∣h
.

(4.54)

The function Fh(τ/β ) defined in (4.1) reads

Fh

(
τ

β

)
= 1

2
(vh+ + vh−) f A

h (τ )+1

2
(vh+ − vh−) f S

h (τ )sgn(τ ).

(4.55)
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Using results from [7,22] for the integrals in (4.54) and fixing
proportionality constants such that f A/S

h (τ ) → (β/|τ |)h−1 in
the limit β → ∞, we obtain

f A
h (τ ) = (2π )h−1�(h)2

2 sin πh
2 �(2h − 1)

[Ah(ei(2πτ/β ) ) + Ah(e−i(2πτ/β ) )],

(4.56)

f S
h (τ ) = (2π )h−1�(h)2

2 cos πh
2 �(2h − 1)

[iAh(ei(2πτ/β ) ) − iAh(e−i(2πτ/β ) )],

(4.57)

where Ah(u) = (1 − u)hF(h, h, 1; u) and F is the regularized
hypergeometric function. Our definition of Ah coincides with
A±

h,0 defined in [7,36] and we have dropped the ± notation
because the two definitions in the references agree for our
choice of parameter. Inside the unit circle |u| � 1 we can
compute Ah(u) using series expansion. We provide results for
the hA

0 = 2 mode

f A
0 (τ ) = 2 +

π − 2π |τ |
β

tan π |τ |
β

, f S
0 (τ ) = π

tan π |τ |
β

. (4.58)

One has to be careful computing the function f A
0 (τ ) since

the prefactor in (4.56) diverges and we need to expand Ah(u)
to the next order in h, so for h → 2 we have Ah(u) = (1 +
u)/(1 − u) − (h − 2)[(1 + u) ln(1 − u) − 2u]/(1 − u) + · · · .

The above procedure is relatively simple for linear in αh

order. For nonlinear order the computation involves compli-
cated products of hypergeometric functions and we leave it
for future investigation.

V. SPECTRAL DENSITIES

To numerically study the models discussed above, it is
convenient to work with spectral density ρ(ω) instead of the
Green’s function. For the fermionic and bosonic SYK models
we define it as

G(iωn) =
∫ +∞

−∞
dω

ρ(ω)

iωn − ω
. (5.1)

This definition implies that
∫ +∞
−∞ dωρ(ω) = 1 and the spectral

density can be found as

ρ(ω) = − 1

π
ImGR(ω), (5.2)

where GR(ω) is the retarded Green’s function. It is related to
the Matsubara function G(iωn) by analytic continuation from
the upper half complex ω plane, namely, we have GR(ω) =
G(iωn = ω + i0), where ωn � 0. Using (4.16), we find for the
conformal Gc

R and ρc, written in the plus/minus basis,

Gc
R(ω) = C

J

(
e−iπ�−iθ

−eiπ�−iθ

)
|ω/J|2�−1,

ρc(ω) = C

πJ

(
sin(π� + θ )
sin(π� − θ )

)
|ω/J|2�−1.

(5.3)

Next, using the Fourier transform (4.37) for Eq. (4.44) and
making analytical continuation to the real frequencies, we
find the general formula for the retarded Green’s function.
Then using the formula (5.2), we obtain the expansion of the
spectral density at low frequencies

ρ(ω) = ρc(ω)

(
1 −

∑
h

�(2�)αhvh|ω/J|h−1

�(2� + h − 1)
−

∑
h,h′

�(2�)αhαh′ahh′ |ω/J|h+h′−2

�(2� + h + h′ − 2)
− · · ·

)
. (5.4)

At the end of this section we derive an expression for the
spin spectral density. The spin-spin correlator in imaginary
time is Q(τ ) = −〈Tτ (S(τ )S(0))〉 and using that S = f † f or
S = b†b in the large-M limit we find

Q(τ ) = −ζG(τ )G(−τ ). (5.5)

Expressing Green’s function G(τ ) through the spectral density
and using a similar formula for Q(τ ), we find the expression

for the spin spectral density

ρQ(ω) =
∫ ∞

−∞
dν ρ(ν)ρ(ν − ω)[n(ν − ω) − n(ν)], (5.6)

where n(ω) = 1/(eβω − ζ ) is the Fermi or Bose distribution.
At zero temperature we have n(ω) = −ζθ (−ω) and we obtain

ρQ(ω) = −ζ

∫ ω

0
dν ρ(ν)ρ(ν − ω), (5.7)

which is valid for both positive and negative frequencies ω.
Using (5.3) and (5.4), we find

ρQ(ω) = ρc
Q(ω)

(
1 −

∑
h

�(4�)αh(vh+ + vh−)|ω/J|h−1

�(4� + h − 1)
−

∑
h,h′

�(4�)αhαh′ (ahh′+ + ahh′− − vh+vh′−)|ω/J|h+h′−2

�(4� + h + h′ − 2)
− · · ·

)
(5.8)

and the conformal spin spectral density is

ρc
Q(ω) = sgn(ω)

b2�

J�(4�)
|ω/J|4�−1. (5.9)
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For comparison to numerical results, we can find for the q = 4 fermionic SYK model at θ f = 0 that the first few terms in ρQ f

for ω > 0 are

ρQ f (ω) = ρc
Q f

(ω)

[
1 − 2αA

0

(
ω

J

)
− 7

4

(
αA

0

)2
(

ω

J

)2

− 0.44αA
1

(
ω

J

)2.77

+ 37

6

(
αA

0

)3
(

ω

J

)3

+ · · ·
]
, (5.10)

where we used values of a00 and a000 from (4.47) and (4.48)
and hA

1 � 3.77.
We generalize results for the spectral densities at finite

temperature in Appendix D. Here we only present a finite-
temperature generalization of Eq. (5.8) for � = 1/4, where
only the hA

0 = 2 mode is retained,

ρQ(ω) = b1/2

J
tanh

(
βω

2

)[
1 − 2αA

0 ω

J
tanh

(
βω

2

)
− · · ·

]
,

(5.11)

and we used that v0+ + v0− = 2. The coefficient of the correc-
tion term 2αA

0 /J can be related to the coefficient γ in specific
heat C = γ T by the Schwarzian action argument in [22], with
the result

C f = 2αA
0 /J

γ
= 24

π [2 cos 2θ f + 3π cos2 2θ f ]
. (5.12)

For bosonic spinon theory, there is an extra minus sign be-
cause bosonic action differs from the fermionic version by a
minus sign:

Cb = 2αA
0 /J

γ
= − 24

π [2 cos 2θb + 3π cos2 2θb]
. (5.13)

VI. RANDOM QUANTUM ROTOR MODEL

In this section we consider the random quantum q-rotor
model (also known as the quantum spherical q-spin model),
where q is a positive integer number. The Hamiltonian of this
model has the form

H =
N∑

i=1

π2
i

2M
+

N∑
i1,...,iq

Ji1,...,iqφi1 , . . . , φiq , (6.1)

where M is the mass, πi is the conjugate momentum to a real
scalar spin variable φi so [φi, π j] = iδi j , and there is the spher-
ical constraint 1/N

∑N
i=1〈φ2

i 〉 = 1. The couplings Ji1,...,iq are
independent Gaussian variables with zero mean and variance

J2
i1,...,iq

= J̃2

qNq−1
. (6.2)

This model was first studied in [37,38] and similar models
were considered in [39–43]. We define the imaginary-time
Green’s function at finite temperature

G(τ ) = 1

N

N∑
i=1

〈Tτ (φi(τ )φi(0))〉. (6.3)

Introducing replicas and averaging over disorder, it is possible
to derive Schwinger-Dyson equations for the function G(τ ) in
the large-N limit

G(iωn) = 1

ω2
n + λ − 
(iωn)

, 
(τ ) = J2G(τ )q−1, (6.4)

where ωn = 2πn/β are Matsubara frequencies and λ is the
Lagrange multiplier imposing the spherical constraint. Also,
we assumed a replica symmetric solution and made the rescal-
ing φ → φ/

√
M, so the spherical constraint takes the form

G(τ = 0) = M and also J = J̃/Mq/2. Similarly to the SYK
models, Eqs. (6.4) admit a conformal solution in the IR region
for a given J upon tuning M and thus λ to a critical value. The
conformal solution reads

