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Rigidity of topological invariants to symmetry breaking
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Symmetry plays an important role in the topological band theory to remedy the eigenstates’ gauge obstruction
at the cost of a symmetry anomaly and zero-energy boundary modes. One can also make use of the symmetry
to enumerate the topological invariants—giving a symmetry classification table. Here we consider various
topological phases protected by different symmetries and examine how the corresponding topological invariants
evolve once the protecting symmetry is spontaneously lost. To our surprise, we find that the topological invariants
and edge states can sometimes be robust to symmetry-breaking quantum orders. This topological robustness
persists as long as the mean-field Hamiltonian in a symmetry-breaking ordered phase maintains its adiabatic
continuity to the noninteracting Hamiltonian. For example, for a time-reversal symmetric topological phase in
2+1 dimensions, we show that the Z2 time-reversal polarization continues to be a good topological invariant
even after including distinct time-reversal breaking order parameters. Similar conclusions are drawn for various
other symmetry-breaking cases. Finally, we discuss that the change in the internal symmetry associated with the
spontaneous symmetry breaking has to be accounted for to reinstate the topological invariants into the expected
classification table.
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I. INTRODUCTION

It has been more than two decades now that the concept of
topology, which plays an important role in the gauge theory in
QED and QCD, has found a place in the electronic structure
of condensed matter [1–5]. Within the electronic band theory,
topology arises intrinsically due to the presence of a Berry
gauge connection—a consequence of the obstruction to the
smooth (global) gauge fixing in the wave function in the Bril-
louin zone (BZ) [6–9]. To reinstate the global symmetry, one
requires losing one or more discrete symmetries. This symme-
try is actually invariant in the classical theory, but is broken
at the quantum level—hence the term symmetry/quantum
anomaly [1,3,10–13]. The symmetry anomaly results from a
one-way spectral flow between the states that transform under
the symmetry, dubbed symmetry partners. The anomaly splits
the symmetry partners to be separately localized at differ-
ent boundaries as zero-energy modes but remain connected
via bulk insulating bands [14]. The one-way spectral flow
between these symmetry partners at the boundaries, via the
bulk states, causes a symmetry-dictated polarization such as
charge pumping for the chiral anomaly [15,16], spin or helic-
ity pumping for the time-reversal polarization [5,7,8,17,18],
and Majorana pumping for the charge conjugation anomaly
[19,20].

Accordingly, discrete symmetries play important roles in
topological protection. In fact, all the topological phases
can be classified by discrete symmetries [21–29]. Discrete
symmetries help to uniquely organize the mappings from
eigenspaces to corresponding homotopy groups and enumer-
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ate the topological invariants by the winding numbers of
the homotopy group belonging to either the Z or Z2 or 0
(trivial) phases. Relevant discrete symmetries include charge
conjugation (CC, denoted by operator C), parity (operator P),
time reversal (TR, with operator T ), and others. The combi-
nation of CC, TR, and their product (CT ), which gives the
chiral or sublattice symmetries, forms a closed group algebra.
The corresponding topological phases can be classified by
these symmetries, forming the so-called tenfold classification
scheme [21–25]. Similarly, one can generalize the classifi-
cations to other discrete symmetries, say, point-group, space
group, and nonsymmorphic symmetries, etc., forming various
distinct classification schemes [26–29].

Here we raise these questions: What happens when the
protecting or anomalous symmetry is spontaneously (or ex-
plicitly) broken? How do the bulk topological invariants and
the gapless edge modes respond to the loss of these symme-
tries? Does the topological invariant shift its position in the
tenfold classification table?

The question becomes more interesting when the
symmetry-breaking order parameter, at least at the mean-field
level, does not close the original topological band (rather
quasiparticle) gap, and also does not modify the value of
the corresponding topological invariant. Our findings here
reveal that although a change in symmetry dictates a transition
from one homotopy group to another with different wind-
ing numbers, the topological invariant continues to belong
to its original noninteracting homotopy group. Furthermore,
we also find that the corresponding symmetry-dictated po-
larization, such as charge, spin, and/or TR polarization
as appropriate—an indicator of the symmetry anomaly—
remains a good indicator of the topological phase even after
the loss of the corresponding symmetry. For example, the
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so-called Z2 invariant or spin Chern number, which is a mea-
sure of the TR polarization in T 2 = −1 invariant systems
[17,18,30,31], maintains its nontrivial value even after the
TR symmetry is spontaneously broken. Finally, we discuss
these results in terms of the change in the internal symme-
try and the representation of the eigenstates associated with
the spontaneous symmetry breaking, which may be respon-
sible for the change in the winding number of the homotopy
group.

We demonstrate the above phenomena based on a model
Hamiltonian in 2+1 dimensions (D). The noninteracting
Hamiltonian is designed in a bilayer of 2D electron gas. The
Rashba-type spin-orbit coupling (SOC) is reversed in sign
between the layers. The system attains a topological phase as
the interlayer coupling is tuned above a critical value. This
coupling becomes the topological band gap (Dirac mass). The
Hamiltonian features a Z2 topological phase protected by the
T 2 = −1 symmetry, belonging to the DIII topological phases
according to the tenfold way table. The results are affirmed by
both the explicit calculations of Z2 TR polarization index ν

and the spin Chern number Cs.
Next we consider various symmetry-breaking order pa-

rameters within an extended Hubbard model. Different order
parameters break different symmetries, such as C, T , P , and
their various dual and trinal combinations.

(i) First we consider a sublattice density (SD) order that
breaks C, P symmetries, but preserves CP and T , and hence
has the CPT symmetry [32]. Interestingly, the system con-
tinues to possess the same Z2 topological invariant ν ∈ Z2

(but not the spin Chern number) and the gapless Dirac cone
at the boundary. This phase is adiabatically connected to
the noninteracting quantum spin Hall (QSH) phase; how-
ever, the topological class changes its place from the DIII to
the AII cartan group—both maps to the same Z2 homotopy
group.

(ii) Next, we consider a ferromagnetic (FM) order. Such
a state respects C, P , and CP symmetries but lacks the CPT
invariance. The symmetry classification now switches to the D
class, which, according to the tenfold way table, maps to the
Z homotopy group. However, the mean-field FM Hamiltonian
continues to feature the same spin Chern number Cs and TR
invariant ν ∈ Z2 as in the parent QSH phase, as long as the
FM exchange energy is lower than the original Dirac mass.
Finally, above a critical value of the FM exchange energy, a
topological phase transition occurs to the expected Z group.

(iii) We also consider an intersublattice magnetic (SM) or-
der which breaks T , C symmetries, but respects the sublattice
(CT ) and (CPT )2 = −1 symmetries. Most interestingly, in
this case the TR-breaking perturbation never destroys the Z2

invariance and the spin Chern number. The Dirac cones at the
boundaries remain gapless but the gapless points move away
from the TR invariant k = 0 point.

(iv) We further consider an antiferromagnetic (AF) order,
which breaks P , but recovers the (PT )2 = −1 invariance.
This gives a Z2 topological invariant ν = 1 in the bulk and the
system remains adiabatically connected to the noninteracting
bands, but the edge states are now gapped. Here we also find
that the AF gap and the noninteracting interlayer hopping
amplitude conspire to yield a complex tunneling term. This
complex tunneling term gives a O(2) field and a vortexlike

structure. The winding number associated with the vortex
corresponds to the same Z2 topological invariant.

(v) We introduce a novel sublattice vortex (SV) phase
which breaks different set of symmetries, yet gives all the
same topological invariants as the AF phase does.

Finally, we motivate a discussion of our results in Sec. VII
mainly in two directions. (i) The winding number of the d th

homotopy πd (SU(N )) depends on the value of N for a given d .
Since the spontaneous symmetry breaking occurs in the wave
function, it may change the internal symmetry SU(N ) and the
irreducible representation of the eigenstates depending on the
system at hand. (ii) We discuss how symmetries are some-
times treated differently in the classical and quantum theories.
For example, the symmetry anomaly is a contradiction in
which the classical theory is invariant under the symmetry but
not its quantum version. We cast our results as a collection of
counterexamples to the symmetry anomaly. We find that if the
symmetry in the classical theory is spontaneously broken, the
quantum theory, in which the symmetry is already anomalous,
may not be immediately sensitive to it as long as the bulk
topological gap is not closed.

II. PRELUDE

To direct the discussions on the topological phases and
discrete symmetries into our research topics, we start with
a brief account on how they are connected. We discuss how
the topological classifications are performed based on the
obstruction to the gauge fixing for complex eigenstates in
Sec. II A 1, as well as to the orientability of the real part of
the eigenvectors in Sec. II A 2.

