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We discuss the problem of gauge fixing for strongly correlated electrons coupled to quantum light, described
by projected low-energy models such as those obtained within tight-binding methods. Drawing from recent
results in the field of quantum optics, we present a general approach to write down a quantum light-matter
Hamiltonian in either dipole or Coulomb gauge which is explicitly connected by a unitary transformation, thus
ensuring gauge equivalence even after projection. The projected dipole gauge Hamiltonian features a linear
light-matter coupling and an instantaneous self-interaction for the electrons, similar to the structure in the full
continuum theory. On the other hand, in the Coulomb gauge the photon field enters in a highly nonlinear way,
through phase factors that dress the electronic degrees of freedom. We show that our approach generalizes the
well-known Peierls approximation, to which it reduces when only local, on-site orbital contributions to light-
matter coupling are taken into account. As an application we study a two-orbital model of interacting electrons
coupled to a uniform cavity mode, recently studied in the context of excitonic superradiance and associated
no-go theorems. Using both gauges we recover the absence of a superradiant phase in the ground state and show
that excitations on top of it, described by polariton modes, contain instead nontrivial light-matter entanglement.
Our results highlight the importance of treating the nonlinear light-matter interaction of the Coulomb gauge
nonperturbatively, to obtain a well-defined ultrastrong coupling limit and to not spoil gauge equivalence.
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I. INTRODUCTION

The experimental progress in coupling light and matter
at the quantum level achieved with cavity and circuit quan-
tum electrodynamics (CQED) [1,2] has brought forth new
platforms for many-body quantum optics where light and
matter play equally important roles in collective quantum
behavior. Examples include microcavity exciton-polaritons
showing nonequilibrium superfluidity [3], arrays of coupled
CQED cavities hosting correlated states of light [4–7], or ul-
tracold atoms embedded in high-finesse cavities allowing one
to explore the competition between Mott physics and Dicke
superradiance [8–10].

An exciting new frontier is to take advantage of the
quantum nature of light in solid state experiments by cou-
pling quantum materials to fluctuating dynamical cavity
fields. First experiments have recently appeared, involv-
ing two-dimensional electron gases [11–13], van der Waals
materials [14–16], organic semiconductors [17], magnetic
materials [18], and, very recently, conventional and high-
temperature superconductors [19]. As a result, many theoret-
ical proposals have recently been put forward to dress, cool,
and control selected collective excitations of solids [20,21],
to enhance transport [22,23], or to induce or enhance su-
perconductivity [24–29] or ferroelectricity [30] by coupling
to cavity photons. Finally, the phenomenon of Dicke super-
radiance was predicted in a number of platforms, including
spin-Hall insulator coupled to a circularly polarized quan-
tized electromagnetic field [31] and excitonic insulator [32].
Those ground-state realizations of the Dicke superradiance
raise a number of conceptual questions, and even in a much

simpler context of two-level systems, the phenomenon re-
mains elusive and controversial [33–35]. Very recently,
evidence for electronic superradiance beyond the no-go the-
orem has been demonstrated in the presence of a spatially
varying electromagnetic field [36–38].

A fundamental issue for theoretical modeling of those plat-
forms is to write down an Hamiltonian that complies with the
guiding principle of gauge invariance, which puts a number
of constraints on the form of light-matter interaction and on
certain physical properties of the system. The gauge free-
dom allows one to express light-matter interactions in terms
of a scalar and vector potential, as in the Coulomb gauge
often used in the solid-state context, or in terms of displace-
ment and magnetic field through the Power-Zienau-Woolley
(PZW) transformation and leading to the dipole gauge rele-
vant in atomic cavity quantum electrodynamics (CQED) when
magnetic interactions are negligible. While the first-principle
discussion of gauge invariance in condensed matter system
coupled to light is textbook material, several practical and
conceptual questions emerge when one tries to write down
effective low-energy models describing a subset of degrees of
freedom after projecting out irrelevant ones, while preserving
gauge invariance. In this context, the choice of the gauge,
so called gauge fixing, becomes crucial. A recent work has
addressed this issue in the context of tight-binding models
for strongly correlated electrons and demonstrated, for two
model systems, that while both gauges converge to the same
result when sufficiently many bands are included, at fixed
truncation different gauges lead to different results, with the
dipole gauge being more accurate [39]. Similar results have
been obtained for fundamental models of CQED, such as the
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Rabi or Dicke models, describing one or multiple two-level
systems coupled to a single cavity mode, where a break-
down of gauge invariance has been reported [40–42] in the
regime of ultrastrong light-matter coupling [43–46]. A uni-
tary transformation has been proposed to effectively decouple
light and matter degrees of freedom at ultrastrong coupling,
thus alleviating the consequences of projecting onto a low-
energy manifold [47]. In the context of cavity-controlled
chemistry [48] it has been emphasized the importance of
ab initio approaches preserving the gauge invariance of the
full microscopic theory. The resolution of these gauge ambi-
guities has been recently demonstrated for Rabi and Dicke
models, leading to a consistent strategy to write down a
projected quantum light-matter Hamiltonian which preserves
gauge equivalence [40,41,49,50].

Motivated by these latest developments, in this work we
reconsider the issue of gauge fixing for models describing
the coupling between photonic modes and strongly correlated
electronic matter. Following the general idea of Refs. [49,50],
we present a formalism that allows us to write down the
Hamiltonian of correlated electrons coupled to photons in the
dipole and Coulomb gauges which remain fully equivalent,
i.e., related by a unitary transformation, even after projection.
We discuss the relation between our approach and the so
called Peierls substitution, often used to describe light-matter
coupling in tight-binding models. We apply our formalism to
a two-band model for an excitonic insulator coupled to a uni-
form cavity mode, recently studied in the literature [35]. Using
the dipole gauge we confirm the absence of superradiance
beyond mean-field theory, in accordance with the recent no-go
theorem. We also highlight how to recover such a result within
the Coulomb gauge where it is crucial to treat light-matter
interaction nonperturbatively to all orders. Furthermore, we
compute the excitation spectrum of the model, which differ-
ently from the ground state contains nontrivial light-matter
entanglement in the form of polariton modes. We explicitly
show that the polariton spectrum is the same within our pro-
jected dipole and Coulomb gauge, a further demonstration of
gauge equivalence.

The paper is organized as follows: In Sec. II we review
how to couple electronic many-body systems to the electro-
magnetic field in the continuum field theory second-quantized
framework, paying particular attention to the choice of the
gauge. In Sec. III we introduce a projected electronic basis in
the spirit of tight-binding models for strongly correlated sys-
tems, and present a general framework to write down quantum
light-matter Hamiltonian which preserves gauge equivalence
even after projection. In Sec. IV we provide some examples of
our construction in the case of single and two-band models.
In Sec. V we study in detail the resulting two-band model
respectively in the dipole and Coulomb gauge and discuss its
polariton spectrum. Section VI is devoted to conclusions.