Gc(τ ) = b�

|(βJ/π ) sin(πτ/β )|2�
, (6.5)

where � = 1/q and dimensionless constant b coincides with
bb in (2.17) computed for θb = π/2. The analysis from
Sec. IV can be applied to the random rotor model. The only
difference is that the source term now is σ (τ ) = ∂2

τ . The
correction to the conformal Green’s function comes from
hA(θ ) modes computed at θb = π/2. For q = 4 these modes
are represented by blue lines in Fig. 3 and for θb = π/2 we
find hA

0 = 2, hA
1 � 4.26, hA

2 � 6.34, etc. Symmetric modes hS

do not contribute to the two-point function due to the exact
particle-hole symmetry [see the discussion around Eq. (4.28)].
We note that for θb = π/2 there is a complex mode in the
symmetric sector [40]. Though the complex mode formally
does not affect the large-N two-point function, it presumably
makes the replica diagonal solution unstable and leads to
replica symmetry breaking. We also remark that the appear-
ance of the complex modes in some non-Fermi-liquid theories
was noticed in [44]. In any case it is interesting to study the
conformal solution of the Schwinger-Dyson Eqs. (6.4). The
leading analytical corrections to the Green’s function at zero
temperature read

G(τ ) = Gc(τ )

(
1 − α0

|Jτ | − a00α
2
0

|Jτ |2 − a000α
3
0

|Jτ |3 − α1

|Jτ |h1−1
− · · ·

)
,

(6.6)

where we omitted subscripts A for brevity and for q = 4
we find a00 = 9/4 and a000 = −65/4 from (4.47) and (4.48),
which are also valid for θb = π/2 and � = 1/4. We note that
in this case quadratic and cubic nonlinear terms of the h0 = 2
mode are more dominant than the linear correction of the h1

mode. In Sec. VII we will verify (6.6) numerically for q = 4
by computing the spectral density at zero temperature. The
spectral density ρ(ω) is defined as

G(iωn) =
∫ +∞

−∞
dω

ρ(ω)

ω − iωn
, (6.7)

and due to the particle-hole symmetry the spectral density is
an odd function ρ(−ω) = −ρ(ω). Using this we can write
(6.7) in the form

G(iωn) =
∫ +∞

−∞
dω

ωρ(ω)

ω2 + ω2
n

, (6.8)
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and taking the large-z limit we find
∫ +∞
−∞ dω ω ρ(ω) = 1. We

also note that unitarity implies that ρ(ω) > 0 for ω > 0. We
will find numerically that α0 � −0.556 for the q = 4 case.
We note that it is negative, whereas for bosonic and fermionic
SYK models α0 is positive.

VII. NUMERICAL RESULTS FOR SPINON SPECTRA

In this section we present numerical solutions of the real-
time Schwinger-Dyson equations at zero temperature for the
bosonic and fermionic spinon models and also the random ro-
tor model in the case of q = 4. We study the corrections found
analytically in Sec. IV and provide numerical evidence that
the conformal solutions and the corrections to the conformal
solutions work very well for all parameters in the fermionic
model and for some range of parameters in the bosonic model.
We also numerically find values of the dimensionless coef-
ficients αh for the first terms in the sum (5.4) for a range
of asymmetry angles θ f and θb and argue that the numer-
ically found spectra of operators agree with the ones found
analytically.

The first Schwinger-Dyson equation for bosonic and
fermionic spinon models is

GR(ω)−1 = ω + i0 + μ − 
R(ω), (7.1)

and using the second Schwinger-Dyson equation we can
express the retarded self-energy 
R(ω) though the spectral
density ρ(ω), which is in turn related to GR(ω) as ρ(ω) =
− 1

π
ImGR(ω). We solve these equations at zero temperature

using iterations. The detailed derivation of the equations
above and numerical technique is discussed in Appendix E
and we note that a similar numerical approach was used
in [1].

At zero temperature we expect the spectral density to
diverge at small frequencies; therefore, the quantity of
interest is

ρ(ω) =
{

g+(ω)√
ω/J

, ω > 0
g−(−ω)√−ω/J

, ω < 0.
(7.2)

We are interested in finding a solution of the SD equations
that at zero frequency approaches the conformal solution.
Therefore, the function of interest g±(ω) should approach a
constant

g±(0) = C

πJ
sin(π/4 ± θ ), C =

( −ζπ

cos 2θ

)1/4

(7.3)

according to Eqs. (5.3) and (5.4). We remark that these bound-
ary conditions at ω = 0 determine the asymmetry angle θ of
the numerical solution and the chemical potential is fixed to be
μ = 
R(0) and is not an input parameter at zero-temperature
numerics. In contrast, for the finite-temperature numerics one
fixes μ first and then can infer θ by analyzing the numerical
solution.

We are interested in the low-frequency behavior of the
numerical solution that is described theoretically in Sec. IV
for both fermionic and bosonic spinon models. We use the
expansion of the spectral density at small frequencies (5.4)
and rewrite the expression at � = 1/q = 1/4 for the function
g±(ω) as

g±(ω) = g±(0)

(
1 −

∑
h

√
παhvh±(ω/J )h−1

�(h − 1/2)
−

∑
h,h′

√
παhαh′ahh′±(ω/J )h+h′−2

�(h + h′ − 3/2)
− · · ·

)
, (7.4)

where g±(0) is given in (7.3). The coefficients αh depend on asymmetry angles θ f and θb and are different for fermionic and
bosonic models. The eigenvectors vh = (vh+, vh−) of the matrix KG and vectors ahh′ , ahh′h′′ , . . . also depend on the asymmetry
angles and are given by Eqs. (4.25) and (4.43). For a given asymmetry angle there are first few leading modes in (7.4) which
dominate the low-frequency expansion.

Let us start with the fermionic SYK model at zero chemical potential. In this case θ f = 0 and due to particle-hole symmetry
all hS modes do not contribute. Also, g+ = g− = g and the leading terms in (7.4) are

g f (ω) = 1

(4π3)1/4J

[
1 − 2αA

0
ω

J
− 3

(
αA

0

)2
(

ω

J

)2

− 0.68αA
1

(
ω

J

)2.77

+ 26

3

(
αA

0

)3
(

ω

J

)3

− · · ·
]
, (7.5)

where we used that vA
h = (1, 1) and hA

1 � 3.77 and also aA
00 = 9/4 and aA

000 = −65/4 [see Eqs. (4.47) and (4.48)] for � = 1/4
and θ f = 0. Fitting numerical data, we can find αA

0 = 0.2643 and αA
1 � 0.31–0.36. We plot the numerical result and theory (7.5)

in Fig. 4. We can see really good agreement between theory and numerics at low frequencies. We note that since the αA
1 term is

subleading we cannot fix it with good precision. In contrast, αA
0 can be fixed with high accuracy and our result agrees well with

previous computation of this term in [6].
For nonzero chemical potential and thus nonzero asymmetry angle θ f modes from the symmetric sector contribute to the

spectral density and since hS
1 < 3 the leading terms in low-frequency expansion of g±(ω) are

g f ±(ω) = sin( π
4 ± θ f )

J (π3 cos 2θ f )1/4

[
1 − 2αA

0 vA
0±

ω

J
−

√
παS

1 vS
1±

�
(
hS

1 − 1
2

)(
ω

J

)hS
1−1

− 4

3

(
αA

0

)2
aA

00±

(
ω

J

)2

− · · ·
]
, (7.6)

where explicit expressions for the vectors vA
0 and aA

00 are given
in (4.45) and the vector vS

1 can be computed from (4.25)
for a given value of hS

1 . The θ f angle dependence of hS
1 is

represented in Fig. 3.
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FIG. 4. Plot of the fermionic SYK4 spectral density for θ f = 0 at zero temperature. The red solid line is the numerical result obtained
by solving the Schwinger-Dyson equations using iterations. The black dashed line is the theoretical curve (7.5) plotted for αA

0 = 0.2643 and
αA

1 = 0.31.