A. Topological classifications

1. Gauge obstruction and homotopy group

A topological phase occurs in a noninteracting Hamilto-
nian when the unitary matrix U of its eigenstates lives on
a nontrivial hypersphere Sd of d spatial dimension [33]. A
nontrivial hypersphere implies that there is an obstruction
to (global) gauge fixing of the eigenstates in the entire hy-
persphere [3,9,10]. One requires multiple (say, two) gauge
fixings in different parts of Sd (say, in the north and south
hemispheres Sd

N/S). The difference between the two gauges
gives the Berry connection (a nonremovable, singular gauge).
Living on Sd , the Berry connection is a pure gauge, and the
corresponding gauge group belongs to either U(N ) (Abelian)
or SU(N ) (non-Abelian) group. Hence, every point on Sd has
a 1:1 mapping to every point on the space defined by the
generators of the corresponding gauge group (which is also
a hypersphere Sn since the gauge group is unitary, where n
spans over the number of generators of the gauge group). The
identification of the gauge group, therefore, helps map the
eigenspace to a corresponding nth homotopy group πd (Sn) ∼=
Z, or Z2, or 0, where Z ∈ integers, Z2 ∈ [0, 1), and 0 de-
notes a trivial phase. The subscript d in the homotopy group
gives the dimension of the parameter space (momentum here),
which is also compact Sd or a torus T d . This group identifica-
tion enumerates distinct topological invariants—the winding
numbers, in general—for a given system [21–25,34].
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2. Vector bundle and K group

The above description of the gauge obstruction arises in
complex eigenvectors. One may wonder what happens for real
eigenvectors, which may arise in real Hamiltonians, in Majo-
rana representations, and/or when certain PT or equivalent
symmetric cases [35–37]. It turns out that there is a different
topological class owing to the obstruction to smooth orien-
tation of the real eigenvectors in the entire BZ. To intuitively
bridge its connection to the gauge obstruction, let us start with
a complex eigenvector, and locally impose its phase part to be
a constant at all k points. Then the resultant real eigenvec-
tors have an emergent “local” symmetry, say SO(N ), and the
corresponding eigenvector bundle lives on the tangent space
of a compact manifold. Now, as we continuously vary the
base point of an eigenvector across the compact manifold and
return back to its starting point, the eigenvector will acquire an
(n ∈ Z)-fold rotation to its starting orientation. So n measures
the obstruction to contractibility of the collection of vector
bundles and leads to an invariant—called the K theory (for
real vector bundles) or K̃ theory (for complex eigenvectors)
[38].

The topological phases of matter has been classified within
the K theory by identifying the homotopy class πd (KO(N ))
in both tenfold class and for various topological crystalline
insulators [22,23,26]. In fact, it can be proved that both the
winding numbers for real vectors (defined by obstruction ori-
entability) and for the corresponding complex eigenvectors
(defined by obstruction to gauge fixing) are the same when
both invariants are defined [35,36].

In the present context of symmetry-breaking topological
phases, one may wonder if any of the symmetry-breaking ex-
amples corresponds to a migration from the gauge obstruction
class to the K-theory class. It is a possibility, especially for
certain PT -invariant cases and in some topological materials
protected by crystalline symmetries [26,35–37]. Although we
have several examples where the broken antiunitary T or C
symmetries are restored by antiunitary PT or CP or unitary
CT or CPT combinations, the eigenvectors remain complex
and acquire the same gauge obstruction between the two re-
gions of the BZ which are related by the original broken T
or C symmetries. Of course, a complex K̃ theory cannot be
ruled out, but the essence of our work is that the symmetry
breakings do not change the topological invariant and the
same topological invariants survive to the broken symmetry
phases.

3. Internal symmetries and Hilbert space dimensions

Internal symmetries of the eigenvectors play an important
role to the topological classification. When the eigenvectors
have an SU(N ) symmetry (or SO(N ) for real eigenvectors),
the corresponding Berry connection is also valued in the
SU(N ) Lie algebra. In that case, the topological space is
identified by the homotopy group πd (SU(N )), and the cor-
responding topological invariant depends on N . Most of the
topological classifications are performed in the infinite limit
of N .

In principle, the internal symmetry structure and the di-
mension of the Hilbert space are automatically incorporated
in the classification scheme, because the number of generators

for a given group SU(N ) dictates the eigenvectors to live in a
compact target space Sn. Then the mapping to the parame-
ter space Sd gives the homotopy group πd (Sn) as discussed
above. However, differences arise when the representation is
reducible in that there is an irreducible representation in which
the homotopy classification changes. A simple example would
be π2(SU(N )) ∼= Z2 for N > 2, and Z otherwise. In what
follows, if we have a four-component spinor represented by
SU(2) × SU(2), then each SU(2) block gives a topological
invariant in Z class, but with opposite sign so that the net
invariant is defined in the Z2 class.

4. Role of discrete symmetries

So far, no discrete symmetry is implemented. It turns out
that when discrete symmetries (such as TR, CC, chiral, parity
or inversion, and/or others) are present, the unitary matrix
U of the complex eigenvector (or orthogonal matrix for real
eigenvectors) can be brought down to follow a lower quo-
tient group. [The same dissection of the eigenvector space
to quotient group can also be done with discrete crystalline
(point, space, or nonsymmorphic) group symmetries, giving
the so-called topological crystalline phases classifications.]
Depending on whether one or more discrete symmetry is
present, the quotient group can be uniquely defined. Hence,
the corresponding relation between the nth homotopy class, or
Euler/Stefer-Withney class for vector bundle, and the hyper-
space dimension d can uniquely dictate its topological group
to be either Z or Z2 or 0 [21–25]. This result is supposed to be
independent of the form of U , and hence of the Hamiltonian,
and depends only on the symmetries.

B. Symmetry anomaly and topological invariants

Let us give an alternative and simplified view on how the
discrete symmetry can be used to remedy the obstruction
and how it thereby becomes anomalous. Let there be two
eigenstates ψ± to be the symmetry partners for a discrete
symmetry O. They can be either (i) the Kramer’s partners or
particle-hole partners ψ+ and ψ− = Oψ+ for antiunitary op-
erator O = T , C symmetries, respectively; or, (ii) ψ± are two
eigenstates: Oψ± = ±ψ± of a unitary operator O = chiral,
parity operators. Suppose now there exists a “band inversion”
between these two states across a characteristic momentum
k0. Then, in the nontrivial phase, one cannot define a smooth
gauge at all momenta in the BZ. However, one can separately
fix the gauge as follows. One gauge for all k < k0 and another
in the k > k0. The gauge difference between them is the
Berry connection. Without losing generality, we can claim ψ±
to live on different gauge-inequivalent regions of the Sd

N/S.
Equivalently, we can say, for a given band (say, valence band),
its eigenvector in the first region (k < k0) belongs to Sd

N,
say, and that in the remaining region belongs to Sd

S. In other
words, the symmetry partners can be used to index different
gauge-inequivalent regions of the hypersphere, i.e., Sd

N/S ≡
Sd

±. (This description is equivalent to the identification of the
quotient group we discussed above.)

According to ’t Hooft anomaly analysis [12], to rem-
edy the gauge obstruction in a nontrivial topological phase,
one requires to violate some other symmetry—hence the
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corresponding symmetry is termed as anomalous. This is un-
derstood as follows. Each time, one moves across Sd

N/S (≡ Sd
±

as distinguished now by the symmetry partners), a singular
gauge (Berry connection) has to be removed or added. Since
the global symmetry is connected to charge conservation, a
“topological charge” has to flow (one way) across the sym-
metry partners. This phenomenon is called anomaly inflow. In
the case of a chiral (parity) symmetry, different chiral (parity)
eigenstates distinguish the two gauge-inequivalent regions. As
a charge flows from one chiral (parity) mode to another, we
obtain the famous chiral (parity) anomaly [11,15,39,40]. One
of the anomaly indicator of this phase in 2+1 dimensions is
the first Chern number. Similarly, for the TR case, Kane-Mele
proposed a pumping of TR polarization in which an anomaly
inflow occurs between the two Kramer’s partners. This can be
identified as the TR anomaly (also known as spin or helicity
pumping in different contexts) [17,18]. Similarly, splitting of
Majorana pairs to different edges is a representative example
of the charge conjugation anomaly [19]. Below, we revisit the
key topological invariants for these polarizations.

1. TR polarization

The TR polarization formula was deduced by Kane and
Mele (KM) [17]. We briefly review it in a slightly different
way to connect it to the gauge-fixing procedure introduced
before. We split the Hilbert space for the two Kramer’s pair
ψ±(k) living on S2

N/S ≡ S2
±. Since TR gives k → −k, we can

also split the torus T 2 into T 2
± for k > 0 and k < 0, respec-

tively. The two Kramer’s partners differ by a nontrivial (also
called large) gauge rotation �k as |ψ+(−k)〉 = �k|T ψ−(k)〉
[41]. Then the Berry connections for the two Kramer’s
partners (A±

k ) are related to each other by a pure gauge
transformation, defined as A+

−k = A−
k − i�−1

k ∇�k [42,43]. If
we choose a closed path on the boundary of the BZ (∂T 2),
according to fiber bundle theory, the gauge transformation
�k defines a mapping ∂T 2 → S1. In this case, the gauge
transformation has a winding number. However, due to the
TR symmetry, the total wrapping over ∂T 2 consists of two
wrappings: one clockwise wrapping around ∂T 2

+, followed
by an anticlockwise wrapping around ∂T 2

−, yielding a null
net winding number. However, if we restrict the loop within
∂T 2

+ we obtain a topological index ν of the gauge transforma-
tion �k defined as ν = 1

2π

∮
∂T2+

dk · Tr[�−1
k ∇�k]. According

to the Atiyah-Singer index theory [44], the net anomaly in-
flow between the Kramer’s partners is equal to ν. Since the
anomaly inflow leads to an imbalance in the occupancy of
the two Kramer’s partners, we refer to this process as the
TR polarization—a TR anomaly. This is how the topological
gauge obstruction is remedied by a TR anomaly.

With further mathematical treatments, Fu et al. deduced a
working formula for ν as [30]

(−1)ν =
N∏

n=1

δkn , (1)

where n indices the number of TR-invariant kn points in
the first quadrant of the BZ. Here δk = √

det(ωk )/Pf(ωk ),
where ωk is the antisymmetric sewing matrix with two
off-diagonal terms containing ±�−1

±k∇�±k. Since ωk is an

antisymmetric matrix, its Pfaffian follows Pf(ωk ) =
±√

det(ωk ). Hence, δkn = ±1, taking a negative sign when
an anomaly inflow (or band inversion) occurs between the
two Kramer’s partners. Therefore, according to Eq. (1), ν = 1
if there is an odd number of anomaly inflow(s) or band
inversions between ψ±; otherwise ν = 0. This is how the TR
symmetry restricts the winding number ν belonging to a Z2

group.