II. COUPLING QUANTUM MATTER AND LIGHT IN THE
CONTINUUM

We consider a quantum many-body system of interacting
electrons with mass m in the presence of a periodic potential
V (r) provided by the ions of the lattice. In the following we
set units such that h̄ = c = 1. Within the second quantization

we can write down the Hamiltonian of the system as Hel =
H0 + Hee, where the noninteracting part reads

H0 =
∫

dr ψ†(r)h0(r)ψ (r), (1)

with

h0(r) = −∇2

2m
+ V (r), (2)

while the electron-electron interactions Hamiltonian in gen-
eral form is given by

Hee =
∫

dr dr′ψ†(r)ψ†(r′)U (r − r′)ψ (r′)ψ (r). (3)

The electronic problem is invariant under a local phase
transformation ψ (r) → eiχψ (r) and the associated (Noether)
current reads

J(r) = 1

m
ψ†(r)(−i∇ )ψ (r) + H.c. (4)

Next, we derive the Hamiltonian that describes the quan-
tum matter coupled to the electromagnetic field. We start
by deriving the continuum light-matter Hamiltonian in the
Coulomb gauge, i.e., we consider a purely transverse vector
potential A(r) such that ∇ · A = 0. The Hamiltonian of the
electromagnetic field reads

Hph =
∫

dr[�2 + (∇ × A)2], (5)

where we have introduced the conjugate field �(r) associated
with the transverse component of the electric displacement.
In this work we consider a single mode decomposition of the
fields

A(r) = A0(r)(a + a†), (6)

�(r) = i�0(r)(a − a†), (7)

where a† (a) are photon creation (annihilation) operators
satisfying [a, a†] = 1 while A0(r),�0(r) are the mode func-
tions. In terms of this single mode decomposition, the photon
Hamiltonian reads

Hph = ωca†a,

where ωc is the mode frequency.
The light-matter interaction can be introduced via the min-

imal coupling scheme by replacing the momentum operator as

−i∇ → −i∇ + eA(r), (8)

where e > 0 is the elementary charge and A(r) is the vector
potential of the electromagnetic field. Employing a minimal
coupling scheme, the total light-matter Hamiltonian in the
Coulomb gauge reads

HC =
∫

dr ψ†(r)hc(r)ψ (r) + Hee + Hph, (9)

where

hc(r) = (−i∇ + eA)2

2m
+ V (r), (10)
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which by construction satisfies gauge invariance. In fact, we
can perform a transformation on the electronic and electro-
magnetic fields

ψ (r) → ei�(r)ψ (r), (11)

A(r) → A(r) − 1

e
∇�(r), (12)

which leaves invariant Eq. (9).
We note that the minimal coupling replacement Eq. (8)

could be also implemented by performing a transformation
on the matter degrees of freedom only [49]. This is not sur-
prising: the standard way to convert a field theory, which has
a certain global symmetry [in our case U (1) due to charge
conservation], into a gauge theory is to promote the symmetry
to a local one. This naturally leads to fluctuating gauge fields
minimally coupled to the matter. In the present case we can
therefore define the unitary operator

U (χ ) = exp

[
i(a + a†)

∫
dr ψ†(r)χ (r)ψ (r)

]
, (13)

which transforms the electronic field as U†ψ (r)U =
ei(a+a† )χ (r)ψ (r). Applying this transformation to the electronic
Hamiltonian and choosing

∇χ (r) = eA0(r) , (14)

we obtain the minimal coupling Hamiltonian, Eq. (9), i.e., we
have

HC = Hph + U†(H0 + Hee)U = Hph + Hee + U†H0U .

(15)

We note that, in the last step, we have used the fact that the
electron-electron interactions Hamiltonian remains invariant
under a global or local phase rotation Hee = U†HeeU (see
Appendix A for the details of the derivation).

In the Coulomb gauge, the continuum Hamiltonian of the
coupled electron-photon system, Eq. (9) has a linear term
in the vector potential and a quadratic one, called the dia-
magnetic term, obtained by expanding hc in Eq. (10). The
physical current operator that corresponds to the Hamiltonian
HC , Eq. (9), can be defined as

JA(r) = −e
δHC

δA(r)
= −eJ(r) − e2

m
ψ†(r)ψ (r)A(r), (16)

and has also two contributions: the usual paramagnetic and the
diamagnetic one. Conservation of the electron charge imposes
a constraint on the paramagnetic and diamagnetic coefficients,
such that the physical current-current correlation function
vanishes in the static limit (ω = 0, q → 0). This also implies
the electronic Thomas-Reiche-Kuhn (TRK) sum rule [51,52],
recently extended to strongly coupled light-matter quantum
optical systems [53].

A different choice of gauge can be performed which ex-
plicitly eliminates the quadratic term in the vector potential.
This is implemented through a unitary transformation on the
entire system, as we are going to discuss next.

As mentioned in the Introduction, it is possible to write
down an equivalent formulation of electrodynamics and light-
matter interaction which does not rely on the vector potential

A(r) ∼ (a + a†) but uses its conjugate moment, the dis-
placement field �(r) ∼ i(a − a†), as fundamental degree of
freedom. This so called dipole gauge Hamiltonian can be
obtained by performing a unitary transformation of the PZW
type on the entire system Hamiltonian Eq. (15), i.e.,

HD = T †HCT , (17)

where T is defined as

T = exp

[
−i(a + a†)

∫
dr ψ†(r)V⊥(r)ψ (r)

]
. (18)

Following Ref. [54], we have introduced a photonic pseu-
dopotential

V⊥(r) = e
∫

γ

A0(r′) · dr′, (19)

where γ is a path ending in r. Within the electric dipole ap-
proximation, we can write ∇V⊥ � eA0(r), i.e., disregard the
magnetic contribution coming from the flux of ∇ × A0 such
that we can pose V⊥(r) = χ (r) and therefore identify [49]

T = U†, T † = U .

Therefore the dipole gauge Hamiltonian can be equivalently
obtained by applying the inverse unitary transformation of
Eq. (13) to the photon system only, i.e.,

HD = T †HCT = UHphU† + H0 + Hee, (20)

where in the second equation we have used Eq. (15). The
result for the Hamiltonian in the dipole gauge reads

HD = Hph + iωc(a − a†)
∫

drψ†(r)χ (r)ψ (r)

+ ωc

(∫
drψ†(r)χ (r)ψ (r)

)2

+ H0 + Hee, (21)

where we have used the fact that under the action of T the
photon field transforms as

T † a T = U aU† = a − i
∫

drψ†(r)χ (r)ψ (r). (22)

We see that in the dipole gauge the photon field couples to
the matter only linearly, through the other quadrature of the
field corresponding to the displacement, but the price to pay
is the presence of a self-interaction term for the matter fields
which is also due to the photon. We note Eq. (21) does not
contain magnetic couplings between electrons and photons,
as a result of the electric dipole approximation done below
Eq. (19). While in principle it is possible to add higher order
corrections, namely magnetic dipole interactions, in the dipole
gauge Hamiltonian Eq. (21), we leave this for future work.
The general form of the light-matter coupling Hamiltonian in
the PZW (or multipolar) gauge that includes coupling between
magnetic field B and magnetization M can be found in the
literature, for example [55].
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In the next section we discuss how the structure of the
Coulomb and dipole gauge Hamiltonian change when the
electronic degrees of freedom are projected onto a restricted
set of modes and how to enforce gauge equivalence between
them.

III. GAUGE INVARIANT LIGHT-MATTER COUPLING IN A
PROJECTED ELECTRONIC BASIS

In the theoretical discussion of strongly correlated electron
systems, one usually cannot deal with the full complexity
of the solid but rather focuses on an effective model which
deals with a restricted (typically low-energy) subset of degrees
of freedom. For example, in many transition metal oxides,
the electronic states of interest lie in relatively narrow bands
which are to a good extent separated from the rest of the
spectrum. The low-energy Hamiltonian can be obtained, at
least formally, by integrating out the degrees of freedom
corresponding to higher energy bands, or more formally by
performing a unitary transformation which (perturbatively)
decouples the low and high energy sectors, followed by a
projection operator. The resulting projected models have the
advantage of being more accessible to many-body approaches
than the full continuum theory. On the other hand, a highly
nontrivial question is how to properly couple electromagnetic
fields to these projected models in order to preserve gauge
invariance.

