
PHYSICAL REVIEW B 103, 075136 (2021)

Magnetic response trends in cuprates and the t-t ′ Hubbard model
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We perform a systematic study of static and dynamical magnetic properties of the t-t ′ Hubbard model in
a parameter regime relevant for high-temperature superconducting cuprates. We adopt as solution method the
dynamical mean-field theory approximation and its real-space cluster extension. Our results show that large
t ′/t suppresses incommensurate features and eventually leads to ferromagnetic instabilities for sufficiently large
hole doping x. We identify isosbestic points which separate parts of the Brillouin zone with different scaling
behaviors. Calculations are compared to available nuclear magnetic resonance, nuclear quadrupole resonance,
inelastic neutron scattering, and resonant inelastic x-ray scattering experiments. We show that while many trends
are correctly described, e.g., the evolution with x, some aspects of the spin-lattice relaxation rates can apparently
only be explained invoking accidental cancellations. In order to capture the material dependence of magnetic
properties in full, it may be necessary to add further degrees of freedom.
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I. INTRODUCTION

High-temperature superconducting cuprates (HTSCs), a
representative system of which is shown in Fig. 1, remain puz-
zling decades since their discovery [1–3]. Spin fluctuations
have been early on suggested as possible keys to unravel the
nature of superconductivity. Magnetic properties have been
thus investigated via a number of different techniques, ranging
from elastic and inelastic neutron scattering (INS), inelastic
resonant x-ray scattering (RIXS), to magnetic susceptibil-
ity measurements, nuclear magnetic resonance (NMR), and
nuclear quadrupole resonance (NQR) experiments [2–49].
Theoretical investigations have followed. They are based on
a bonanza of strategies, from phenomenological approaches
to ab initio methods based on density-functional theory
to techniques for solving representative many-body models
[50–64]. In the last few years, important steps forward have
been made by reanalyzing the problem with state-of-the-art
methods [65–81].

One of the paradigmatic—and most studied—models used
for HTSCs is the single-band Hubbard Hamiltonian, assumed
to describe the low-energy electronic states stemming from
the CuO2 planes, shown in Fig. 2. From the electronic
structure point of view, the justification of such a model
relies on the fact that the Cu 3d x2 − y2–like band cross-
ing the Fermi level is a generic feature of cuprates [62,63].
In addition, for magnetism, the one-band model descrip-
tion is grounded on the single spin-fluid scenario, which
emerges from Knight shift and susceptibility measurements
in YBa2Cu3O7−δ [33,37,51]. Within the single-band Hubbard
model, band-structure calculations have shown [62] that key
aspects of the material dependence are captured by changes in
the hopping-integral range, r ∼ t ′/t . In this picture, the actual
value of the ratio t ′/t is controlled by ε̃s, the energy of the

axial orbital [62,63]. Remarkably, many electronic properties
in the doped single-band Hubbard model turned out to be very
sensitive to the value of t ′/t , for example the strength of an-
tiferromagnetic correlations [61]. Recent ground-state studies
of the Hubbard model based on the density-matrix renormal-
ization group approach indicate that a finite t ′ might be crucial
for ground-state properties, superconductivity [72,74,75], as
well as for stripe order [75,76]. Furthermore, investigations
of the t-t ′-J model, the large-U limit of the doped Hubbard
model, have identified spectroscopic signatures of t ′ in charge
and spin dynamics of one-dimensional antiferromagnets [73].

In parallel to these successes, however, some problems
came to light. The single spin-fluid picture has been chal-
lenged in La2−xSrxCuO4 and HgBa2CuO4+δ [43,44], based
on recent reanalyses of NMR and NQR experiments. This,
in turn, raises questions on the description of magnetic prop-
erties based on the single-band Hubbard model. The validity
of the single-fluid scenario relies not only on its power of
describing the qualitative picture but also on the extent to
which it captures essential differences in the magnetic prop-
erties of the various families of cuprates. Despite past and
present successes, as well as impressive theoretical advances
[50–81], a systematic investigation of two-particle magnetic
properties in this direction, to the best of our knowledge,
is still missing. It is thus time to reanalyze the problem.
The purpose of the present work is to fill holes in this
contest.

To this end, we calculate the evolution of static and dynam-
ical magnetic response with the number x of holes in the CuO2

plane, from the underdoped all the way to the less explored
highly overdoped regime, progressively increasing t ′/t and
the strength of the Coulomb interaction U . We employ as a
method the single-site and the cluster dynamical mean-field
theory (DMFT) approach, adopting quantum Monte Carlo
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FIG. 1. The crystal structure of the single-layered high-
temperature superconducting cuprate HgBa2CuO4. Three CuO2

planes (described in more detail in Fig. 2) are shown.

(QMC) impurity solvers. The results obtained show that pro-
gressively increasing t ′ and x suppresses antiferromagnetism,
favoring first incommensurate instabilities around the M point
and eventually ferromagnetic correlations. We find that the
nature of magnetic correlations changes very strongly entering
the overdoped regime. We identify isosbestic points which
separate regions of the Brillouin zone with different scaling
behaviors. We show that the magnetic trends do not change
qualitatively with increasing U , provided that one stays away
from the U � Uc regime, where Uc is the critical value for
the Mott transition at half filling; a large U makes how-
ever ferromagnetic instabilities more likely in the overdoped
regime. We show that while many aspects of the experimental
doping dependence, for example uniform susceptibility and
Knight shift measurements or the resonance mode in the
underdoped regime, are well captured, others are not—in par-
ticular concerning experimental NMR and NQR spin-lattice
relaxation rates. For the realistic description of such properties
it might be necessary to go beyond the simple t-t ′ Hubbard
model.

The paper is organized as follows. In Sec. II, we present
the method employed. In Sec. III we present the results, first
for the static and then the dynamical magnetic properties. Fi-
nally we give our conclusions in Sec. IV. Additional technical
details can be found in Appendices A and B.

FIG. 2. The CuO2 plane in the middle of Fig. 1. Cu: Small
spheres; O: large spheres. The hopping integrals t, t ′, t ′′ of the single-
band Hubbard model are also shown.

II. MODEL AND METHOD

We describe the low-lying states via the single-band Hub-
bard model

H = −
∑
ii′σ

t i,i′c†
iσ ci′σ + U

∑
i

ni↑ni↓. (1)

Here c†
iσ (ciσ ) creates (annihilates) an electron at site i with

spin σ and ni = c†
iσ ciσ , and U is the screened Coulomb

interaction. The parameter t i,i′ is the hopping integral be-
tween sites i and i′. For high-temperature superconducting
cuprates (see Fig. 2) the key terms are the nearest-neighbor
and next-nearest-neighbor hopping integrals, t and −t ′. This
leads to the band dispersion ε(k) = −2t (cos kx + cos ky) +
4t ′ cos kx cos ky. It has been previously established [62] that
realistic values are t ∼ 0.4 eV, with t ′/t ranging from t ′/t ∼
0.17 for La2−xSrxCuO4 to t ′/t ∼ 0.33 for YBa2Cu3O7−δ or
HgBa2CuO4+δ . Here we thus study the magnetic properties
for t ′/t in the range 0 � t ′/t < 0.4, for hole-doping corre-
sponding to 0 < x < 0.4. This covers the full range from
underdoped to the heavily overdoped regime and well be-
yond; optimal doping is around x ∼ 0.16 in many cuprate
families [3]. More controversial is the estimate of the screened
Coulomb repulsion. Spin-wave measurements could be taken
as evidence of a relatively weak direct (screened) Coulomb in-
teraction, U ∼ 3 eV; this is due to the fact that the behavior of
the experimental spin-wave dispersion appears not compatible
with the antiferromagnetic J1-J2 Heisenberg model derived
from the Hubbard model in second-order perturbation theory.
Its description requires [5] either a ferromagnetic (negative)
value of J2 or higher-order interactions, for example a ring-
type four-spin superexchange term [82,83], negligible in the
very large U limit. A relatively small U is also supported
by constrained random-phase approximation (cRPA) calcu-
lations [84,85]. On the other hand, a small ferromagnetic J2

can arise from the standard ferromagnetic intersite Coulomb
exchange coupling and/or multiorbital superexchange effects.
Indeed, ferromagnetic couplings J2 ∼ −10 meV, sufficiently
large, have been obtained theoretically using a first-principles
linear-response approach [54]. Furthermore, cRPA calcula-
tions often overestimate screening effects. Much larger values
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of U , up to 10 eV, have been estimated via the constrained
local-density approximation (cLDA) approach [86–89]. This
technique, on the other hand, tends to overestimate the
Coulomb repulsion, in part due to the fact the more localized
functions are typically used as basis, in part because fewer
screening channels are considered [89]. Taking all this into
consideration, in this paper we present results for several val-
ues of U in the interval between the cRPA and cLDA estimates
and discuss the most important effects of increasing U for
magnetism.