2. Particle-hole polarization

By particle-hole symmetry, we mean here that there exists
an operator (unitary or antiunitary) O which anticommutes
with the Hamiltonian H such that the energy eigenvalues
come in pair ±|E |. Such a case may arise from either C or CT
or CP or CPT symmetries. Depending on the symmetry,
the particle-hole pairs correspond to states at k and k̄ = ±k;
see Table I. The particle-hole symmetric Hamiltonian can be
block off diagonalized by a similarity transformation, and

we express it as H = ( 0 Qk

Q†
k 0 ). Then the Hilbert space is

also split into 	k = (ψ+(k) ψ−(k̄))T , where the particle-hole
conjugates are related to each other by ψ+(k) = Qkψ−(k̄),
and ψ−(k̄) = Q†

kψ+(k). This implies that Qk is unitary and is
qualitatively equivalent to the (large) gauge transformation �k
introduced for the Kramer’s partners above. Indeed, explicit
Berry connection formulas for the two particle-hole partners
reveal that they differ by A+

k − A−
k̄

= iQ−1
k ∇Qk. Following

the same argument as above for the TR case, the anomaly
inflow between the two particle-hole partners can be indicated
by a winding number νph = 1

2π

∮
∂T2+

dk · Tr[Q−1
k ∇Qk]. We

notice that Qk may not be Hermitian and hence the winding
number can be complex, in general [45].

3. Parity polarization

When the system is also invariant under parity, the above
description can be cast into an anomaly inflow between dif-
ferent parity states—hence violating parity conservation. We
can repeat the above analysis for ψ±(k), where now ± cor-
responds to two parity eigenvalues. We denote the parity
eigenvalue at a given k point by pk. Fu and Kane showed
that the same Eq. (1) for the winding number ν also works
for parity inflow, where pk for the valence band replaces δk
[31].

4. Crystal symmetries

Because of the contractibility of topological spaces, the
splitting of the BZ into distinct gauge-equivalent subspaces
is not unique. As mentioned in the introduction, the symme-
try anomaly is a choice especially when there are multiple
symmetries. In addition to above discrete symmetries, there
are also various discrete crystalline symmetries belonging to
point, space, or nonsymorphic groups, which can dissect the
BZ into different gauge-equivalent spaces as before. Such
topological classifications are collectively called topological
crystalline insulators [26–28].

Is there any crystalline symmetry which can be an al-
ternative choice to provide quantum anomaly in the present
symmetry-broken topological phases? While this is generally
possible, but it does not apply in our case because none of
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TABLE I. Various symmetry operators considered here and their operations on a Bloch Hamiltonian.

Operator (O) Operation O2 Unitary

T = i
13K (T )−1H (k)T = H (−k) −1 no
C = 
1K (C)−1H (k)C = −H (−k) +1 no
CT = 
3 (CT )−1H (k)CT = −H (k) +1 yes
P = 
4 (P )−1H (k)P = H (−k) +1 yes
PT = i
25K (PT )−1H (k)PT = H (k) −1 no
CP = i
14K (CP )−1H (k)CP = −H (k) −1 no
CPT = i
34 (CPT )−1H (k)CPT = −H (−k) −1 yes

the studied quantum orders break any crystalline symmetry.
In various examples in the literature, the broken T or C
symmetry combines with a broken to crystalline symmetry to
become the defining symmetry anomaly (e.g., transnational
symmetry-breaking AF phase, or PT -symmetric topological
phase, etc) [35–37]. In the present work, all the order pa-
rameters are momentum independent and do not break any
transnational, rotational, or mirror symmetry. Hence, the com-
bination of any crystalline symmetry with the broken T or
C symmetries remain broken in the ordered phases. In fact,
we shall demonstrate that the topological invariants can as
well be defined in the continuum limit of the models having
continuous transitional and rotational symmetries.

5. Chern number

The Chern number is the flux of the Berry curvature
F±

k = ∇ × A±
k for ψ± states in a torus T 2. So, Chern num-

ber measures the flux flow between ψ± states. In our above
description, this amounts to a flux flow between the two
hemispheres S2

N/S ≡ S2
± ≡ T 2

±. Now if ψ± are identified as
the symmetry partners of a discrete symmetry, then the flux
flow gives the corresponding symmetry anomaly flow. For
example, the Thouless charge pump in a Chern insulator is
a manifestation of the chiral anomaly. Similarly, the spin,
mirror, valley Chern numbers as deduced in different contexts
are associated with anomalies in spin, mirror, and valley sym-
metries, respectively.

For the TR invariant case, we identify ψ± as the Kramer’s
partners, in Sec. II B 1. Then the Berry flux of each state is
C± = 1

2π

∫
T 2 F±

k d2k, with C+ = −C− due to the TR sym-
metry. However, it is easy to see that the difference between
the two Chern numbers is related to the gauge transformation
�k as Cs = 1

2 |C+ − C−|= 1
4π

∫
T 2 Tr[∇ × �−1

k ∇�k]d2k = ν.
When spin is a good quantum number, ψ± states are nothing
but the ↑, ↓ spin states, and hence Cs is often called the spin
Chern number. In what follows, if we want to evaluate indi-
vidual values of C±, the Hamiltonian has to be block diagonal
with each block breaking the TR symmetry (the total TR is
preserved), and ψ± are the eigenvectors of the two blocks.
In such a case, the anomaly flow between the two block
Hamiltonians may or may not have any physical interpretation
unless there is a physical symmetry (such as spin rotation for
spin Chern insulator) that relates the two block diagonals.

We can easily generalize the above analysis to the case of
the particle-hole partners ψ±, as discussed in Sec. II B 2. In
this case, the above formalism remains intact as we replace
�k → Qk, the block off diagonal part of the Hamiltonian.

Thanks to the Nielsen-Ninomiya’s no-go theory [46], the total
Chern number between the particle-hole partners must vanish
and hence C+ = −C−. However, we notice here that in an
insulator ψ± states denote the valence and conduction bands.
The Hall effect is only contributed by the valence band. So we
get a finite Hall effect, and the system is called the quantum
anomalous Hall (QAH) insulator or the Chern insulator. Chi-
ral symmetry (CT ) is a prominent example of the particle-hole
symmetry and hence the Chern or QAH insulators are often
considered a result of chiral anomaly.

III. SYMMETRIES TO BE CONSIDERED

Here we focus on the tenfold classification scheme which
is based on TR T , CC C, and their product CT , namely chiral
and sublattice symmetries. In addition, we also consider parity
P , and all their dual and trinal combinations. We refer them as
PT , CP , and CPT symmetries. All the symmetry properties
are listed in Table I.

The parity symmetry can be taken as a place holder to a
wider range of discrete, or even continuous symmetries, if
present, which may appear to rescue the spontaneous loss of
the other symmetries. We refrain from such a wider gener-
alization by focusing on the order parameters which do not
break any space, point-group, translation, or nonsymmorphic
symmetries. Some of the order parameters break parity and
thus we focus only on a parity symmetry defined by spatial
inversion and sublattice exchange: PψA,B(k) = ψB,A(−k),
where A and B stand for sublattice indices.

An antiunitary operator O, with O2 = −1, which com-
mutes with the Hamiltonian and gives Kramer’s degeneracy.
For a spin-1/2 Hamiltonian, T and PT symmetries satisfy
this criterion. For T , the Kramer’s degeneracy occurs only
at the TR invariant k points. In this case, edge states in a
Z2 topological phase produce a gapless Dirac cone at a T -
invariant k point. The presence of the PT symmetry gives a
twofold degeneracy at all k points.

For our spin-1/2 case without superconductivity, the antiu-
nitary CC operator follows C2 = +1. Since C anticommutes
with P operator, we obtain (CP )2 = −1 and (CPT )2 = −1
[32]. This case is interesting and requires special attention.
CP is an antiunitary operator, but since it anticommutes
with the Hamiltonian, one obtains particle-hole symmetric
energy eigenvalues [47]. However, does a gapless point en-
sures a Kramer’s degeneracy? To find out, we consider the
inner product of an eigenstate ψn(k): 〈ψn(k)|CPψn(k)〉 =
〈CPψn(k)|(CP )2ψn(k)〉∗ = −〈ψn(k)|CPψn(k)〉 = 0 at ev-
ery k point. In the first step, we use the antiunitary property,
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FIG. 1. (a) Schematic diagram of the Rashba bilayer with oppo-
site Rashba SOC ±α(k) and connected by spinless coupling D(k).
(b) The band dispersion of a uncoupled [D(k) = 0] Rashba bilayer,
giving a spin-degenerate band structure. Here red and blue denote up
and down spin states, respectively. (c) A cartoon band structure of the
Rashba bilayer for finite D(k) with blue shaded regions giving bulk
valence and conduction bands, while the blue and red solid lines are
the helical edge states.

and in the second step we substitute (CP )2 = −1. Therefore,
the gapless points at any k point are twofold degenerate.

The sublattice symmetry is unitary and (CT )2 = +1.
For two eigenenergies ±En, the corresponding eigenstates
ψn(k) and CT ψn(k) belong to the same Hilbert space,
and hence are orthogonal. Interestingly, (CPT )2 = −1, but
its a unitary symmetry. However, unlike the CP case
discussed above, CPT symmetry guarantees no degener-
acy in the Hilbert space. The CPT invariance implies
CPT H (k) = −H (−k)CPT . Hence, H (−k)CPT ψn(k) =
−En(−k)CPT ψn(k). For a parity-invariant case, H (k) =
H (−k), the CPT symmetry becomes analogous to the CT
case. Here, the energy spectrum is particle-hole symmetric,
so ψn(k), CPT ψn(k) are orthogonal. However, when the par-
ity is absent, En(k) �= En(−k) except at the high-symmetric
k points (also known as TR, if present, invariant k point).
However, since CPT is unitary, such a degeneracy, if it exists,
is not classified as a Kramer’s degeneracy. CPT symmetry is
also considered earlier in topological insulators and supercon-
ductors [48,49].