In fact, as it has been long known, projection to a re-
stricted set of bands violates the fundamental commutation
relation between position and momentum operator in the
first quantization [ra, pb] = iδab and transforms a local po-
tential depending only on position, such as V (r) in Eq. (2),
into a nonlocal one depending on both position and momen-
tum [56–60]. As emphasized recently [49], a straightforward
projection of the Coulomb gauge Hamiltonian (9) obtained
through minimal coupling misses the contribution to light-
matter interaction coming from this nonlocal potential. To
overcome this problem it has been recently suggested to
proceed differently [49,50], namely first project the matter
Hamiltonian and then perform the minimal coupling substi-
tution through the action of the unitary transformation (13),
which is itself consistently projected onto the selected mani-
fold of degrees of freedom.

In this section we present this approach in detail for models
of strongly correlated electrons coupled to quantum light.
First, in Sec. III A we write down the electronic Hamiltonian
Hel, introduced in Sec. II, in terms of a restricted subset of
Wannier orbital. This takes the form of a tight-binding model
plus local interactions, relevant for many strongly correlated
electron systems. In Sec. III B we write down the projected
unitary transformation Eq. (13) and discuss its action on the
electronic and photonic degrees of freedom. Using these re-
sults we write down the quantum light-matter Hamiltonian in
the Coulomb gauge (Sec. III C) and discuss its relation with
the so called Peierls substitution, often employed in the solid-
state context to discuss the coupling of classical and quantum
light to electrons within tight-binding models. In Sec. III E we
obtain the projected dipole gauge Hamiltonian and finally, in
Sec. III F, we prove explicitly the gauge equivalence between
the projected dipole and Coulomb gauge Hamiltonian.

A. Projected electronic Hamiltonian

We start by considering the electronic sector and project
over a set of low energy states

�(r) = Pψ (r)P =
∑
Rμ

φRμ(r)cRμ, (23)

where cRμ (c†
Rμ) are the fermionic annihilation (creation) op-

erators that satisfy canonical anticommutation relations. Here,
as a basis set of single-particle wave functions, we choose the
Wannier functions φRμ(r) that are localized around a lattice
site R, and μ labels the orbital. In terms of these modes the
projected electronic Hamiltonian reads

Hel ≡ PHelP =
∑
R,R′

∑
μ,μ′

tμμ′
R,R′c

†
RμcR′μ′

+
∑

R

∑
μ1···μ4

U μ1μ2μ3μ4 c†
Rμ1

c†
Rμ2

cRμ3 cRμ4 .

(24)

The parameters entering this Hamiltonian are defined in terms
of expectation values over Wannier functions, respectively as

tμμ′
R,R′ =

∫
dr φ∗(r)Rμh0(r)φ(r)R′μ′ , (25)

including both hopping (typically next neighbors) and on-site
energies, while for the interaction we consider only local
(same site) terms so we obtain

U μ1μ2μ3μ4 =
∫

dr dr′φ∗
Rμ1

(r)φ∗
Rμ2

(r′)

× U (r − r′)φRμ3 (r)φRμ4 (r′). (26)

We note that in general there is a certain freedom in choosing
the Wannier basis, which can be exploited for example to min-
imize the real-space extension of the functions φRμ(r) leading
to the so called maximally localized Wannier functions [61],
or to define orbitals with well-defined angular momentum
character which usually leads to simplification in the evalu-
ation of interaction matrix elements [62,63]. For the current
discussion we can omit these details and limit ourselves to the
expansion in Eq. (23), leaving specific examples to Sec. IV.

B. Projected unitary transformation

We now consider the unitary operators U (χ ) and T (χ ),
introduced in Sec. II, respectively, to generate the Coulomb
and dipole gauge Hamiltonian, and write them down in the
projected subspace, in terms of projected degrees of freedom
only. This quite generically reads

U (χ ) ≡ PUP = exp

(
i(a + a†)

∑
RR′

∑
μμ′

c†
Rμχ

μμ′
RR′ cR′μ′

)
,

(27)
where

χ
μμ′
RR′ =

∫
drφ∗

Rμ(r)χ (r)φR′μ′ (r) (28)

is the matrix element of the local phase χ (r), directly related
to the vector potential through Eq. (14), between Wannier
states and satisfies (χμμ′

RR′ )
∗ = χ

μ′μ
R′R . It is useful to discuss
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the transformation of electronic operators under the action of
U (χ ). This reads

U †(χ )cRμU (χ ) =
∑
Rμ′

(ei(a+a† )χ )μμ′
RR′cR′μ′ . (29)

We see therefore that the unitary transformation entangles the
electronic degrees of freedom with the photonic ones through
generalized phase factors that have a nontrivial structure in
real and orbital space. As we are going to discuss, these fac-
tors will appear in the Coulomb gauge Hamiltonian through
Eq. (15). Similarly, we obtain for the projected PZW transfor-
mation T (χ ) ≡ PT P

T (χ ) = exp

(
−i(a + a†)

∑
RR′

∑
μμ′

c†
Rμχ

μμ′
RR′ cR′μ′

)
, (30)

which satisfies T †(χ ) = U (χ ). The action of the unitary
transformation on the photonic degree of freedom, needed to
evaluate the Hamiltonian in the dipole gauge through Eq. (21),
reads therefore also in the projected case as a simple shift, see
Eq. (22),

U (χ )aU †(χ ) = a − i
∑
RR′

∑
μμ′

c†
Rμχ

μμ′
RR′ cR′μ′ . (31)

As we are going to discuss next, the different way in which
photonic and electronic degrees of freedom are dressed by the
projected unitary transform is at the origin of the radically
different structure of light-matter interaction in the projected
dipole and Coulomb gauge.

C. Projected Hamiltonian in the Coulomb gauge

We start discussing the construction of the projected
Coulomb gauge Hamiltonian. As discussed before (see also
Refs. [49,50,64]), this is obtained by applying the projected
unitary operator, Eq. (27), to the projected electronic Hamil-
tonian Hel, Eq. (24), i.e.,

HC = Hph + U †(χ )HelU (χ ). (32)

Using the action of the unitary transformation on the
fermionic operators, Eq. (29), we can write

HC = Hph +
∑
R,R′

∑
μ,μ′

t̃μμ′
R,R′c

†
RμcR′μ′

+
∑

R1···R4

∑
μ1···μ4

Ũ μ1μ2μ3μ4
R1R2R3R4

c†
Rμ1

c†
Rμ2

cRμ3 cRμ4 , (33)

where the hopping and interaction parameters have been
dressed as a result of the unitary transformation and they now
read respectively as

t̃μμ′
R,R′ =

∑
R1R2α1,α2

(e−i(a+a† )χ )μα1
RR1

tα1α2
R1R2

(ei(a+a† )χ )α2μ
′

R2R′ (34)

and a similar, yet more involved, expression for the interaction
that we give in Appendix A for completeness.

An important point is worth to be stressed concerning the
final result of the projected Coulomb gauge Hamiltonian. In
the continuum, the Coulomb gauge Hamiltonian contains the

vector potential at most to quadratic order, see Eq. (9). On
the other hand, in Eq. (33), the photon field enters in a highly
nonlinear way, through the phase factors that arise from the
projected unitary transform U (χ ). While it would be tempting
to expand the Hamiltonian (33) to lowest orders and recover
the conventional paramagnetic and diamagnetic contributions
to light-matter interaction, as it is sometimes done in the litera-
ture in the context of the Peierls substitution, we will explicitly
show later in this paper that this can lead to inconsistencies
in the regime of ultrastrong light-matter coupling. A natural
question at this point is how to connect our result for the
projected Coulomb gauge Hamiltonian, Eq. (33), with what
is usually obtained within the Peierls substitution, often used
in the literature in the context of tight-binding models coupled
to the electromagnetic field. We discuss this important issue in
the next section.