We remark that since the series (7.4) is asymptotic3 the
relevance of higher-order terms depends on the range of ω ∈
[0, ωmax] for which we approximate the exact result. This
means that if we truncate the series at order pmax the maxi-
mal frequency ωmax for which this series gives a reasonable
approximation to the exact result is roughly determined by
the condition that the term (ωmax/J )pmax becomes comparable
to the lower-order terms in the series. Based on this and
approximate values of the coefficients αh for the fermionic
SYK4 model, we keep only two or three leading terms written
in (7.6).

We also notice that the coefficient αA
0 can be found by

fitting the numerical curve by the linear correction

glin
± (ω) = g±(0)

[
1 − 2αA

0

(
1 ∓ 3

2
sin 2θa

)
ω

J

]
. (7.7)

We present the solutions of Eqs. (E7)–(E13) and the corre-
sponding fitting of the analytical formula (7.6) in Fig. 5 for the
fermionic spinon model and in Fig. 6 for the bosonic spinon
model.

For the bosonic case the two leading operators are hA
0 = 2 and hA

1 ; therefore, we have

gb±(ω) = sin
(

π
4 ± θb

)
J (−π3 cos 2θb)1/4

[
1 − 2αA

0 vA
0±

ω

J
−

√
παA

1 vA
1±

�
(
hA

1 − 1
2

)(
ω

J

)hA
1 −1

− 4

3

(
αA

0

)2
aA

00±

(
ω

J

)2

− 2
√

παA
0 αA

1 aA
01±

�
(
hA

1 + 1
2

) (
ω

J

)hA
1

−
√

π
(
αA

1

)2
aA

11±
�

(
2hA

1 − 3
2

) (
ω

J

)2hA
1 −2

− · · ·
]
. (7.8)

For θb > 0.284π the anomalous dimension hA
1 becomes less

than hA
0 = 2 and thus starts dominating the expansion in (7.8).

The numerical approach we use in this section allows us
to compute the coefficients αh in the formula (7.6) with very
good precision. We use the function (7.6) as a fitting polyno-
mial and find the dimensionless coefficients of each term. The
results for the fermionic case are presented in Fig. 7 and for
the bosonic case in Fig. 8. For the bosonic model, we see that
the value of αh becomes very large at some value of θb. This
value is close to θb = 0.284π where hA

0 = hA
1 and k′

A(h) = 0.
We do not include the region where hA

1 � hS
0 = 1 since the

numerical solution is not described by the conformal theory
and is probably nonphysical.

Even though the coefficients αh cannot be computed an-
alytically as discussed in Sec. IV, and therefore the fitting

3This can be seen from the q = 2 case, where the explicit formula
(C1) for G(τ ) is available.

functions cannot be exactly determined and has to include
numerical results, there are ways to understand how well
numerical solutions work by comparing them with pure the-
oretical predictions. One way to do this is to compute the
ratio of coefficients in front of each term in (7.6). The general
formula of the ratio of each term reads

rh(θa) = sin(π� − θa)

sin(π� + θa)

vh−

vh+
, (7.9)

where vh are the eigenvectors found in Sec. IV; therefore,
vh± are the components of the eigenvector that correspond to
the positive and negative frequencies. We can compute this
ratio both analytically and numerically (using the analytically
found resonance values of h). The results of the first two terms
are presented in Fig. 9 for the fermionic and bosonic models.
We again note that for the bosonic model we do not include
the region where hA

1 becomes less than one, since we cannot
trust the solution in this region.
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(a)

(b)

FIG. 5. Spectral density plots at zero temperature for the
fermionic spinon model. The red solid lines are the numerical so-
lution of Eqs. (E7)–(E13) for the fermionic case at the value of
the asymmetry parameter (a) θ f = 0.05π and (b) θ f = 0.15π . The
dashed lines are the fitting given by theoretical formula (7.6). The
pink dashed lines are the linear fit given by (7.7) with (a) αA

0 �
0.29 and (b) α0 � 0.68. The black dashed lines are the fitting
with the first four terms (nonlinear fitting is included) g±(ω) =
g±(0)(1 + aω + bωhS

1 −1 + cω2), where c is a coefficient that depends
on αS

0 and (a) hS
1 � 2.63 and αS

1 � 0.05 and (b) hS
1 � 2.53 and

αS
1 � 0.06. The insets show close-ups of g±

f at small frequencies.
The legend shows the powers of frequencies at which the series is
terminated.

Another way to compare the numerical and theoretical
results is to compute the Luttinger relations (4.27) for both
models. Numerically, we find Q(θ f ) and S(θb) from the spec-
tral density at zero temperature as S = − ∫ 0

−∞ dω ρb(ω) and
Q = ∫ ∞

0 dω ρ f (ω) − 1/2 and compare them with the theory.
The results for both models are presented in Fig. 10. We note
that both solutions are close to the theoretical curves within
�S,�Q ∼ 10−6 for each numerical point. As it was discussed
in Sec. IV A, at the asymmetry angle θb � 0.36π where the
anomalous dimension hA

1 � 1 for the bosonic model, the Lut-
tinger relation stops working. As we can see in Fig. 10(a),
this indeed happens around θb � 0.36π , as predicted from
the theory. It is unclear if solutions for angles θb > 0.36π

are physical. Also, one can provide a general argument why

(a)

(b)

FIG. 6. Spectral density plots at zero temperature for the bosonic
spinon model. The red solid lines are the numerical solution of
Eqs. (E7)–(E13) for the bosonic case at the value of the asym-
metry parameter (a) θb = 0.26π and (b) θb = 0.3π . The dashed
lines are the fitting given by (7.6). The blue dashed line is the
linear fit given by (7.7) with (a) αA

0 � 21.9 and (b) αA
0 � 17.3. The

black dashed lines are the fitting of the function (7.6) with the first
three terms g±(ω) = g±(0)(1 + aω + bωhA

1 −1) with (a) hA
1 = 2.16

and αA
1 � −12.2 and (b) hA

1 = 1.87 and αA
1 � −8.5. The insets show

close-ups of gb± at small frequencies.

there is no conformal solution of the bosonic SYK model at
θb = π/2. For the conformal solution at this angle we have
S = − ∫ 0

−∞ dω ρb(ω) = 0 and thus from unitarity ρb(ω) � 0
for ω < 0 we should conclude that ρb(ω) = 0 for ω < 0, but
the conformal solution implies that g−(0) = −1/(4π3)1/4J at
θb = π/2.

It is also instructive to find values of the charge Q and
spin S as a function of the chemical potentials μ f and μb,
respectively, rather than the asymmetry angles θ f and θb.
Numerically, we compute μ using that μ = Re
R(ω = 0) and
the Kramers-Kronig relation

μ = −
∫ +∞

−∞

dν

π

Im[
R(ν) − 
R(0)]

ν
. (7.10)

A plot of the charge Q as a function of μ f for the fermionic
SYK model is shown in Fig. 11(a) and we see that there is a
maximum absolute value of the chemical potential |μ f max| �
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FIG. 7. Numerically computed coefficients αh (7.6) and theoret-
ical values of the anomalous dimension of the operator OhS

1
in the

fermionic SYK model. (a) The red circles are the numerical values
of αS

1 , the coefficient due to the new operator with the anomalous
dimension hS

1 , computed at different θ f parameters; blue triangles
are the numerical values of the coefficient αA

0 representing the linear
correction, computed at different θ f parameters. The lines are the
linear interpolation between points. (b) The red dashed line is the
plot of hS

1 given by the theoretical prediction, as a function of θ f . The
blue line is hA

0 = 2.

0.245J . At this value |Qmax| � 0.358. A similar dependence
of Q as a function of μ f was found in [45–47]. In [45,46] a
general phase diagram in (T, μ f ) space was investigated. It
was shown that at T = 0 the SYK solution becomes unsta-
ble already when Q � 0.26 and there is a first-order phase
transition to a low-entropy phase. In Fig. 11(b) we plot com-
pressibility K = dQ/dμ f as a function of Q. We see that it
diverges at Qmax. For the bosonic SYK case we plot θb as a
function of μb in Fig. 12.