IV. THE HAMILTONIAN

We consider a bilayer of 2D lattice with Rashba-type SOC
but with opposite SOCs in the two adjacent layers; see Fig. 1.
We denote it as the Rashba bilayer. The 2 × 2 Hamiltonian
for each Rashba monolayer in the spin-1/2 basis is written
as hA,k = ξkσ0 + αk · σ. ξk = −2t (cos kx + cos ky) − μ is the
intralayer dispersion in 2D lattice with t being the nearest
neighbor hopping amplitude, and μ is the chemical potential.
αk is the Rashba SOC with components αx

k = αR sin ky and
α

y
k = αR sin kx, and αR is a real constant. σi are the 2 × 2

Pauli matrices in the spin basis with σ0 is the unity matrix.
We call it the A layer. The adjacent layer, namely the B layer,
has the same dispersion but with opposite helicity: hB,k =
ξkσ0 − αk · σ.

To ensure a band inversion with a topological phase, we
consider an anisotropic, non-spin-flip tunneling matrix ele-
ment between the two layers as Dk = D0 + 2D1(2 − cos kx −
cos ky), where D0 is the onsite and D1 is the nearest neighbor,
out-of-plane, hopping coefficients (real). The full Hamiltonian
becomes

H0 =
(

hA,k DkI2

DkI2 hB,k

)
= ξkI4 + 
1α

x
k + 
2α

y
k + 
4Dk. (2)

Here the three 
i matrices are defined as 
1,2,3 = τz ⊗ σx,y,z

and 
4,5 = τx,y ⊗ σ0, where τi and σi are the 2 × 2 Pauli
matrices in the sublattice and spin space, respectively, and σ0

is a 2 × 2 unit matrix. A full list of 
 matrices are given in
Appendix A.

The present heterostructure belongs to the D4h group, pos-
sessing a fourfold rotational symmetry, in-plane inversion
symmetry, and a mirror symmetry between the two layers.
Therefore, the P operation consists of k ↔ −k and sublattice
inversion A ↔ B. The Hamiltonian respects T , P , and C
symmetries, and hence the chiral CT , PT , CP , and CPT
symmetries. All symmetry transformation of this Hamiltonian
are given in Table I.

The Rashba bilayer model in Eq. (2) was introduced ear-
lier by one of us for engineering 2D and 3D topological
insulators in heterostructure [50,51]. Such a Rashba bilayer
(and its equivalent family of bilayers with opposite SOC) is
also shown to possess hidden spin polarization in real space
in different layers, while the bands are spin degenerate in
the momentum spare owing to PT invariance [52]. In non-
centrosymmetric layered materials, such as BiTeCl, similar
opposite SOC is observed in adjacent layers, which presum-
ably plays a role in its 3D Z2 topological phase [53].

A. Spontaneous symmetry-breaking perturbations

With an eye on finding symmetry-breaking order param-
eters in the above setup, we consider an extended Hubbard
model with intra- (U ) and intersublattice (V ) onsite interac-
tions,

Hint = U
∑

α∈(A,B)

nα↑nα↓ + V
∑

α �=β∈(A,B)

nαnβ, (3)

where α and β denote layer and sublattice indices. nαs is
the number operator for the αth sublattice with spin ↑,↓.
nα = nα↑ + nα↓ is the corresponding total density. The spin
operator for a given sublattice α is defined as usual: Sα =∑

s,t∈(↑,↓) ψ
†
αsσstψαt , where σ are the Pauli matrices in spin

basis. In analogy, we define sublattice or pseudospin operators
for a given spin s as T s = ∑

α,β∈(A,B) ψ
†
αsταβψβs, where τ are

the Pauli matrices defined in the sublattice basis.
Equation (3) can produce various order parameters; how-

ever, we focus here on five different order parameters which
give distinct topological phases: (1) a sublattice density (SD)
order which breaks C and P symmetries but preserves T
symmetry and (2) four different TR symmetry-breaking or-
der parameters which in addition may or may not break C
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and P symmetries. We are going to include all the order
parameters within the mean-field approximation, so that the
the interaction terms appear as additional mass terms to the
noninteresting Hamiltonian in Eq. (2), and thereby the total
Hamiltonian breaks certain symmetries but may remain adia-
batically connected to the noninteracting Hamiltonian.

1. Charge conjugation symmetry-breaking state

We first consider a SD order parameter

N z = 1
2 (〈T z

↑ 〉 + 〈T z
↓ 〉), (4)

where the expectation value is taken over the corresponding
ground state. The corresponding exchange energy is ESD =
V̄N z, where V̄ is the effective mean-field coupling constant
which can be evaluated from Eq. (3). Therefore, the mean-
field perturbation to the noninteraction Hamiltonian H0 can
be expressed as

HSD = ESD
45, (5)

where ESD is a real number. ESD gives an on-site energy differ-
ence between the two sublattices A and B, and hence it breaks
C and P symmetries. Since TR symmetry remains intact, this
order parameter also breaks the sublattice CT symmetry.

2. Time-reversal symmetry-breaking states

Next, we focus on four different TR symmetry-breaking
mean-field order parameters which give distinct topological
phases:

M± = 1
2

(〈
Sz

A

〉 ± 〈
Sz

B

〉)
, (6)

N x/y = 1
2 (〈T x/y

↑ 〉 ∓ 〈T x/y
↓ 〉), (7)

where the expectation value is taken over the corresponding
ground states. The first two terms M± are easily identified
as ferromagnetic (FM) and antiferromagnetic (AF) orders,
respectively. N x/y are unusual order parameters, giving sub-
lattice magnetic (SM) and sublattice vortex (SV) orders,
respectively. For N x, the difference between the two spin
components (T x

↑,↓) helps break the TR symmetry. Among the
sublattice operators Ts, only the T y

s component breaks TR
symmetry (due to the presence of i in τy). Hence, N y also
breaks TR symmetry (it will become evident in Sec. VI C why
we name this state a SV state). The magnitude of the resulting
exchange energy from all four order parameters can be collec-
tively defined as EFM/AF = ŪM± or ESM/SV = V̄N x/y, where
Ū and V̄ are the effective mean-field coupling constants. It it
clear that AF and FM terms dominate in the limit of V → 0,
while the other two arise in the case of U → 0. Since our
key purpose is not to study the quantum phase transition but
rather the topological phase transition induced by these order
parameters, we do not discuss further any quantum phase
diagram of these order parameters.

The corresponding mean-field perturbations to the nonin-
teraction Hamiltonian H0 can be expressed in terms of the 


matrices as

HFM = EFM
12, HAF = EAF
3,

HSM = −ESM
35, HSV = −ESV
5. (8)

(a) (b) (c)

FIG. 2. (a) Dk = 0 contour in the nontrivial Z2 topological
phase. Parity (p) of an eigenstates changes between ±1 across this
contour. (b) A typical nontrivial bulk band structure is plotted along
a high-symmetric direction in the quantum spin-Hall state without
any perturbation. Each band is doubly degenerate due to the PT
invariance. (c) Corresponding edge states with a Dirac cone at the 


point.

In all cases, we treat the exchange energy Ei as an adjustable
parameter.

V. TIME-REVERSAL INVARIANT
TOPOLOGICAL PHASES

In Table II, we list all different topological phases ob-
tained in the present study. Here in addition to the T , C,
and CT symmetries, we also investigate P , PT , CP , and
CPT symmetries. The value for each symmetry operator O
is defined as O2 = ±1 if present and 0 if absent. In the
second to last column, we list the expected homotopy group
classification of the topological invariant based on the value
of T , C, and CT symmetries, as deduced in Refs. [21–29].
The final column gives the topological class deduced in the
present study. Below, we individually discuss all the phases
and the corresponding indicator for the topological invariant.

A. Quantum spin-Hall state

The noninteracting Hamiltonian H0 in Eq. (2) respects all
symmetries we are concerned with here. We compute the
Z2 topological invariant in terms of the TR symmetry (time-
reversal polarization [17,30]) as well as with parity (parity
anomaly) [30] and Chern number [18] wherever applicable.
For those systems where the topology is quantified by multiple
invariants, i.e., multiple anomalies, we refer them as dual
topological insulators.

1. TR and parity polarization calculations

We calculate the TR invariant from Eq. (1) by explicitly
calculating the sewing matrix for the TR operator. We find ν =
1 in the topological invariant case [see Fig. 2(b)]. Given that

4 is the parity operator, the parity eigenvalues are determined
by δk = sgn[Dk]. The result of ν is also recalculated by using
the parity eigenvalues.

Instead of splitting the torus into ±k quadrants of the
BZ as often done in the TR case [30], we split it into two
regions T 2

± separated by the parity eigenvalues pk = ±. The
two parity regions are separated by the boundary made of
the Dk0 = 0 contour, as shown by the red line in Fig. 2(a).
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TABLE II. This table encompass all topological nontrivial phases obtained with and without different symmetry-breaking perturbations.
The value for each symmetry O is defined as O2 = ±1 if present and 0 if absent. The column for “Tenfold way” lists the expected symmetry
of topological invariants between Z and Z2 homotopy groups and zero means the topologically trivial phase. The last column gives the group
of the topological invariants obtained in this study. FM includes two topological classes, which means for low value of the FM perturbation we
have a Z2 class, while above a corresponding critical value the topological phase changes to Z class.

