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Onset of pseudogap and density wave in a system with a closed Fermi surface
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We study the influence of anisotropy, treated as a dimensional crossover between 1D and 3D systems, on the
topological instability induced by a (self-consistent) uniaxial periodic potential. The mechanism on which the
instability is based involves the topological reconstruction of the Fermi surface, from initially closed pockets to
the surface with open Fermi sheets, creating two peculiar points in the band dispersion—the saddle point and
elliptical point, between which the pseudogap in electron density of states develops. The self-consistent periodic
potential appears as a result of interactions, either electron-phonon or electron-electron, which, linked with the
topological instability of the system, results in formation of a new ground state of the system—the density wave
provided that the relevant coupling constant is larger than critical. Our analysis shows that the phase transition
takes place along the whole continuous interval of a dimensional crossover between 1D and 3D, but that the
critical coupling strength significantly increases with the dimensionality of the system. It is our intention to give
an initial framework for understanding the nature of charge density waves experimentally observed in a number
of materials, like high-Tc cuprates or graphite intercalates, both being materials with a closed, rather isotropic
Fermi surface far from the nesting regime.
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I. INTRODUCTION

The density wave (DW), either of electron charge (CDW)
or spin (SDW), is a periodic modulation of a crystal that
appears spontaneously as a result of structural instability. First
experimental observations of DWs were in low-dimensional
organic conductors from the family of Bechgaard salts, which
later extended to the wide class of materials with a highly
anisotropic Fermi surface (FS) [1–3]. The onset of these phe-
nomena lays in Peierls instability by which, due to opening
of a gap at the Fermi surface, the metallic ground state of a
one-dimensional (1D) conductor becomes unstable with re-
spect to the formation of a self-consistent periodic modulation
of the electron charge - CDW that constitutes a potential
with a wave vector exactly relating two points of the Fermi
surface in 1D [4]. The possibility to completely gap the FS
exists not only in 1D systems, but also in two-dimensional
(2D) ones with high degree of anisotropy, called “quasi-one-
dimensional” (Q1D), such that parts of the 2D open FS can
be completely mapped to each other by a unique wave vec-
tor. The mechanism based on such property of the FS is
called “nesting” and it has been the raw model to explain
the DW physics for last several decades. Even in the ab-
sence of perfect nesting, i.e., when mapping of the Fermi
sheets leaves pockets of states, small enough as compared
to squared inverse magnetic field length, one can utilize
external magnetic field to “fix” the nesting through the Lan-
dau quantization mechanism, leading to field-induced DW
phases [5]. Due to the unique nature of the Peierls mecha-
nism to completely gap the FS, the condensation energy of
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the DW contains the characteristic logarithmic contribution
which, in turn, gives at zero temperature the finite order
parameter even for arbitrarily small coupling responsible
for the DW formation (electron-phonon, electron-electron,
etc.) [6].

The natural question that arises is whether it is possible to
stabilize the DW ground state unless the FS has the property
of nesting? The experimental findings are very affirmative in
that respect. The CDWs, often called “charge stripes,” are de-
tected in number of 2D and quasi-2D compounds with rather
isotropic FSs far away from the nesting possibility, among
which we single out the high-temperature superconducting
cuprates, with conducting CuO2 planes [7], graphite-based in-
tercalates like CaC6 [8], and transition metal dichalcogenides
(TMDs) like 2H-NbSe2 [9] as the most intriguing examples.
Despite numerous experimental findings appearing for more
than a decade, the feasible theoretical framework to explain
such DWs, outside of the nesting physics, has not been estab-
lished. For example, experimental observations in 2H-NbSe2

[10], exhibiting both nested- and saddle-band contributions on
the FSs, fits partially to the nesting mechanism (wave vector
of the CDW) and partly to the “saddle point mechanism” [11]
(resistivity decrease in the CDW transition), but none of them
providing understanding of the complete picture.

Starting from the 1D system, there are two possible sce-
narios through which the electron band can lower the energy
of the condensate by imposing the self-consistent DW poten-
tial upon itself. The first one we call “the Peierls scenario,”
in which the system attempts to gap the whole Fermi sur-
face through the nesting mechanism as described above. The
second one we call “the Lifshitz scenario” in which system
changes the topology of the FS, manipulating electron den-
sity of states (DOS) to push more populated states to lower
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energies compared to the situation before the topological
change. Recently, it has been predicted that topological recon-
struction of the FS in 2DEG, from the isotropic closed contour
to the open one, may lead to lowering of total energy of elec-
tron band and consequently to the quantum phase transition
into the DW ground state if the relevant coupling constant
(electron-phonon in the presented case) is larger than critical
[12]. This DW state persisted and was even strengthened in
homogeneous external magnetic field [13], stabilizing with
the wave vector Q ≈ 2kF (1 − �/2εF ), where kF is the Fermi
wave vector, εF the Fermi energy and � is the gap in energy
spectrum. In the cited works, the DW order parameter � is
treated as a gap parameter, although the FS is not actually fully
gapped. Topological reconstruction of the initially parabolic
2DEG band spectrum, leads to the emergence of two peculiar
points in the final spectrum, below and above the initial Fermi
energy: hyperbolic point in the lower and elliptical point in the
upper new bands. They appear at the same wave vector, one
upon another, separated in energy by 2�. Due to similarity of
the presented band reconstruction mechanism with the mech-
anism behind Lifshitz’s topological transition “of 2 1

2 order”
[14,15], we call these peculiar points the “Lifshitz” points.
Along the energy interval between “Lifshitz” points the pseu-
dogap in the density of states develops. Due to the structure
of the pseudogap, in particular, the van Hove singularity of
logarithmic type around the hyperbolic point, redistribution
of states to lower energies decreases the total band energy.