We solve the Hamiltonian (1) via the dynamical mean-
field theory (DMFT) and its real-space cluster extension
(cDMFT) [64,90–92]. In this context, some additional re-
marks on the choice of the screened Coulomb parameter are
in place. Within paramagnetic dynamical mean-field theory,
a small U is hard to conciliate with a relatively large ex-
perimental [93–96] gap of ∼2 eV. More specifically, for the
hopping parameters used in this work, the critical U for the
metal-insulator transition is about Uc ∼ 4.5 eV. Since a con-
sistent picture of the whole phase diagram cannot be fully
recovered if U < Uc, we first systematically explore the case
U ∼ 7 eV. This value yields at half filling a gap ∼2 eV
in paramagnetic DMFT calculations, i.e., a gap in line with
photoemission spectroscopy [93], photoinduced absorption
spectroscopy [94], and optical conductivity measurements
[95], as well as with the reported observation of upper Hub-
bard bands [3,96]. Next we study the effects of varying U in
the range from 3 to 11 eV, all values adopted in the literature.
DMFT is exact in the infinite-coordination limit, in which the
self-energy is momentum independent. In the case of the t-t ′
Hubbard model it is therefore an approximation. For magnetic
properties, nonlocal effects become important in particular
approaching a phase transition [97]. Thus, in the most rele-
vant cases we compare DMFT results with those of 2- and
4-site cellular DMFT (cDMFT) calculations, which have been
shown to capture key effects of spatial fluctuations [78,98].

For the quantum impurity solvers we chose two similar
but complementary approaches. The first is the Hirsch-Fye
(HF) quantum Monte Carlo (QMC) method [99], in the
implementation presented in Ref. [100]. The second is the
hybridization-expansion continuous-time QMC method (CT-
HYB) [101], in the implementation of Refs. [102,103]. The
bottleneck, in both approaches, is the calculation of the local
susceptibility tensor [92], which is performed at the end of the
self-consistency DMFT loop. This is defined as

χα(τ) = 〈
T cα1

(τ1)c†
α2

(τ2)cα3
(τ3)c†

α4
(τ4)

〉
− 〈

T cα1
(τ1)c†

α2
(τ2)

〉〈
T cα3

(τ3)c†
α4

(τ4)
〉
. (2)

Here T is the time order operator, τ = (τ1, τ2, τ3, τ4) are
the imaginary times; α = (α1, α2, α3, α4) and α j = mjσ j i j

are collective orbital (mj), spin (σ j), and site (i j). The cal-
culation is performed in different ways, depending on the
solver. In Hirsch-Fye QMC simulations we compute it di-
rectly in Matsubara frequency space. This yields χα(ν), where
ν = (νn,−νn − ωm, νn′ + ωm,−νn′ ), νn and νn′ are fermionic
and ωm bosonic Matsubara frequencies, the Fourier transform
of χα(τ). To reduce the computational time we obtain the
Fourier transform of the Green’s function matrix Gα,α′ (τ, τ ′)
by shifting the discontinuity at τ = τ ′ to the border, and

apply the semianalytical Filon-trapezoidal approach [100].
In the CT-HYB QMC solver we perform the calculations in
compact polynomial representations (Legendre and numeri-
cal polynomial basis); when necessary we transform to the
Matsubara frequency representation. More details on the ap-
proach adopted in our general implementation can be found in
Refs. [102,103].

Next we use the (c)DMFT lattice Green’s function
Gαiα j (k; iνn), obtained from the noninteracting Hamiltonian
and the (c)DMFT self-energy, and compute the bubble contri-
bution to the lattice and local susceptibility. They are defined
respectively via the tensors

χα
0 (q; iωm) = −βδnn′δσ2σ3δσ1σ4

1

Nk

×
∑

k

Gα3α2
(k + q; iνn + iωm)Gα1α4 (k; iνn),

(3)

where β = 1/T is the inverse temperature and

χα
0 (iωm) = 1

Nq

∑
q

χα
0 (q; iωm). (4)

The associated bubble longitudinal lattice magnetic suscepti-
bility is given by

χ0(q; iωm) = (gμB)2

4

∑
α

(−1)σ1+σ3δσ1σ2χ
α
0 (q; iωm)δσ3σ4 ,

(5)

where σ j = ±1 for spins ↑ and ↓, respectively. From the
tensors given in Eq. (3) we build square matrices, e.g.,
χα(iωm) = [χ (iωm)]NN ′ with elements N = α1n, α2n, N ′ =
α3n′, α4n′, so that for the magnetic susceptibility only the
terms σ1 = σ2 = σ and σ3 = σ4 = σ ′ are taken into account
[100]. In this case, the (bare) local susceptibility is zero
everywhere except for the impurity block, i.e., i j = i1 for
DMFT and i j = {ic} for cluster DMFT calculations. In the
last step, we obtain the lattice susceptibility χ (q; iωm) solving
the Bethe-Salpeter equation in the local-vertex approximation
[90,104]

[χ (q; iωm)]−1 ≈ [χ0(q; iωm)]−1 − �(iωm). (6)

The local vertex itself is given by

�(iωm) = [χ0(iωm)]−1 − [χ (iωm)]−1, (7)

where χ (iωm) is the local susceptibility tensor obtained from
QMC simulations. Finally, the full longitudinal lattice mag-
netic susceptibility is obtained as

χ (q; iωm) = (gμB)2

4

∑
α

(−1)σ1+σ3δσ1σ2χ
α(q; iωm)δσ3σ4 . (8)

In the hybridization-expansion continuous-time QMC ap-
proach the Bethe-Salpeter equation is solved in the compact
polynomial representation (l, l ′) instead of in the Matsub-
ara fermionic frequencies (n, n′) representation [103]. The
Hirsch-Fye approach is better suited in the weak-interaction
and large-cluster cDMFT regime, while the continuous-time
solver yields the �τ = β/L → 0 limit and it is best suited
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FIG. 3. Static inverse transverse and longitudinal susceptibility
χ (q; 0) as a function of temperature, U = 7 eV. Left panels: t ′ =
0.2t . Right panels: t ′ = 0.4t . Triangles: � and M points. Gray pen-
tagons: X point. Black circles: Local (indicated with L in the plot)
susceptibility. Above the critical temperature it shows the Curie-
Weiss behavior. Dotted lines: Curie-Weiss fit at high temperature,
and associated low-temperature extrapolation [97]. Black circles:
4m, where m is the magnetization per site. Special points: � =
(0, 0, 0), X = (π, 0, 0), M = (π, π, 0).

for dynamical response calculations. By combining the two
approaches we can study in detail different aspects of the
problem. Finally, data on the real axis are obtained via analytic
continuation using the maximum-entropy approach.

III. RESULTS

A. Static susceptibility for x = 0

We start by analyzing the lattice spin susceptibility at half
filling (x = 0), in both the paramagnetic and antiferromag-
netic phases. This sets the stage for analyzing in the next
sections the finite-x case. The principal results are collected
in Figs. 3, 4 and 5. In the paramagnetic phase (T > TN ), the
DMFT static susceptibility has a Curie-Weiss-like behavior
[64] in all considered cases, reflecting the mean-field approx-
imation. This is shown in Fig. 3 for representative q values.
The figure also shows the transition to the antiferromagnetic
phase at the critical temperature TN . The calculations yield the
(expected) mean-field behavior of the transverse and longitu-
dinal susceptibility, with χ‖(q; 0) going to zero in the T → 0
limit and χ⊥(q; 0) remaining constant below TN ; here ‖ and
⊥ indicate the direction of the applied magnetic field with
respect to the ordered magnetic moments. The temperature
dependence is mostly determined by the local vertex �(iωn).
As we have previously shown, e.g., in Ref. [100] for layered
vandadates, in the paramagnetic insulating phase, the “bub-
ble” term of the static lattice susceptibility at half filling is
approximately

χ0(q; 0) ≈ (gμBμeff )2

Ur0

{
1 − 1

2U

[
Jr0 (0) + 1

2
Jr0 (q)

]
+ . . .

}
.