H T C CT P PT CP CPT Tenfold way Our result

SD
H0 −1 +1 +1 +1 −1 −1 −1 DIII Z2 Z2

H0 + HSD −1 0 0 0 0 −1 −1 AII Z2 Z2

FM
H0 + HFM 0 +1 0 +1 0 −1 0 D Z Z2, Z
H0 + HFM + HSD 0 0 0 0 0 −1 0 A Z Z2, Z

SM
H0 + HSM 0 0 1 +1 0 0 −1 AIII 0 Z2

H0 + HSM + HSD 0 0 0 0 0 0 −1 A Z Z2

AF
H0 + HAF 0 +1 0 0 −1 0 −1 D Z Z2

H0 + HAF + HSD 0 0 0 0 0 0 −1 A Z Z2

SV
H0 + HSV 0 0 +1 0 −1 −1 0 AIII 0 Z2

H0 + HSV + HSD 0 0 0 0 0 −1 0 A Z Z2

Then, for the valence band, the phase difference between the
two regions across the Dk0 = 0 boundary gives a nontrivial
Berry connection. In the parameter space of Dk, as long as
an odd number of nodal contour of Dk0 = 0 lies within the
BZ, we obtain a nontrivial topological phase. In other words,
if there is an odd number of parity inversions in the valence
band—equivalently, odd number of charge pumping from one
parity state to another—one obtains ν = 1; otherwise ν = 0.

2. Chern number

Owing to the PT invariance, we can also combine the
TR and parity anomaly into a PT anomaly defined by
a corresponding Chern number. The PT invariance guar-
antees twofold degeneracy at all k points, and hence a
block-diagonal form of the Hamiltonian exists. The cor-
responding irreducible representation consists of ψb/a,σ =
(ψAσ ± ψBσ )/

√
2, at each k, as the bonding (subscript b) and

antibonding (subscript a) states, respectively. For the spinor
	k = (ψb↑, ψa↓, ψb↓,−ψa↑)T , the noninteracting Hamilto-
nian in Eq. (2) takes the form

H0(k) = ξkI4 +
(

h+
k 0
0 h−

k

)
, (9)

where h±
k = Dkσz ± αx

kσx − α
y
kσy. (10)

The two eigenvalues for each block are the same: E±
k =

ξk ±
√

|Dk|2 + |αk|2 (the eigenstates for the two blocks are
sensitive to the sign of coefficient of σx, i.e., αx

k, which distin-
guishes the two blocks with opposite Chern numbers).

Since each block Hamiltonian h±
k individually breaks TR

symmetry, a Chern number for each block can be defined.
We identify Dk as the Dirac mass, responsible for the band
inversion in both blocks. Interestingly, the parity eigenvalue
pk = sgn[Dk] is the same for both block Hamiltonians, and

thus both blocks simultaneously possess a topological phase
transition. The Chern number in each block is obtained to be

C± = ± 1
2 [sgn[D
] − sgn[DM]], (11)

where 
 and M denote two TR-invariant k points: 
 = (0, 0)
and M = (π, π ), respectively. The ± sign in Eq. (11) is de-
duced from the sign of the coefficient of σx term in Eq. (10),
i.e., sgn[αx

ki
]. Then the Z2 invariant [defined in Eq. (1)] is

related to the difference between the Chern numbers from
the two blocks as ν = 1

2 |C+ − C−|. The total Chern number
C+ + C− = 0 for the PT -invariant cases.

3. Analysis

For this analysis, we set the onsite dispersion ξk = 0 with-
out losing generality. It is easier to go to the continuum limit
and define α

x/y
k = αRky/x and Dk = D0 − D1k2, where k2 =

k2
x + k2

y . (The qualitative analysis remains the same in the
tight-binding model in a lattice, where the parameters αR, D0,1

are renormalized). Dk vanishes at the contour of D0/D1 = k2
0 ,

which gives a constrain that both D0 and D1 must possess
the same sign. This means 0 < D0/D1 < 1 yields a nontrivial
topological phase; otherwise it is a trivial phase. We set D1 =
1 for convenience of discussion, simplifying the topological
condition as 0 < D0 < 1. This gives a nodal ring of Dk in the
kx-ky plane centering at the 
 point, as shown in Fig. 2(a).
This ensures that the parity (pk) at the 
 point is reversed
from all other T -invariant k points in the BZ and guarantees
a nontrivial, strong topological invariant [according to Eq. (1)
with δk = pk].

We explicitly calculate the TR polarization using the
sewing matrix ωk in Eq. (1) and found that ν = 1 in the
parameter region 0 < D0 < 1. The Chern number calculations
of Eq. (11) also yields C± = ±1 in the same parameter region;
otherwise both are zero, as expected. Both the results obtained
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by TR polarization and Chern number calculations can also
be simply understood by the position of the Dk nodal ring.
It is not captured within the continuum model, but with a
lattice model we will see a transition in the Chern number. For
small D0, the Dk nodal ring encircles the 
 points and we get
C± = ±1. With further increasing D0, the nodal ring expands
and eventually crosses the (π, 0) point to encircle the M point,
and the Chern numbers will switch to C± = ∓1. In both cases,
the TR polarization remains the same as ν = 1. Therefore,
the parity or helicity polarization/anomaly is reversed with
increasing D0, while the TR polarization is insensitive to the
direction in which the TR polarization has the spectral flow.

Finally, the emergence of the topological invariant is af-
firmed by the band structure calculation. For 0 < D0 < 1, the
bulk band has an inverted band gap; see Fig. 2(b). The edge
state calculation is done by assuming a finite size lattice of
20 lattice sides along the y direction, and periodic boundary
condition along the x direction. We observe a single Dirac
cone between the opposite spin states at the 
 point in the
topological phase in Fig. 2(c).

B. Charge conjugation breaking and parity anomaly

Our first example demonstrates a topological robustness
owing to spontaneous loss of charge conjugation symmetry.
We add the mean-field perturbation of the sublattice density
(SD) order [Eq. (5)] HSD to H0. This perturbation respects T
symmetry, but breaks C and P , and hence PT and CT are also
broken. Due to the loss of PT symmetry, the twofold degener-
acy is lost. However, despite the loss of C and CT symmetries,
the spectrum shows particle-hole symmetric eigenvalues. This
is because the CP symmetry is recovered here, which provides
topological protection to the gapless states at any k points; see
Fig. (3).

The total Hamiltonian H0 + HSD is no longer block diag-
onal, and hence the Chern number cannot be defined in this
case. Also owing to the loss of parity, the Dk = 0 nodal line
cannot be used to separate the two gauge-inequivalent regions.
However, TR polarization formula in Eq. (1) still holds and
gives ν = 1, as shown in Fig. 3(g). Alternatively, the topo-
logical invariant can be simply deduced from the adiabatic
continuity to the parent Hamiltonian H0. Here the topological
phase transition occurs through the gap closing at a twofold
degenerate nodal ring, rather than a single Dirac point. This
can be understood from the energy dispersions,

E±
η,k = ±

√
D2

k + (|αk| + ηESD)2, (12)

where η = ±1. Given that ESD is a constant number, the gap
between the two bands E±

η,k does not close for η = +1. The
gap can close for the η = −1 bands at the EF at a critical
value of ESD, if the two conditions |αk0 | = |ESD| and Dk0 = 0
are simultaneously satisfied at k0 ∈ BZ. Note that Dk0 = 0 is
the same nodal ring defined above at k2

0 = D0 (for D1 = 1).
Substituting this in the other condition of |αk0 | = |ESD|, we
find the critical perturbation energy is |ESD| = |αR|√|D0|. A
phase diagram of ν (color) and locus of zero band gap (line)
as a function D0 and ESD is drawn in Fig. 3(g).

For the perturbation energy |ESD| < |αR|√|D0|, we have
a topological insulator which is adiabatically connected to

(a) (b) (c)

(d) (e) (f)

= 0

= 1
Gap closing

(g)

FIG. 3. Bulk (top panel) and boundary (middle panel) states
for the parity anomaly states defined by H0 + HSD. (a) Bulk band
structure without twofold degeneracy except at the TR invariant k
points. The bands are, however, adiabatically connected to the QSH
state of H0. (b) Topological critical point where the semimetallic
bulk band gap closes for η = −1 bands in a topological nodal ring,
exhibiting an accidental degeneracy in the bulk band structure due to
CP invariance. (c) Topologically trivial phase. [(d)–(f)] Edge states
for the nontrivial, critical, and trivial phases, respectively. (g) Phase
diagram of Z2 invariant as a function of D0 and ESD (in unit of
D1 = 1) using the lattice model. Blue and yellow regions denote the
values of the TR polarization ν in the nontrivial and trivial phases,
respectively, computed using Eq. (1). In this case, the Chern number
is not defined. The black solid line gives the boundary where the bulk
band gap closes [corresponding to the (b) case].

the QSH insulator phase at |ESD| = 0, and thus possess the
same Z2 topological invariant. However, the symmetry group
changes from the DIII to the AII class. Both symmetry groups
map to the same Z2 topological group. Interestingly, the topo-
logical critical point at |ESD| = |αR|√|D0| is characteristically
distinct from the critical point of the QSH phase. In the present
case, the gap closes on a contour; see Fig. 3(b). This is an
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accidental twofold degenerate nodal ring, which is protected
by CP symmetry. This is in contrast to the topological phase
transition of the QSH state at D0 = 0 or 1, where the band gap
closes at a single k = 0 point and is fourfold degenerate. The
latter is a symmetry-enriched Dirac point.