In this work, we generalize the picture of topological
reconstruction of electron band in dimensional (noninteger)
crossover starting from 1D to 3D system, and find the condi-
tions necessary to establish the DW ground state. In Sec. II, we
present the model; the change in electron DOS accompanying
the reconstruction process and being the precursor of dramatic
change of the ground state is presented in Sec. III; the results
for condensation energy of the new ground state and optimal
values for its Fermi energy, wave vector, order parameter
and critical coupling constant are presented in Sec. IV; the
discussion and final conclusions are in Sec. V.

II. MODEL

We consider the system generally described by a form
of Hamiltonian H = H0 + Hint, where H0 describes the one-
particle contributions (e.g., electron and phonon bands), while
Hint describes the interacting electrons (e.g., electron-phonon
or electron-electron interaction). We assume an existence of a
self-consistent, periodic order parameter, manifesting itself in
the form of uniaxial density wave with wave vector Q. Such
an order parameter usually has an origin in a nonvanishing
expectation value of either phonon displacement operator or
electron density operator due to macroscopically large popu-
lation of the corresponding state characterized by the wave
vector Q. However, regardless of the nature of that order
parameter the effective Hamiltonian of the system, within the
mean-field approximation and some simplifications specific
for particular type of interaction [6], can be written in the form

H =
∑

k

[ε(k)a†
kak + �eiφa†

k+Qak + �e−iφa†
k−Qak] + �2

G
.

(1)

Here, ak and a†
k are electron annihilation and creation operator

in the state with wave vector k, ε(k) is the one-electron band
dispersion, while � and φ are the amplitude and phase of the
order parameter. Let us choose the direction of periodic uniax-
ial DW perturbation along the x axis, i.e., Q = (Q, 0, 0), such
that the potential created by the perturbation is � cos(Qx +
φ). In the system without pinning the phase φ is arbitrary. Fi-
nally, G is the coupling constant which parametrizes electron
coupling entering the problem, e.g., Fröhlich, for electron-
phonon, or Hubbard, for electron-electron coupled systems
[6,12]. The dependence of the coupling constant on Q is
assumed to be slow enough to be considered constant and ne-
glected in condensation energy optimization. The dependence
of the order parameter on Q is assumed implicitly, adopting
the label �Q → � for the sake of presentation, and will be
treated later.

The electronic part (first term) of Hamiltonian (1) can be
diagonalized in the straightforward way [6] providing the
spectrum

E±(k) = ε(k) + ε(k + Q)

2
±
√(

ε(k) − ε(k + Q)

2

)2

+ �2,

(2)

for electron operators ãkα and ã†
kα , reducing the Hamiltonian

to the form

H =
∑

k,α=±
Eα (k)ã†

kα ãkα + �2

G
. (3)

We see that the order parameter � appears as a gap parameter
in one-electron spectrum (2). Using, for the sake of simplicity,
the free-electron dispersion, with effective mass m, as ε(k)
in further description, and shifting the origin of momentum
space by −Q/2 along the kx axis (i.e., placing it at the edge of
the new Brillouin zone), the Q-related ε(k) terms in Eq. (2)
read

ε(kx ± Q/2, ky, kz ) = h̄2(kx ± Q/2)2

2m
+ h̄2k2

y

2m
+ h̄2k2

z

2m
, (4)

while the diagonalized electron spectrum, Eq.(2), attains the
form

E±(k) = h̄2

2m

(
Q2

4
+ k2

x + k2
y + k2

z

±
√

(Qkx )2 +
(

2m�

h̄2

)2
⎞
⎠. (5)

Spectrum (5) contains two peculiar points (”Lifshitz
points”) at the origin k = 0: L1 - the saddle (hyperbolic
point) in the lower band at energy EL1 = h̄2Q2/8m − �, and
L2 - parabolic minimum (elliptic point) at energy EL2 =
h̄2Q2/8m + � (see Fig. 1 for illustration in the 2D case).

III. ELECTRON DENSITY OF STATES (DOS)

In order to track the influence of the band reconstruction on
the properties of the system the most basic and useful quantity
to find is electronic density of states (DOS). Furthermore, to
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FIG. 1. An illustration of topological reconstruction of the Fermi
surface, for simplicity of graphical presentation shown for the case
of 2D parabolic band. The left panel shows the spectrum E±(kx, ky )
of the reconstructed band (5) around the peculiar points L1 and L2,
where εF is the Fermi energy (plane). The cross section E±(kx, ky ) =
εF determines the Fermi surface (thick curves). The right panel
shows the Fermi surface in the process of reconstruction depend-
ing on the Fermi energy (blue for E−, red for E+): (a) εF < EL1,
(b) εF = EL1, (c) EL1 < εF < EL2, and (d) εF > EL2.