(9)

 0

 1

 2

 3

 4

χ/
χ A

t′ = 0.2 t

T = 2320 K
T = 1934 K
T = 1450 K
T = 1160 K
T = 774 K
T = 580 K
T = 462 K

qIS
qIX

 0

 1

 2

 3

 4

χ/
χ A

t′ = 0.4 t

T = 2320 K
T = 1934 K
T = 1450 K
T = 1160 K
T = 774 K
T = 580 K
T = 462 K

 0

 1

 2

 3

 4

Γ X M S Γ Z

χ/
χ A

T=774 K

t′ = 0.10 t
t′ = 0.15 t
t′ = 0.20 t
t′ = 0.25 t
t′ = 0.30 t
t′ = 0.35 t
t′ = 0.40 t

FIG. 4. Static lattice magnetic susceptibility χ (q; 0) along high-
symmetry lines of the Brillouin zone, normalized to the atomic
susceptibility χA ∼ 1/4kBT . Special points: M = (π, π, 0), S =
(π/2, π/2, 0), X = (π, 0, 0), Z = (0, 0, π ). Top: t ′ ∼ 0.2t . Center:
t ′ ∼ 0.4t . Bottom: Results at fixed temperature, but for different
values of t ′/t .
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FIG. 5. Effective superexchange couplings for the susceptibil-
ities shown in the bottom panel of Fig. 4. Special points: M =
(π, π, 0), S = (π/2, π/2, 0), X = (π, 0, 0), Z = (0, 0, π ).
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In this equation the effective magnetic moment is defined
as μeff = √

S(S + 1)/3 and the value S ∼ 1/2 is obtained
independently via the equal-time correlation function (see
Appendix A). The effective superexchange (SE) couplings
can be obtained from the inverse of the susceptibility as fol-
lows:

Jr0 (q) = ([χ (q; 0)]−1 − [χ (0)]−1)(gμB)2 = JSE(q)/2r2
0 ,

(10)

where r0 is a renormalization parameter and where the Fourier
decomposition reads

JSE(q) ≈ 2J1(cos qx + cos qy) + 4J2 cos qx cos qy + · · · .

(11)

In the very small t/U limit, the superexchange parame-
ters take the second-order expression J1 ∼ J (2)

1 = 4t2/U and
J2 ∼ J (2)

2 = 4t ′2/U . Increasing the ratio t/U , higher-order
terms, e.g., those arising from the ring exchange coupling,
Jr , can contribute [82,83]. For clarity, let us discuss explic-
itly the numbers in some cases. For U = 7 eV we have
J (2)

1 ∼ 4t2/U ∼ 91 meV. In this situation the 4th order term
J1r = 24t4/U 3 ∼ 1.8 meV is negligible in comparison; J2r =
4t4/U 3 is also small with respect to J (2)

2 ∼ 4 meV (t ′ = 0.2t).
The 4th order terms start to become relevant for U ∼ Uc and
smaller, i.e., in the same regime in which charge fluctuations
and double occupancies start to increase in addition. For U ∼
Uc ∼ 4.5 eV, we have J (2)

1 ∼ 142 meV and J1r ∼ 6.7 meV,
while J (2)

2 ∼ 5.7 meV and J2r ∼ 1.1 meV. Experimental es-
timates of the J1 and J2 parameters have been obtained by
fitting inelastic neutron scattering results [5,11] and magnetic
susceptibility [105] or Raman scattering data [106–109]. The
second-order perturbation theory value J (2)

1 ∼ 91 meV (U =
7 eV) is slightly smaller than typical experimental estimates,
while J (2)

1 ∼ 142 (U = 4.5 eV) is slightly larger then the value
for La2CuO4 [5]. Finally, we find that the scaling factor has
values from r0 ∼ 0.9 to r0 ∼ 1.0 in the complete range of
parameters considered here.

Including the local DMFT vertex we obtain (see
Appendix A for a simple derivation) the static mean-field
expression [64,100]

χ (q; 0) ≈ (gμB)2μ2
eff

kBT + μ2
eff JSE(q)

. (12)

This approximate formula well describes our numerical data,
shown in Figs. 3 and 4. On lowering the temperature, we
find a divergency at the M point, the signature of an insta-
bility toward antiferromagnetism, as expected in this regime
[4,7,16]. This can be seen in both Figs. 3 and 4. The figures
show that we are well inside the Heisenberg-model limit of
the Hubbard Hamiltonian; in this situation increasing t ′/t
enhances frustration, hence reduces the dynamical mean-field
critical temperature TN . The effective degree of frustration
f = J2/J1 can be extracted from the susceptibility via the
expression [100]

f ≈ 1

2
× χ (0, π ; 0)−1 − χ (π/2, π/2; 0)−1

χ (π/2, π/2; 0)−1 − χ (π/2, 0; 0)−1
. (13)

For U = 7 eV we find that f ∼ 0.036 for t ′ = 0.2t and f ∼
0.157 for t ′ = 0.4t ; hence in all cases the system remains

in the weak frustration regime, with f close to the value
obtained in second-order perturbation theory, indicating that
charge fluctuations and higher-order processes such as the
ring-exchange are not yet playing a crucial role. In addition
we find that f is weakly temperature dependent. Remarkably,
we find that the qualitative behavior of the static susceptibility
and the effective frustration degree change little if we reduce
U from 7 eV to 4.7 eV, i.e., approaching the metal-insulator
transition.

Going back to Fig. 4, at the nodal point, S = (π/2, π/2),
located in the middle of the �M line, the susceptibility
is close to the atomic value, χ (S; 0) ∼ (gμB)2μ2

eff/T ∼ χA,
since the effective superexchange coupling JSE(q = S) is ba-
sically zero. Instead, at the antinodal points, X = (π, 0) and
Y = (0, π ), the susceptibility is close to but slightly differs
from χA, since the term proportional to J1 in the Fourier series
JSE(q) does not contribute; thus, the susceptibility depends in
first approximation only on t ′ (and not on t) at these q vectors.
Such a t ′ dependence is shown in detail in the bottom panel
of Fig. 4 for a representative temperature. In addition, since
at the X point the J2 term is not frustrated, the susceptibility
increases with lowering the temperature. As a consequence,
the ratio χ/χA exhibits temperature-independent isosbestic
points [110], e.g., one at qIS = S and one at a vector qIX

close to X along the �-X direction (and symmetry-equivalent
q vectors). This can be seen in the upper panels of Fig. 4. At
the isosbestic points the susceptibility is close to the atomic
limit χA. The exact position of qIX depends on t ′, so that the
distance between S and qIX increases with increasing t ′/t ; for
t ′ = 0, qIX = X . This may be seen comparing the top and
middle panels of the figure. Finally, at (π/2, qx ) and (qy, π/2)
the magnetic susceptibility is not influenced by t ′, since JSE(q)
in first approximation depends only on the term proportional
to J1 at such a q vector. This in turn gives rise to isosbestic
points as a function of t ′ at qx = π/2 and qy = π/2. In the
bottom panel of Fig. 4 they are hard to see, but they can be
seen clearly in Fig. 5, which shows the associated effective
superexchange coupling, extracted via Eq. (12).

B. Dynamical susceptibility for x = 0

Let us now switch to the antiferromagnetic phase [97],
i.e., T < TN . Below the transition the static susceptibility
splits into transverse and longitudinal components, as shown
in Fig. 3. While the static transverse susceptibility is tem-
perature independent, the longitudinal goes to zero in the
T → 0 limit. In Fig. 6 we show the spin-wave dispersion,
obtained from the static susceptibility, well below the mag-
netic transition temperature, i.e., in the regime in which the
order parameter is close to the saturation value m ∼ 1/2. The
figure shows that dynamical mean-field theory calculations
basically yield the Holstein-Primakoff spin-wave dispersion
for the J2-J1 Heisenberg model in the small-frustration
limit. This can be understood as follows. In the insulating
antiferromagnetic phase the DMFT local self-energy is in first
approximation close to the Hartree-Fock shift; i.e., it takes the
form �σ (ωn) ≈ −μ + piUm, where m is the magnetization;
the shift changes sign (pi = ±) for neighboring sites i. In this
approximation, at sufficiently low temperature and at linear
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FIG. 6. Spin-wave spectra (in eV) for fixed t and for represen-
tative values of t ′. The spectra are obtained from the transverse
dynamical susceptibility calculated with the dynamical mean-field
theory approach (intensity maps) and standard Holstein-Primakoff
spin-wave theory calculated using the superexchange parameters
from second-order perturbation theory (white lines). The high-
symmetry points are � = (0, 0), X = (π, 0), and M = (π, π ).

order in J1, one can show (see Appendix B) that[
1

χ0(q; iωm)
− 1

χ0(iωm)

]ii′

σ−σ−σσ

≈ 2J1 fq(1 − δii′ ), (14)

where fq = (cos qx + cos qy)/2. Solving the associated
Bethe-Salpeter equation we have

χ⊥(q; iωm) ∼ (gμB)2 J1(1 − fq)

ω2
m + 4J2

1

(
1 − f 2

q

) , (15)

which yields the conventional spin-wave dispersion. The
magnon bandwidth for U ∼ 4.7 eV and t ′ = 0.2t is in reason-
ably good agreement with the experimental results of Ref. [5]
for La2CuO4. The smaller experimental magnon bandwidth
[12] reported in YBa2Cu3O6.15 is in line with the calculation
for larger t ′, taking into account that the interlayer coupling is
neglected here.

