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8-16-4 graphyne: Square-lattice two-dimensional nodal line semimetal
with a nontrivial topological Zak index
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An unprecedented graphyne allotrope with square symmetry and nodal line semimetallic behavior has been
proposed in the two-dimensional (2D) realm. The emergence of the Dirac loop around the high-symmetry points
in the presence of both the inversion and time-reversal symmetries is a predominant feature of the electronic
band structure of this system. Besides, the structural stability in terms of the dynamic, thermal, and mechanical
properties has been critically established for the system. Following the exact analytical model based on the real-
space renormalization group scheme and tight-binding approach, we have inferred that the family of 2D nodal
line semimetals with square symmetry can be reduced to a universal four-level system in the low-energy limit.
This renormalized lattice indeed explains the underlying mechanism responsible for the fascinating emergence of
2D square nodal line semimetals. Besides, the analytical form of the generic dispersion relation of these systems
is well supported by our density-functional theory results. Finally, the nontrivial topological properties have been
explored for the predicted system without breaking the inversion and time-reversal symmetry of the lattice. We
have obtained that the edge states are protected by the nonvanishing topological index, i.e., Zak phase.
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I. INTRODUCTION

The rise of Dirac materials, i.e., graphene [1], topological
insulators [2], d-wave superconductors [3], etc. is undoubt-
edly an important aspect of fundamental science because of
their unusual, unique, and robust physical properties [4–6]. In
principle, the electronic behavior of any system strongly relies
on the corresponding lattice symmetry and dimensionality
[7]. With respect to the lattices, the von Neumann–Wigner
theorem [8] ascribes a number of constrains that makes the
emergence of two-dimensional (2D) Dirac materials rare.
Initially, it was perceived that the Dirac fermions are the
consequence of graphene’s honeycomb crystal and is robust
to small external perturbations [9,10]. Likewise, the elec-
tronic band structures of graphene analogous silicene and
germanene [11,12] also evince the existence of Dirac cone
features. But, this curiosity was not bound only to group 4
elements and was extended to numerous 2D allotropes of
different elements, such as boron [13], aluminum, phospho-
rus, nitrogen [14], and so on. Nevertheless, Malko et al. [15]
revealed that carbon systems with distinct symmetry, α-, β-,
and 6,6,12-graphynes also exhibit graphenelike Dirac cones.
Among these lattices, 6,6,12-graphyne with rectangular unit
cell [15] indicates that the hexagonal symmetry is not a pre-
requisite for the survival of Dirac fermions. Of late, some
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additional graphene allotropes, viz., pha- [16], SW- [17], S-,
D-, E- [18], PAI-graphene [19], OPG-Z [20], δ- [21], H4,4,4−
[22], circumcoro-graphynes [23], etc. also join the exotic
family of 2D Dirac materials. It is to be noted that the above-
mentioned systems belong to either hexagonal or rectangular
symmetry groups and can be spontaneously transformed into
graphenelike honeycomb lattices [18,24,25].

However, conventional Dirac fermions are particularly
hard to find in square lattice [26–29]. In this regard, Zhang
et al. [30] first explored the coexistence of square symmetry
and Dirac fermions by introducing two square graphynes (S
graphynes), i.e., 4,12,2- and 4,12,4-graphynes. However, the
nearest-neighbor interaction in the above-mentioned systems
only allows the formation nodal rings [31] at the crossing
points of the valence-band maximum (VBM) and conduction-
band minimum (CBM). Besides, Jiang et al. [32,33] have
recently explored that square Lieb and kagome lattices also
possess Dirac fermions. Emergence of the nodal rings also ex-
hibits twofold band degeneracies that disperse linearly along
the high-symmetry k path of the irreducible Brillouin zone
(IBZ). It is worth mentioning that similar types of nodal
rings are further observed for two square lattices namely of
tetragonal silicene (T silicene) [34] and tetragonal germanene
(T germanene) [35].

The topological phases of material are characterized by
some topological invariants. In particular, Chern numbers in
2D Chern insulators [36], Z2 indices in 2D and 3D topological
insulators [37], winding numbers in topological nodal line
semimetals [38,39], and topological charges in Weyl semimet-
als [40] are some well-known symmetry-protected topological
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invariants. The family of topological insulators involves heavy
elements in order to enhance the effect of spin orbit coupling
(SOC) [41]. Of late, identification of topological semimetals
(TSMs) with stable linear band dispersion near the Fermi
level has drawn great interest owing to their fascinating edge
or surface states. In this regard, materials made of light ele-
ments without SOC effect, i.e., carbon, boron, etc. are highly
anticipated to be a promising alternative for future practical
applications regarding TSMs [38,39,42].

The real-space renormalization group (RSRG) scheme [43]
is a real-space rescaling method to explore the spectral prop-
erties of tight-binding Hamiltonians. In particular, in this
method, the preferred subset of atomic sites of the original
lattice is decimated out to achieve a scaled version of it.
The scaled lattice, however, carries all the information of the
original lattice in terms of modified hopping parameters. In
recent years, to explore the intriguing features of the Dirac
states in many square symmetric graphyne system, the RSRG
method has been proved to be an extremely useful technique.

In this work, we have explored the underlying rich physics
associated with the appearance of these two-dimensional
nodal line semimetals and have proposed a square graphyne
allotrope with anisotropic nodal points, i.e., 8-16-4 graphyne,
where 4 carbon atoms connect neighboring octagons and form
16-membered rings. We will refer to the predicted system by
this nomenclature for the rest of the study. The dynamical,
mechanical, thermal, and thermodynamic stability of 8-16-4
graphyne have been critically established. Moreover, an exact
analytical expression for the generic dispersion relation of not
only our predicted systems but the entire class of square sym-
metric nodal line semimetals (i.e., square nodal lattices) has
been obtained. Finally, we have revealed the nontrivial topo-
logical aspect of these tetragonal systems with negligible SOC
in the presence of both inversion and time-reversal symmetry.
Besides, the edge states associated with the quantized Zak
phase and the corresponding winding number have also man-
ifested. These results are extremely important in predicting
future topological photonics [44,45], acoustic crystals [46,47],
etc.