grasp the aspect of anisotropy of the (initial) system, we in-
troduce the effective dimensionality. The concept of effective
dimensionality, namely, in the momentum space, is to address
the degree of confinement of electron motion in certain dimen-
sion(s). Such effective dimension does not necessarily need
to be an integer number. It is known from the early concepts
of discrete lattices with noninteger effective dimension [16],
proteins [17,18], interaction-generated synthetic dimensions
in cold atoms physics [19] and optics [20,21], to nowadays
very active field of complex networks [22,23]. One possible
approach to address anisotropy in the solid state physics is to
utilize the tight binding approximation (TBA) with different
electron hopping integrals along different spatial directions,
showing to reproduce electron DOS interpolating between
1D and 3D [24,25]. Another possible approach, suggested by
He [26], is based on the heuristic idea that one can describe
motion, with anisotropy in the sense of certain restrictions
in some dimension(s) of the three-dimensional Euclidean
embedding space, as the isotropic motion in the deformed,
effectively d-dimensional space, where d � 3 may be non-
integer, reflecting the reduction in number of accessible states
for such motion. This concept has been used in literature to de-
scribe various physical effects in systems with different types
of confinement of electron motion, e.g., impurities in semi-
conductor superlattices [27], optical transitions in anisotropic
solid [28], or exciton-phonon interaction [29], free exciton
binding [30,31] and polaronic effect [32] in the quantum
wells, etc. The calculated electron DOS is in a good agreement
with the afore-mentioned one calculated by the TBA method
and, also, represents a simple phenomenological tool to fit ex-
perimental observations where anisotropy is manifested, e.g.,
the measured heat capacity of anisotropic 3D lattice Cv ∼ T d

at low temperature T , exhibiting the fractional values of d
between 2 and 3 within the crossover temperature range as
the 2D confinement deteriorates and the system becomes 3D
[33]. We have to emphasize that such approach goes beyond
the mere effective mass description, which changes mass

dependence in DOS, i.e., mD → ∏D
i=1 m∗

i (D is standard in-
teger dimensionality), but it does not change the dependence
on energy as compared to the corresponding isotropic system
[34].

Here we introduce the dimensionality parameter d that
can change continuously within the interval between 1 and
3, where values d = 1, 2, and 3 correspond to the strictly 1D,
2D and 3D standard dimensionality, while the values between
1 and 2 account for so to say quasi-1D, and between 2 and
3 for quasi-2D systems. The electron DOS in our problem is
calculated as

g(E ) = 2

(2π )d

d�
(d )
k (E )

dE
, (6)

where �
(d )
k (E ) is a volume of d-dimensional reciprocal space

enclosed within the surface of constant energy E , 2 in numer-
ator accounts for the spin degeneracy. We need to stress here
that electron DOS (6) depends, beside on energy E , also on
number of other parameters, namely, d , �, Q. For the purpose
of presentation, we assume them implicitly, i.e., adopt the la-
bel g(d )

�,Q(E ) → g(E ) in the text, but showing and emphasizing
the corresponding dependence as it appears in the text. In
the unperturbed system with no band reconstruction (� = 0),
volume �

(d )
k (E ) reduces to

�
(d )
k (E ) = πd/2

�
(

d
2 + 1

)E
d
2 , (7)

where �(z) is the standard gamma function. Equation (7) is
obtained from the volume of the d-dimensional sphere with

radius k in the reciprocal space, �
(d )
k = πd/2

�(d/2+1) k
d , using the

free-electron dispersion E (k) = h̄2k2

2m . Using Eqs. (6) and (7),
it is straightforward to obtain standard expression for the
DOS of the unperturbed band, i.e., of the free d-dimensional
electron gas

g0(E ) = 2md/2

(2π )d/2h̄d�
(

d
2

)E
d
2 −1, (8)

which exactly reproduces known cases with integer dimen-
sionality [35].

We adopt the suitable scaling of variables to the dimension-
less form, namely,

ε ≡ 2mE

h̄2(Q/2)2
, δ ≡ 2m�

h̄2(Q/2)2
,

⎛
⎝κx

κy

κz

⎞
⎠ ≡ 2

Q

⎛
⎝kx

ky

kz

⎞
⎠, (9)

where ε, δ, and (κx, κy, κz ) stand for energy, gap parameter,
and wave-vector components respectively. Now the electron
dispersion (5) reads

ε±(κx, κy, κz ) = 1 + κ2
x + κ2

y + κ2
z ±

√
4κ2

x + δ2. (10)

The volume in reciprocal space gets scaled as �
(d )
k (E ) =

(Q/2)d�(d )
κ (ε). This volume possesses rotational symmetry

around the κx axis thus, choosing κ2
ρ ≡ κ2

y + κ2
z , which using

Eq. (10) can be expressed as

κ±
ρ (κx; ε) =

√
ε − 1 − κ2

x ∓
√

4κ2
x + δ2, (11)
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we can calculate it as

�(d )
κ (ε) = 2

π
d−1

2

�
(

d−1
2 + 1

)
(∫ 1

κ−
0 (ε)

κ−
ρ (κx; ε)d−1dκx +

∫ κ+
0 (ε)

0
κ+

ρ (κx; ε)d−1dκx

)
, (12)

utilizing the fact that, with the given cylindrical symmetry of our problem, the function under integral is in fact the volume of
(d − 1)-dimensional sphere with radius κ±

ρ . Here

κ−
0 (ε) =

{√
ε + 1 − √

4ε + δ2, ε < 1 − δ

0, ε � 1 − δ
(13)

and

κ+
0 (ε) =

{
0, ε < 1 + δ√

ε + 1 − √
4ε + δ2, ε � 1 + δ

(14)

are integration limits due to the gap opening. Inserting the above into expression (6), carefully taking the derivative [36] over
scaled energy ε, we get the expressions for the DOS:

(a) for d = 1

g(ε) = 2m

π h̄2

(Q

2

)−1

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1−2/
√

4ε+δ2√
1+ε−√

4ε+δ2
, ε < 1 − δ

0, ε ∈ (1 − δ, 1 + δ)

+ 1−2/
√

4ε+δ2√
1+ε−√

4ε+δ2
, ε > 1 + δ

, (15a)

(b) for d > 1

g(ε) = 8m
(Q

2

)d−2

(2π )d h̄2

π
d−1

2

�
(

d−1
2

)
(∫ 1

κ−
0 (ε)

κ−
ρ (κx; ε)d−3dκx +

∫ κ+
0 (ε)

0
κ+

ρ (κx; ε)d−3dκx

)
. (15b)

We present the electron DOS (15) for various dimension-
alities of the system d in Fig. 2. As it is seen from the picture,
only in the strictly 1D (d = 1) regime the system exhibits
a real gap in the energy interval between 1 − δ and 1 + δ

(i.e., between EL1 and EL2). For d > 1, the system exhibits
a pseudogap within which the number of states between EL1

and EL2 is more depleted, the lower the dimensionality d is.
As we show in the forthcoming sections, it has the crucial role
in stabilization of the DW ground state. The d = 1 expression
is given separately from the general d > 1 expression since it
represents a nonanalytical limit.

As for the singularities appearing in the peculiar points,
for integer values of d , i.e., for 1D, 2D, and 3D systems, it
is easy to characterize them analytically. For d = 1 case, the
simple Taylor expansion around the L1 point yields g(ε) ∼
|ε − εL1|−1/2 dependence. For d = 2 case, the Taylor expan-
sion of the function under the square root in denominator
of the integrand around κ−

0 gives zero of the first order
for ε < εL1, while its vanishing first derivative at ε = εL1

makes the zero of the second order at that point. This im-
plies singular contribution to the integral in the form

∫
(κ −

κL1)−1dκ , yielding the density of states with logarithmic sin-
gularity, i.e., g(ε) ∼ ln |1 − ε/εL1|. Finally, the d = 3 case
can be easily integrated exactly, i.e., g(ε) ∼ 1 − κ−

0 + κ+
0 ,

which yields g(ε) ∼ 1 ∓ const ×√|ε − εL1,2|, for ε ≶ εL1,2,
and g(ε) ∼ 1, for ε ∈ (εL1, εL1). Such singularities are in ac-
cordance with Van Hove’s general classification (around the
saddle point for the particular dimensionality of the system)
[37].

IV. SELF-CONSISTENT OPTIMAL FERMI ENERGY, WAVE
VECTOR, AND ORDER PARAMETER OF THE DW

In order to find conditions for stabilization of the DW
ground state at zero temperature, one needs to compare energy
of the DW-ordered state of the system with the reconstructed
Fermi surface Erec, determined by Hamiltonian (3), with the
energy of the state without the DW ordering (here the free-
electron ground state), E0, and self-consistently determine the
position of the new Fermi energy of the system εF with respect
to the initial one εF0, the DW wave vector Q, and the DW or-
der parameter � by imposing the criterion of maximal energy
decrease in the system reconstruction process. The difference
of these two energies we define as the DW condensation
energy, i.e., EDW(εF , εF0, Q,�) = Erec(εF , Q,�) − E0(εF0).
The Erec is a sum of two contributions: the electron energy of
reconstructed band Eband and “elastic” energy Eelast = �2/G
that arises within the mean-field description as a (positive)
energy increase due to the finite order parameter formation
(e.g., elastic energy of the deformed crystal lattice in the CDW
case). Taking the contributions described above into account,
we can finally express the DW condensation energy as the sum
of the change of electron band energy due to reconstruction,
�Eband, and the (always positive) “elastic” energy, i.e.,

EDW(εF , εF0, Q,�) = �Eband(εF , εF0, Q,�) + �2

G
, (16)

where

�Eband(εF , εF0, Q,�) = Eband(εF , Q,�) − E0(εF0). (17)
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FIG. 2. Electron density of states g(ε), Eq.(15), scaled by pref-
actor in front of the multiplication operator ×, depending on
dimensionality parameter d . Full curve is the DOS of the recon-
structed system with gap δ = 0.2, dashed is the DOS of the system
without reconstruction (δ = 0), i.e., g0(ε) based on Eq. (8). Peculiar
“Lifshitz” points L1 and L2 are at 1 − δ and 1 + δ, respectively.
Between them the pseudogap is formed (except for d = 1 where
the gap is real, i.e., g(ε) = 0). The last panel shows the case for
d = 3.5, although outside of the physical range of d values for
this particular problem, but presented for the sake of depicting the
analytical behavior of the function g(ε) for d > 3.

The first step is finding the relation between εF and εF0.
Since these are contained only in �Eband(εF , εF0, Q,�), it is
enough to minimize only that function. In that respect, we use
scaling (9) and write the change of the band energy in scaled
variables as

�Eband(εF , εF0; δ) =
∫ εF

0
g(ε; δ)εdε −

∫ εF0

0
g0(ε)εdε,

(18)

where we should have in mind implicit dependence on Q,
since all variables are scaled with it. Here, g(ε; δ) and g0(ε) is
the electron DOS for the reconstructed and nonreconstructed
bands, respectively.