Summarizing, at half filling, in all ranges of parameters
considered, the DMFT static susceptibility is close to the one
that can be obtained from the associated Heisenberg model
in the small-t/U limit. In addition, the DMFT spin-wave
spectrum is very close to the corresponding expression for

conventional spin-wave theory in the weak-frustration regime.
Remarkably, this remains true also for U values very close
to the metal-insulator transition, as can be seen in Fig. 6,
although deviations start to appear. Neutron scattering data at
half filling are sufficiently well described for U ∼ 4 to 5 eV;
increasing U up to 7 eV does not alter the qualitative behavior,
but merely reduces the spin-wave dispersion in an almost
uniform way, only slightly modifying the effective frustration
parameter f . In addition, the effect of high-order couplings
and charge fluctuations remains small even for U ∼ 4.7 eV.
The main effect of reducing U is that the spin-wave band-
width is larger due to the smaller excitation energy for charge
fluctuations. The spin-wave energy at X is as high as at S =
(π/2, π/2), as Fig. 6 shows, indicating that high-order terms
such as the ring-exchange correction are not sufficiently large
for explaining experimental findings alone; a ferromagnetic
term, e.g., from Coulomb exchange, would still be required
for a realistic description. Instead, a larger t ′ is compatible
with a smaller spin-wave dispersion going from La2CuO4 to
YBa2Cu3O6.15. So far, although not all details are captured,
the trends are correctly described.

C. Uniform and local susceptibility for x > 0

Let us now analyze the results in the doped Mott insulat-
ing phase. For x ∼ 0, when the metallic contribution is still
negligible (two-pole approximation for the self-energy), the
DMFT static lattice magnetic susceptibility is approximately
(Appendix A) given by the Curie-Weiss-like form

χ (q; 0) ≈ (gμBμeff )2(1 − x)

T + μ2
eff (1 − x)JSE(q)

. (16)

In this regime the dominant spin-spin correlations remain
antiferromagnetic, albeit with square local moments reduced
to ∼μ2

eff (1 − x); this is due to the fact that double occupancies
remain much smaller than in the uncorrelated limit, 〈ni↑ni↓〉 =
0.25(1 − x)2, which would yield 〈Si

zS
i
z〉 ∼ μ2

eff (1 − x2)/2
instead.

For small but finite x, the behavior of the uniform suscepti-
bility deviates very quickly from Eq. (16), however. Still, the
temperature dependence remains similar, χ (q; 0) ∝ 1/[T +
Jeff (q)]α , with α ∼ 1 for x not too large. We find that, while
the effective local magnetic moment decreases linearly even
for x as large as 0.4, the bubble term χ0(0; 0) increases with
x due to the growing relevance of the metallic contribution.
The result of the competition between opposite effects is the
nonmonotonic behavior of χ (0; 0) shown in Fig. 7. The left
panels of the figure show that at a given (sufficiently low)
temperature, χ (0; 0) first increases, a maximum is reached
at xc ∼ 0.25 for t ′ ∼ 0.2t , and then χ (0; 0) decreases. In the
right panel of Fig. 7, we show how xc increases with t ′/t ,
going from xc = 0.15 for t ′ = 0.1t to xc = 0.4 for t ′ = 0.35t ;
for larger t ′ = 0.4t the magnetic susceptibility diverges at
x = 0.30.

For La2−xSrxCuO4, characterized by t ′ ∼ 0.2t , this be-
havior is in very good agreement with reported magnetic
susceptibility [47,48] measurements—including the value
of the turning point xc. NMR Knight shift measurements
[27–29,34] also show an increase with increasing x; unfor-
tunately, the x > xc regime was not systematically explored,
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FIG. 7. Left: Static uniform magnetic susceptibility χ (0; 0) for
t ′ = 0.2t and several values of x, as a function of the temperature,
for temperatures above the pseudogap regime. The susceptibility
increases with x up to xc ∼ 0.25 (first panel); for x > xc, χ (0; 0) it
decreases (second panel). Right: χ (0; 0) as a function of x for several
values of t ′, at fixed temperature, T ∼ 387 K. The maximum is at xc

(diamonds), whose value increases with t ′.

however. For YBa2Cu3O6+y an increase of Knight shifts
with hole doping up to y ∼ 1 (slightly overdoped regime)
has also been reported [35–39]. Similar trends appear in
HgBa2CuO4−δ [111]. In Tl2Ba2CuO6+y [34,40,41], which is
considered to be heavily overdoped, the opposite behavior is
observed, as one would indeed expect in the present descrip-
tion decreasing x while starting from x > xc. While further
systematic experiments would help in clarifying this point, the
description based on the t-t ′ Hubbard model appears therefore
to capture the trends in the observations so far.

One important conclusion is that the nonmonotonic x de-
pendence is specific of the � point and the q vectors around it.
The local susceptibility, the average over the q vectors, merely
decreases with x going from x = 0 to x = 0.4. This is shown
in Fig. 8. The figure compares, in addition, single-site calcu-
lations (χ1SC) with 2- and 4-site cluster results (χ2SC, χ4SC)
and shows that differences are minor. At a fixed temperature,
for a given t ′, we find χ1SC > χ2SC > χ4SC if x is sufficiently
small, while the opposite is true (χ1SC < χ2SC < χ4SC) for
large x. The same reversal is found for x fixed and t ′ in-
creasing. The effect remains however very small, as the figure
shows; picture and trend remain unchanged. The static local
susceptibility, in the temperature regime analyzed, scales to a
very good approximation as

χ (0) ∼ (gμB)2μ2
eff (1 − x)

T + T0(x)
, (17)

where T0(x) increases with increasing x and decreases with
increasing t ′. More specifically, T0(x) ∼ 16 K for x = 0 and
t ′ = 0.2t ; keeping t ′/t fixed and increasing x, T0(x) ∼ 200 K
for x = 0.1 and T0(x) ∼ 920 K for x = 0.4. For t ′ = 0.4t
the corresponding values are T0(x) ∼ 6 K for x = 0, T0(x) ∼
190 K for x = 0.1, and T0(x) ∼ 630 K for x = 0.4. We em-
phasize once more that the scaling with x is very different
for local and uniform susceptibility. Extracting the analogue
of T0(x) at q = 0 with a similar procedure would yield a
characteristic scale first decreasing (x < xc) and then (x > xc)
increasing with x. For x < 0.2 such a scaling has been indeed
identified early on from analysis of uniform susceptibility
measurements [49].
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FIG. 8. Static local magnetic susceptibility for t ′ = 0.2t (top)
and t ′ = 0.4t (bottom) as a function of temperature and for several x
values from single-site DMFT, two- and four-site CDMFT calcula-
tions (labeled as 1SC, 2SC, and 4SC in the caption).

D. Static x > 0 susceptibility: q dependence

Let us now analyze in detail the entire q dependence.
Figure 9 collects the most important results. The top panels
show the case t ′ = 0.2t . In the figure the value of x increases
from x = 0.1 to x = 0.4 going from left to right. The first two
panels on the left show underdoped and slightly underdoped
regimes, x ∼ 0.10 and x ∼ 0.15. For x = 0.10 the expected
dominant instability is antiferromagnetic, as in the half-filling
or x = 0 limit, and the susceptibility is still not far from
the Curie-Weiss-like form, although with reduced local mo-
ments. Around x = 0.15 the picture changes, however. For
T < 460 K peaks at incommensurate vectors appear. This can
be seen in Fig. 9, second top panels from the left. There are
two types of potential instabilities, the one at qXM , a vector
close to M along the XM direction, and the one at q�M , a vector
close to M along the �M high-symmetry line. The associ-
ated critical temperatures TC (q�M ) and TC (qXM ), obtained via
linear extrapolation from the inverse susceptibility, are both
of the order of ∼TN/10, where TN = TC (M ) for x = 0. It is
important to point out that the mean-field critical temperatures
just discussed are excellent estimates of the actual strength of
the effective magnetic coupling Jeff (q), as Eq. (16), Fig. 5, and
the surrounding discussion illustrate.