II. METHODOLOGY

The 2D 8-16-4 graphyne structure in this work has been
relaxed within the framework of density-functional theory
(DFT) [48] by solving the Kohn-Sham equations [49]. The
calculations have been carried out by using the projector
augmented wave (PAW) [50] method as implemented in the
Vienna Ab initio Simulation Package (VASP) [51]. A well-
converged energy cutoff of 700 eV was used and the Brillouin
zone was sampled employing Monkhorst-Pack [52] k-point
meshes. 15 × 15 × 1 k-point meshes were employed for
all the systems studied. To eliminate the interaction between
periodic images, we have maintained a vacuum layer of
∼15 Å on either side of the monolayer. The C PAW pseu-
dopotentials were used with the valence states of 2s22p2,
utilizing the Perdew-Burke-Ernzerhof (PBE) [53] exchange-
correlation functional. During the optimization of the atomic
positions using the conjugate gradient method, the energy
convergence value between two consecutive steps was main-
tained to be 10−6 eV. The force convergence criterion was

kept at a value of 0.001 eV/Å. Phonon dispersion curves were
calculated by using the density-functional perturbation theory
approach in VASP and the q-point interpolation was done
using the PHONOPY package [54] by considering a 2 × 2 ×
1 supercell. In order to verify thermal stability, we performed
ab initio molecular dynamics (AIMD) simulation at 1000 K
using VASP by considering a 2 × 2 × 1 supercell. Constant
volume and constant temperature canonical ensemble was
employed with an appropriate Nosé thermostat [55]. The time
step used for the integration of the equation of motions was
chosen to be 1.0 fs. All MD simulations were performed for
10,000 time steps. Finally, the topological invariants (TI) were
determined using the WANNIERTOOLS code [56]. The tight-
binding parameters that were used to calculate the TI were
obtained from WANNIER90 [57]. The integrated crystal orbital
Hamilton population (ICOHP) has been calculated using the
LOBSTER code [58] to study the bond strengths. In order to
check whether we can predict this 8-16-4 graphyne structure
from the evolutionary algorithm, we used USPEX [59–61],
which is an extremely powerful tool for predicting thermo-
dynamically stable crystal structures. In this work we have
performed fixed-cell (taking the cell parameters as the orig-
inal graphyne lattice), fixed-composition calculation of the
elemental carbon with 16 carbon atoms in the unit cell as the
original graphyne allotrope contains 16 atoms in the unit cell.
We have generated 40 structures in the first generation. Then
50, 30, and 20% structures are produced by heredity, mutation,
and random symmetric structure generator, respectively. In
this work the evolutionary searches have been combined with
density-functional theory (DFT) [48] within the purview of
PBE functional [53] as implemented in the VASP code. We
observed that USPEX predicted the desired structure after the
first generation with identical lattice parameters as the original
structure.

III. RESULTS

A. Structure and stability

At first, we have critically explored the structural properties
of the newly predicted structure 8-16-4 graphyne. The ground-
state geometry of the system has been depicted in Fig. 1(a).
It has been observed that 8-16-4 graphyne is composed of
16 and 2 distinct eight-membered carbon (C) rings. Such
tessellation has been chosen on the basis of the following
key points. As we essentially want to predict a square lattice,
hence the environment along the crystallographic axis �a and
�b must be identical at the same distance from a fixed point.
Besides, in order to avoid the occurrence of half-filled bands
giving rise to metallic nature we have considered a bipartite
lattice. Here, the nearest-neighbor tight-binding model can be
efficiently used to explain the formation of Dirac bands. These
Dirac bands near Fermi level are symmetric in nature, which
particularly implies the chiral symmetry. It is observed that the
eigenstates of energy −E directly connected with eigenstates
of energy +E. This symmetric nature of bands can be char-
acterized by the particle-hole symmetry. This symmetry can
be broken by introduction of next-nearest-neighbor hopping
terms [41]. In addition, there is no magnetic ordering in the
system that essentially protects the time-reversal symmetry.
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FIG. 1. (a) Ground-state geometry of 8-16-4 graphyne structure.
Different types of bonds are indicated. The unit cell has been marked
with the blue dotted box. (b) Electron localization function of 8-16-4
graphyne. (c) Phonon dispersion curve of the 8-16-4 graphyne. (d)
Total energy vs time of the 8-16-4 graphyne obtained from AIMD
simulation at 1000 K. The initial structure at 0 K and a snapshot of
the structure at 1000 K after 10 ps of simulation have been shown in
the inset.

Precisely, in this system we have adequately incorporated
the inversion, mirror reflection, and time-reversal symme-
try. Therefore, we strongly expect the symmetry-protected
semimetallic behavior of the predicted system. It is clear
that the equilibrium lattice of 8-16-4 graphyne belongs to
the square symmetry plane group P4mm with lattice constant
7.35 Å. In particular, the unit cell consists of 16 carbon (C)
atoms with different hybridizations. The electron localization
function calculation [shown in Fig. 1(b)] reveals that the 16
carbon atoms within the cell are either sp- or sp2 hybridized.
This gives rise to four distinct bond lengths labeled in Fig. 1(a)
as d = 1.42 Å, d ′ = 1.48 Å, d ′′ = 1.41 Å, and d ′′′ = 1.23 Å.
Indeed, d, d ′, and d ′′ are the resonant bonds that corre-
spond to sp2 hybridization. In contrary, d ′′′ is attributed to
the acetylenic linkage between the sp-hybridized C atoms. At
the Fermi level, the ICOHP values are obtained as −10.26,
−10.15, and −10.34 eV per pair corresponding to the bond
lengths of d, d ′, and d ′′ respectively. As expected, the ICOHP
is −15.39 eV per pair for the triple bond. In addition, our pre-
dicted system 8-16-4 graphyne has also been obtained using
the evolutionary algorithm USPEX [59–61] with the same set
of lattice parameters.