We seek the minimum of this function under the constraint
of conservation of number of electrons N , meaning that the
change of electron number in the reconstruction process must
be zero, i.e., �N = 0, where

�N (εF , εF0; δ) =
∫ εF

0
g(ε; δ)dε −

∫ εF0

0
g0(ε)dε. (19)

Here, δ is kept as a parameter (not written explicitly further
on for the sake of simplicity). In order to find the minimum
of energy under the given constraint, we introduce the La-
grange multiplier μ and define the Lagrange function L =
�Eband − μ�N . The optimal relation of Fermi energies εF

and εF0 is determined by the system of equations ∂L/∂εF = 0
and ∂L/∂εF0 = 0 which reduces to

g(εF )(εF − μ) = 0,

g0(εF0)(μ − εF0) = 0, (20)

yielding the relation

εF = εF0. (21)

The condition, for an extremum μ = εF0 and μ = εF to be a
minimum in the system with the constraint, is negativity of the
determinant of the bordered Hessian

H(εF , εF0, μ) ≡

⎡
⎢⎣

0 ∂0�N ∂1�N

∂0�N ∂00L ∂0∂1L
∂1�N ∂1∂0L ∂11L

⎤
⎥⎦

=

⎡
⎢⎣

0 −g0(εF0) g(εF )

−g0(εF0) −g0(εF0) 0

g(εF ) 0 g(εF )

⎤
⎥⎦, (22)

where we denoted partial derivatives ∂0 ≡ ∂/∂εF0 and ∂1 ≡
∂/∂εF . Namely, det(H) = g0(εF0)g(εF )[g(εF ) − g0(εF0)] <

0, taking εF = εF0, yields the condition for the minimum

g(εF ) < g0(εF ). (23)

Conditions (21) and (23) tell us that, in the process of band
reconstruction, the Fermi energy does not change with respect
to the initial one, and that the new state of the system is
the minimum of energy as long as the DOS of reconstructed
band is smaller than DOS of the initial band at that energy.
Furthermore, from the properties of the DOS (see Fig. 2), it is
evident that for dimensionality between 1 and 2, i.e., 1 � d �
2, the Fermi energy εF must be within the pseudogap between
“Lifshitz” points L1 and L2. On the other hand, for d > 2, the
Fermi energy may also fall in the upper band, i.e., above the
“Lifshitz” point L2. However, numerical analysis shows that,
as far as only the electron band contribution is concerned,
the condition of new energy minimum in the reconstruction
process can always be achieved.

The initial Fermi energy is given by the system. Therefore,
since Q is used to scale the energy, the equation for conser-
vation of number of electrons, �N (εF , εF0) = 0, is in fact the
equation from which we can determine optimal DW vector Q∗
(for a given δ, at this stage treated as a parameter). In general,
the number of electrons is determined by the d-dimensional
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FIG. 3. Dependence of the (scaled) Fermi energy on the gap parameter, εF (δ), obtained as a solution of Eq. (25), for different values of
dimensionality parameter d (right panel presents regime around d = 2 where qualitative change in behavior occurs). Position of the upper
“Lifshitz” point L2, with (scaled) energy 1 + δ, is depicted by the dashed line. One can see that, for d � 2, position of the Fermi energy is
always below L2 (in the pseudogap), while for d > 2, it can also be above it (within the upper band), depending on the value of δ.

volume enclosed within the Fermi surface, i.e.,

N (ε) = 2

(2π )d

(
Q

2

)d

�(d )
κ (ε). (24)

Taking expression (12) for the reconstructed, and expres-

sion �
(d )
κ (ε) = (πε)d/2/�(d/2 + 1) for nonreconstructed FS,

equalizing number of electrons after and before reconstruc-
tion, N (εF ) = N0(εF ), leads to the equation for εF :∫ 1

κ−
0 (εF )

κ−
ρ (κx; εF )d−1dκx +

∫ κ+
0 (εF )

0
κ+

ρ (κx; εF )d−1dκx

=
√

π

2

d − 1

d

�
(

d−1
2

)
�
(

d
2

) ε
d
2
F . (25)

Numerically obtained solution of Eq. (25), depicting the de-
pendence of Fermi energy on parameter δ is shown in Fig. 3. It
is evident that for dimensionality d � 2 position of the scaled
Fermi energy is always below the upper “Lifshitz” point L2

(i.e., εF < 1 + δ), meaning that it is inside the pseudogap,
while for d > 2, it may also be above it.

Finding function εF (δ), as the solution of Eq. (25), and
using condition (21) as well as scaling (9), one directly ob-
tains the optimal value of the DW wave vector with respect
to the initial value of Fermi wave vector kF0, depending on
parameter δ:

Q∗(δ) = 2kF0√
εF (δ)

. (26)

The Q∗(δ) dependence, for different dimensionalities d , is
shown in Fig. 4. It is important to notice how the optimal
DW wave vector deviates from the value 2kF0 depending on
dimensionality of the system. Wave vector Q∗ = 2kF0 is the
value at which two initial Fermi surfaces exactly touch each
other at one point. This value of Q∗ is exactly achieved only
for d = 1, which represents, or matches the case of perfect
nesting: two Fermi surfaces, consisting only of one point, are
nested to each other by unique wave vector Q∗ = 2kF0 and

Fermi energy is always in the middle of the gap regardless
of its size. As the dimensionality of the system increases, the
Fermi surfaces start to overlap (the overlap increases with
increasing d and depends on δ as depicted in Fig. 4). The
overlap with respect to 2kF0 is determined by factor (func-
tion) εF (δ)−1/2 in Eq. (26). Analytically, it can be estimated
in terms of Taylor expansion, as, for example, it was done
in Ref. [12] for the 2D case (d = 2), εF (δ)−1/2 ≈ 1 − δ

2 +
1
π

( δ
2 )

3/2
.