Finally, for the random quantum rotor model discussed in
Sec. VI we use the expansion

g±(ω) = ± 1

(4π3)1/4J

[
1 − 2αA

0
ω

J
− 3

(
αA

0

)2
(

ω

J

)2

+ 26

3

(
αA

0

)3
(

ω

J

)3

− · · ·
]
. (7.11)

We plot the numerical result and analytical fit in Fig. 13.
For the fit we used only two leading terms ω and ω2. As
we mentioned at the end of Sec. VI, in this case the value

0.26 0.28 0.30 0.32
1

5

10

50

100

500

0.26 0.28 0.30 0.32

1.7

1.8

1.9

2.0

2.1

2.2

(a)

(b)

FIG. 8. (a) Numerically computed coefficients (absolute values)
αh and (b) analytical values of the anomalous dimension of the
operator OhA

1
in the bosonic SYK model. This figure is the same as

Fig. 7 except the plot in (a) is in logarithmic scale. In the bosonic
SYK case we notice that hA

1 = hA
0 at θb � 0.284π . Near this value,

the peak in (a) becomes prominent.

of αA
0 � −0.556 is negative. We also found that Mcrit =∫ +∞

0 dω ρ(ω) � 0.88 and we checked that
∫ +∞
−∞ dω ω ρ(ω) =

0.9988, which confirms the validity of the numerical solution.
We conclude this section by finding numerically the

spin-spin spectral density ρQa (ω) using the spectral density
representation (7.2) in (5.7). Changing variables in order to
eliminate divergences of the integrand, we find a formula
suitable for numerical evaluation

ρQ(ω) = 2 sgn(ω)
∫ 1/

√
2

0

dx√
1 − x2

[g+(|ω|x2)g−(|ω|(1 − x2))

+ g−(|ω|x2)g+(|ω|(1 − x2))]. (7.12)

For the fermionic SYK model at θ f = 0 we plot both the
numerical solution and analytical formula for the spin-spin
spectral density in Fig. 14, where for the black dashed line
we used the analytical formula (5.10) with αA

0 � 0.2643 and
αA

1 � 0.31. We note that the analytical fitting works very well
at some range of frequencies where ω < 1. Numerical solu-
tions for the spin-spin spectral densities for both fermionic
and bosonic spinon models for various asymmetry angles θ f

and θb without the theoretical fitting are presented in Fig. 15.
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FIG. 9. Plot of the function rh(θ ) defined in (7.9) for the bosonic
and fermionic models. The blue and red solid lines are analytical
relations of the coefficients of the positive and negative frequencies
due to the hA

0 = 2 and hA
1 terms, respectively, and are given by the

relation (7.9). (a) The red circles and blue triangles are numerical
relations rhA

0
(θb) and rhA

1
(θb), respectively. (b) The blue circles are

the numerical relation rhA
0

at different θb. In both panels, for the

numerical fitting, we use ωmax = 7 × 10−3 to obtain a result closest
to the theory.

VIII. CONCLUSION

The SYK Eqs. (2.13) describe the large-N limit of the
SYK models and the large-N limit followed by the large-M
limit of the SU(M ) spin models described in Sec. II. Despite
their apparent simplicity, these equations contain a great deal
of subtle scaling structure, which we have reviewed and ex-
tended here. The predictions of the conformal perturbation
theory agree very well with the real-frequency numerical
analyses, including the cases with particle-hole asymmetry.
Thus the low-frequency behavior of the solutions of (2.13)
can be declared to be well understood. Specifically, we have
confirmed the Luttinger relations between the spectral asym-
metry and the density and we have shown that the low-
frequency corrections to the spectral density are controlled by
the leading irrelevant operators, the most important of which
is the time-reparametrization operator.

All the analysis of the present paper is at N = ∞, and many
other works [6,7,48–51] have addressed the nature of the 1/N
corrections to the SYK saddle point. These are dominated
by the fluctuations of a quantum graviton associated with
the time-reparametrization mode, which leads to a breakdown

(a)

(b)

FIG. 10. Plot of (a) S as a function of θb for the bosonic model
and (b) Q as a function of θ f for the fermionic model. The dashed
lines are given by the relations (4.27) and the red and blue points
are obtained from the numerical solution for the spectral density
at zero temperature. For the bosonic case we see that the numerics
deviates from theory at θb � 0.36π , which is the angle after which
the anomalous dimension hA

1 is less than 1 and thus corresponds to
relevant perturbation.

of the conformal invariance described here at energy scales
lower than J/N . We expect this breakdown to also apply to
the SU(M ) spin models.

From the condensed matter standpoint, it will be worth-
while to address the 1/M fluctuations of the SU(M ) magnets
in the N = ∞ theory. Upon considering the SYK model as
a dynamic mean-field theory of correlated electrons, the 1/N
corrections are finite-size corrections which are not of interest
in the thermodynamic limit. On the other hand, physical sys-
tems usually have only an SU(2) symmetry, and so the 1/M
corrections are of greater interest. We expect that the con-
formal structure is preserved in the 1/M expansion, and the
“protected” scaling dimensions of the time-reparametrization
mode (hA

0 = 2) and of the U(1) gauge symmetry mode
(hS

0 = 1) hold to all orders in 1/M. Renormalization group
computations [21,52,53] have been used to argue that the
gauge-invariant spin operator also has a protected scaling
dimension and so none of the exponents in (1.2) will be
modified in the 1/M expansion. It would be of interest to
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(a)

(b)

FIG. 11. (a) Charge Q as a function of the chemical potential for
the fermionic SYK model at zero temperature. The blue line is the
numerical solution of the Schwinger-Dyson Eqs. (E7)–(E13) for the
fermionic SYK model at zero temperature for different values of the
asymmetry angle. There is a maximal value of the chemical potential
at which the value of the charge Qmax � 0.358. (b) Compressibility
K as a function of charge Q for the fermionic spinon model at zero
temperature (here we set J = 1). Compressibility diverges at Qmax �
0.358 (θ f � 0.153π ). The inset shows compressibility growth as
small Q.

FIG. 12. Asymmetry angle θb as a function of the chemical po-
tential for the bosonic SYK model at zero temperature.

FIG. 13. Plot of the spectral density at zero temperature for the
random quantum q = 4 rotor model. The red solid line is the numer-
ical result obtained by solving the Schwinger-Dyson equations using
iterations. The black dashed line is the analytical curve (7.11) with
only two leading terms ω and ω2 plotted for αA

0 = −0.556.

examine these conclusions directly in the 1/M expansion
and also determine the scaling dimensions of other possible
gauge-invariant operators.

Finally, we note that we have extended the analysis of the
present paper to the doped magnet, described by the SU(M )
t-J model studied in Ref. [21]. These results are described in
the following paper [20].
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FIG. 14. Plot of the fermionic spin spectral density for θ f = 0.
The red solid line is the numerical result. The black dashed line is
the theoretical curve (5.10) plotted for αA

0 = 0.2643 and αA
1 = 0.31.
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(a)

(b)

FIG. 15. Plots of the numerically computed spin spectral den-
sities (7.12) for (a) fermionic and (b) bosonic spinon models at
different values of asymmetry angles.