In order to establish the plausibility of the existence of this
structure, it is imperative to study the dynamical, thermal, and
mechanical stabilities of our system along with its formation
energy. In Fig. 1(c), the phonon dispersion relation has been
depicted and all the modes are positive, therefore the struc-
ture is rendered to be dynamically stable. Besides the three
acoustic modes, most of the optical modes have frequencies
below 1500 cm−1 at the Brillouin zone center, but there are
four prevalent modes which have much higher frequencies
(>2100 cm−1). These four high-frequency optical modes can

TABLE I. Elastic constants (C11, C12, C22, C44) of 8-16-4 gra-
phyne in N/m.

C11 C22 C44 C12

170.78 170.78 14.56 59.48

be attributed to the strong triple bonds and the stretching
vibrations between the C atoms with bond length d ′′′that
harden the phonons. This is consistent with other allotropes
of graphyne [62]. The transverse acoustic and longitudinal
acoustic branches are linear near the Brillouin-zone center,
while the out of plane acoustic (ZA) branch shows a quadratic
nature without a linear component. This is due to the fact that
the vertical components along the z direction of the harmonic
force constants are zero, which is also observed in other 2D
materials [63,64].

The thermal stability has also been verified from AIMD
simulations [Fig. 1(d)] performed at 1000 K. The total energy
oscillates around a mean value (∼−528.85 eV). The final
structure after 10 ps retains the basic initial morphology with-
out breaking down into elemental C or converting into any
other high-energy allotrope.

The mechanical stability of 8-16-4 graphyne has been es-
tablished too. The elastic constants relevant to a 2D square
lattice (C11, C12, C22, and C44) have been reported in Table I.
The Born criteria for stability for square lattices are C11 > 0,
C44 > 0, C11 > |C12|, and (C11 + 2C12) > 0 [65] and they are
all satisfied, thus ensuring mechanical stability.

From the elastic constants, the Young modulus (E), Pois-
son’s ratio (υ), in-plane strength (B), shear modulus (G),
longitudinal (vL) and transverse (vT) velocities, and Debye
temperature (θD) have also been determined and reported in
Table II. The Young modulus (170.78 N/m) and shear mod-
ulus (55.65 N/m) obtained are lower compared to that of
graphene (345 and 125.40 N/m) [66,67]. It is well expected
because of the presence of acetylenic linkages in the system
[68].

The thermodynamic stability is determined by calculating
the formation energy (E f ) of the system, using the following
formula:

E f = [ETotal − nCEC]

nC
, (1)

where ETotal, EC, and nC are the total energy of the system,
energy of a single carbon atom, and the number of carbon
atoms in the unit cell, respectively. The formation energy of
the 8-16-4 graphyne allotrope is −8.32 eV/atom, which is
comparable to that of the other predicted allotropes [69,70].
In fact, our system is slightly more stable than successfully
fabricated α-graphyne [71–73] as well.

TABLE II. Young’s modulus (E), Poisson’s ratio (υ), in-plane
stiffness (B), shear modulus (G), longitudinal (vL) and transverse (vT)
velocities, and Debye temperature (θD) of 8-16-4 graphyne.

E (N/m) υ B (N/m) G (N/m) vL (km/s) vT (km/s) θD (K)
150.06 0.35 115.13 55.65 17.00 13.96 2170.75
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FIG. 2. One of the proposed possible chemical ways to realize
the substructure or building block of the system 8-16-4 graphyne. (a)
Two expanded bisradialenes are connected sidewise. Ph represents
the pendent phenyl groups. (b) The section inside the box resembles
the unit cell of 8-16-4 graphyne. (c) The unit cell and translation
vectors of 8-16-4 graphyne. (d) The 8-16-4 graphyne sheet obtained
from the periodic arrangement of the unit cell along the X-Y axis.

Being motivated by the previous experiments on the gra-
phyne synthesis [74–76], we have additionally sketched a
proposed possible chemical route to realize our predicted
system in Fig. 2. The highly conjugated carbon-rich system
bisexpanded radialene or bisradialene acts as an important
ingredient in designing various graphyne oligomers. Here, we
have intuitively explored that two expanded bisradialenes can
be connected side by side to achieve the desired subsystem of
8-16-4 graphyne. This subsystem serves as a building block
of the 2D 8-16-4 graphyne systems. Periodic arrangement of
such subsystems along the X-Y axis will give rise to the 2D
sheet as shown in Fig. 2.

B. Electronic properties

The electronic band structure and partial electronic density
of states (PDOS) obtained from PBE approximation is shown
in Fig. 3. The VBM and CBM of 8-16-4 graphyne meet at
two distinct points of the symmetry path of the IBZ, namely
between the X and M points, and the M and � points. We
have considered the smallest possible unit cell to avoid the
band-folding effect due to the use of a larger supercell [77].
This gives rise to zero density of states at the Fermi level,
which confirms the semimetallic behavior of the system. The
near-Fermi energy states are primarily made up of pz atomic
orbitals. As mentioned above, both sp2− and sp-hybridized
C atoms are present in graphyne, resulting in several differ-
ent bond types. The two sp2 C atoms are bonded by σ+π .
While, the σ bond is contributed by px, py, and s orbitals

FIG. 3. Electronic band structure and PDOS of 8-16-4 graphyne
from PBE approximation.

of C atom, the π bond originates due to the pz orbital. The
two sp-hybridized C atoms are bonded by σ + 2π bonds. In
the valence region, there is contribution from all the three
p orbitals barring in the vicinity of the Fermi level, but in
the conduction band, the major contribution is from the pz

orbitals. Furthermore, we have compared our band struc-
ture with the previously reported nodal line semimetals with
square symmetry, viz., 4,12,2-graphyne [30], 4,12,4-graphyne
[30], T silicene [34], and T germanene [35]. We have observed
that the band structures near the Fermi level exhibit similar
appearance. In the next section, we have critically addressed
this universality of square nodal line semimetals near the
Fermi level.