FIG. 4. Optimal value of the DW wave vector (scaled by 2kF0)
depending on (still free) gap parameter, Q∗(δ), for different values
of dimensionality parameter d obtained from Eqs. (26) and (25). It
is evident that for d � 2, Q∗ develops as a δ-dependent deviation
from 2kF0, while, for d > 2, it significantly differs from 2kF0, more
so with increasing d , with practically no dependence on δ. Dashed
curve depicts expansion Q∗/2kF0 ≈ 1 − δ/2 + (δ/2)3/2/π + 3δ2/8
calculated in Ref. [12].
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The last step in calculation of stability of the DW ground
state is optimization of the order parameter � by minimization
of Eq. (16). The initial energy of the system E0(εF0) [the
free-electron band with ε0(k) = h̄2k

2m ] is easily found (taking
εF0 = εF )

E0(εF ) = 2

(2π )d

∫
ε0(k)<εF

ε0(k)dd k

= 4

(2π h̄)d

(2πm)
d
2

(d + 2)�
(

d
2

)ε d
2 +1

F ≡ E (d )
0 . (27)

The energy of reconstructed electron band contains contribu-
tions of lower and upper bands

Eband(εF , Q,�) = 2

(2π )d

(∫
E−(k)<εF

E−(k)dd k

+
∫

E+(k)<εF

E+(k)dd k

)
, (28)

which, using the scaling relations (9) and rotational symmetry
of the FS, yields

Eband(εF , Q,�) = 4

(2π )d

π
d−1

2

�
(

d−1
2

) h̄2

m

(Q

2

)d+2

×
(∫ 1

κ−
0 (εF )

dκx

∫ κ−
ρ (κx ;εF )

0
ε−(κx, κρ )κd−2

ρ dκρ +
∫ κ+

0 (εF )

0
dκx

∫ κ+
ρ (κx ;εF )

0
ε+(κx, κρ )κd−2

ρ dκρ

)
. (29)

Integrating over κρ and using the relation (11), expressing 1 + κ2
x ±√

4κ2
x + δ2 = εF − (κ±

ρ (κx; εF ))2 within expressions for
ε±(κx, κρ ) in (29), we obtain the expression

Eband(εF , Q,�) = 4

(2π )d

π
d−1

2

�
(

d−1
2

) h̄2

m

(Q

2

)d+2
[

εF

d − 1

(∫ 1

κ−
0 (εF )

κ−
ρ (κx; εF )d−1dκx +

∫ κ+
0 (εF )

0
κ+

ρ (κx; εF )d−1dκx

)

+ 2

1 − d2

(∫ 1

κ−
0 (εF )

κ−
ρ (κx; εF )d+1dκx +

∫ κ+
0 (εF )

0
κ+

ρ (κx; εF )d+1dκx

)]
. (30)

Here, recognizing the first contribution in Eq. (30) as the left-
hand side of expression (25), and subtracting the contribution
of initial band energy (27) from the expression above, we get
the change of the band energy due to the reconstruction

�Eband = E (d )
0

(
2

d
− 2(d + 2)�

(
d
2

)
√

π (d + 1)�
(

d+1
2

) Id (εF (δ), δ)

εF (δ)
d
2 +1

)
,

(31)

where the numeric function containing integral reads

Id (εF , δ) =
∫ 1

κ−
0 (εF )

κ−
ρ (κx; εF )d+1dκx

+
∫ κ+

0 (εF )

0
κ+

ρ (κx; εF )d+1dκx. (32)

The integration in Eq. (32) is cumbersome to perform even
numerically and it requires additional analysis. For values of
d close to one, when εF (δ) → 1, it is well approximated by

I∗
d (εF = 1, δ) =

∫ 1

0

(−κ2
x +

√
4κ2

x + δ2
) d+1

2 dκx. (33)

In fact, we show that Eq. (33) stays the good approximation
in the whole range of dimensionality parameter 1 � d � 2,
i.e., as long as the Fermi energy remains in the pseudogap
1 − δ � εF � 1 + δ with presumably small δ (see Fig. 3).
Expanding the Eq. (33) in terms of small deviation ξ from
d = 1, i.e., d = 1 + ξ expansion, as the zeroth contribution
we immediately obtain δ2/2 + δ2 ln(4/δ) contribution to the
band energy characteristic for the 1D physics of the Peierls
transition [6] when the gap is fully developed [the same result

would have been obtained by integrating the energy over
the 1D reconstructed DOS (15a)]. The remaining terms with
finite ξ , which need to be addressed numerically, are in fact
corrections describing the redistribution of states due to the
pseudogap formation as the dimensionality, and consequently
the phase space, increases. For dimensionality d > 2, when
also contributions of the upper band are present, we performed
numerical expansion [38] of (rearanged) Eq. (31), with com-
plete expression (32) taken into account, in powers of δ to the
lowest important contribution(

2εF (δ)2

d
− 2(d + 2)�

(
d
2

)
√

π (d + 1)�
(

d+1
2

) Id (εF (δ), δ)

εF (δ)
d
2 −1

)

≈ − 1

λ
(d )
c

δ2 + C (d )δ3, (34)

where numerically obtained constants λ(d )
c and C (d ) depend

on d . Their numerical values determine the quantitative as-
pects of the problem, while for the qualitative aspect, i.e.,
the existence of the DW transition, it is important that they
are positive. Here one can directly see the negative energy
contribution (the first term at the right-hand side) which may
stabilize the new ground state in the reconstruction process.
The results of this expansion overlap with the results of ap-
proximation (33) in the interval 1.8 < d � 2, so using both of
them we can cover the whole d ∈ [1, 3] range.