The trends thus suggest that in the ground state static
incommensurate structures could be realized in this regime.
Further increasing x progressively suppresses the magnetic
response around the M point, giving rise to a depression in
M. This can be seen moving from left to right in Fig. 9, top
panels. It can be noticed that the reduction of the magnetic
response is not uniform in q and x. At the � point, as we
have already discussed, for t ′ = 0.2t the susceptibility at first
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FIG. 9. Static lattice magnetic susceptibility for t ′ = 0.2t (top panels) and t ′ = 0.4t (bottom panels) for representative temperatures and
along high-symmetry lines. From left to right x increases from 0.1 to 0.4. The three-dimensional plots and the contour plots on top of each
figure show χ (q; 0) for T ∼ 290 K. For t ′ = 0.4t and x = 0.3 or x = 0.4 the temperature chosen is right above the ferromagnetic transition.
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increases and then drops again (Fig. 7). For what concerns the
incommensurate features, the extrapolated critical tempera-
tures TC (q�M ) and TC (qXM ) strongly decrease; at x = 0.2 their
value is already very small, making it less likely that static
incommensurate spin structures can be realized for x � 0.2.

Two observations are in place. First, even in the U = 0
limit the susceptibility develops peaks at incommensurate
vectors around M, as was often pointed out; for complete-
ness, this is shown in Appendix A. Such peaks qualitatively
evolve with x in a way similar to that in the finite-U case,
although they do differ in many aspects, as may be seen
comparing Fig. 9 to Fig. 18 in Appendix A. Second, the phe-
nomenological nearly antiferromagnetic Fermi-liquid theory
susceptibility [52], with a maximum at the antiferromagnetic
vector (π, π ), approximates the results in Fig. 9 only up to
max x ∼ 0.1. Approaching optimal doping (x ∼ 0.15) and
going well beyond, the q dependence qualitatively changes.
Still, the change is only abrupt entering the overdoped regime
(x ∼ 0.2 and larger in the figure).

Let us now analyze the effect of increasing t ′ from t ′ = 0.2t
to t ′ = 0.4t . The main results as a function of x are shown in
Fig. 9, bottom panels, and show that changes are large. For

x ∼ 0.10 the static lattice susceptibility has a maximum at
the M point, as for t ′ = 0.2t . The response at M is weaker,
however, in line with the fact that we are still in the Curie-
Weiss-like limit and frustration is increasing. For x ∼ 0.15
again we find a change in behavior. At low temperature even-
tually incommensurate peaks develop around M; this time,
however, the area around M is strongly asymmetric for x =
0.15, as can be seen in the two-dimensional contours in the
inset. Furthermore, the q�M feature clearly dominates in the-
low temperature regime, but the associated mean-field critical
temperature, again obtained as linear extrapolation, is as low
as ∼TN/30; again, TN = TC (M ) for x = 0. Increasing x, the
asymmetry around the M point increases, qXM moves toward
X and q�M toward �, while at the same time the peak at q�M

grows taller; this eventually leads to dominant ferromagnetic
instabilities for sufficiently large x. The increase in relevance
of ferromagnetic correlations with x is also present for U = 0
(Appendix A), but the effect is less strong.

The trends obtained so far are qualitatively in line with
the picture emerging from experimental facts. Summariz-
ing, antiferromagnetic fluctuations at (π, π ) dominate up to
x ∼ 0.1. They are then suppressed increasing x, eventually
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FIG. 10. Left: Normalized magnetization (symbols), defined as
2m/n = (n↑ − n↓)/(n↑ + n↓), and inverse static uniform susceptibil-
ity (symbols and lines) for t ′ = 0.4t for x ∼ 0.30 (circles) and x ∼
0.40 (squares). The fully polarized state with m = 0.35 is reached
in the T → 0 limit. The static susceptibility diverges T ∼ 430 K for
x ∼ 0.30 and T ∼ 610 K for x ∼ 0.40. Right: Spin-resolved spectral
function for x = 0.3 at 230 K. Black line: Noninteracting density of
states. Full lighter line: Majority spin. Dashed line: Minority spin.

becoming unimportant in the overdoped regime. For x ∼ 0.15
incommensurate features the become dominant, to be quickly
washed out further increasing x or suppressed by increasing t ′.
The static mean-field critical temperature for incommensurate
instability at q�M is about TN/10 for t ′ = 0.2t and TN/30 for
t ′ = 0.4t . Incommensurate stripes and spin waves are best
known in the underdoped regime for the La2−xBxCuO4 family,
but have also been found in other cuprate families.

For t ′ ∼ 0.4t and x � 0.30 we find a ferromagnetic phase
(Fig. 10). A ferromagnetic phase was predicted by Kopp et al.
[69] in overdoped cuprates via quantum critical scaling theory.
Experimentally, in La2−xSrxCuO4 a potential low-temperature
ferromagnetic phase [18] (T < 2 K) was reported at x = 0.33.
Ferromagnetic fluctuations in the overdoped regime were re-
cently found in (Bi,Pi)2Sr2CuO6+δ [79]. For the t-t ′ Hubbard
model, U → ∞ Nagaoka ferromagnetism was obtained in
Ref. [77] for t ′/t = 0.1, and it was shown to be suppressed
for negative t ′/t = −0.1. In this picture, the majority spin
shows small mass renormalization, while the minority spin is
highly correlated. Our results are Nagaoka-like, as the spec-
tral functions in Fig. 10 show. Furthermore we find that the
ferromagnetic state is favored by large x and t ′/t , everything
else staying the same. If t ′/t is too small, the extrapolated
Curie temperature becomes negative; i.e., even in mean-field
theory no actual transition is expected. Ferromagnetism for
finite U was also obtained very recently in Ref. [80] via a dy-
namical cluster approximation study; its origin was explained
by mapping, via bonding and antibonding orbitals for 4-site
plaquettes, the one-band Hubbard model into an equivalent
two-orbital Hubbard model [81] with effective Coulomb pa-
rameters Ũ = Ũ ′ = J̃ = U/2.

Figure 8 shows that for the static local susceptibility there
are no qualitative changes in cDMFT calculations up to four-
site clusters. Analyzing cluster effects in detail as a function of
q we find that nonlocal effects are more sizable approaching
a phase transition and around the associated critical q vector,
reducing the transition temperatures [97]. Thus for t ′ = 0.2t
nonlocal correlations appear most important for x � 0.1 and
close to the M point, where they decrease the value of the
susceptibility; for t ′ = 0.4t they are instead stronger for large
x around the � point. At incommensurate vectors the effects
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FIG. 11. Static lattice magnetic susceptibility for several t ′/t .
Calculations are performed for U = 7 eV and T ∼ 230 K. Top:
x ∼ 0.15. Bottom: x ∼ 0.20.

appear instead weaker. Overall, they do not affect in a quali-
tative way the trends so far.

E. Dependence of the static x > 0 susceptibility
at finite q on t ′/t and U

In Fig. 11 we analyze the effects of systematically increas-
ing t ′ for representative x values, below and above optimal
doping. A similar behavior is found for all x values. The
figure shows that the isosbestic point at qIS , which we already
discussed for x = 0, moves toward M with increasing x. The
two isosbestic points which, for x = 0, were on the left and
right of X (see Fig. 5) now collapse toward X , where a valley is
formed (see label qIX in the figure). The susceptibility changes
strongly with increasing t ′, but in an opposite way for q vec-
tors between qIX and qIS (it decreases) and for vectors outside
this region (it increases). This is because of the sum rule [110]
yielding the local susceptibility χ (0). In addition, while the
incommensurate feature at qXM only slightly moves to the left
when t ′ increases, progressively losing in strength, the one at
q�M moves rapidly away from M. Eventually it crosses qIS
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and approaches �, this time gaining height, and dominating
for large x values. This trend is perhaps more clear if we
observe the evolution of the two-dimensional maps on the top
of the panels. With increasing t ′/t the four incommensurate
maxima in χ (q; 0) around M turn into a ring; eventually the
ring changes into incommensurate maxima around the corners
of the Brillouin zone. The switch occurs for larger x if t ′ is
smaller, or, seen the other way around, for smaller t ′ if x is
larger.