APPENDIX A: FREE ENERGY FROM CONFORMAL
PERTURBATIONS

We can also use the conformal perturbation methods of
Sec. III to compute the low-temperature expansion for the free
energy. We find [54–56]

βFSYK = βFCFT +
∑

h

gh

∫ β

0
dτ 〈Oh〉β

− 1

2

∑
h,h′

ghgh′

∫ β

0
dτ1dτ2〈Oh(τ1)Oh′ (τ2)〉β

+ 1

6

∑
h,h′,h′′

ghgh′gh′′

∫ β

0
dτ1dτ2dτ2〈Oh(τ1)Oh′ (τ2)

× Oh′′ (τ3)〉β + · · · . (A1)

The one-point functions in thermal CFT are not necessarily
zero and from the scale symmetry we have [57,58]

〈Oh〉β = Nbh/(βJ )h. (A2)

To find constants bh we consider thermal conformal two-point
function

Gβ (τ ) = − 1

N
〈χi(τ )χi(0)〉β = − b�sgn(τ )∣∣ βJ

π
sin πτ

β

∣∣2�
. (A3)

Expanding it in series for τ → 0 we obtain

Gβ (τ ) = −b�sgn(τ )

|Jτ |2�

(
1 + π3

3
�

∣∣∣∣ τβ
∣∣∣∣2

+ π4

90
�(1 + 5�)

∣∣∣∣ τβ
∣∣∣∣4

+ · · ·
)

. (A4)

On the other hand, using the OPE in (3.12), we find

Gβ (τ ) = −b�sgn(τ )

|Jτ |2�

(
1 +

∑
h

ch|Jτ |h〈Oh〉β
)

, (A5)

where we assumed that the two-point functions of Oh are
normalized as in (3.12). Comparing (A4) and (A5), we
find that only operators with h = 2k, where k = 1, 2, 3, . . . ,
have a nonzero one-point function, but all operators with
h1, h2, h3, . . . should have zero one-point functions. As we
already stressed before, conformal symmetry is broken in the
SYK model and the analysis above should be taken with
caution. The role of higher expansion terms in (A4) with
k > 1 is unclear. Moreover, in [28] it was conjectured that
the free energy has a term T 3.77 in the small-T expansion and
thus this would imply a nonzero one-point function 〈Oh1〉β .
Whether this is correct or not remains an open question. For
the h0 = 2 operator we find b0c0 = π2

3 �. Thus the contribu-
tion of the one-point function of the h0 = 2 operator to the free
energy is

βδFh0 = βg0
〈
Oh0

〉
β

= Nπ2�

3(βJ )2

βg0

c0
= −2π2N

βJ
αS, (A6)

where αS = 1
6 (1 − �)b�|k′

A(2)|α0 is the Schwarzian action
coupling and this result agrees with [6,7]. For the second-
order correction we find

βδ2Fh = −1

2

∑
h

g2
h

∫ β

0
dτ1dτ2〈Oh(τ1)Oh(τ2)〉 = −1

2

∑
h

Ng2
hβ

∫ β−ε

ε

dτ

(
π

βJ sin πτ
β

)2h

= −1

2

∑
h

(
N

(
g2

h/J2
)
(βJ )

(h − 1/2)(εJ )2h−1
+ N

(
g2

h/J2
)

(βJ )2h−2

π2h−1/2�
(

1
2 − h

)
�(1 − h)

)
, (A7)

where we regulated the integral in the UV by a cutoff ε ∼ 1/J . The first term is proportional to N (βJ ) and represents a correction
to the ground energy, whereas the second term is finite and contributes to the free energy of order 1/(βJ )2h−2, so we find

βδ2Fh = N (q − 1)b�[−k′
A(h)]

(π/2)2h−1(cos πh + 1)�(h)2

(2h − 1) cos(πh)�
(
h − 1

2

)2

α2
h

(βJ )2h−2
. (A8)
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For h0 = 2 this result gives βδ2Fh0 = N2π2qαSα0/(βJ )2, which exactly agrees with the N/(βJ )2 correction computed in [7,28]
using careful analysis of the h0 = 2 mode.4 Moreover, using the result for the large-q free energy from [59], we find, for the
1/(βJ )2 term,

βF ⊃
(

π2

q2
− π2(24 + 5π2)

9q3
+ · · ·

)
N

(βJ )2
. (A9)

On the other hand, taking large-q limit of (A8) for the h0 operator and using that α̃0 = 2
q − 12+7π2

9q2 + · · · (see Appendix B), we
obtain

βδ2Fh0 =
(

π2

q2
− π2(24 + 5π2)

9q3
+ · · ·

)
N

(βJ )2
. (A10)

We see that βδ2Fh0 exactly coincides with 1/q2 and 1/q3 orders in the large-q expansion. This implies that if the one-point
function 〈Oh1〉β is not zero it should start contributing only at the 1/q4 order, which seems unlikely. The third-order correction
is given by

βδ3Fhh′h′′ = 1

6
ghgh′gh′′

∫ β

0

dτ1dτ2dτ3Nchh′h′′(
βJ
π

sin πτ12
β

)h+h′−h′′(
βJ
π

sin πτ13
β

)h+h′′−h′(
βJ
π

sin πτ23
β

)h′+h′′−h

= Nchh′h′′ghgh′gh′′�
( 1−2(h+h′−h′′ )

2

)
�

( 1−2(h+h′′−h′ )
2

)
�

( 1−2(h′+h′′−h)
2

)
�

(
1 − h − h′ − h′′)

6π
3
2 −h−h′−h′′

(βJ )h+h′+h′′
�(1 − 2h)�(1 − 2h′)�(1 − 2h′′)

. (A11)

Using a general expression for chh′h′′ [8] for the case when h = h′ = h′′ = h0 → 2, we find ch0h0h0 ∝ 1/(h0 − 2)3/2 and therefore
the full result (A11) is divergent in this case. This signals that the conformal perturbation theory developed above should be
taken very cautiously for the h0 = 2 operator and in general may produce incorrect results.

APPENDIX B: LARGE-q TWO-POINT FUNCTION IN THE FERMIONIC SYK MODEL

We consider the fermionic SYKq model with zero chemical potential μ f = 0. In this case there is a particle-hole symmetry
and the Schwinger-Dyson equations are G(iωn)−1 = iωn − 
(iωn) and 
(τ ) = J2G(τ )q−1. At the limit q → ∞ the two-point
function at finite temperature T = 1/β admits 1/q decomposition [6]

G(τ ) = −1

2
sgn(τ )

(
1 + 1

q
g(τ ) + 1

q2
h(τ ) + · · ·

)
, (B1)

where g(τ ) = 2 ln(
cos πv

2
cos x ) and we defined x ≡ πv

2 − πvτ
β

, with v found from the transcendental equation βJ = πv
cos πv

2
with

rescaled coupling J = (21−qq)1/2J . The next order h(τ ) was found in [59] and reads

h(τ ) = g2(x)

2
− 2�(x) − 4

(
tan x

∫ x

0
dy �(y) + 1

)

+ 4
[

tan πv
2

∫ πv/2
0 dy �(y) + 1

]
(1 + x tan x)

1 + πv
2 tan πv

2

, (B2)

where �(x) = g(x) − e−g(x)Li2(1 − eg(x) ). Also, the expression for the large-q free energy of the Majorana SYK model is

βF

N
= −1

2
ln 2 − πv

(
tan

πv

2
− πv

4

)
1

q2

− πv

[
πv − 2 tan

πv

2

(
1 − π2v2

12

)]
1

q3
+ · · · . (B3)

At the large-βJ limit one finds

v = 1 − 2

βJ + 4

(βJ )2
− 24 + π2

3(βJ )3
+ 8(6 + π2)

3(βJ )4
+ · · · . (B4)

4In [6] it was shown that 〈Oh0 (τ1)Oh0 (τ2)〉 = N4π2αS
β3J

rather than 〈Oh0 (τ1)Oh0 (τ2)〉 = N
|τ12 |4 . Nevertheless, in our computation we assumed the

latter form of this correlation function and obtained the correct result.
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Using this expansion and equations for g(τ ) and h(τ ), we can find at β = ∞ that g(τ ) = ln u2 and

h(τ ) = − 4

3
(1 − u) − π2

9
u(3 + u−3) − 2

3
ln(u2) + 1

6
(4u + 3) ln2(u2)

+ 8

3
u ln(u2) ln(1 + u−1) − 16

3
u Li2(−u−1) + 2

3
u(2 + u−3)Li2(1 − u2), (B5)

where we defined u ≡ 1/(1 + J τ ). The conformal approximation to the two-point function at β = ∞ has the form

Gc(τ ) = −b1/q sgn(τ )

|Jτ |2/q
, b = q − 2

2πq
tan

π

q
. (B6)

Therefore, we can write the two-point function (B1) as

G(τ ) = Gc(τ )(J τ )2/q

(
q − 2

π
tan

π

q

)−1/q(
1 + 1

q
g(τ ) + 1

q2
h(τ ) + · · ·

)
= Gc(τ )