D. Comparison with Peierls substitution

For tight-binding models the Peierls substitution is a stan-
dard approach to couple electronic degrees of freedom to
light. This amounts to dress the hopping terms entering the
electronic Hamiltonian Hel in Eq. (24) as

tμμ′
R,R′ → tμμ′

R,R′eie
∫ R′

R dr·A(r). (35)

We already see from the above expression that within this
approach the vector potential only couples nonlocal hopping
elements, i.e., intra-atomic orbital transitions are absent.

In order to see how the Peierls substitution emerges within
our approach it is useful to go back to the projected unitary
transformation in Eq. (27) and expand χ (r) around a lattice
site R, assuming the electromagnetic field varies slowly on
the scale of the lattice spacing (electric dipole approximation)
to obtain

χ
μμ′
RR′ = χ (R)δRR′δμμ′ + ∂rχ |RLμμ′

RR′ , (36)

where the connection coefficients are defined as

Lμμ′
RR′ =

∫
drφ∗

Rμ(r)(r − R)φR′μ′ . (37)

One can readily see that the Peierls substitution is equivalent
to setting the connection coefficients to zero [65]. Indeed we
have in this case

U †cRμU = ei(a+a† )χ (R) cRμ, (38)

which gives rise to the well-known Peierls dressing of the hop-
ping terms. In other words, the Peierls substitution is invariant
under a restricted gauge transformation, Eq. (38), that ignores
the connections [65].

In this respect, as we are going to discuss further in the
next sections, our projected Coulomb gauge Hamiltonian does
not assume any specific structure in orbital space for χ

μμ′
RR′

and it is able to account for nontrivial connection coefficients.
Furthermore, since by construction the same function χ

μμ′
RR′ en-

ters in the projected Coulomb and dipole gauge Hamiltonians
in Eqs. (33) and (40), this guarantees gauge equivalence: a
given choice on the structure of χ will immediately translate
into a dipole and Coulomb Hamiltonian related by a unitary
transformation.
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We note that related issues with the Peierls substitution
(or Peierls approximation) emerge in other contexts and
are not specific to the quantum light-matter case. In fact,
similar problems already emerge when trying to derive the
appropriate second quantized current operator for a projected
tight-binding model. Setting to zero the connection coeffi-
cients amounts to approximating the matrix elements of the
momentum operator between Wannier states, which results in
an expression for the Peierls current depending in general on
the choice of Wannier basis (and in general on the local in-
teraction for multiorbital problems) [65]. A related discussion
appears in the context of calculations of optical conductivity,
which depends on the momentum operator matrix element. In
that context it is indeed well known that the Peierls substitu-
tion disregards local intra/interband processes, exactly those
encoded by the connection coefficients, and that this can have
effects on calculations of transport properties [66–69]. We
notice that another issue with Peierls substitution and gauge
invariance has been recently reported [70].

E. Projected Hamiltonian in the dipole gauge

We now discuss the form of the projected Hamiltonian in
the dipole gauge. To proceed we apply the projected unitary
transformation U (χ ) to the photonic Hamiltonian only, ac-
cording to Eqs. (20) and (21), i.e.,

HD = U (χ )HphU
†(χ ) + Hel. (39)

Using Eq. (31) we obtain

HD = Hel + iωc(a − a†)
∑
RR′

∑
μμ′

c†
Rμ

χ
μμ′
RR′ cR′μ′

+ωc

(∑
RR′

∑
μμ′

c†
Rμ

χ
μμ′
RR′ cR′μ′

)2

+ ωca†a. (40)

As in the continuum formulation, we see that within the dipole
gauge the light field couples linearly to the matter through
the displacement (a − a†) rather than through the vector po-
tential. Depending on the spatial dependence of χ (r) and the
resulting structure in real and orbital space of χ

μμ′
RR′ , the cavity

photon can mediate shifts in the orbital energies, correspond-
ing in the second term of Eq. (40) to terms where R = R′
and μ = μ′, or dipolelike couplings between different or-
bitals (when R = R′ and μ 
= μ′) as well as photon-mediated
hopping terms. In addition, the cavity also gives rise to an
instantaneous self-interaction term for the electronic sector.
As we are going to discuss in Sec. V in the context of a
concrete model example, this term plays an important role in
renormalizing the bare electronic interaction, an effect which
is often called depolarization shift [71]. As such this term
cannot be dropped, especially in the ultrastrong light-matter
coupling regime [48]. It is worth stressing the difference be-
tween projecting directly Eq. (21) in the continuum, which
would have lead to a self-interaction term written as

P

(∫
drψ†(r)χ (r)ψ (r)

)2

P,

and applying the projected unitary transformation, which
leads to the square of the polarization operator. Finally, we

notice that the construction of a projected dipole gauge Hamil-
tonian has been discussed before, in the context of mesoscopic
cavity QED [54] and multimode cavity QED coupled to quan-
tum materials [39], and that our results coincide with those
presented in those works when a single mode of the cavity is
retained.

F. Gauge equivalence of projected Hamiltonians

We conclude this section by discussing explicitly the gauge
equivalence of the projected Coulomb and dipole gauge
Hamiltonian that we have derived above. It is worth em-
phasizing that, as compared to the full continuum theory
discussed in Sec. II, such equivalence is not obvious a pri-
ori given the structure of the two projected Hamiltonians,
Eqs. (33) and (40). Indeed while the projected dipole gauge
retain a similar structure of light-matter coupling with respect
to the continuum theory (namely a linear term and a self-
interaction), the projected Coulomb gauge acquires a highly
nonlinear form, with the photon field entering to all orders.
Despite this difference the two gauge formulations are fully
equivalent, i.e., they are related by a unitary transformation. In
fact, if we apply the projected unitary transformation T †(χ ) to
the Coulomb gauge Hamiltonian, Eqs. (32) and (33), and use
the fact that T †(χ ) = U (χ ) we recover the Hamiltonian in the
dipole gauge, given by Eq. (40), i.e.,

T †(χ )HCT (χ ) = U (χ )HphU
†(χ ) + Hel ≡ HD. (41)

As a result, the gauge equivalence is fully preserved in our
formulation and calculations performed on the two models
will yield the same answers for physical, gauge invariant,
quantities, such as for example the energy spectrum. In ad-
dition, one can use the above strategy to compare predictions
for gauge dependent operators, by applying the same unitary
transformation also to the observable of interest.

We emphasize that in order for gauge equivalence to hold
one needs massive cancellations on the left-hand side of
Eq. (41), order by order in the light-matter coupling, since the
right-hand side has only linear and quadratic (self-interaction)
contributions. This suggests that the truncation of the pro-
jected Coulomb gauge Hamiltonian to lowest orders in the
light-matter coupling has to be performed with care if one
wants to preserve gauge equivalence. We will come back to
this issue in Sec. V in the context of a specific two-orbital
model.

IV. EXAMPLES

We will now provide two concrete examples to further
clarify the general results obtained in the previous section.
First we consider a single band Hubbard model, for which
we demonstrate that our projected Coulomb Hamiltonian re-
covers the one obtained through the Peierls substitution. Then
we move to a two-orbital problem, recently studied in the
literature [32,35,72], where the nontrivial orbital structure of
the unitary transform makes clear the importance of prop-
erly treating the connection coefficients in order to obtain a
Coulomb gauge which is equivalent to the dipole one. We will
discuss the physics of this model in detail in Sec. V.
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A. Single-band Hubbard model

For a single orbital Hubbard model the Hamiltonian reads

H = −
∑
〈RR′〉

∑
σ

tRR′ (c†
Rσ cR′σ + H.c.) + U

∑
R

nR↑nR↓.