Last, we analyze the effects of varying the value of the
screened Coulomb parameter U from 3 to 11 eV. The main
conclusions are collected in Fig. 12 and in Fig. 13. In Fig. 12
we display results for x ∼ 0.25, at which value two types of
incommensurate features are present, and a possible instabil-
ity toward ferromagnetism appears. Around M the response
is slightly suppressed with increasing U , as one would ex-
pect when superexchange interactions between local moments
dominate, but otherwise the behavior does not change quali-
tatively. Indeed, the larger differences are observed for U =
3 eV, which yields a metallic solution at half filling. Further
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FIG. 13. DMFT static lattice magnetic susceptibility χ (q; 0) at
T ∼ 387 K for several x and two representative U values. Top: t ′ =
0.2t . Bottom: t ′ = 0.4t .

reducing U to U = 1 eV yields a result which is closer to an
enhanced noninteracting response, shown in Appendix A. The
exact position of qXM is also moving with U , but the shift is
small. The most remarkable effect of increasing U is that the
response between qIS and � increases very fast—much faster
than expected from the reduction of the antiferromagnetic
superexchange coupling, which can instead be seen for x = 0,
Fig. 4. Furthermore q�M rotates by 45 degrees and progres-
sively moves toward �. This can be seen most clearly from
the two-dimensional contour plots in the upper panels of the
figure. Within the present description, the fact that ferromag-
netism was found in La2−xSrxCuO4 for x ∼ 0.33, although at
very low temperatures [18], would suggest that the effective
U cannot be too small. Increasing the value of t ′ to t ′ = 0.4t
the dominant features are always along �M and quickly move
to � with increasing U , favoring a ferromagnetic instability at
sufficiently low temperature.

Another important point is that even as a function of U
we observe isosbestic points along the X -M-� direction. This
may be seen clearly in the top panel of Fig. 12. They reflect the
fact that the local susceptibility depends weakly on U till local
moments persist—and this still happens well below Uc; small
deviations start to appear at U ∼ 3 eV. The figure shows that,
as a consequence, the effect of U changes across the isosbestic
points. The qXM peak is more prominent the smaller U is,
while the opposite happens around �. The figure thus confirms
that the actual nature of the magnetic response is strongly q
dependent. While around M it is dominated by antiferromag-
netic superexchange between local moments even for large
x and relatively small U , around � it is metallic-like. The
evolution with x is emphasized in Fig. 13, where we compare
results for U = 7 eV and U ∼ Uc. Here one may notice in
addition that, as a function of x, the isosbestic points are only
approximate and tend to disappear for large x.

F. NMR relaxation rate 1/T1

Next we calculate the NMR/NQR spin-lattice relaxation
rate. It is defined via the relation [112]

1

T1T
= γ 2

2

1

Nq

∑
q

F⊥(q)F⊥(−q) lim
ω→0

(
χ ′′

⊥(q; ω)

ω

)
, (18)
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FIG. 14. Local (η = 0) contribution to the relaxation rate,
calculated via DMFT (filled circles), 2S-cDMFT (rhombs), and 4S-
cDMFT (triangles) for t ′ = 0.2t (top), t ′ = 0.4t (bottom), and several
values of x.

where γ is the nuclear gyromagnetic ratio and Fα (q) the form
factor for a magnetic field in direction α. At a 63Cu site
the form factor is given by Fα (q) = Aα + 4B fq; here fq =
(cos qx + cos qy)/2, B is the (transferred) contact hyperfine
field, and Aα the sum of the direct hyperfine interaction terms
[51].

Experimentally, the relaxation rate anisotropy R =
T1c/T1ab was recently [44] found to be temperature indepen-
dent, ranging from 1 to 3.4. This suggests that the temperature
dependence of the relaxation rate should be captured already
well by the local contribution. In DMFT and cDMFT calcula-
tions, this term can be obtained directly via the self-consistent
quantum impurity problem, i.e., without solving the Bethe-
Salpeter equation in addition. The result is displayed in Fig. 14
for two representative t ′ values and several x values. The
figure shows that the local relaxation rate first increases with
the temperature, reaches a maximum, and slowly decreases;
for x = 0.4 for t ′ = 0.2t the curve looks basically flat at
high temperature; for t ′ = 0 qualitatively similar results were
obtained in Ref. [113]. The maximum of the relaxation rate
corresponds to T ∼ T0(x) and it is thus more pronounced
for small x and larger t ′ (lower panel, x = 0.4), i.e., when
T0(x) is smaller, as we have previously discussed. The fig-
ure also shows, however, that for small x, the value of the

maximum and the temperature at which it is reached are not
well captured by single-site DMFT. The maximum decreases
with increasing cluster size; this happens because for small
x the integrand is large at the M point, i.e., where nonlocal
correlations are most important.

Figure 14 reasonably well reproduces some of the trends
seen in experiments; for example it captures the decrease in
relaxation rate in the normal state with increasing x observed
in La2−xSrxCuO4 and YBa2Cu3O6+y [27,28,33,34,36]. There
are remarkable differences, however. In La2−xSrxCuO4, NQR
experiments found a basically x-independent plateau at about
700 K [42]. In YBa2Cu4O8 a flattening of the relaxation
rate occurs at about 400 K [45]. In Fig. 14, while all curves
become close at very high temperatures, no such collapse to
one universal value around 700 K for t ′ = 0.2t is observed,
or at lower temperature for larger t ′/t , and a real flattening is
only seen for x = 0.4 and t ′ = 0.2. This can be understood
as follows. Our results show that the local relaxation rate and
susceptibility satisfy approximately a local Korringa law

K = T (0)
1 T [χ (0)]2 ≈ (0.43)2, (19)

where

1

T (0)
1 T

= lim
ω→0

(
χ ′′

⊥(ω)

ω

)
. (20)

Indeed, from Eq. (17), one may see that

(1 − x)

χ (0)T0(x)
≈ 1 + T/T0(x)

(gμBμeff )2
. (21)

This linear behavior is shown in the bottom panel of Fig. 15.
We find that the relaxation rate, instead, scales approximately
as follows:

(1 − x)
√

T (0)
1 T

T0(x)
≈

√
K

1 + T/T0(x)

(gμBμeff )2
. (22)

This is shown in the top panel of Fig. 15. Hence, the ratio of
Eq. (22) and Eq. (21) yields, squared, the local Korringa ratio.
For T � T0(x) the tails of 1/T1 depend on x via the effective
moment, which decreases with x increasing. The flattening in
Fig. 14 for t ′ = 0.4t and x = 0.2 is thus an effect of T0(x) be-
ing large. Nonlocal effects, on the other hand, increase T0(x),
as may be seen in Fig. 14. This makes the curves look more
flat for a given x; it does not, however, cancel out the x depen-
dence of the tails. Furthermore, experimentally [34,36,44], the
63Cu relaxation rates are visibly larger in La2−xSrxCuO4 than
in Tl2Ba2CuO6 or YBa2Cu3O6+y. A trend in this direction
does not emerge in Fig. 14 simply increasing t ′/t for a given
x, however. In the picture so far, it can only be ascribed to
the differences in hole doping, with Tl2Ba2CuO6 being in the
overdoped regime.

In Fig. 16 we summarize the effects of the form factor
F⊥(q). To this end we first split the 63Cu relaxation rate into
three components, which we label as 1/T (η)

1 , with η = 0, 1, 2.
They are obtained as

1

T η

1 T
= 1

Nq

∑
q

wη(q) lim
ω→0

(
χ ′′

⊥(q; ω)

ω

)
, (23)

with wη(q) = (−2 fq)η. The η = 0 component gives the local
contribution to the relaxation rate shown in Fig. 14. The left
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FIG. 15. Top: Normalized inverse square root of the spin-lattice
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panels of Fig. 16 show that the η = 0 and η = 2 components
of the relaxation rate yield a similar contribution, since the re-
sponse function is weak at the X point; the η = 1 term remains
small in comparison, and tends to become negative increasing
U and t ′, decreasing the anisotropy and 1/T ab

1 . Including
the η = 1, 2 terms has stronger effects, however, through the
hyperfine fields. While Ac and Aab are typically considered
weakly material dependent, the transferred field B (extracted
by fitting the experimental Knight shifts) was found to be
strongly affected by the environment and doping [31,34,56].
Theoretically, this is supported by electronic-structure
calculations showing that also B depends on the energy ε̃s of
the axial orbital [53]; for single-layered materials, in first ap-
proximation, B thus increases for the same reasons for which
t ′ increases [62]. In phenomenological theories, to explain
the fact that in YBa2Cu3O7 and La2−xSrxCuO4 the Kc