C. Universality of square Dirac materials

Here, we shall explore and adequately explain the emer-
gence of universal band structure of the square nodal line
semimetals in 2D. The computed PDOS in Fig. 3 indicates
the dominant contribution of pz orbital in the vicinity of the
Fermi level. We have, therefore, proposed an elegant ana-
lytical approach to transform the system into an equivalent
reduced network under the low-energy approximation. Here,
the real-space renormalization group (RSRG) scheme [78]
has been extensively used to integrate out specific subsets of
atomic sites in the light of tight-binding approximation. The
detailed justification and mechanism of this method has been
outlined in the recent review article [28].

For the case of lattice, Schrödinger’s equation can be dis-
cretized and written in terms of difference equation as given
below:

(E − εi )ϕi =
∑

j

ti jϕ j . (2)

In Eq. (2), E, εi, ti j, and ϕi are the energy, on-site po-
tential at the ith site, hopping integral between ith to jth
site, and probability amplitude at the ith site, respectively.
Here, the electrons are allowed to jump between the connected
neighbors only. Since the band structure is symmetrical in the
VB and CB near Fermi level, therefore only nearest-neighbor
interaction is considered. We can use this Eq. (2) for various
sites of the mother lattice to eliminate preferred subsets of it.

We have started the process by choosing a specific part of
the pristine lattice as indicated in Fig. 4. Here, we want to
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FIG. 4. The RSRG steps for the section of the original lattice.
Here, we have first decimated the probability amplitudes of the w, x,
y, and z sites, and then in the second step we have eliminated e, f, g,
and h sites.

decimate the sites forming acetylenic linkages, viz., w, x, y,
and z [29,79]. It is evident that the difference equations can be
written using Eq. (2) as follows:

(E − ε)ϕe(h) = tϕa(d ) + t ′ϕh(e) + t ′′ϕw(z),

(E − ε)ϕw(z) = t ′′ϕe(h) + t ′′′ϕx(y),

(E − ε)ϕx(y) = t ′′ϕ f (g) + t ′′′ϕw(z),

(E − ε)ϕ f (g) = tϕb(c) + t ′ϕg( f ) + t ′′ϕx(y) . (3)

Here, we have considered uniform on-site potential (ε) that
equals to EF and there are four different hopping parameters
t, t ′, t ′′, and t ′′′. It is worth mentioning that consideration
of uniform on-site energy for sp2- and sp-hybridized atoms
is not perfectly an accurate approximation. However, it has
previously been reported for other graphynes, viz., α-, β-, γ -,
(6,6,12)-, T graphynes, etc. that this approximation indeed
accurately predicts the band dispersion near the Fermi level
[28,29,79]. Furthermore, near Fermi level we can approximate
E ≈ ε and this leads to the following relations:

ϕw(z) = − t ′′
t ′′′ ϕ f (g)

ϕx(y) = − t ′′
t ′′′ ϕe(h).

(4)

Substituting the above values into Eq. (3), we obtained the
following relations:

(E − ε)ϕe(h) = tϕa(d ) + t ′ϕh(e) + λϕ f (g)

(E − ε)ϕ f (g) = tϕb(c) + t ′ϕg( f ) + λϕe(h).
(5)

It is worth mentioning that in the original lattice the
electrons hop from site e (h) to f (g) via the triple bond. Nev-
ertheless, the renormalized lattice permits a direct hopping
between the above-mentioned sites with the effective hopping
parameter, λ = −t ′′2/t ′′′. The minus sign invariably refers to
the fact that the hopping parameter gains an additional phase
of e±iπ while passing through the acetylenic linkages. There-
fore, this RSRG process has reduced the number of atoms per
unit cell from 16 to 8 without altering the physics near Fermi
level. Moreover, we aim to continue the decimation process to
reduce the degree of difficulty even more.

For that purpose, we have considered a section of the out-
put lattice of the first RSRG process as depicted in Fig. 4.
Here, we shall eliminate the e, f, g, and h sites to achieve
direct hopping between a, b, c, and d using the second RSRG
scheme. The key factor of the decimation process remains the
same, i.e., E ≈ ε. Here, in principle (a, b, c, d) sites can also

be eliminated. However, the structure belongs to the square
symmetry group. As a result, the system remains invariant
under the transformation x → y and y → x. In other words,
if we rotate the system by 90◦ it looks identical to the initial
lattice as depicted in Fig. S1 of the Supplemental Material
[80]. We can see from Fig. S1 that the (a, b, c, d) sites of the
initial lattice are now (e, f, g, h) sites of the rotated system.
Therefore, it is clear that these choices are identical because
of the fourfold lattice symmetry. This feature has also been
reflected in the similar nature of the band structure about the
S point, i.e., along the S(M)→X and S(M)→Y(X’) symmetry
path of the Brillouin zone. �,X,S(M),Y(X’),� shown in Fig. S2
of the Supplemental Material [80].