(
1 + 2 lnJ τ

q
+ 2(1 + ln2 J τ )

q2
+ · · ·

)(
1 − 2 ln(1 + J τ )

q
+ 1

q2
h(τ ) + · · ·

)
. (B7)

Finally, using the result (B5) and expanding everything in the limit J τ → ∞, we find

G(τ ) = Gc(τ )

{
1 +

(
− 2

J τ
+ 1

(J τ )2
− 2

3(J τ )3
+ · · ·

)
1

q
+

[
12 + 7π2

9

(
1

J τ
− 1

(J τ )2
+ 1

(J τ )3

)
− 7

2(J τ )2
+ 3

(J τ )3
− 6 ln(J τ )

(J τ )2
+ 12 ln(J τ )

(J τ )3
+ · · ·

]
1

q2
+ · · ·

}
. (B8)

On the other hand, from the resonance theory described in Sec. IV we expect to have

G(τ ) = Gc(τ )

(
1 −

∞∑
k=0

αk

|Jτ |hk−1
−

∞∑
k,m=0

akmαkαm

|Jτ |hk+hm−2
−

∞∑
k,m,l=0

akmlαkαmαl

|Jτ |hk+hm+hl −3
− · · ·

)
, (B9)

where αk , akm, and akml are all functions of q. In the large-q limit solving kA(h) = 1, where

kA(h) = �(2� − h)�(2� + h − 1)

�(2� − 2)�(2� + 1)

(
1 − sin(πh)

sin(2π�)

)
, (B10)

we find that operator dimensions apart from h0 = 2 admit 1/q decomposition and read

h1 = 3 + 4

q
+ · · · , h2 = 5 + 22

9q
+ · · · , hk = 2k + 1 + 2(2k2 + k + 1)

(k + 1)(2k − 1)q
+ · · · . (B11)

Using these anomalous dimensions in (B9), we find

G(τ ) = Gc(τ )

(
1 − α̃0

(J τ )
− a00α̃

2
0

(J τ )2
− α̃1

(J τ )2+4/q+··· − a000α̃
3
0

(J τ )3
− 2a01α̃0α̃1

(J τ )3+4/q+··· − α̃2

(J τ )4+22/9q+··· − · · ·
)

= Gc(τ )

[
1 − α̃h0

(J τ )
− a00α̃

2
0

(J τ )2
− α̃1

(J τ )2

(
1 − 4

q
ln(J τ ) + · · ·

)
− α̃2

(J τ )4

(
1 − 22

9q
ln(J τ ) + · · ·

)
− · · ·

]
, (B12)

where we defined α̃k (q) = (21−qq)(hk−1)/2αk (q). Comparing (B8) and (B12), we find the relations

α̃0(q) = 2

q
− 12 + 7π2

9q2
+ · · · , α̃1(q) = − 3

2q
+ 7π2 + 33 − 24a(2)

00

6q2
+ · · · , a00(q) = q

8
+ a(2)

00 + · · · ,

a01(q) = −q

2
+ a(2)

01 + · · · , a000(q) = − 7

24
q2 + 1

8

(
6a(2)

01 − 8a(2)
00 + 4

)
q + · · · .

(B13)

We note that the ln(J τ )/(J τ )2 and ln(J τ )/(J τ )3 terms in 1/q2 order arise due to the h1 operator. The large-q results (B13)
for a00, a01, and a000 match with arbitrary q formulas (4.43) and (4.48) derived in Sec. IV. This comparison also sets a(2)

00 = 0
and a(2)

01 = −3/2.
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APPENDIX C: TWO-POINT FUNCTION FOR q = 2 IN THE FERMIONIC SYK MODEL

For q = 2 the exact result for the two-point function for τ > 0 at zero temperature is [6]

G(τ ) = −
∫ π

0

dθ

π
cos2 θe−2Jτ sin θ = L1(2Jτ ) − I1(2Jτ )

2Jτ
= − 1

πJτ
+ 1

4π (Jτ )3
+ 3

16π (Jτ )5
+ · · · , (C1)

where I1(x) and L1(x) are modified Bessel and Struve functions. For q = 2 the conformal two-point function is

Gc(τ ) = − 1

πJτ
, (C2)

where we used that b1/2 = 1/π . Thus we find

G(τ ) = Gc(τ )

(
1 − 1

4(Jτ )2
− 3

16(Jτ )4
− 45

64(Jτ )6
− · · ·

)
. (C3)

On the other hand, using the formula (B9) and that for q = 2 operators dimensions are simply hk = 2(k + 1), we expect to have

G(τ ) = Gc(τ )

(
1 −

∞∑
k=0

αk

(Jτ )2k+1
−

∞∑
k,m=0

akmαkαm

(Jτ )2(k+m+1)
−

∞∑
k,m,l=0

akmlαkαmαl

(Jτ )2(k+m+l )+3
− · · ·

)
. (C4)

Comparing (C3) and (C4), we obtain relations between αk (q) and akm(q), akml (q), etc., for q = 2,

α0(2) = 0, α1(2) = −a000(2)α3
0 (2),

a00(2)α2
0 (2) = 1

4 , 2a01(2)α0(2)α1(2) = 3
16 .

(C5)

Moreover, using that α0(q) = π
8 (q − 2) + · · · for q → 2 [6], we obtain that a00(q) → 16

π2(q−2)2 + · · · , which agrees with the
arbitrary q formula (4.43) for ahh′ (q).

APPENDIX D: FINITE-TEMPERATURE
GENERALIZATION FOR SPECTRAL DENSITIES

Consider the retarded Green’s function in real time

G f R(t ) = −iθ (t )〈{ f (t ), f †(0)}〉,
GbR(t ) = −iθ (t )〈[b(t ), b†(0)]〉, (D1)

where �(t ) is the Heaviside step function and should not be
confused with the asymmetry angle. Below we again suppress
subscript a = f , b and only retain the ζ factor, where ζ f = −1
and ζb = 1. We can obtain the retarded Green’s function by
analytically continuing the imaginary-time one:

GR(t ) = iθ (t )[G(it + 0) − G(it − 0)]. (D2)

The full retarded Green’s function can be written as a confor-
mal part plus corrections GR(t ) = Gc

R(t ) + δGR(t ) and for the
conformal retarded Green’s function we find

Gc
R(t ) = −iθ (t )

(e−iπ (�+iE ) − ζeiπ (�+iE ) )b�e−(2π/iEβ )t(
βJ
π

sinh πt
β

)2�
.

(D3)

We split the correction δGR(t ) into two terms δGR(t ) =
δGA

R (t ) + δGS
R(t ), where

δhGA/S
R (t ) = −1

2
(vh+ ± vh−)

αh

(βJ )h−1
f A/S
Rh (t )Gc

R(t ), (D4)

and for f A/S
Rh (t ) we have

f A/S
Rh (t ) = e−iπ (�+iE ) f A/S

h (it + 0) ∓ ζeiπ (�+iE ) f A/S
h (it − 0)

e−iπ (�+iE ) − ζeiπ (�+iE )
,

(D5)

where the functions f A/S
h (τ ) are defined in (4.56) and (4.57).