(42)

In this case, the connections coefficients are identically
zero and the Peierls substitution is correct. In fact we can write

χσσ ′
RR′ = δσσ ′

∫
drφ∗

R(r)χ (r)φR′ (r) � δσσ ′δRR′χ (R). (43)

As a result the projected Coulomb gauge Hamiltonian ob-
tained through our approach reads

HC = ωca†a + U
∑

R

nR↑nR↓

−
∑
〈RR′〉

∑
σ

tRR′ (eig(a+a† )c†
Rσ cR′σ + H.c.), (44)

and coincides with the one obtained within the Peierls substi-
tution [73].

It is useful to write the Hamiltonian in the dipole gauge,
which reads

HD = Hel + ωca†a + iωc(a − a†)
∑
Rσ

χRc†
Rσ cRσ

+ωc

(∑
Rσ

χRc†
Rσ cRσ

)2

. (45)

We emphasize again that in order to keep the gauge equiva-
lence intact all the way into the strong light-matter coupling
regime it is crucial to keep all the terms in the Peierls phase,
as recently done in Refs. [29,73].

B. Two-orbital model

We now consider a model of spinless electrons hopping
on an inversion-symmetric crystal with two atomic orbitals
with opposite parity (such as s and pz, denoted as α = 1, 2 in
the following) and interacting with local Coulomb repulsion.
The model has been introduced before in the literature in the
context of electronic superradiance [35,72].

We consider a one-dimensional chain with lattice sites R =
jx, where j is an integer (we set the lattice constant al = 1),
and periodic boundary conditions. The electronic Hamiltonian
reads

Hel = (Eg/2)
∑

j

�
†
j σ

z� j + U
∑

j

n j1n j2

−
∑

j

�
†
j (tsσ

z − it̃σ y)� j+1 + H.c., (46)

where we have defined electronic spinor operators

�
†
j = (c†

j1 c†
j2), � j =

(
c j1

c j2

)
(47)

satisfying standard anticommutation rules {ciα, c†
jβ} = δi jδαβ

and introduced the Pauli matrices σ a. Here Eg is the local
atomic energy, ts (t̃) describes interband (intraband) next-
neighbor hopping, and U is the local density-density repulsion

among orbitals, with n jα = c†
jαc jα . For what concerns the

electromagnetic field we consider a single cavity mode with
a uniform vector potential polarized along the chain, i.e., A =
uxA0(a + a†), which gives rise to a photonic pseudopotential
χ (x) = eA0x. The photon Hamiltonian reads Hph = ωca†a.

We now write down the projected unitary operator,
Eq. (27), for our two-orbital case. We assume the matrix
element χαα′

j j′ to be local in space and completely off-diagonal
in orbital space, i.e., we consider only the leading local dipole
interband matrix element,

χαα′
j j′ = γ δ j j′σ

x
αα′ , (48)

where we have introduced the light-matter coupling

γ = eA0 x12, (49)

with x12 = ∫
dx φ∗

1 (x)xφ2(x) the dipole matrix element be-
tween Wannier orbitals. Then we get for the projected unitary
transformation, Eq. (27), the form

U = eiγ (a+a† )
∑

j σ x
j , (50)

where we have introduced the pseudospin operators

σ a
j = �

†
j σ

a� j (51)

satisfying the algebra [σ a
j , σ

b
j′ ] = 2iεabcσ c

j δ j j′ . Similarly we
can define the projected PZW transformation as

T = e−iγ (a+a† )
∑

j σ x
j . (52)

Using the projected unitary transformation, Eq. (50), and
Eq. (39) we obtain the dipole gauge Hamiltonian in the form

HD = Hel+ ωca†a+ iωcγ (a − a†)
∑

j

σ x
j + ωcγ

2

(∑
j

σ x
j

)2

.

(53)

We note that this result coincides with the dipole Hamiltonian
discussed in Ref. [72] for a related model for excitonic insu-
lator coupled to a single mode cavity.

To evaluate the Coulomb gauge Hamiltonian we follow the
recipe discussed in Sec. III. First, we evaluate the action of
the projected unitary transform on the electronic operators,
Eq. (29), which reads

U †c jαU =
∑

β

(eiγ (a+a† )σ x
)αβc jβ, (54)

U †c†
jαU =

∑
β

c†
jβ (e−iγ (a+a† )σ x

)βα. (55)

Plugging these results into Eq. (33), and using the transforma-
tion for the pseudospin components

U †σ x
j U = σ x

j ,

U †σ
y
j U = cos[2γ (a + a†)]σ y

j + sin[2γ (a + a†)]σ z
j ,

U †σ z
j U = cos[2γ (a + a†)]σ z

j − sin[2γ (a + a†)]σ y
j ,
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we obtain the Coulomb gauge Hamiltonian for a two-orbital
system

HC = ωca†a + U
∑

j

n j1n j2

+
∑

j

�
†
j (Eg/2){cos[2γ (a + a†)]σ z

− sin[2γ (a + a†)]σ y}� j

−
∑

j

�
†
j cos[2γ (a + a†)](tsσ

z − it̃σ y)� j+1

+
∑

j

�
†
j sin[2γ (a + a†)](tsσ

y + it̃σ z )� j+1 + H.c.

(56)

We emphasize that, as in the continuum case, the local Hub-
bard interaction Hee = U

∑
j n j1n j2 is not affected by the

electromagnetic field, i.e.,

U †HeeU = Hee, (57)

a result that we explicitly prove in Appendix A.
Finally, as a consistency check we can explicitly verify that

the derived Coulomb gauge and dipole gauge Hamiltonian,
even for the truncated model, are related by a unitary transfor-
mation. Indeed we have, using the fact that T † = U ,

T †HCT = UHphU
† + Hel = HD. (58)

We note that the obtained Hamiltonian in the Coulomb
gauge significantly differs from the one typically used when
describing a material coupled to quantum light as it contains
the photonic operators a and a† up to all orders. However,
having this complicated structure is important to have a well-
defined ultrastrong coupling limit in the tight-binding model.

C. Comparison with Peierls substitution

Before concluding this section it is instructive to com-
pare, for the specific model under consideration, our projected
Coulomb gauge Hamiltonian in Eq. (56) with the one obtained
through the Peierls substitution, which has been studied for
example in Ref. [35]. The resulting Hamiltonian reads in real
space

HP = ωca†a +
∑

j

�
†
j (Eg/2)σ z� j + U

∑
j

n j1n j2

−
∑

j

�
†
j eig(a+a† )(tsσ

z − it̃σ y)� j+1 + H.c., (59)

where g = eA0 is the light-matter coupling. We can imme-
diately see that this Peierls Hamiltonian differs from the
projected Coulomb gauge Hamiltonian we have obtained
in Eq. (56). We can trace back this difference to the fact
that within the Peierls approximation each hopping term in
Eq. (46) is dressed by the same phase factor, which therefore
does not account for local orbital transitions mediated by the
photon, as we discussed in Sec. III D. While this can describe
a different physical situation, depending on the structure of
local orbitals chosen for the projection, it is important to
stress that in order to preserve gauge equivalence all the way
into the ultrastrong coupling regime it is crucial to treat the
Peierls phase to all orders, as we are going to discuss more in

detail in the next section. Another important difference among
our Coulomb gauge and Eq. (59) is that within Peierls the
light-matter coupling g is completely fixed by the strength of
the field and does not really depend on any material property.
This is not surprising after all since, as we discussed, the
Peierls substitution can be equivalently seen as an approxi-
mation to the momentum operator matrix element which is
completely determined by tight-binding parameters. As we
are going to discuss in the next section this will have physical
consequences for example on the polariton spectrum of the
system.