We can write the difference equations for the second RSRG
process as follows:

(E − ε)ϕa(d ) = tϕe(h) + t ′ϕm(p) + λϕi(l ),

(E − ε)ϕb(c) = tϕ f (g) + t ′ϕn(o) + λϕ j(k),

(E − ε)ϕe = tϕa + t ′ϕh + λϕ f ,

(E − ε)ϕ f = tϕb + t ′ϕg + λϕe,

(E − ε)ϕg = tϕc + t ′ϕ f + λϕh,

E − ε)ϕh = tϕd + t ′ϕe + λϕg. (6)

We have judiciously simplified Eq. (6) to integrate out e, f,
g, and h sites from the lattice. In particular, we have obtained(

E − ε − t ′2 + λ2

E − ε

)
ϕe = tϕa + tλ

E − ε
ϕb

+ tt ′

E − ε
ϕd + 2λt ′

E − ε
ϕg (7)

and (
E − ε − t ′2 + λ2

E − ε

)
ϕg = tϕc + tλ

E − ε
ϕd

+ tt ′

E − ε
ϕb + 2λt ′

E − ε
ϕe. (8)

As shown in the Appendix, Eq. (7) can be transformed in
the following form under the condition E ≈ ε:

ϕe = − tλ

t ′2 + λ2
ϕb − tt ′

t ′2 + λ2
ϕd − 2λt ′

t ′2 + λ2
ϕg. (9)

Similarly, Eq. (8) can also be written as follows:

ϕg = − tt ′

t ′2 + λ2
ϕb − tλ

t ′2 + λ2
ϕd − 2λt ′

t ′2 + λ2
ϕe. (10)

Evidently, we can get similar equations for sites f and h,
as described below:

ϕ f = − tλ

t ′2 + λ2
ϕa − tt ′

t ′2 + λ2
ϕc − 2λt ′

t ′2 + λ2
ϕh, (11)

and

ϕh = − tt ′

t ′2 + λ2
ϕa − tλ

t ′2 + λ2
ϕc − 2λt ′

t ′2 + λ2
ϕ f . (12)

These are two sets of coupled equations that have been
further simplified. As a result, the following expressions have
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FIG. 5. Effect of the complete RSRG processes on the original lattice of 8-16-4 graphyne. The red shaded sites are decimated to obtain the
final lattice. Unit cells of all the lattices are marked with blue dotted boxes.

been obtained:

ϕe = tλ
t ′2−λ2 ϕb − tt ′

t ′2−λ2 ϕd ,

ϕ f = tλ
t ′2−λ2 ϕa − tt ′

t ′2−λ2 ϕc,

ϕg = tλ
t ′2−λ2 ϕd − tt ′

t ′2−λ2 ϕb,

ϕh = tλ
t ′2−λ2 ϕc − tt ′

t ′2−λ2 ϕa.

(13)

Furthermore, we have cast these values in Eq. (6) and
obtained the relations for the renormalized lattice without e,
f, g, and h sites:

(E − ε)ϕa = τ1ϕb + τ2ϕd + t ′ϕm + λϕi,

(E − ε)ϕb = τ1ϕa + τ2ϕc + t ′ϕn + λϕ j,

(E − ε)ϕc = τ1ϕd + τ2ϕb + t ′ϕo + λϕk,

(E − ε)ϕd = τ1ϕc + τ2ϕa + t ′ϕp + λϕl

(14)

In the above Eq. (14), τ1 and τ2 are the renormalized
hopping parameters of the reduced lattice with values τ1 =
t2λ/(t ′2 − λ2) and τ2 = −t2t ′/(t ′2 − λ2). As an interesting
note, the obtained lattice parameters are no longer functions of
energy and have real values. In addition, the on-site potential
of the low-energy lattice remains the same as the original
lattice. Similar to the first RSRG process, we have extended
these results to the complete lattice and have depicted it in
Fig. 5

The final lattice consists of four atoms per unit cell and
is a reasonably simple system to obtain the low-energy dis-
persion relation analytically. The straightforward method in
this regard is to solve the matrix eigenvalue equation of the
form Eϕ = [h(�k)]ϕ. In this case, the Hamiltonian matrix
[h(�k)] can be obtained from the discrete Fourier transform
of the lattice because of the translational symmetry and will
be (4 × 4) in dimension, since the number of basis orbitals
or sites per unit cell is 4 here. Hence, four eigenvalues of
the Hamiltonian matrix will give four branches of the band
structure. Among those, we expect two low-energy branches
will construct the Dirac nodal points at specific �k values.
In fact, the renormalization process has made this problem
way simpler. We can see that there is no cross-hopping inte-
gral present in the system. As a direct consequence, we can
consider the final lattice as periodic arrangements of chains
of dimers along two mutually orthogonal axes. Along one
direction (crystallographic �a axis) the hopping parameters t′
and τ1 are arranged alternatively. On the contrary, the alter-
native hopping integrals are τ2 and λ along the perpendicular

direction (crystallographic �b axis). It is well known that a one
dimensional (1D) lattice with two atoms per unit cell gives
us two branches in the band structure with dispersion relation
Ẽ = ε0 ± (t2

1 + t2
2 + 2t1t1 cos qa)1/2. Here, ε0, t1, t2, and a

are the on-site potential, alternating hopping parameters, and
lattice constant of the chain of dimers, respectively. In our
case, the on-site potential is uniform and thus considered to
be the zero or reference energy. Hence, two mutually orthog-
onal 1D chain of dimers will give us two pairs of dispersion
relations as follows:

E1 = ±α = ±[
τ 2

1 + t ′2 + 2τ1t ′ cos (qya)
]1/2

E2 = ±β = ±[τ 2
2 + λ2 + 2τ2λ cos (qxa)]

1/2
.