So far � was treated as a free parameter, thus depicting the
dependence of all quantities on δ, regardless of its scaling,
was convenient. However, in the final step, we perform an
optimization with respect to � and we choose some fixed
energy scale, e.g., the Fermi energy εF . The “elastic” energy
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term from Eq. (16) we express as

�2

G
≡ E (d )

0

(�/εF )2

λ(d )
, (35)

where

λ(d ) ≡ E (d )
0

G

ε2
F

(36)

is the dimensionless coupling constant (taking the role of G)
which incorporates dimensionality d .

It is easiest to demonstrate the onset of the DW transition
first using the approximation (34) (naturally, within the range
of its validity), which provides rather good phenomenological
description. Using relation δ/εF = �/εF , in which we cancel
the old scaling, we can write expression (16) for the DW
condensation energy

EDW

E (d )
0

=
(

1

λ(d )
− 1

λ
(d )
c

)(
�

εF

)2

+ C (d )ε
(d )
F

(
�

εF

)3

. (37)

Here, due to conversion 2m�/(h̄2Q/2)2 = εF �/εF , appears
a factor ε

(d )
F = εF (δ → 0) which has to be obtained numeri-

cally, with δ dependence neglected (for d > 2 and presumably
small δ it is very weak and, also, any δ dependence leads
to higher order corrections than considered), but important

dependence on d (see Fig. 3). Based on expansion (34) we
get physical insight in the nature of the DW ground state: the
minimum of function (37) exists, i.e., it is possible to stabilize
the DW state, if the coupling constant λ is greater than critical,
i.e., λ > λc for a given dimensionality d [see Fig. 5(a)]. With
condensation energy expressed in terms of expansion, it is
easy to find optimal order parameter �∗ simply by finding
the zero point of derivative of Eq. (37)

�∗

εF
≈
{

0 λ(d ) � λ(d )
c

2
3C(d )ε

(d )
F

(
1

λ
(d )
c

− 1
λ(d )

)
λ(d ) > λ(d )

c
. (38)

This solution features a typical bifurcation behavior with
change of stability: for λ � λc, the solution with the zero
order parameter (�∗ = 0) is stable while, for λ > λc, the
solution with the zero order parameter loses stability, and the
solution with a finite order parameter (�∗ 
= 0) is stabilized
[see Fig. 5(b)].

The more detailed microscopic understanding of the tran-
sition process and critical coupling is provided using the
approximation (33) (again, within its range of validity) in
Eqs. (31) and (16) with the afore-mentioned change δ/εF =
�/εF . Taking the derivative of the DW energy with respect
to � and equalizing it with zero leads to the equation for the
optimal order parameter

�

εF

⎛
⎝ (d + 2)�

(
d
2

)
2
√

π�
(

d+1
2

) ∫ 1

0

(− κ2
x +

√
4κ2

x + (
�
εF

)2) d+1
2√

4κ2
x + (

�
εF

)2
dκx − 1

λ(d )

⎞
⎠ = 0. (39)

Here, within the 1 < d < 2 interval, the conversion factor
appearing near �/εF is approximately εF ≈ 1 for small δ (δ
dependence leads again only to higher-order corrections than
considered), thus it is omitted from the equation for simplicity
(see Fig. 3). As mentioned above, one stable solution is � =
0, originating from the first term in Eq. (39) for λ � λc, while
the zero of the second term determines finite � 
= 0 for a given
λ � λc. Furthermore, the zero of the second term determines
the value of critical coupling: by setting λ = λc ⇔ � = 0, it
immediately yields

λ(d )
c = 4

√
π�
(

d+1
2

)
(d + 2)�

(
d
2

)
⎛
⎝∫ 1

0

(
2κx − κ2

x

) d−1
2

κx
dκx

⎞
⎠

−1

. (40)

The limiting cases of validity interval are easily obtained: for

example in the 1D case (d = 1) we get λ(1)
c = 4

3 (
∫ 1

0
dκx
κx

)
−1 →

0 as expected [6], while in the 2D case (d = 2), directly
evaluating the integral, we get λ(2)

c = (1 + 2
π

)
−1

as obtained
in Ref. [12].

As we can see, the critical coupling strength λ(d )
c depends

strongly on the dimensionality of the system. The result of the
numerical analysis, based both on approximation (33) and ex-
pansion (34), leading to expressions (40) and (37) respectively
in their own ranges of validity, is presented in Fig. 6.