For the perturbation energy |ESD| > |αR|√|D0|, we have
a trivial band insulator, as shown in Fig. 3(c). From all the
results, it is evident that while we consider |ESD| as an energy
cost due to the spontaneous development of the SD order
parameter, the same conclusion is also valid if the |ESD| term
is introduced with an explicit symmetry breaking. This can
be obtained by adding a gate voltage between the two layers,
which hence introduces different onsite potentials to the two
sublattice states.

VI. TIME-REVERSAL-BREAKING PERTURBATIONS

Next we discuss various TR-breaking perturbations.

A. FM phase and the survival of Z2 invariant

We start with the FM perturbation HFM from Eq. (8). HFM

breaks T while preserving C and P symmetries. As a result,
CT and PT are broken, and according to the tenfold way
table, the expected symmetry group belongs to the D class
with a topological invariant ∈ Z group (such as a quantum
anomalous Hall state with a single chiral edge state). In earlier
studies, it was found that the FM exchange energy gives a
topological phase transition from the QSH state (Z2 class) to
the QAH (Z class) effect [54].

What we find interesting is that the QSH state survives
up to a critical value of the exchange energy EFM, despite
the loss of the T symmetry; see Table II. Moreover, the TR
polarization ν = 1 continues to the a valid indicator of the
the topological phase even when T is broken. The edge states
continue to exhibit gapless Dirac cone as in the nonmagnetic
case. We find that (CP )2 = −1 is the only symmetry present
here, which does not give a band degeneracy unless accidental
gapless points occur between the two particle-hole symmetric
energy bands. Hence, we find that under the CP symmetry,
the band degeneracy inside the bulk is lost, while the gapless
Dirac cone at the edge remains intact.

The FM perturbation translates into modifying the Dirac
mass differently in the two block Hamiltonians in Eq. (9) as

h±
k = D±

k σz ± αx
kσx − α

y
kσy, (13)

where D±
k = Dk ± EFM

= (D0 ± EFM) − D1k2. (14)

Since the rest of the Hamiltonian remains the same, we can
define the Chern number of the two block Hamiltonians from
Eq. (11) by simply tracking how the corresponding Dirac
masses D±

k change sign in the BZ. The condition for the band
inversion for the two blocks are 0 < (D0 ± EFM)/D1 < 1. We
start with 0 < D0 < 1 (nontrivial QSH phase) and turn on
EFM > 0 (the result is equivalent for EFM < 0). It is easy to
see that for FFM < D0, the band inversion condition is satisfied
in both block Hamiltonians and hence the Chern number in
two blocks remains C± = ±1, giving a finite Z2 topological
invariant ν = 1. Remarkably, if we continue to explicitly cal-

culate ν by the T -symmetry sewing matrix, surprisingly, we
yield the same result of ν = 1. Therefore, the system exhibits a
QSH behavior with theZ2-topological invariant ν = 1, despite
the loss of the T symmetry. We affirm this result by calculating
the edge states in this phase, which shows a fourfold degener-
ate Dirac cone at the Fermi level; see Fig. 4(f). The survival
of the QSH phase with FM order is also obtained in the model
of graphene [55]. Moreover, the same result is also obtained
with the application of external magnetic field [56,57].

However, as EFM > D0, the band inversion criterion in the
lower block (h−

k ) is no longer satisfied. Hence, in the lower
block, the Chern number vanishes (C− = 0), while the upper
block continues to possess C+ = +1. Therefore, the topolog-
ical phase changes from the Z2 class (QSH effect) to the Z
class (QAH effect). In this case, edge states lose their helical
partner in each side but remain chiral, and thus a net charge
Hall effect is obtained; see Figs. 4(b) and 4(g). In this respect,
the EFM = D0 points can be termed as a critical point of
symmetry anomaly transition from a helical to chiral anomaly.
Therefore, the Z2 invariant of the four-band model results
from the combination of the two underlying Z class two-band
Hamiltonians which are connected by the TR symmetries.
Even after the loss of the TR symmetry, the two block Hamil-
tonians continue to exhibit the same symmetry anomaly as
long as adiabatic continuity to the symmetry-invariant phase
is valid.

Finally, we add the C and P breaking perturbation HSD to
the FM Hamiltonian. We find that despite the loss of indi-
vidual C and P symmetries, their combination CP remains
intact. Hence, the above conclusions remain valid here. This
is evident in the nature of the edge states; see Fig. 4(h). We
find that the two Dirac cones from the two edges in the Z2

phase do not split here. Above a critical value of EFM, the
band gap closes in the upper block diagonal Hamiltonain and
the system turns into a QAH state [see Figs. 4(d) and 4(i)].
Due to the presence of ESD, the Chern number is no longer
defined, yet the explicit calculation of the T invariant gives
finite value of ν as shown in Fig. 4(j).

B. Sublattice magnetic (SM) order and CPT -symmetric
topology

Next we study another puzzling topological phase obtained
by the sublattice magnetic (SM) quantum phase. The cor-
responding perturbation term HSM translates into a simple
on-site potential to each block Hamiltonian [Eq. (9)] as

h±
k = ±ESMI2 + Dkσz ± αx

kσx − α
y
kσy. (15)

The difference between Eq. (15) and noninteracting Hamilto-
nian in Eq. (9) is the overall energy shift by ±ESM. Hence,
in addition to the T symmetry, the charge conjugation C
symmetry is also lost here. Their combination CT (sublat-
tice symmetry) remains intact. The system does not possess
PT and CP symmetries, but the trinal combination of CPT
symmetry is invariant here. This, according to the tenfold way
scheme, should give a Z group, belonging to the AIII cartan
class. However, owing to the adiabatic continuity theory of
the topological invariance, it is easy to grasp that an irrele-
vant on-site potential to the topological Hamiltonian does not
change its topological invariant, and hence the topological
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FIG. 4. [(a), (b)] Bulk band structures of the FM Hamiltonian H0 + HFM are shown in the QSH (EFM < D0) and QAH (EFM > D0) insulator
phases, respectively. Here solid and dashed lines are for the bands from two different block Hamiltonians h±

k . [(c), (d)] The same FM band
structures but with the parity-breaking term included as H0 + HFM + HSD are, respectively, shown here. [(f), (g)] Corresponding edge state
spectrum for the QSH and QAH insulators exhibit a pair of Dirac cone, and single chiral edge state in each side of the lattice, respectively.
(h)–(i) Edge state for the corresponding top panels, in the presence of T and P breaking phases. (e) Phase diagram of the Z2-invariant ν and
Chern numbers C± as a function of D0 and EFM. Solid and dashed lines denote the band gap closing in the upper and lower block diagonal
Hamiltonians h±

k . Blue region is where TR polarization ν can be evaluated even if the TR symmetry is lost due to FM order. Orange region is
the QAH region, where the Chern number is obtained in either one of the block Hamiltonian, but not in both. Here TR invariant is calculated
to be zero. White region is where none of the Chern number is zero, and the TR polarization is undefined. (j) A similar phase diagram is shown
for ESD versus EFM in which the TR polarization continues to give ν = 1 up to a certain value in which the one of bulk band gap is not closed
(solid and dashed line). Here Chern number is not defined due to the presence of ESD.

phase remains the same as in the noninteracting case such
that the two Z invariants have opposite sign to give rise to
an effective Z2 phase. The calculated results of ν and C± are
plotted in Figs. 5(c) and 5(d).

The eigenvalues of Eq. (15) are

E±
η,k = ±[

ESM + η

√
D2

k + |αk|2
]
, (16)

where η = ±1. We show the band diagrams in Fig. 5(a).
Solid and dashed curves show the bands from the two dif-
ferent blocks. Each block Hamiltonian is no longer traceless,
individually, losing the particle-hole symmetric spectrum.
However, the total Hamiltonian is traceless, implying the pres-
ence of a global particle-hole symmetry in the spectrum and
that the two blocks act as particle-hole conjugate to each other.
This is the CPT invariance which guarantees the particle-hole
symmetric eigenvalues.

There are two pairs of edge states in this system, each pair
coming from each block Hamiltonian. For the upper block,
we have two counterpropagating edge modes, possessing a
degeneracy at the 
 point. These two states are, however, com-
ing from two different edges, as shown in Fig. 5(b), and thus
the apparent degenerate point is not a Kramer’s degenerate
point. The lower block also gives a similar pair of edge modes,
shifted below from the other two pairs. Here the two chiral

modes have opposite chirality to the ones obtained from the
upper block.

More interestingly, at each edge, there are also two helical
modes, which are degenerate at a characteristic momentum
±k∗/2. This can be interpreted as the splitting of the Dirac
cone into two gapless Weyl excitations in the momentum
space. These two modes poses opposite CPT eigenvalues,
and hence are protected by the Hilbert space orthogonality.
This is the emergent CPT invariant topological protection we
predict in this work.

The robustness of the CPT invariant topological phase
becomes more obvious as we include the P-breaking pertur-
bation HSD to the SM Hamiltonian. As pointed out in Table I,
total Hamiltonian Hk = H0 + HSM + HSD breaks all the indi-
vidual symmetries, as well as their dual combinations, and
only respects the CPT combination. As shown in Fig. 5(d),
the topological phase remains similar up to the critical value
of ESD. This example gives a novel demonstration of the CPT
invariant topological phase in condensed matter systems.