(15)

The linear combination of these dispersion relations will
provide four branches of the final renormalized lattice. There-
fore, the equations of the four branches are |α + β|, −|α + β|,
|α−β|, and −|α−β|. Among these, the last two lie near the EF

and are naturally our point of interest. Considering, q = ( 2πk
a ),

we have expressed the low-energy dispersion in terms of crys-
tal momenta as follows:

E± = ±
∣∣∣[τ 2

1 + t ′2 + 2τ1t ′ cos (2πky)
]1/2

−[
τ 2

2 + λ2 + 2τ2λ cos (2πkx )
]1/2

∣∣∣. (16)

In order to justify our exact analytical result, we have
simultaneously plotted it with the DFT-based numerical out-
put along the symmetry path �(0.0, 0.0) → X (0.0, 0.5) →
M(0.5, 0.5) → �(0.0, 0.0) in Fig. 6(a). It can be no-
ticed that the dispersion relation given in Eq. (16) reveals
the same set of band touching points at (0.19, 0.5) and
(0.30, 0.30) as predicted by DFT for the hopping parame-
ters t = −1.000 |τ |, t ′ = −0.890 |τ |, and λ = +0.891 |τ |;
here, “|t | = |τ | = 2.8 eV” is the same as the magnitude of
graphene’s hopping integral [1]. The site-specific band struc-
ture of 8-16-4 graphyne, depicted in Fig. S3 of Supplemental
Material [80] indicates that formation of Dirac bands near the
Fermi level supports the simplified four-level mechanism. The
analytical expressions for the coordinates of nodal points are
as follows. The nodal points between the symmetry points
X → M and M → � lie at (k̃x, 0.5) and (k̃, k̃), respectively.
Here, the expressions for k̃x and k̃ are

k̃x = 1

2π
cos−1

[
1 +

(
τ 2

1 + t ′2) − (τ 2
2 + λ2)

2λτ2

]
(17)
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FIG. 6. (a) Analytically obtained band structure of 8-16-4 gra-
phyne is plotted with the our DFT data. Red and blue lines indicate
conduction and valence bands, respectively. (b) The 3D plot of the
corresponding analytical dispersion relation. Here, EF is set to zero.
(c) Close view of the 3D valence band from analytical expression.
Nodal loop around the M point of the BZ is clearly visible. (d) The
Dirac nodal loop around the symmetry point M shown by red circle.
A and B are two nodal points situated at the symmetry line. Here,
lattice constant is considered to be unity.

and

k̃ = 1

2π
cos−1

[(
τ 2

1 + t ′2) − (τ 2
2 + λ2)

4λτ2

]
. (18)

We have already mentioned that the other two parameters
τ1 and τ2 are not independent but depend on the other hop-
ping integrals. These hopping parameters follow the desirable
conditions |t ′| ≈ |λ| and |τ1| ≈ |τ2 |. Here, we can observe
that this analytical approach has spontaneously incorporated
small but finite anisotropy in hopping parameters. This in
turn restricts the infinite number of contacts between the
VB and CB forming flat bands at the Fermi level along the
M → � path. It is worth mentioning that this nodal point
along M → � is a unique feature of the square systems and
is attributed to the mirror reflection symmetry. In case of
rectangular lattices like S graphene, two touching points occur
but none of these lie along the M → � path [25]. For better
understanding, we have plotted the 3D band structure of 8-
16-4 graphyne obtained analytically in Figs. 6(b) and 6(c).
It is clear from these two figures that VBM and CBM touch
each other at the Fermi level and construct Dirac loop, which
marks an energy band tangency circle around the symmetry
point M. The contour plot of this Dirac nodal ring has been
clearly depicted in Fig. 6(d). Here, it is worth mentioning
that the band structure obtained from the tight-binding (TB)
Hamiltonian written for the mother lattice of 8-16-4 graphyne
also exhibits similar behavior near Fermi level (not shown).
We have further tuned the phase factor of the renormalized
hopping parameter λ (say, λ′ = −λ/

√
2), as, it depends on

the number of consecutive triple bonds in the system, and

we observed that the corresponding nodal points are located
at � → X and M → � as depicted in Fig. S4 of the Sup-
plemental Material [80]. This elucidates that the nodal point
between M → � is robust to the alteration of the sign of λ.
Besides, the symmetry of the VB and CB is associated with
the fact that the C atoms of the unit cell can be divided into
two subgroups because of the bipartite nature. The dispersion
relation between different symmetry points has been listed in
Table S1 of the Supplemental Material [80].

Furthermore, we have calculated the Fermi velocity (vF )
near two distinct nodal points. Therefore, we have expanded
the dispersion relations between X → M and M → � in
Taylor series about the degenerate points. The quadratic
and higher-order terms have been neglected. The linear part
has been compared to EL = |h̄vF �q|. Here, �q is equal to
|q − q0|, where q0 is the position of the nodal point and EL is
the energy expansion up to linear order. We have obtained the
following expressions of vF ,:

vF |X→M =
∣∣∣∣ aττ2λ

h̄β(kx )
sin(2πkx )

∣∣∣∣
kx=k̃x

= 4.10 × 105 m/s = c

732
(19)

and

vF |M→� =
∣∣∣∣aττ2λ

h̄
sin (2πk)

(
1

α(k)
+ 1

β(k)

)∣∣∣∣
k=k̃

= 8.27 × 105 m/s = c

363
. (20)

Here, c is the speed of light in free space. As mentioned
earlier |τ | = |t | = 2.8 eV. Therefore, we can see that vF |M→�

is almost twice of vF |X→M . This indicates highly anisotropic
features of the dispersion relation near the two nodal points.
Besides, vF |M→� is even slightly higher than the Fermi ve-
locity of graphene as shown in Table S2 of the Supplemental
Material [80].

In the above discussions, we have explored that the low-
energy lattice of 8-16-4 graphyne judicially explains the
emergence of two nodal points either at � → X and M → �

or X → M and M → �. With this notion, we have further
renormalized the previously predicted 2D square Dirac al-
lotropes (4,12,2 graphyne and 4,12,4 graphyne) and explored
that these systems can be invariably cast into the low-energy
version of 8-16-4 graphyne as shown in Figs. 7 and 8.