63Cu
Knight shift is temperature independent below Tc, an acciden-
tal cancellation 4B + Ac ∼ 0 is typically assumed. Based on
these premises, values of B two or even three times larger
were estimated for Tl2Ba2CuO6+y [31,34], with the maximum
value for the sample with no superconducting phase. Figure 16
shows (top right panel) that for fixed B, the in-plane relax-
ation rate is larger for smaller t ′/t , while the opposite can
happen if the field is along c (bottom right panel). Increas-
ing B of a factor two, everything else staying the same, can
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FIG. 16. Left: Contributions 1/T (η)
1 to the relaxation rate for

x = 0.15 (close to optimal doping), t ′ = 0.2t and t ′ = 0.4t at 580 K,
in the temperature regime T ∼ aT0(x), with a ∈ (1, 2). Right: 1/T c

1

and 1/T a
1 as a function of y = 2B/|Ac|. They are defined in units

of Ac as 1/T c
1 = r2

A/T (0)
1 + y2/T (2)

1 − 2rAy/T (1)
1 and 1/T ab

1 = 1
2 (1 +

r2
A)/T (0)

1 + y2/T (2)
1 + y(1 − rA)/T (1)

1 , where rA = Aab/|Ac| and Ac ∼
−5Aab. The vertical line corresponds to 4B = −Ac.

increase sizably the relaxation rate; this is because the only
term that can reduce it, the linear η = 1 contribution, is small
in comparison to the quadratic η = 2 term. Furthermore, for
sufficiently large B and U one could, in principle, even reverse
the sign of the anisotropy. On the other hand, we find that
increasing x, everything else staying the same, reduces 1/T (0)

1

and 1/T (2)
1 , reducing the average relaxation rate, and makes

1/T (1)
1 more negative, reducing the anisotropy. In conclusion,

in the picture emerging from these results, if we assume that
the experimental B values are approximately correct, a smaller
relaxation rate in Tl2Ba2CuO6+y should be mostly ascribed to
the fact that this system is well inside the overdoped regime.

More complicated is to conciliate the theoretical results
with the x-independent plateau at 700 K in La2−xSrxCuO4.
In this system, B is often considered almost doping inde-
pendent, in order to explain the fact that the perpendicular
Knight shift does not drop below Tc, and does not change
much in absolute value. A certain amount of x dependence
is still compatible with NMR experiments, however [56]. An
increase of B could in principle compensate the decrease
associated with the reduction in effective local moment. It
has to be noticed, however, that a universal plateau would
require a (second) accidental cancellation and a sufficiently
large T0(x), a delicate equilibrium of factors. If this is the case,
it should be possible to observe that the universality is broken
by measuring spin-lattice relaxation rates with magnetic field
in different directions.

G. Bosonic spin excitations

Bosonic spin excitations in cuprates have been intensively
studied, and have evidenced features common to several
cuprates [2,3]. Among those are resonance peaks [7,14,15]
around M in the range 50–70 meV as well as incommensu-
rate low-energy excitations [6,8,10]. With time, evidence of a
seemingly “universal” X-shaped behavior of spin excitations
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in underdoped cuprates accumulated, with perhaps the excep-
tion of HgBa2CuO4+δ [46].

Theoretically, the x dependence of spin excitations
has been studied with various techniques and models
[22,65,114,115]. Recently, it has been shown via the dual bo-
son approach [68] that in the underdoped region the dominant
spin excitations remain close to the M point. Our results are in
line with this conclusion, as one can see in Fig. 17, left panels.
For small x the low-energy spectra have a form similar to the
one we obtained for x = 0 (see Fig. 6) with a maximum at
M which persists till optimal doping. As in the x = 0 case,
we find that the spectra are very similar decreasing U to Uc,
leaving a slightly larger dispersion aside. Figure 17 also shows
that, at sufficiently low frequency, the calculated modes reflect
the behavior of the static susceptibility and the q-resolved re-
laxation rate. Finally, the spectrum is qualitatively very similar
for t ′ = 0.2t and t ′ = 0.4t , although the intensity at the M
point decreases in absolute value increasing t ′. The energy of
the maximum at M is compatible with the resonance modes.

Increasing x beyond the underdoped regime the situation
changes. Although a shadow of the original mode stays, al-
ready at optimal doping the maximum weight starts to move
away from the M point. One can then identify incommensurate
features at qXM and q�M , as for the static susceptibility. For
x = 0.25 the weight is already mostly at �. Qualitatively
the trend remains the same for t ′ = 0.2t and t ′ = 0.4t , but
when t ′ is larger, the figure shows that the intensity moves
faster toward the � point. This indicates that the bosonic spin
excitations, within the present modeling, are not, at the core,
really universal, although the shade of the small x spectra does
persist even for large x; below x = 0.15 the spectra look very
similar, however.

IV. CONCLUSIONS

We have studied the static and dynamical magnetic
properties of the t-t ′ Hubbard model in a parameter regime rel-
evant for high-temperature superconducting cuprates. When
possible, we complement numerical results with approxi-
mate analytic expressions. Our calculations confirm previous

conclusions [61,65–68,70–77] showing that the electronic
properties are very sensitive to the value of t ′/t . In addition,
we find a sharp change in behavior entering the overdoped
regime.

At half filling (x = 0), the calculated spin-wave spectra are
close to those obtained from standard spin-wave theory, both
in the paramagnetic and magnetic phase. This remains true
even for U approaching the insulator-to-metal transition; in
this regime, the spin-wave spectrum is enhanced, however,
due to the smaller charge fluctuation energy. The trends with
t ′/t are approximately in line with experimental observations
so far.

For x �= 0, the nonmonotonic evolution of the uniform
susceptibility, reported for thermodynamics experiments in
La2−xSrxCuO4, is fully captured by the model. The turning
point tends to move to larger x by increasing t ′. The case of
overdoped Tl2Ba2CuO6+y appears a further confirmation of
the trend. Also captured is the tendency toward the forma-
tion of incommensurate structures for small x and in systems
characterized by a relatively small t ′. For very large x and t ′
ferromagnetic instabilities are favored instead.

The results obtained show that the nature of the magnetic
response is strongly q dependent. Isosbestic points mark re-
gions of the Brillouin zone exhibiting different scaling with
the parameters U , t ′/t , T . Thus, scaling laws obtained, e.g.,
from the uniform susceptibility and Knight shifts, should not
be automatically extended to experiments probing other parts
of the Brillouin zone, or to local responses. Ferromagnetic
instabilities are suppressed for sufficiently small U .

The material dependence of the experimental relaxation
rates appears more problematic to describe. While qualita-
tively the temperature and x dependence are in line with
experiments, some remarkable observations are not quantita-
tively reproduced. In particular, the universal (x-independent)
high-temperature plateau in La2−xSrxCuO4 would require ac-
cidental cancellations. Instead, the fact that the relaxation rate
is smaller in Tl2Ba2CuO6+y than La2−xSrxCuO4 could be
ascribed to overdoping. The difficulties in describing trends
in spin-lattice relaxation rates can be due to the intrinsic com-
plexity of NMR/NQR experiments, e.g., the fact that some of
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the current assumptions on hyperfine fields are incorrect, or
that further channels have to be explicitly taken into account
[43,44].

Finally, bosonic excitations appear robust under changes in
t ′ up to close to optimal doping. For larger x the intensity shifts
toward � going through incommensurate features, although
the shadow of the antiferromagnetic mode remains for much
larger x. These results complement those obtained recently
with different techniques; e.g., for t ′ = 0.3t an intensity trans-
fer toward � was found in Ref. [22] using the determinant
quantum Monte Carlo approach; for small x and t ′ a stable
structure of paramagnons at M was obtained in Ref. [68] via
the dual-boson method.