C. Antiferromagnetic and vortex phases

Next we discuss antiferromagnetic (AF) and sublattice vor-
tex (SV) phases. In both phases, the Hamiltonian breaks both
T and P symmetries, but preserves (PT )2 = −1 symme-
try. As a result, the bands remain twofold degenerate at all
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(a) (b)

(c)

= 0

(d)

= 1
= 0

=+1
=-1

FIG. 5. (a) Bulk band structure in the SM phase with solid and
dashed lines correspond to eigenvalues for the two block Hamilto-
nians. (b) Corresponding edge state profile showing split bands in
the momentum axis. [(c), (d)] Phase diagram of topological invariant
(as in Fig. 4). For small values of ESM we do find a small region in
which the TR polarization continues to give ν = 1 despite the loss of
TR symmetry.

k points and are adiabatically connected to the noninteract-
ing band structure in both trivial and nontrivial topological
phases. In what follows, the AF and SV phases are topo-
logically connected to the noninteracting Hamiltonian (H0)
despite the loss of TR symmetry. However, unlike the FM and
SM phases, here the edge states are gapped, as seen in Fig. 6.

Having the adiabatic continuity preserved, a natural ques-
tion is whether the system continues to feature the same
Z2-topological invariant as in H0, or whether a new topo-
logical invariant arises. According to the tenfold way table,
the AF phase belongs to the Z topological group with the
CC symmetry. The SV phase, without the CC, is a trivial
phase. In contrast, our calculation shows that the Z2 invariant
ν continues to be 1 up to certain parameter values of EAF and
ESV; see Fig. 6.

It is important to distinguish first the present case with
other PT (or similar discrete space and time) symmetric

(a) (b)

(c)

= 0

(d)

= 1

=1

=1

= 0

FIG. 6. (a) Bulk band structure with AF and SV perturbations
(both phases give the same band topology). The bands are adia-
batically connected to the QSH state without these TR-breaking
perturbations. (b) The corresponding edge states, showing gapped
boundary modes. (c) Phase diagram of TR polarization ν as a func-
tion of EAF and ESD. (d) Same as in panel (c) but for the SV phase.
As explained in the main text, the TR polarization continues to give
ν = 1 for all values of EAF and ESV, unless there is a gap closing,
which is visible for finite value of ESD above which ν = 0.

topological phases discussed in the literature. (1) Both our
PT -invariant AF and SV phases have complex eigenvectors
and suffer the same gauge obstruction as in the noninteraction
cases. This should be contrasted with the Euler class PT
invariant (or equivalent discrete space-time symmetric) phases
which have real eigenvectors and are classified by the vector
bundles within the K theory [35–37]. (2) On the other hand,
a 3+1D PT -invariant AF topological insulator has similar
features (gaped bulk and surface states, and adiabatic continu-
ity to the nonmagnetic topological insulator), and such an AF
state can be described by an axion θ term [58], as observed in
recent experiments [59]. The axion insulator has two opposite
2+1D surface states with opposite magnetic polarizarions and
half-integer Hall conductivity. The two surfaces are connected
via the bulk insulating bands and give the anomaly. We will
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show below that our Rashba-bilayer geometry in the AF phase
mimics the 2+1D surface states of a 3+1D AF insulator
but with important differences. The realized AF topological
insulators break the translational symmetry and protected by
a poseudo-TR symmetry which combined broken TR and AF
wave vector [59]. Our present AF and SV phases do not break
any translational symmetry and there arises no such pseudo-
TR symmetry. The two Rashba monolayers with opposite
SOC and opposite AF orders exhibit ±1/2 Hall conductivity
when the interlayer tunneling Dk = 0, but for finite Dk, the
conductivity is no longer quantized.

We define a different invariant here. With a proper rotation
of the spinor, we can obtain a hidden chiral vortex like struc-
ture in the underlying Hamiltonian in both AF and SV phases,
whose phase stiffness gives an chiral vector field and hence a
magnetoelectric coupling as an anomaly indicator.

1. AF order

The AF perturbation HAF to H0 acts as a FM exchange
energy for each layer, but with opposite spin polarizations
between the two layers [we note that by layer we mean the
hA/B blocks in Eq. (2), not the block-diagonal h± forms in
Eq. (9)]. Such a magnetic order is recently observed in CrI3 bi-
layer system with unusual magneto electric coupling [60]. In
the bonding and antibonding basis, the AF perturbation mixes
the two blocks h±

k , and thus a Chern number can no longer
be defined. The bulk band structure, shown in Fig. 6(a), is
adiabatically connected to H0, in both nontrivial (0 < D0 < 1)
and trivial topological phases. Our explicit TR polarization
calculation of the sewing matrix yields ν = 1 despite the loss
of TR symmetry; see the phase diagram in Fig. 6(c).

Few important properties of this system can be obtained
starting with the limit Dk → 0. Here, the two layers, with op-
posite magnetic orders, become free from electron tunneling
and are only related to each other by interaction. The corre-
sponding Hamiltonian splits into two blocks [from Eq. (2)]:

H0 + HAF =
(

hA + EAFσz 0
0 hB − EAFσz

)
, (17)

where k dependence is suppressed for simplicity. Recall that
hA,B = ±αk · σ, both layers possess opposite helicity. Each
block in Eq. (17) gives a half-integer Hall conductance σ A

xy =
−σ B

xy = sgn(EAF)e2/2h. Hence, the system has a zero net
charge conductance σ tot

xy = 0, but an integer-valued spin Hall
conductance—reflecting the Z2 invariance of the bulk system.
This is also termed as half-plateau QAH state in which one
expects to observe a zero-Hall conductivity plateau (σ tot

xy = 0)
as a function of applied magnetic field [61]. Therefore, hA/B in
the limit of |Dk| � |EAF| exactly mimics the the top and bot-
tom surface states of a TR-invariant 3D topological insulator,
with opposite spin polarization.

As Dk is turned on, the Hall conductance is no longer
quantized and becomes a dynamical variable. We find a
suitable basis where Dk and EAF are combined in a com-
plex interspecies hopping—an analog of the flux dependent
hopping in the twisted boundary condition. We consider a
complex extension of the bonding and antibonding states as
ψb/a,σ = (ψAσ ± iψBσ )/

√
2. We choose a spinor 	=(ψa↑,

ψb↓, e−iπ/2ψb↑, eiπ/2ψa↑)T , governed from the original basis

by an unitary rotation U = I4 − iτx ⊗ σz. In this case, we
find that U (H0 + HAF)U −1 = H ′

0, where H ′
0 is the same as

the noninteracting Hamiltonian [Eq. (2)], except the interlayer
hopping element is now complex: D′

k = Dk + iEAF. The form
of the H ′

0 with two complex hopping terms, namely SOC
coupling αk and D′

k, resembles the Jackiw-Rossi model in
2D [62]. In the low-energy limit, the SOC term governs the
Dirac-like fermionic excitations, and the complex D′

k repre-
sents a vortex. The coupling of a fermion with vortex is the
building block of anyons in which their exchange statistics
gives a phase other than (0 or π ) originating from winding
around the vortex.

Here we are interested in the persistent current associated
with the phase gradient of the vortex. The phase of the vortex
is θk = tan−1(EAF/Dk ). We recall that the band inversion is
related to the sign reversal of Dk, which in term gives a sign
reversal of the phase θk [63]. In fact, the phase changes dis-
continuously between ±π across the nodal ring of Dk0 = 0.
The discontinuous jump of θk on the nodal ring of radius k0

gives a contour of singularity in the phase gradient ∇θk =
πδ(k − k0)k̂. Hence, the winding number of the phase in 2D
BZ which gives the anomalous (dynamical) Hall conductivity
as

σ±
xy = ± e2

πh

1

(2π )2

∫
dk · ∇θk = ±e2k0

2πh
, (18)

where ± denote the two complex bonding and antibonding
states. This is the axion analog of the dynamical Z2 anomaly
of the AF state in 2+1 dimensions, but its not an axion invari-
ant.

2. SV order

A TR-breaking perturbation can be achieved without any
magnetic moment through a complex sublattice vortex (SV)
order. The corresponding perturbation term HSV is given in
Eq. (8) within the mean-field approximation. In the total
Hamiltonian H0 + HCS, the perturbation term is absorbed into
a complex interlayer hopping as D′

k = Dk + iECS. Therefore,
this Hamiltonian exactly maps to the AF Hamiltonian in the
form H ′

0 discussed in the AF case above. Because of this vor-
texlike complex hopping, we refer to this state as the sublattice
vortex (SV) state, which is analogous to the AF phase, but it
has a few different symmetry properties.

Note that despite the same form of the Hamiltonian, the
symmetry is different in the two cases since the spinor is
different between them. Due to complex D′

k, SV state breaks
P and T , but is PT invariant, as in the AF phase. However,
unlike the AF state, the SV state breaks C and CP , and is
invariant under sublattice symmetry CT . Therefore, according
to the tenfold way classification, the system belongs to the AIII
group, as in the SM phase. However, given that the SV phase
is adiabatically connected to the AF phase, both states feature
the same topological properties as deduced in Eq. (18).

VII. DISCUSSION AND OUTLOOK

Our results of the persistence of symmetry-constrained
topological phases even after the spontaneous loss of the
symmetry are counterintuitive at first sight. Spontaneous
symmetry breaking occurs due to many-body effects in an
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interacting system when the system’s action moves to a new
classical ground state. In such a description, the symmetry is
actually lost in the wave function, not in the original Hamil-
tonian. Due to the ground state’s classical nature, there arise
quantum fluctuations that tend to be dominant near the critical
point, but are typically superseded by the quasiparticle energy
gap in the ordered phase.

Focusing on the latter regime, we can now construct a
mean-field Hamiltonian to parametrize the classical ground
state consistent with the broken symmetries. In the present
case, in all the mean-field Hamiltonians, the spinor dimension
remains the same, since no other spatial transnational or rota-
tional symmetry is broken. This puts us in an advantageous
position to adiabatically bridge the mean-field Hamiltonian
to the noninteracting Hamiltonian. In all the ordered phases,
simply a gap term arises which couples different spins and/or
sublattices of the original species. In this respect, all the con-
clusions drawn in this work are also applicable to the explicit
symmetry breakings by external electromagnetic fields or per-
turbations.