Moreover, a careful observation indicates that the original
lattice of T silicene [34] and T germanene [35] resembles the
output lattice of 8-16-4 graphyne after the first RSRG process.
We can check that the unit cell of all the systems possesses
eight atomic sites. However, in this case there is an additional
restriction, i.e., λ ≈ t1 ≈ t ′. Besides, both the T silicene and
T germanene systems possess appreciable spin-orbit coupling
that invariably splits the bands. It is worth mentioning that
the output of the second RSRG process on T silicene and T
germanene is identical to the lattice given in Fig. 3(a). In this
case, the renormalized hopping parameters are estimated to be
τ1 = t2λ/(t2

1 − λ2) and τ2 = −t2t1/(t2
1 − λ2). Here also the

conditions |t ′| ≈ |λ| and |τ1| ≈ |τ2| hold well. These results
clearly illustrate that the class of 2D nodal line semimetals

075137-7



ARKA BANDYOPADHYAY et al. PHYSICAL REVIEW B 103, 075137 (2021)

FIG. 7. The decimation process of 4,12,2-graphyne. In the renormalized lattice we have λ ≈ t1.

with square symmetry follow the universal dispersion relation
given in Eq. (16). Indeed, the dispersion relation is attributed
to the identical low-energy lattice of the family obtained from
the RSRG process. In other words, every square lattice fea-
turing two Dirac nodal points situated at the symmetry line
can be renormalized to the same universal network as shown
in Figs. 5 , 7, and 8. This efficiently explains the underlying
physics behind the fascinating coexistence of square symme-
try and Dirac nodal rings.

D. Topological properties

Finally, we have explored the nontrivial topological as-
pect of both the original and low-energy lattice of 8-16-4
graphyne. As the inversion and time-reversal symmetry are
simultaneously present in the systems, the Zak phase (z- =
i
∮

dq〈ψn
q |∂ψn

q 〉) has been calculated via the TB model to
serve as a quantized topological index [81]. It is evident that
the occurrence of robust topological edge states is a signature
of charge polarization and it is intimately related to the topo-
logical index, i.e., z or W = z-/π (winding number) through
bulk-edge correspondence. In case of the universal lattice, we
initially considered the following conditions |τ1| ≈ λ ≈ |tin|
and |τ2| ≈ |t ′| ≈ |tout| and observed a phase transition about
|tin| = |tout|. In particular, |tout/tin| > 1 gives rise to the topo-
logically nontrivial phase and thus induces robust edge states
in the 1D nanoribbon geometry as depicted in Fig. 9(a). The
vectored Zak phase in 2D or the wave polarization [82] can be
obtained via

�P = 1

2π
∫ dkxdky Tr[〈ψ |i∂�k|ψ〉]. (21)

Here, the integration is over the first BZ. In presence of
inversion symmetry, �P can be calculated gauge independently
by considering the parities at � and X symmetry points:

pi = 1

2

(∑
n

qn
i modulo2

)
, (−1)qn

i
η(Xi )

η (�)
. (22)

Here, η represents the parity, i stands for x or y, and the
summation is taken over all the occupied bands. In the above-
mentioned topologically nontrivial phase, we have obtained
Px = Py = 1/2. This is well expected because of the C4

symmetry of the bulk system. The above-mentioned polariza-
tion forms a Z2 topological invariant of the system [83]. It is
important to note that the conventional Z2 number as obtained
here from product of parities at time-reversal invariant points
for time-reversal invariant topological phase is always trivial
[82]. Nevertheless, the T-Ge and T-Sn square lattices exhibit
nontrivial Z2 invariant in the presence of strong SOC [35].
As our primary focus is the all-carbon systems and pho-
tonic crystals we have characterized the topological phases
in terms of Zak phase as mentioned above. A similar type
of topological phase transition has previously been predicted
in Su-Schrieffer-Heeger lattices and also observed in ex-
periments [82–85]. Furthermore, we proceed to discuss the
possibility of the occurrence of the topological edge states
in finite ribbon (N = 2) with completely distinct hopping
parameters i.e., |τ1| �= |τ2| �= λ �= |t ′|. Here, we define two di-
mensionless parameters p1 = |τ1|/|t ′| and p2 = |λ|/|τ2| that
essentially determine the phase transition. Consequently, we
have calculated the topological invariants for four typical

FIG. 8. The decimation process of 4,12,4-graphyne. In the renormalized lattice we have λ ≈ t1.
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FIG. 9. (a) The topologically nontrivial phase of the low-energy
lattice with |tin| = 1 eV and |tout| = 2 eV. The emergence of topolog-
ically protected edge state is also shown. Here, we have considered
N = 20. The edge states are indicated by arrow; the symmetrically
opposite bands of the indicated bands in the CB or VB are also edge
states. (b) Topological phase diagram of the finite low-energy ribbons
with completely distinct hopping parameters. (c) The topological
nontrivial phase of 8-16-4 graphyne ribbon (N = 1) with z- = +2π

and W = +2. Here, we have considered |h1| = −1 eV and |h2| =
−0.8 eV.