V. APPLICATION: TWO-ORBITAL MODEL COUPLED TO
CAVITY

In this section we study in more detail the two-orbital
model introduced in the previous section. First, using the
dipole gauge Hamiltonian we derive an electron-only effec-
tive action after integrating out exactly the cavity photon and
show that, even beyond mean-field theory, the light-matter
coupling goes to zero at low frequency, i.e., the ground state
is factorized and no superradiance is possible [72]. Then we
rederive this result within the Coulomb gauge, solving for
the ground state within mean-field theory. We emphasize the
crucial role played by photon nonlinearities and the danger
associated with expanding the Coulomb gauge Hamiltonian
in light-matter coupling. Finally, we compute the polariton
spectrum of the problem and show that, although the ground
state of the problem is factorized in the thermodynamic limit,
excitations on top of it are actually entangled. We show ex-
plicitly how polariton frequencies are the same within our
projected Coulomb gauge and dipole gauge, as expected from
the gauge equivalence.

A. Dipole gauge Hamiltonian: Effective action for electrons and
asymptotic decoupling

The dipole gauge Hamiltonian, Eq. (53), has the nice fea-
ture that the photon mode only enters linearly. Therefore we
can integrate it out exactly within a path integral formulation
and obtain an effective action for the electronic sector only.
We start from the partition function associated with the dipole
gauge Hamiltonian, which reads

Z =
∫ ∏

j

D[p, � j, �
∗
j ]e−Sph−Sel−Sel-ph , (60)

where we separated the different contributions to the total
action S: Sph describes the photonic fields (see Appendix B for
the details of the derivation), Sel corresponds to the electronic
system, and Sel-ph describes the electron-photon interaction,

Sph =
∫ β

0
dτ dτ ′ p(τ )D−1(τ − τ ′)p(τ ′), (61)

Sel =
∫ β

0
dτ dτ ′ ∑

j, j′
�∗

j (τ )G−1
j j′ (τ − τ ′)� j′ (τ

′)

+
∫ β

0
dτ ωcγ

2

(∑
j

σ x
j (τ )

)2

+
∫ β

0
Hee, (62)

Sel-ph = −
∫ β

0
dτ

√
2ωcγ p(τ )

∑
j

σ x
j (τ ). (63)
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Here

D−1(τ − τ ′) = 1

2ω2
c

δ(τ − τ ′)
(
ω2

c − ∂2
τ

)
(64)

is the photonic Green’s functions and G−1
j j′ (τ − τ ′) is the non-

interacting electronic Green’s functions. After performing the
Gaussian integration over p(τ ), the partition function given by
Eq. (60) becomes

Z[p] =
∫ ∏

j

D[� j, �
∗
j ]e−Seff[� j ,�

∗
j ], (65)

with the effective action given by

Seff =
∫ β

0
dτ dτ ′ ∑

j, j′
�∗

j (τ )G−1
j j′ (τ − τ ′)� j′ (τ

′)

+ ωcγ
2
∫ β

0
dτ

(∑
j

σ x
j (τ )

)2

+
∫ β

0
Hee

− ωc

2
γ 2

∫ β

0
dτ dτ ′ ∑

j j′
σ x

j (τ )D(τ − τ ′)σ x
j′ (τ

′). (66)

We see that in the effective electronic action there is now
an additional term proportional to γ 2, a retarded electron-
electron interaction arising from the exact integration out of
the photonic mode Defining the Fourier transform as ψ (τ ) =∑

ωn
e−iωnτψ (iωn)/

√
β and calculating the photonic Green’s

function

D(iωn) = 2ω2
c

ω2
c − (iωn)2

, (67)

the effective action becomes

Seff =
∑
ωn

∑
j, j′

�∗
j (iωn)G−1

j j′ (iωn)� j′ (iωn)

+ Hee +
∑

j j′

∑
ωn

Jeff (iωn)σ x
j (iωn)σ x

j′ (iωn). (68)

where we have introduced the overall effective electron-
electron

Jeff (iωn) = ωcγ
2

(
1 − ω2

c

ω2
c − (iωn)2

)
.

After analytic continuation iωn → ω + iη we see that this
effective interaction vanishes in the static limit ω → 0 and the
effective action is given only by the matter Hamiltonian and
independent of the light-matter coupling strength,

Seff(ω → 0) =
∑
j, j′

�∗
j (ω)G−1

j j′ (ω)� j′ (ω) + Hee. (69)

This result shows that at low frequency electrons and photons
are fully decoupled. Since a putative equilibrium superradiant
phase transition would emerge as zero frequency criticality of
the coupled electron-photon system, the above result shows
that the system remains always in the normal symmetric
phase, at least for what concerns the photon. The electronic
sector can in principle break a symmetry due to the local
Hubbard-like electron-electron interaction in Eq. (68) but this
does not lead to any photonic order parameter. We have further

checked this result by solving the problem within mean-field
theory (see Appendix C). Finally, we note that while at zero
frequency the two sectors are decoupled, excitations at finite
frequency can carry nontrivial light-matter entanglement. We
show this explicitly in Sec. V D, where we discuss the polari-
ton spectrum.

B. Coulomb gauge Hamiltonian: Mean-field solution

In this section we show how the result of the previous
section, the absence of superrandiant phase, can be obtained
in the Coulomb gauge, i.e., from the Hamiltonian in Eq. (56).
In order for this to work it is crucial to keep the structure
of cosine and sine intact. In fact, as we are going to show
explicitly below, expanding the Coulomb gauge Hamiltonian
and keeping only linear and quadratic couplings leads to a
breakdown of the model in the ultrastrong coupling limit, both
within our Coulomb gauge and within the Peierls substitution.

Before proceeding it is convenient to introduce Fourier
modes

cn, j = 1√
N

∑
k

eik jcn,k, (70)

where N is the number of lattice sites and k belongs to recip-
rocal lattice, and to rewrite the pseudospin operators Eq. (51)
in momentum space

σ a
k = �

†
k σα�k, (71)

where σ a, with a = x, y, z, are Pauli matrices and �k is the
Fourier transform of the spinor defined in Eq. (47). Thus,
the Coulomb gauge Hamiltonian Eq. (56) reads in a more
compact form

HC = ωca†a + U
∑

j

n j1n j2 +
∑

k

[{εk cos[2γ (a + a†)]

− 2t̃ sin(k) sin[2γ (a + a†)]}σ z
k

− {2t̃ sin(k) cos[2γ (a+ a†)] + εk sin[2γ (a + a†)]}σ y
k

]
,

(72)

where εk = Eg/2 − 2ts cos(k). Next, we study the Coulomb
gauge Hamiltonian HC in mean field that corresponds to ne-
glecting correlations between the cavity modes and electrons,

|�〉 = |ψ〉|φ〉.
Here |φ〉 is a coherent state, a|φ〉 = α

√
N |φ〉, with α being

the photonic order parameter that could have both real and
imaginary parts, α = α′ + iα′′. Finite value of α corresponds
to the superradiant phase, while α is always zero in the normal
phase. As a result of the mean-field decoupling, we have to
solve a photonic problem with Hamiltonian