To find f A/S
h (it ± 0) we note that function Ah(u) is analytic in

C and has a branch cut [1,+∞). Inside the unit circle |u| � 1
we can compute Ah(u) using a series expansion. Analytic con-
tinuation of f A/S

h (τ ) will produce two terms Ah(e−2π/tβ ) and
Ah(e2π/tβ ± i0), where the last function is computed above
or below the branch cut. Using formulas for linear trans-
formations of the hypergeometric function, we can represent
f A
h (it ± 0) in the convenient form

f A
h (it ± 0) = π (2π )h−1�(h)2

2 sin πh
2 sin(2πh)�(2h − 1)

(
(1 + e±iπh)Bh(e−2πt/β )

�(1 − h)2
− (h → 1 − h)

)
,

f S
h (it ± 0) = ± iπ (2π )h−1�(h)2

2 cos πh
2 sin(2πh)�(2h − 1)

(
(1 − e±iπh)Bh(e−2πt/β )

�(1 − h)2
− (h → 1 − h)

)
,

(D6)
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where Bh(u) = (1 − u)hF(h, h, 2h, 1 − u) is unambiguous for u = e−2πt/β and can be computed using series expansion. We note
that Bh coincides with the function B+

h,0 used in [7,22,36]. Using (D5), we obtain, for the fermions,

f A
Rh(t ) = (2π )h−2 cos πh

2 �(h)2

cos(πh)�(2h − 1)

[
�(h)2

(
1 + cos π (� − h + iE )

cos π (� + iE )

)
Bh(e−2πt/β ) − (h → 1 − h)

]
,

f S
Rh(t ) = i(2π )h−2 sin πh

2 �(h)2

cos(πh)�(2h − 1)

[
�(h)2

(
1 − cos π (� − h + iE )

cos π (� + iE )

)
Bh(e−2πt/β ) − (h → 1 − h)

]
,

(D7)

and for bosons we need to change cos → sin inside the brackets. For the hA
0 = 2 mode we find

f A
R0(t ) = 2 −

π tan[π (� + iE )] + 2πt
β

tanh πt
β

, f S
R0(t ) = − iπ

tanh πt
β

(D8)

and for bosons we need to change tan → − cot. To compute the expression for the spectral density we need to find the retarded
Green’s function in frequency space GR(ω) = Gc

R(ω) + δGR(ω). For the conformal part we take the Fourier transform of (D3)
and find

Gc
R(ω) = −i

C

J

(
βJ

2π

)1−2�

e−iθ �(� − iω′)
�(1 − � − iω′)

, (D9)

where ω′ ≡ βω

2π
− E and the constant C is defined after (4.16). Formulas written with the use of the asymmetry angle are the

same for both fermions and bosons. Next, for δGR(ω) = δGA
R (ω) + δGS

R(ω) we introduce f A/S
Rh (ω) as

δhGA/S
R (ω) = −1

2
(vh+ ± vh−)

αh

(βJ )h−1
f A/S
Rh (ω)Gc

R(ω). (D10)

We stress that f A/S
Rh (ω) are not Fourier transforms just of f A/S

Rh (t ). After some computations we obtain

f A
Rh(ω) = (2π )h−2 cos πh

2 �(h)2

cos(πh)�(2h − 1)

[
�(h)

�(1 − h)

(
e2iθ − sin

(
πh
2 − 2π�

)
sin πh

2

)
Jh(ω) − (h → 1 − h)

]
,

f S
Rh(ω) = i(2π )h−2 sin πh

2 �(h)2

cos(πh)�(2h − 1)

[
�(h)

�(1 − h)

(
cos

(
πh
2 − 2π�

)
cos πh

2

− e2iθ

)
Jh(ω) − (h → 1 − h)

]
,

(D11)

where the function Jh(ω) is

Jh(ω) = �(1 − � − iω′)�(1 + h − 2�)�(2�) 3F2

(
h h 1 + h − 2�

2h 1 + h − � − iω′ ; 1

)
(D12)

and 3F2 is the regularized hypergeometric function. For hA
0 = 2 we find f S

R0(ω) = πω′/� and

f A
R0(ω) = 1

�
(2� − 1 − iω′{π tan[π (� + iE )] + ψ (1 − � − iω′) − ψ (� − iω′)}), (D13)

where ψ (z) ≡ �′(z)/�(z) is the digamma function and we used that tan π (� + iE ) = tan π� + (e2iθ − 1)/sin 2π� for
fermions. For bosons we need to change tan → − cot.

For the spectral density we find ρ(ω) = ρc(ω) + δρ(ω), where

ρc(ω) = − 1

π
ImGc

R(ω) = C

πJ

(
βJ

2π

)1−2�

Re

(
e−iθ �(� − iω′)

�(1 − � − iω′)

)
(D14)

and the correction is

δρ(ω) =
∑

h

αh

2π (βJ )h−1

{
(vh+ + vh−)Im

[
Gc

R(ω) f A
Rh(ω)

] + (vh+ − vh−)Im
[
Gc

R(ω) f S
Rh(ω)

]}
. (D15)

Finally, we find formulas for the spin-spin correlator and spin-spin spectral density at nonzero temperature. The spin-spin
correlator in imaginary time is Q(τ ) = −ζG(τ )G(−τ ) [note that Q(τ ) is denoted by χL(τ ) in Sec. I]. Retaining only leading
linear corrections, we obtain

Q(τ ) = Qc(τ )

(
1 −

∑
h

(vh+ + vh−)
αh

(βJ )h−1
f A
h (τ ) − · · ·

)
, (D16)
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where we note that the functions f S
h (τ ) do not contribute

at the leading order and the conformal part of the spin-spin
correlator is

Qc(τ ) = −ζGc(τ )Gc(−τ ) = − b2�∣∣ βJ
π

sin πτ
β

∣∣4�
. (D17)

We can find the retarded spin-spin correlator in real time
QR(t ) = −iθ (t )〈[S(t ), S(0)]〉 by analytic continuation of the
imaginary-time one:

QR(t ) = iθ (t )[Q(it + 0) − Q(it − 0)]. (D18)

We note that all formulas for QR(t ) are essentially the same as
for bosonic GR(t ) with the replacement � → 2� and E = 0
(or θ = π/2). Below we still repeat some main steps.

As usual, QR(t ) is split into two terms QR(t ) = Qc
R(t ) +

δQR(t ), where the conformal part and correction have the

forms

Qc
R(t ) = −θ (t )

2 sin(2π�)b2�(
βJ
π

sinh πt
β

)4�
,

δhQR(t ) = −(vh+ + vh−)
αh

(βJ )h−1
f A
Rh(t )Qc

R(t ).

(D19)

Here the bosonic function f A
Rh(t ) in (D7) is for E = 0 and

� → 2�. Now taking the Fourier transform of QR(t ), we get
QR(ω) = Qc

R(ω) + δQR(ω), where the conformal part is

Qc
R(ω) = − πb2�

J�(4�) cos 2π�

(
βJ

2π

)1−4� �
(
2� − i βω

2π

)
�

(
1 − 2� − i βω

2π

) .

(D20)

The correction has the form

δQR(ω) = −
∑

h

(vh+ + vh−)
αh

(βJ )h−1
f A
Rh(ω)Qc

R(ω), (D21)

where the function f A
Rh(ω) in (D11) is computed here for � →

2�, θ = π/2, and ω′ = βω

2π
. Therefore, for the hA

0 = 2 mode
we find

f A
R0(ω) = 1

2�

{
4� − 1 − i

βω

2π

[
ψ

(
1 − 2� − i

βω

2π

)
− ψ

(
2� − i

βω

2π

)
− π cot 2π�

]}
. (D22)

We are mainly interested in the � = 1/4 case. At the � → 1/4 limit the conformal part Qc
R(ω) is diverging and we get

Qc
R(ω) = 2b1/2

J

[
1

4
(
� − 1

4

) + ψ

(
1

2
− iβω

2π

)
+ γ − ln

(
βJ

2π

)
+ · · ·

]
. (D23)

The diverging part is real and does not contribute to the spectral density. On the other hand, the function f A
Rh(ω) goes to zero as

� − 1/4 and we obtain

f A
Rh(ω)Qc

R(ω) = −b1/2(2π )h−1 cos πh
2 �(h)2

J cos(πh)�(2h − 1)

[
�(h)2�

(
π−iβω

2π

)
tan πh

2 �(1 − h)
3F2

(
h h h

2h π (2h+1)−iβω

2π

; 1

)
− (h → 1 − h)

]
, (D24)

where 3F2 is the regularized hypergeometric function. The spin-spin spectral density ρQ(ω) can be found as

ρQ(ω) = − 1

π
ImQR(ω). (D25)

We write ρQ(ω) = ρc
Q(ω) + δρQ(ω) and using (D24) we obtain

ρQ(ω) = b1/2

J
tanh

(
βω

2

)[
1 −

∑
h

(vh+ + vh−)
αh

(βJ )h−1
RA

h

(
βω

2π

)
− · · ·

]
, (D26)

where the function RA
h (ω) is

RA
h (ω) = 2

(
π
2

)h
�(h)√

π sin
(

πh
2

)
�

(
h − 1

2

)Re 3F2

(
h 1 − h 1

2 + iω

1 1
; 1

)
. (D27)