choices of p = (p1
p2

), i.e., (p1 > 1
p2 > 1), (p1 > 1

p2 < 1), (p1 < 1
p2 > 1), and (p1 < 1

p2 < 1).
Among these choices, only the last two offer topologically
nontrivial phases characterized by W = +1 (or, z- = +π ) and
W = −1 (or, z- = −π ), respectively. The topological phase
diagram in this case has been depicted in Fig. 9(b) and
the winding number corresponding to each eigenstate has
been presented in Fig. S5 of the Supplemental Material [80].
Finally, we are curious to search for similar nontrivial topolog-
ical properties for the case of the 8-16-4 graphyne nanoribbon
as shown in Fig. 9(c). In this case, the obtained value of z- for
the real hopping parameters t = t ′ = t ′′ = h1 = −2.8 eV and
t ′′′ = h2 = −3.2 is +π establishing the nontrivial topological
feature. Our PBE result also reveals the nontrivial topolog-
ical phase of the 8-16-4 graphyne sheet (not shown) from
WANNIER90 [55,56]. Furthermore, we have explored different
topological phases characterized by W = 0, ±1 and ±2 for
the different combinations of (h1, h2). For example, Fig. 9(c)
depicts the topologically nontrivial phase with W = +2 for
the set of hopping parameters |h1| = −1 eV and |h2| = −0.8
eV. On the other hand, choices of hopping parameters |h1| =
−1 eV and |h2| = −0.4 eV render the state with W = −2.
Moreover, for the completeness, we now consider two distinct
hopping parameters for the intracell (hin) and intercell (hout)
connections. And, for a fixed hin(= 1 eV, say), hout is varied
to obtain different phases as shown in Table III. Here, we
have listed some of the particular cases; however, topological
states are quite robust to the absolute values of the hopping
parameters.

TABLE III. Different topological phases of the ribbon with dif-
ferent Zak phase and winding number.

Hopping parameters (eV) Topological state z- W

(hin = 1.0 hout � 0.5) Trivial 0 0
(hin = 1.0 hout = 0.7, 0.9) Nontrivial +π +1
(hin = 1.0 hout = 1.0, 1.1) Nontrivial −π −1
(hin = 1.0 hout = 1.2, 1.4) Nontrivial +2π +2
(hin = 1.0 hout = 1.3) Nontrivial −2π −2

Therefore, we have observed that the 8-16-4 graphyne
is one square symmetry lattice structure in which one can
perform RSRG scheme systematically to obtain the exact ana-
lytical low-energy dispersion relation. Moreover, exact results
match with the DFT outputs. In addition, this structure is
purely carbon based; therefore, the effect of SOC is negligible
as depicted in Fig. S6 of the Supplemental Material [80].
However, it exhibits edge states protected by nontrivial topo-
logical index, i.e., Zak phase or winding number. Therefore,
this can be an important reference for investigating future
topological phases made of light elements. Most importantly,
this proposed structure indeed serves as an important missing
link to other square symmetric Dirac lattices. In that sense,
this structure is fascinating and possesses nontrivial morpho-
logical character compared to other existing structures.

IV. CONCLUSIONS

In summary, we have predicted a two-dimensional carbon
allotrope, 8-16-4 graphyne with square symmetry from first-
principles investigations. The structural stability of the system
has been established by means of comprehensive investigation
on the dynamic, thermal, and mechanical properties. In addi-
tion, the structural parameters of 8-16-4 graphyne are strongly
supported by the crystal-structure prediction code USPEX. The
presence of double-distorted Dirac nodal points along the
symmetry path of the irreducible Brillouin zone is observed
to be a dominant feature in its electronic band structure. This
invariably indicates that 8-16-4 graphyne belongs to the fam-
ily of 2D systems where square symmetry and Dirac nodal
line semimetallic behavior coexist. In the presence of both
inversion and time-reversal symmetry the Dirac loop forms
around the symmetry points M for 8-16-4 graphyne. These
nodal rings exhibit twofold band degeneracies at two distinct
point of the symmetry path that disperse linearly. It refers to
the fact that the hexagonal or rectangular symmetry is not a
prerequisite for the existence of linear dispersion relation and
that the VBM and CBM can meet each other at low-symmetry
point also. In addition, we have availed an elegant approach
in terms of RSRG scheme to analytically attain the generic
dispersion relation for the class of square symmetric 2D Dirac
nodal line semimetallic systems. Our exact analytical results
are adequately supported by the DFT-based numerical out-
comes. Nevertheless, this scheme essentially explores that the
entire class of nodal line semimetals with square symmetry
can be renormalized to an equivalent four-level system in
the low-energy limit. This in turn validates the fascinating
property regarding the universal feature of their band struc-
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ture. Finally, the emergences of nontrivial topological aspects
have been characterized by the nonvanishing Zak phase (z- =
±π,±2π ) in the presence of inversion and time-reversal sym-
metry. These results will assist in designing future materials
and photonic crystals with nontrivial topological properties.
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APPENDIX: TRANSFORMATION EQUATIONS FROM
Eq. (7) TO Eq. (9)

Equation (7) can be written as

{
(E − ε) −

(
t ′2 + λ2

)
(E − ε)

}
ϕe = tϕa + tλ

(E − ε)
ϕb

+ tt ′

(E − ε)
ϕd + 2λt ′

(E − ε)
ϕg.

Now, if we consider E ≈ ε, In the left-hand side (E − ε)
can be neglected compared to t ′2+λ2

(E−ε) . Then the above equation
can be written as follows:{

−
(
t ′2 + λ2

)
(E − ε)

}
ϕe = tϕa + tλ

(E − ε)
ϕb

+ tt ′

(E − ε)
ϕd + 2λt ′

(E − ε)
ϕg.

Or,

ϕe = − (E − ε)(
t ′2 + λ2

) tϕa − (E − ε)(
t ′2 + λ2

) tλ

(E − ε)
ϕb

− (E − ε)(
t ′2 + λ2

) tt ′

(E − ε)
ϕd − (E − ε)(

t ′2 + λ2
) 2λt ′

(E − ε)
ϕg.

Or,

ϕe= − (E − ε)

t ′2 + λ2
tϕa − tλ

t ′2+λ2
ϕb− tt ′

t ′2 + λ2
ϕd− 2λt ′

t ′2 + λ2
ϕg.

It is evident that under the condition E ≈ ε the above
equation can be written as follows:

ϕe = − tλ

t ′2 + λ2
ϕb − tt ′

t ′2 + λ2
ϕd − 2λt ′

t ′2 + λ2
ϕg.

Therefore, we have obtained Eq. (9) from Eq. (7).
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