In conclusion, together with the successes, we discussed
some limitations of the single-band picture, which indicate
that experimental observations, in particular the description
of NMR/NQR relaxation rates, require a more realistic mod-
eling [62,63] to fully account for the differences between
families of superconducting cuprates.
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APPENDIX A: LATTICE MAGNETIC SUSCEPTIBILITY
CLOSE TO HALF FILLING, T > TN

In the small-t/U and small-x limit, neglecting the metallic
contribution (two-pole approximation), an approximate form
of the local self-energy is [117,118]

�σ (iνn) ∼ Un−σ + n−σ (1 − n−σ )U 2r2
0

iνn + μ − Bσ − U (1 − n−σ )
, (A1)

where nσ = n/2 = (1 − x)/2 is the number of parti-
cles with spin σ , μ the chemical potential, and Bσ =∑

i j ti j〈c†
iσ c jσ (2ni,−σ − 1)〉 is a shift which increases with x;

in the paramagnetic phase all quantities are spin independent.
The factor r0 is obtained fitting the numerical self-energy; for
r0 = 1 and n = 1, Eq. (A1) equals the atomic self-energy at
half filling. Within this approximation, setting μ′ = μ − B −
nU/2 and n = 1 − x, the Green’s function takes the two-pole
form

Gσ (k; iνn) =
E+

k −Ux+μ′

iνn−E+
k

− E−
k −Ux+μ′

iνn−E−
k

E+
k − E−

k

, (A2)

where

E±
k = Ux − μ′ + 1

2
(εk − xU − B ± �Ek ), (A3)

�Ek =
√

(εk − xU − B)2 + (1 − x2)U 2r2
0 , (A4)

and εk is the band dispersion. After performing the Matsubara
sum, in the limit of large βU we obtain

χ0(q; 0) ≈ (gμBμeff )2

r0U

{
c1(x) − c2(x)

2U

[
Jr0 (0) + 1

2
Jr0 (q)

]}
,

where μeff ∼ √
S(S + 1)/3 and

c1(x) = 1 − x2

d3/2
, (A5)

c2(x) = 1 − x2

d5/2

(
1 − 5b2

d

)
, (A6)

with d = 1 − x2 + b2 and b = x/r0 + B/Ur0. The effective
exchange coupling is defined as Jr0 (q) = JSE(q)/2r2

0 . In the
small-x limit the coefficients become c1(x) = 1 + o1(x2) and
c2(x) = 1 + o2(x2). At first order in x, the associated local
susceptibility is thus given by

χ0(0) ≈ (gμBμeff )2

r0U

[
1 − 1

2U
Jr0 (0)

]
. (A7)

Next we approximate the total local susceptibility with the
atomic susceptibility in the large βU � 1 limit, assuming
negligible double occupations. Thus

χ (0) ∼ (gμBμeff )2

kBT
(1 − x). (A8)

Consequently, the vertex function is given by

�(0) = [χ0(0)]−1 − [χ (0)]−1

≈ 1

(gμBμeff )2

{
r0U

(
1 + Jr0 (0)

2U

)
− kBT

1 − x

}
. (A9)

The lattice magnetic susceptibility takes then the form

χ (q; 0) ≈ (gμB)2μ2
eff (1 − x)

kBT + μ2
eff (1 − x)r0Jr0 (q)

. (A10)

This formula is a generalization of the one derived in
Ref. [100] for the case of half filling. For comparison,
the noninteracting susceptibility is shown in Fig. 18 for
increasing x.

APPENDIX B: STATIC AND DYNAMICAL LATTICE
SUSCEPTIBILITY AT HALF FILLING FOR T � TN

In the magnetic phase the local self-energy matrix can
be approximated by its Hartree-Fock contribution. Thus
�i

σ (iνn) ≈ −μ + siσmU , where m ∼ 1/2 is the magnetiza-
tion, i is the site, and si = ±1, alternating for neighboring Cu
sites; the number of sites in the unit cell is ni = 2. As a conse-
quence, for a given spin quantum number σ , we can write the
associated ni × ni Green’s function matrix as follows:

Gσ (k; iνn)= 1

Dk(iνn)

(
iνn − γk − σmU αke−ikxa

αkeikxa iνn − γk + σmU

)
,

(B1)

where

Dk(iνn) = (iνn − γk )2 − (α2
k + (mU )2). (B2)
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FIG. 18. The noninteracting magnetic response function for t ′ = 0.2t (top panels) and t ′ = 0.4t (bottom panels) in the T → 0 limit.

Here αk = −2t (cos kx + cos ky) and γk = 4t ′ cos kx cos ky, so
that εk = αk + γk. Let us introduce the energies

E±
k = γk ±

√
α2

k + (mU )2 = γk ± �αk. (B3)

The elements of the Green’s function matrix can then be
expressed as

Gii′
σ (k; iνn) =

∑
p=±

wii′
σkp

iνn − E p
k

. (B4)

The weights are given by

w11
σkp = 1

2

⎛
⎝1 − p

σmU√
α2

k + (mU )2

⎞
⎠ = w22

−σkp (B5)

and

w12
σkp = p

2

αk√
α2

k + (mU )2
e−ikxa = [

w21
σkp

]∗
. (B6)

We can now calculate the elements of the lattice susceptibility
tensor

χ0;ii′
σσ ′σ ′σ (q; iωm) = −1

βNk

∑
kn

Gσ
ii′ (k; iνn)Gσ ′

i′i (k + q; iνn + iωm).

(B7)

Summing over the fermionic Matsubara frequency this ex-
pression simplifies to the sum given below:

χ0;ii′
σσ ′σ ′σ (q; iωm) ≈ − 1

Nk

∑
k

∑
pp′

wii′
σkpw

i′i
σ ′k+qp′ I

pp′
k,q (iωm),

(B8)

where

I pp′
k,q (iωm) = βnF

(
E p

k

)[
nF

(
E p

k

) − 1
]
δωm,0δ

(
E p

k , E p′
k+q

)
(B9)

+nF
(
E p

k

) − nF
(
E p′

k+q

)
iωm + E p

k − E p′
k+q

[
1 − δωm,0δ

(
E p

k , E p′
k+q

)]
. (B10)

Here nF (ε) is the Fermi distribution function. This formula
shows that the elements of the static susceptibility tensor go
to zero in the zero-temperature limit. Assuming that the quan-

tization axis ẑ is also the magnetization axis, the longitudinal
and transfer susceptibilities are defined as follows:

χ
‖
0 (q; iωm) = (gμB)2

4

∑
σ

1

2

∑
ii′

χ0;ii′
σσσσ (q; iωm)eiφii′

q , (B11)

χ⊥
0 (q; iωm) = (gμB)2

4

∑
σ

1

2

∑
ii′

χ0;ii′
−σσσ−σ (q; iωm)eiφii′

q ,

(B12)

where φii′
q = (1 − δii′ )(−1)iqxa. Summing over the sites and

spin quantum numbers we thus obtain

χα
0 (q; iωm) ∼ − (gμB)2

4

1

Nk

∑
k

∑
pp′=±

v
α,pp′
k,q I pp′

k,q (iωm)eiφii′
q ,

(B13)
where α =‖,⊥. The weights are defines as

v
‖,pp′
k,q = 1

2

(
1 + pp′ αkαk+q + (mU )2

�αk�αk+q

)
, (B14)

v
⊥,pp′
k,q = 1

2

(
1 + pp′ αkαk+q − (mU )2

�αk�αk+q

)
. (B15)

In the low-temperature limit only the I pp′
k,q terms with p′ = −p

contribute. This has consequences for the behavior of the
dynamical susceptibility. Let us consider first the case of the
longitudinal response function. The weight v

‖,pp
k,q is finite for

every q vector; it takes its maximum value at the � point
(v‖,pp

k,0 = 1). The weight v
‖,p−p
k,q , however, is of order 4t2/U 2

and goes to zero at the � point. The situation is opposite for
the transverse susceptibility. The weight v

⊥,p−p
k,q is maximum

(v⊥,p−p
k,M = 1) at the M point and, furthermore, it remains close

to one for all values of q.
In the low-temperature limit (in which m ∼ 1/2), setting

t ′ = 0 for simplicity, at finite frequency we obtain in the
small-t/U limit the approximate expression

χ0;ii′
σ−σ−σσ (q; iωm) ≈

[
− aii′

σ (q)

iωn − U
+ aii′

−σ (q)

iωn + U

]
e−iφii′

q , (B16)

where

a11
σ (q) = a22

−σ (q) ≈ 1

4

[
1 − σ

(
1 − 2J1

U

)]2

, (B17)

a12
σ (q) = a21

−σ (q) ≈ −J1

U
fq, (B18)
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and fq = (cos qx + cos qy)/2. By inverting the susceptibility
matrix with the elements defined above we thus obtain at
linear order in J1 the matrix with elements[

1

χ0(q; iωm)
− 1

χ0(iωm)

]ii′

σ−σ−σσ

≈ 2J1 fq(1 − δii′ )e
−iφii′

q .

(B19)

By adding to this the inverse of the local susceptibility matrix
and multiplying for the prefactors, we finally have

χ⊥(q; iωm) ∼ (gμB)2 J1(1 − fq)

ω2
m + 4J2

1

(
1 − f 2

q

) , (B20)

which is the expected behavior for a Heisenberg
antiferromagnet.
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