In this mean-field prescription of the symmetry-breaking
phases, although none of the space or point group symme-
tries are broken, but the internal symmetry of the Hilbert
space plays an important role. We have emphasized through-
out the paper that as the Hilbert space dimension increases
above a critical number (usually N = 2 or 3), the winding
number classification changes from Z to Z2 class. In our
noninteracting case as well as in the FM and SM cases,
the four-component (N = 4) Hilbert space has a N = 2 irre-
ducible representation. In 2+1D, the SU(2) internal symmetry
dictates a Z class winding number, and hence the Chern
number is defined. Therefore, although the system exhibits a
Z2 topological class, it inherently consists of two Z classes
with opposite winding numbers. For the case of SD, AF, and
SV phases, there is no N = 2 component irreducible repre-
sentation available and our obtained topological invariant for
N = 4 should be consistent with the ten-fold classification
case. In the SD phase, the consistency is bridged. However,
for the AF and SV phases, we observe that even if the TR
symmetry is lost, an equivalent (PT )2 = −1 or (CP )2 = −1
or (CPT )2 = −1 is invariant. More interestingly, the TR po-
larization still gives a quantized value in these two phases even
after the TR symmetry is broken.

Let us revisit some of the key findings of this work. (i)
Despite the loss of protecting symmetries, the topological
invariants continue to exhibit the same values, with the same
edge state properties. Notably, with the TR symmetry loss,
the edge states remain gapless at the TR-invariant k point.
(ii) According to the symmetry-wise classification scheme in
the tenfold way table for N > 2 dimensional Hilbert space
in 2+1D, the change in symmetry is supposed to shuffle the
topological groups among Z, Z2, and 0. On the other hand,
as long as the original Dirac mass is not closed, we find both
the topological properties and topological groups remain the
same for lower dimensional Hilbert space. (iii) In fact, the
TR symmetric sewing matrix, which uniquely defines the TR
polarization index ν, continues to be the same even after the
loss of the TR symmetry. Only when the band gap closes, the
sewing matrix itself becomes zero, and the formula becomes
inapt. How do we understand these puzzles?

One important hint to understand the above phenomena
may be the ’t Hooft anomaly [12], as briefly mentioned in
Sec. II. Such topology arises from the obstruction to the
global gauge symmetry in the manifold the system lives it.
Let us take the example of the Ahronov-Bohm geometry, or
the quantum Hall droplet in which the electron experiences a
curl-free vector potential on its path but the path encircles a
region which inherits a finite magnetic field in the interior. A
singular gauge describes such an irrotational vector potential,
and any trivial gauge transformation cannot gauge it out. In the
momentum space, the analog situation arises in certain Hamil-
tonian when its eigenstates live in hypersphere Sd , where one
also cannot uniquely fix the gauge at all points (this is termed
as an obstruction to global gauge fixing). In other others, there
arises an intrinsic singular gauge field which is the Berry
connection.

A violation of the global symmetry is a problem to our
quantum theory since it is related to the global charge con-
servation. So, the way we fix this issue is by finding another
relevant symmetry to break. This way the charge conservation
appears to be broken when we individually look at the two
states transformed under this symmetry, but globally the total
charge is conserved. For example, the axial/chiral symmetry
is a symmetry of the Dirac Hamiltonian in an odd spatial
dimension. For the massless Dirac case, one has degenerate
copies of the Dirac excitations related by the chiral symmetry.
Now if we can split them in space in such a way that electrons
can flow only from one chiral state to another, but not in
reverse, we will have more electrons in one chiral state than in
another. We obtain such a geometry in integer quantum Hall
(IQH) and Chern insulators where the two chiral modes are
split in different edges but connected via the insulating bulk
bands. This gives the chiral anomaly, and the corresponding
IQH or Chern insulators are said to be protected by the chiral
symmetry, which is actually anomalous here.

Now we consider a chiral symmetry-breaking term
mψ̄+ψ− + H.c. (where m is chiral mass), which allows an ad-
ditional direct tunneling between the two chiral modes (ψ±).
However, the mass m term does not close the bulk insulat-
ing gap, and hence the original chiral anomaly phenomenon
persists. Therefore, the chiral symmetry-breaking term does
not immediately destroy the topology until the bulk gap is
closed. This phenomenon is known in the literature of the
chiral anomaly [64,65].

Generalization of the above discussion to the case of
TR symmetry in which the anomaly arises between the two
Kramer’s partners is obvious. This is, in fact, what has hap-
pened in our examples. We have considered those examples
of TR symmetry-breaking perturbations that do not destroy
the bulk Dirac mass immediately. Thus, they do not vitiate the
anomaly inflow between the two Kramer’s partners. Hence,
both the gapless Kramer’s partners at the edge as well as TR
polarization in the bulk remains the same until the bulk gap is
closed.

However, when it comes to classifying the symmetry of the
eigenstates, the TR symmetry is broken, and one cannot use
the mathematical mapping to the quotient group by using the
TR symmetry anymore. Hence, the mathematical mapping of
the quotient group to the homotopy group is lost. On the other
hand, as the electron wraps around the BZ (T 2), it continues to
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experience both T 2
± hemispheres, which amount to clockwise

and anticlockwise wrapings in S1. The TR-breaking pertur-
bation has acted on adding an innocuous trivial gauge field
to the Berry connection that does not affect the topology.
This phenomenon of symmetry breaking is opposite to the
theory of symmetry anomaly. In the symmetry anomaly case,
the symmetry is intact in the classical theory but is broken
(anomalous) at the quantum level. In the present case, the
symmetry is lost at the classical theory, but until the pertur-
bation crosses some critical value, the quantum anomaly does
not sense it.

This can be rigorously proved by going to the long-
wavelength limit of the mean-field Hamiltonian, in which one
obtains a low-energy action of the Dirac fields with a Dirac
mass and a TR-breaking mass. By integrating out the fermion
fields, we can obtain an effective Chern-Simon’s term owing
to the anomaly in the TR symmetry. The anomaly persists as
long as the TR-breaking mass is lower than the Dirac mass
[64,65]. This theory is similar to what is done for the massive
chiral symmetry in the high-energy physics, and it will be
investigated in future studies.
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APPENDIX A: GAMMA MATRICES

The first five gamma matrices are 
1 = τz ⊗ σx, 
2 = τz ⊗
σy, 
3 = τz ⊗ σz, 
4 = τx ⊗ σ0, and 
5 = τy ⊗ σ0. τi and σi

are the 2 × 2 Pauli matrices in the sublattice and spin space,
respectively. These are the generators of the Clifford algebra
and satisfy

{
a, 
b} = 2δab a, b = 1, 2, . . . , 5. (A1)


0 = τ0 ⊗ σ0 and all the other gamma matrices are defined as


ab = 1

2i
[
a, 
b], a, b = 1, 2, . . . , 5. (A2)

The explicit form of all the gamma matrices are given in
Table III for convenience.

APPENDIX B: EXTENSION TO HIGHER
DIMENSIONAL HAMILTONIAN

Given that the topological classification table depends on
the Hilbert space dimension, we investigate how our findings
are sensitive to a higher dimensional Hamiltonian. We add
the following trivial part Htr and a coupling term Hi,tr to the

TABLE III. 
 matrices.


0 τ0 ⊗ σ0


1 τz ⊗ σx


2 τz ⊗ σy


3 τz ⊗ σz


4 τx ⊗ σ0


5 τy ⊗ σ0


12 τ0 ⊗ σz


13 −τ0 ⊗ σy


14 τy ⊗ σx


15 −τx ⊗ σx


23 τ0 ⊗ σx


24 τy ⊗ σy


25 −τx ⊗ σy


34 τy ⊗ σz


35 −τx ⊗ σz


45 τz ⊗ σ0

4 × 4 nontrivial Hamiltonian Hi, where i stands for various
Hamiltonians we considered in the main text:

H2 =
(

Hi Hi,tr

H†
i,tr Htr

)
. (B1)

To keep the symmetry of the entire system as that of the non-
trivial part Hi, we choose the basis of the trivial Hamiltonian
as (ψC↑, ψC↓, ...)T , where C is a third single Rashba layer,
and so on. A generic choice would be Htr = (hC,k, ...), where
hC,k is the same Rashba Hamiltonian used in Eq. (2). Hi,tr is
also kept to the spin-conserving hopping as in the main text.
If we set Hi,tr = Dk, it was shown in Ref. [50] that above
roughly six Rashba bilayers (with opposite SOC) a 3D Z2

topological insulator phase commences in which the top and
bottom Rashba single layers host gapless 2D Dirac cones.

To avoid a 3D generalization, here we simple consider
Hi,tr = D0; i.e., we keep a momentum-independent coupling
term for Hi,tr by setting D1 = 0. Then it is easy to understand
that the topology of the entire Hamiltonian is same as that of
Hi. For an even number of Rashba single layers, say, 8 × 8
total Hamiltonian, Rashba bilayer with opposite SOCs con-
struction holds and we can block and off-block diagonalize
the entire Hamiltonian. Therefore, the entire analysis of Chern
number, parity inversion, T polarization, and particle-hole
anomaly, wherever applicable in the main text, also works
here. For an odd-number of Rashba single layers, the bot-
tommost Rashba layer (“C” layer) does not have its opposite
Rashba SOC counterpart. Therefore, the total Hamiltonian
may no longer be block or off-block diagonalized, and hence
the Chern number description does not work. The system also
does not have the parity symmetry (even if Hi has). However,
our explicit T -polarization calculation shows that all results
remain the same as that of Hi. Hence, we conclude that our
findings are insensitive to the Hilbert space dimension as long
as an irreducible SU (2) internal symmetry exists.
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