To get this expression we used two identities for the regularized hypergeometric function

3F2

(
1 − h 1 − h 1 − h

2 − 2h 1 − h + a
; 1

)
= �(h)3

�(1 − h)3 3F2

(
h h h

2h h + a
; 1

)
+ �(h)3

�(a)�(2 − 2h)�(2h − 1)
3F2

(
1 − h h 1 − a

1 1
; 1

)
, (D28)

3F2

(
h h h

2h h + a
; 1

)
= �(1 − a)�(1 − h)2

�(h)�(h + a)�(1 − h − a)
3F2

(
h 1 − h 1 − a

1 1
; 1

)
+ �(1 − h)2

�(h)�(a)
3F2

(
h 1 − h a

1 1
; 1

)
. (D29)

Retaining only the hA
0 = 2 mode, we obtain

ρQ(ω) = b1/2

J
tanh

(
βω

2

)[
1 − 2αA

0 ω

J
tanh

(
βω

2

)
− · · ·

]
, (D30)
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where we used that v0+ + v0− = 2 and

3F2

(
1 − h h 1

2 + iω

1 1
; 1

)
= −2iω − 2iω

[
ψ

(
1
2 − iω

) + γE
]
(h − 2) + O((h − 2)2). (D31)

APPENDIX E: ZERO-TEMPERATURE NUMERICS FOR
THE BOSONIC/FERMIONIC SYK AND RANDOM ROTOR

MODELS

We consider Dyson-Schwinger equations for the retarded
Green’s function for bosonic and fermionic SYK models
for the q = 4 case, which is obtained by analytic continua-
tion from the Matsubara frequency iωn → ω + i0. The first
Dyson-Schwinger equation reads

GR(ω)−1 = ω + i0 + μ − 
R(ω). (E1)

Here, for brevity, we do not explicitly label Green’s functions
by the index a = f , b but we will use the symbol ζa, which
is ζ f = −1 and ζb = 1. In general, for the Green’s function
and self-energy we define analytically the upper half-plane
functions G(z) and 
(z), which are expressed through the
spectral densities ρ(ω) and σ (ω) as

G(z) =
∫ +∞

−∞
dω

ρ(ω)

z − ω
, 
(z) =

∫ +∞

−∞
dω

σ (ω)

z − ω
. (E2)

The Matsubara and retarded Green’s functions can be ob-
tained from these functions by taking z = iωn and z = ω + i0.
We can find the spectral density as ρ(ω) = − 1

π
ImGR(ω).

Also, using the representation (E2), we can obtain the Green’s
function in imaginary time expressed through the integral over
the spectral density

G(τ ) = 1

β

∑
n

G(iωn)e−iωnτ

= −
∫ +∞

−∞
dω

ρ(ω)e−ωτ

1 − ζe−βω
, τ ∈ (0, β ). (E3)

We note that ζG(β−) − G(0+) = ∫ +∞
−∞ dω ρ(ω) = 1 for ar-

bitrary temperature. To obtain the second Dyson-Schwinger
equation for the retarded self-energy 
R(ω) we consider this
equation in the Matsubara space 
(τ ) = J2G2(τ )G(β − τ )
and use (E3) to write it through the spectral density


(iωn) = −J2
∫ +∞

−∞

3∏
i=1

[dωiρ(ωi )]
n(ω1)n(ω2)n(−ω3) + n(−ω1)n(−ω2)n(ω3)

ω1 + ω2 − ω3 − iωn
, (E4)

where n(ω) = 1/(eβω − ζ ) is the Bose or Fermi distribution and we can get 
R(ω) = 
(iωn = ω + i0). At zero temperature
β = ∞ we can replace nb(ω) by −θ (−ω) and n f (ω) by θ (−ω). Though nb(ω) is divergent for ω → 0, we assume that this
divergence does not play any role. The functions GR(ω) and 
R(ω) are complex valued and further we will adopt notation for
their real and imaginary parts GR(ω) = G′(ω) + iG′′(ω) and 
R(ω) = 
′(ω) + i
′′(ω). So for β = ∞, using (E4), we find


′′(ω) =
{

ζπJ2
∫ ω1+ω2�ω

0 dω1dω2ρ(ω1)ρ(ω2)ρ(ω1 + ω2 − ω), ω > 0

ζπJ2
∫ 0
ω1+ω2�ω

dω1dω2ρ(ω1)ρ(ω2)ρ(ω1 + ω2 − ω), ω < 0.
(E5)

Below in all formulas we set J = 1 for brevity. We anticipate that at zero temperature the functions ρ(ω) and 
′′(ω) will have
discontinuity. So it will be convenient to use a new set of functions defined separately for ω > 0 and ω < 0,

ρ(ω) =
{

g+(ω)√
ω

, ω > 0
g−(−ω)√−ω

, ω < 0,


′′(ω) =
{

4π
√

ωs+(ω), ω > 0
4π

√−ωs−(−ω), ω < 0.

(E6)

We make the change of variables ω1 = ω sin2 u cos2 φ and ω2 = ω sin2 u sin2 φ in (E5) and obtain

s±(ω) = ζ

∫ π/2

0
du sin u

∫ π/2

0
dφ g±(ω sin2 u cos2 φ)g±(ω sin2 u sin2 φ)g∓(ω cos2 u). (E7)

We note that s±(x) and g±(x) are defined only for a positive argument. Now it is left to find a real part 
′(ω) of the self-energy.
For this we use the Kramers-Kronig relation


′(ω) = −
∫ +∞

−∞

dν

π


′′(ν) − 
′′(ω)

ν − ω
. (E8)

Defining 
′
±(ω) as 
′(ω) = 
′

+(ω)θ (ω) + 
′
−(−ω)θ (−ω), we find


′
±(ω) = ±−

∫ +∞

0

dν

π

(

′′

±(ν) − 
′′
±(ω)

ν − ω
− 
′′

∓(ν) − 
′′
±(ω)

ν + ω

)
. (E9)
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At zero temperature we set the chemical potential μ = 
′(ω = 0), so introducing h±(ω) as


′(ω) − 
′(0) =
{

4
√

ωh+(ω), ω > 0
4
√−ωh−(−ω), ω < 0

(E10)

and simplifying expressions, we finally obtain

h±(ω) = ±−
∫ +∞

0
dν

(√
ωs±(ν) − √

νs±(ω)√
ν(ν − ω)

+
√

ωs∓(ν) + √
νs±(ω)√

ν(ν + ω)

)
. (E11)

Now using the first Dyson-Schwinger equation, we can get g±
from s± and h±,

g±(ω) = − 4s±(ω)

[4h±(ω) ∓ √
ω]2 + 16π2[s±(ω)]2

. (E12)

We solve Dyson-Schwinger equations iteratively using (E7),
(E11), and (E12) and also imposing the initial conditions
coming from the conformal solution (4.16),

g±(0) = C sin
(

π
4 ± θ

)
π

, s±(0) = − sin
(

π
4 ± θ

)
4πC

,

h±(0) = ∓cos
(

π
4 ± θ

)
4C

, C =
( −ζπ

cos 2θ

)1/4

.

(E13)

We can compute the chemical potential numerically using that
μ = 
′(ω = 0) and Eq. (E9):

μ = 4
∫ +∞

0
dω

s+(ω) − s−(ω)√
ω

. (E14)

In the random rotor model defined in Sec. VI the spectral
density ρ(ω) is an odd function due to the particle-hole sym-
metry. Thus we have g−(ω) = −g+(ω) and s−(ω) = −s+(ω),
where the equation for s+(ω) is written in (E7) (ζ = 1 in this
case). Also, h−(ω) = h+(ω) and from (E11) we find

h+(ω) =
∫ +∞

0
dν

2ω[
√

ωs+(ν) − √
νs+(ω)]√

ν(ν2 − ω2)
. (E15)

The first Schwinger-Dyson equation in the random rotor
model reads

g+(ω) = − 4s+(ω)

[ω3/2 − 4h+(ω)]2 + 16π2s+(ω)2
(E16)

and the boundary conditions are obtained from (E13) for
θ = π/2.
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