Hmf
ph = ωca†a + A cos[2γ (a + a†)] + B sin[2γ (a + a†)],

(73)

where

A =
∑

k

[
εk〈ψ |σ z

k |ψ〉 − 2t̃ sin(k)〈ψ |σ y
k |ψ〉], (74)

B =
∑

k

[ − 2t̃ sin(k)〈ψ |σ z
k |ψ〉 − εk〈ψ |σ y

k |ψ〉], (75)
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and the electronic mean-field Hamiltonian

Hmf
el = U

∑
j

n j1n j2 +
∑

k

[εkA1 − 2t̃ sin(k)A2]σ z
k

−
∑

k

[2t̃ sin(k)A1 + εkA2]σ y
k , (76)

where we introduced the expectation values of the photonic
operators over the coherent state |φ〉,

A1 = 〈φ| cos[2γ (a + a†)]|φ〉, (77)

A2 = 〈φ| sin[2γ (a + a†)]|φ〉. (78)

Making the Hartree-Fock approximation, the
electron-electron interactions Hamiltonian Hee, Eq. (76),
becomes [32,35]

Hee = −U
∑

k

(m

2
σ z

k + I ′σ x
k − I ′′σ y

k

)

+ UN

(
m2

4
+ |I|2

)
, (79)

where m = (1/N )
∑

q〈σ z
q 〉 and I = (1/N )

∑
q〈c†

q,2cq,1〉 ≡
I ′ + iI ′′, and the electronic mean-field Hamiltonian can be
written as

Hmf
el =

∑
a=x,y,z

ha
kσ

a
k . (80)

Here the coefficients ha
k , with a = x, y, z, are given by

hx
k = −UI ′, (81)

hy
k = −2A1t̃ sin(k) − A2εk + UI ′′, (82)

hz
k = A1εk − 2A2t̃ sin(k) − U

m

2
. (83)

The resulting Hamiltonian can be easily diagonalized by
a Bogoliubov transformation. At zero temperature we find
that 〈ψ |σ a

k |ψ〉 = −ha
k/Ek and I = −(1/2)

∑
k (hx

k − ihy
k )/Ek ,

where Ek =
√∑

a (ha
k )2.

Next, we find that A1 = e−2γ 2
0 /N cos (4γ0α) and A2 =

e−2γ 2
0 /N sin (4γ0α), where γ0 = γ

√
N . In the limit N →

∞, we find that A1 = cos (4γ0α) and A2 = sin (4γ0α). The
ground-state energy is given by the expectation value of HC

over |�〉. In presence of interactions, the ground-state energy
reads

EGS

N
= ωc|α|2 − 1

N

∑
k

√∑
a

(
ha

k

)2 + U

(
m2

4
+ |I|2

)
,

(84)

which reduces for U = 0 to the result

EGS

N
= ωc|α|2 − 1

N

∑
k

Ek, (85)

where Ek =
√

ε2
k + 4t̃2 sin2(k). We plot in Fig. 1 the behavior

of EGS as a function of the photonic order parameter α for the
noninteracting case as well as for U 
= 0. We see that in both
cases the ground-state energy has a well-defined minimum

FIG. 1. Ground-state energy EGS/Eg of the Coulomb gauge
Hamiltonian, given by Eq. (84), as a function of the photonic order
parameter α. In the absence of the electron-electron interactions,
U = 0, EGS/Eg has a parabolic shape, with a single minimum at
α = 0 (green dot-dashed line corresponds to γ0 = 0.1 and blue
dashed line corresponds to γ0 = 0.95). Note that EGS is independent
of the light-matter coupling. For finite electron-electron interactions,
U/Eg = 2, EGS/Eg has a shape of a parabola and is independent of
the values of γ0 (black dotted line corresponds to γ0 = 0.1 and red
solid line corresponds to γ0 = 0.95). Other parameters are chosen as
ωc/Eg = 1, ts/Eg = 0.5, t̃/Eg = 0.1.

at α = 0, which is perfectly consistent with the saddle point
equation

ωcα = 2γ0

N

∑
k

{〈ψ |σ k
z |ψ〉[2A1t̃ sin(k) + A2εk]

+ 〈ψ |σ k
y |ψ〉[A1εk − 2A2t̃ sin(k)]

}
. (86)

Introducing the expectation values of the electronic operators
into Eq. (86), we find that the right-hand side of the saddle
point equation is zero. Thus, α = 0 is the only solution, which
corresponds to the absence of superradiance in the system. We
also notice that the electronic contribution to the ground-state
energy does not depend on α, i.e.,

∂E el
GS

∂α
= 0,

from which we conclude, in analogy with similar arguments
for the Peierls substitution [37], that the TRK sum rule is sat-
isfied for our projected Coulomb Hamiltonian. In fact, we can
show this in quite some generality using gauge equivalence.
First, we rewrite the Coulomb Hamiltonian in Eq. (72) as

HC = Hph + H̃el, (87)

where the dressed electronic Hamiltonian reads by construc-
tion H̃el = U †HelU . The physical current operator in our
theory is given by the derivative of this dressed electronic
Hamiltonian with respect to the field, i.e.,

J = ∂H̃el

∂A
, (88)

where A = A0(a + a†) is now treated as a classical field. The
average value of the current on the Coulomb gauge ground
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state can be written using Hellmann-Feynman theorem as

〈J〉C =
〈
∂H̃el

∂A

〉
C

= ∂〈H̃el〉C

∂A
, (89)

where 〈 〉C indicates average over the ground state of Coulomb
gauge Hamiltonian. We can evaluate the expectation value of
the dressed electronic Hamiltonian using gauge equivalence.
Indeed, we have

〈H̃el〉C = 〈U †HelU 〉C = 〈Hel〉D, (90)

where 〈 〉D indicates average over the ground state of dipole
gauge Hamiltonian. Here we used the fact that the ground state
of Coulomb and dipole gauges are related by a unitary trans-
formation. We therefore conclude that the average current in
the Coulomb gauge is given by the derivative with respect
to the field of the (undressed) electronic ground-state energy
in the dipole gauge. Since however, as we have shown in
Sec. V A, in the dipole gauge electrons and photons decouple
at low energy we conclude that 〈Hel〉D does not in fact depend
on the field and therefore

〈J〉C = ∂〈H̃el〉D

∂A
= 0 , (91)

i.e., a static uniform vector potential does not produce a finite
current in the system. We notice that within linear response
theory a static uniform current is related to the static limit of
the current-current correlation function Q(ω, q), i.e.,

〈J〉C = Q(0, q → 0)A0 = 0, (92)

which indeed is a manifestation of the TRK sum rule.

C. Discussion: Expanding the Coulomb gauge Hamiltonian

The results of previous two sections, i.e., the fact that the
photon field always remains incoherent in the ground state for
any value of the light-matter coupling, both in the dipole and
in the Coulomb gauge, does not come as a surprise at first.
Indeed recent works have proven [35], under very general
hypotheses, a no-go theorem for superradiance in presence
of static uniform vector potential in the Coulomb gauge.
Crucially, this result has been obtained within the continuum
model, where vector potential enters through paramagnetic
and diamagnetic contribution, and relies on the TRK sum rule
and gauge invariance.

We now show that in order to correctly reproduce this result
within a projected tight-binding model it is crucial to treat the
nonlinear light-matter coupling of the Coulomb gauge Hamil-
tonian nonperturbatively. On the other hand, expanding the
light-matter interaction to the second order, as done recently
in the literature in the context of Peierls approximation, would
lead to a breakdown of the model at ultrastrong coupling.
As we are going to discuss, this is true both for the Peierls
approximation as well as for our Coulomb gauge.