The origin of such a behavior lays in the structure of
electron DOS accompanying the band reconstruction process.
In the strictly 1D case (d = 1), the gap is real (electron DOS

exactly vanishes between “Lifshitz” points L1 and L2), as it
is already mentioned in the Introduction and known from the
literature on Peierls transition [6]. The presence of the gap
leads to the characteristic contribution Eband ∼ �2 ln (εF /�)
in the band energy, which in turn gives optimal order pa-
rameter �∗ ∼ εF exp (−1/λ). Therefore, even for arbitrarily
small coupling, the DW ground state is stable (�∗ 
= 0) in
the 1D case. As the dimensionality is increased (d > 1), the
spectrum between the “Lifshitz” points is not fully gapped
any more and the pseudogap arises instead, i.e., the number
of states decreases compared to the initial state, but it does
not vanish exactly. The consequence is an absence of the DW
transition in the zero-coupling limit. However, the lower the
dimensionality is, the more states are redistributed to the lower
energy around L1, thus smaller, but finite coupling constant is
required to stabilize the DW ground state. With increasing di-
mensionality, states within the pseudogap are distributed more
and more at higher energies which consequently increases λ(d )

c
required to stabilize the DW.

V. CONCLUSIONS

We have studied stability of an electron system with closed
FSs with respect to the spontaneous formation of an uniaxial
DW, in a dimensional crossover between 1D and 3D systems
at zero temperature. In a way, one may say that we generalize
the aspects of Peierls transition to a higher-than-one dimen-
sion. We assume the DW with such periodic modulation that
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�

FIG. 5. (a) The DW condensation energy EDW(�), given by Eq. (37), exhibits minimum at optimal value of the order parameter �∗ if
the coupling constant is larger than critical for a given dimensionality. Here, for illustration, we chose d = 2.1 and λ = 0.642, with λc ≈ 0.64
provided. (b) The optimal value of the order parameter depending on the coupling constant, �∗(λ). We marked the bifurcation (critical) point at
λ = λc separating two stable types of solutions: �∗ = 0 for λ � λc, and �∗ 
= 0 for λ > λc. Here, for illustration, we chose d = 2.1 yielding
λc ≈ 0.64.

causes topological reconstruction of the initial FS, from the
set of d-dimensional (hyper)spheres with radius kF in the
reciprocal space, to the FS with open topology. In order to
achieve such topology, the DW wave vector Q should be close
to 2kF . In this process, two bands are formed in the electron
energy spectrum, lower with hyperbolic (L1) and upper with
elliptical (L2) points for d > 1. These points, at energies EL1

and EL2, respectively, are peculiar (“Lifshitz”) points distin-
guished in energy by the gap parameter 2� (which appears
as the order parameter of the DW state). The influence of the
reconstruction process and opening of the gap in the electron
spectrum is tracked through the calculation of the electron
DOS (Fig. 2). The d = 1 is the well known Peierls case with
full gap opened between EL1 and EL2. The system is unstable
with respect to formation of the DW ground state down to the
zero-coupling limit in terms of interactions. However, as the
dimensionality increases, i.e., d > 1, instead of gap, the pseu-
dogap with depleted, but still present states between EL1 and
EL2 is formed, with less and less states redistributed to lower
energies as d increases. Calculations of the DW condensation
energy show that the DW ground state is stable if the interac-
tion coupling constant is larger than the critical value, which
depends on dimensionality of the system (Fig. 5), i.e., the
transition to the DW state manifests itself as a kind of quantum
phase transition in the coupling strength space. The critical
coupling constant monotonously increases from the zero value
in the 1D case to higher values for higher dimensionality d
(Fig. 6). Consequently, the higher the dimensionality of the
system is, the more “difficult” it is for electrons to establish the
DW ground state, i.e., the stronger interactions are required.
The DW wave vector also changes with dimensionality. From
the strict 2kF value in the 1D case, which relates FSs into
strict touching, with increasing dimensionality the FSs start to
overlap more (Fig. 4). This overlap, determined by the optimal
DW wave vector, appears in the nonmonotonous way. For
1 < d � 2, Q = 2kF (1 − corr(d )(�)), i.e., the overlap of the

FSs is determined by presumably small �-dependent correc-
tion to touching, which depends also on d . For 2 < d � 3, Q
changes significantly with d , while �− dependence is practi-
cally negligible, ending at Q ≈ kF for d = 3 which provides
significant optimal overlap, comparable to the size of the FS.
From the aspect of condensation energy, the larger the overlap,
proportionally smaller the condensation energy of the DW is.
Clearly, in the competition between the Peierls scenario and
Lifshitz scenario, the first-mentioned wins as long as the sys-
tem provides necessary assets, i.e., the FSs with the property
of nesting. However, here we show that transition into the DW
ground state is possible in the complementary (“antinesting”)

FIG. 6. The critical coupling strength λ(d )
c of the DW ordering

depending on the dimensionality of the system d .
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limit and address the assets that the system needs—the critical
coupling strength.

The present analysis supplements the one in the Ref. [12],
done for the 2D case, in our intention to give an initial frame-
work for understanding the nature of CDWs experimentally
observed in a number of materials, like high-Tc cuprates or
graphite intercalates. Both of them are materials with closed,
rather isotropic FSs in a plane, far from the nesting regime. On
the other hand, they are essentially 3D materials, with highly
pronounced anisotropy perpendicular to the mentioned plane,
here modelled by the noninteger parameter d . The forthcom-
ing step from this general description would be introducing
the finite temperature as well as modeling the particular ma-
terial dispersions and the DW geometries, as well as inserting

the real material parameters into the model to fit the phase
diagram. Also, addressing the presumably important effects
of commensurability of the new DW ordering with the un-
derlying lattice, which are outside of the scope of this work,
might be important.
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