To see this we consider the Hamiltonian discussed in
Ref. [35], which corresponds to the Peierls approximation
Eq. (59) expanded to second order and that we rewrite here
for completeness:

HP = Hel + ωca†a + g0√
N

jp(a + a†) − g2
0

2N
T (a + a†)2,

(93)

FIG. 2. Ground-state energy EGS/Eg of the expanded Peierls
Hamiltonian as a function of the photonic order parameter α for
different values of g0 and U . In the absence of the electron-electron
interactions, U = 0, for small value of the light-matter coupling,
g0 = 0.1 (green dot-dashed line), EGS/Eg has a shape of a parabola
with a single minimum at α = 0. For large values of the light-matter
coupling, g0 = 0.95 (blue dashed line), the ground-state energy, in
addition to minimum at α = 0, develops two maxima at finite values
of α. In the presence of the electron-electron interactions, U/Eg = 2,
the ground-state energy has a single minimum for g0 = 0.1 (black
dotted line corresponds) and two additional maxima for g0 = 0.95
(red solid line). Other parameters are the same as in Fig. 1.

where

jp = 2ts sin(k)σ z
k − 2t̃ cos(k)σ y

k (94)

and

T = −2ts cos(k)σ z
k − 2t̃ sin(k)σ y

k . (95)

are the paramagnetic and diamagnetic terms and g0 = g
√

N is
the light-matter coupling.

Solving the problem within mean field, through a similar
calculation as the one sketched before (see also Ref. [35]
for details), gives a ground-state energy as a function of
the photonic order parameter α, which we plot for different
values of light matter coupling in Fig. 2. We see that for
small light-matter coupling g0 the energy has the expected
parabolic behavior with a well-defined minimum at α = 0.
However, upon increasing g0 the shape of the ground-state
energy changes qualitatively. In particular, while the α = 0
solution remains a local minimum, the system develops two
additional maxima at finite α and, more importantly, a nega-
tive curvature for finite α, which implies the α = 0 solution
is not the global minimum anymore. We emphasize that while
solving for the small α behavior does indeed allow one to pre-
dict the absence of superradiance, as reported in Ref. [35], the
behavior of the ground-state energy plotted in Fig. 2 suggests
that the Hamiltonian Eq. (93) is not well defined at ultrastrong
coupling. This problem is readily solved by treating exactly
the Peierls phase. In fact, for U = 0 we obtain

EGS

N
= h̄ωcα

2 − 1

2π

∫ π

−π

dkE2αg0+k . (96)

The integral
∫ π

−π
dkEk does not depend on α or g0, as we

obtained for our Coulomb gauge Hamiltonian. It is therefore
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important to stress that the problem here is not the Peierls
substitution per se. In fact, performing the same expansion
a priori in our Coulomb gauge Hamiltonian would have led
to the same issue. This clarifies that expanding a projected
Coulomb gauge Hamiltonian into linear (paramagnetic) and
quadratic (diamagnetic) terms, akin to the structure in the
continuum field theory, is a particularly dangerous opera-
tion at ultrastrong coupling. It could lead to inconsistencies
which could be particularly relevant in models which admit
a good superradiant phase. The importance of taking into
account all terms in the Peierls substitution was pointed out
recently [29,73].

D. Polariton spectrum

In the previous section we found that the photonic order
parameter α is zero, and our system is always in the normal
phase. However, even in the normal phase there are polaritons
in the system that give rise to nonzero optical response. Below
we present two different approaches to obtain the polariton
excitation. First, we develop an effective spin wave theory
which allows one to introduce quantum fluctuations on top
of the mean field giving rise to a simple bosonic Hamiltonian
describing polariton formation. Then we compute the photon
propagator of the full model including Gaussian 1/N fluctu-
ations on top of mean field. In the following section we put
U = 0 for simplicity. However, the effect of interactions on
the polariton spectrum is an interesting question that we leave
for future work.

1. Effective spin wave theory

We start by considering the dipole gauge Hamiltonian,
Eq. (53), that we rewrite in momentum space through the
pseudospin operators Eq. (71). Due to the uniform nature of
the vector potential we notice that the photon field only cou-
ples to the k = 0 (global) electronic polarization, also entering
the self-interaction term, and therefore we can write the dipole
gauge Hamiltonian as

HD = ωca†a − ωx

2
σ z

k=0 + iγωc(a − a†)σ x
k=0

+ γ 2ωc
(
σ x

k=0

)2 −
∑
k 
=0

[
εkσ

z
k − 2t̃ sin(k)σ y

k

]
, (97)

where we introduced ωx = 2(2ts − Eg/2). This writing sug-
gests, as first approximation, to disregard the finite momentum
electronic modes and focus on the k = 0 sector, which in
the thermodynamic limit can be treated semiclassically with
quantum fluctuations of the order 1/N described by harmonic
bosons leading to polariton modes.

Introducing a classical spin vector and a classical co-
herent field for the photon �σ = (σ x

k=0, σ
y
k=0, σ

z
k=0) =

(ρ sin θ cos φ, ρ sin θ sin φ, ρ cos θ ), a = α′ + iα′′, a† = α′ −
iα′′ into Eq. (97), we find for the classical energy

E (ρ, θ, φ, α′, α′′) = (Es − 2ts)ρ cos θ + ωc(α′2 + α′′2)

− 2ωcγα′′ρ sin θ cos φ

+ ωcγ
2ρ2 sin2 θ cos2 φ. (98)

1 2 3 4 5

1

2

3

4

5

0

FIG. 3. The frequencies ω±/Eg of the polariton modes as a func-
tion of the coupling γ0 for two different light-matter Hamiltonians:
Red solid lines correspond to ωd,±, black dashed lines correspond to
ωC,±. The parameters are fixed as ωc/Eg = 1, and ts/Eg = 0.5. The
polariton frequencies are independent of t̃ .

From ∂E/∂α′ = 0 we find that α′ = 0. From ∂E/∂α′′ = 0 we
find that α′′ = γ ρ sin θ cos φ. Using the previous expression
for α′′ we find from ∂E/∂θ = 0 that sin θ = 0. Thus, for the
classical spin we obtain that σ x

k=0 = 0, σ
y
k=0 = 0, σ z

k=0 = ρ,
α′ = 0, α′′ = 0. We find that the ground-state energy is given
by EGS = (Eg/2 − 2ts)ρ.

Next, we calculate the spectrum of the lowest excitations
above the ground states EGS using Holstein-Primakoff trans-
formation, which can be written as [74]

σ x
k=0 =

√
N (b + b†), σ

y
k=0 = −i

√
N (b − b†),

σ z
k=0 = N − 2b†b, (99)

where [σ x
k=0, σ

y
k=0] = 2iN , [σ x

k=0, σ
z
k=0] = −2iσ y

k=0.
Introducing Eqs. (99) into Eq. (97) and taking the limit

N → ∞, we obtain in the dipole gauge

H̃D = ωca†a + ωxb†b + iγ0ωc(a − a†)(b + b†)

+ γ 2
0 ωc(b + b†)2 − ωx

2
N. (100)

Here the last term corresponds to the classical energy. We note
that in the thermodynamic limit N → ∞, the dipole gauge
Hamiltonian contains only the terms proportional to γ 2

0 and
is described by the Hamiltonian of two coupled harmonic
oscillators. Performing the Bogoliubov-Hopfield transforma-
tion [75], we find two modes

ω2
d,± = 1

2

(
ω2

c + ω2
x + 4γ 2

0 ωcωx

±
√(

ω2
c + ω2

x + 4γ 2
0 ωcωx

)2 − 4ω2
cω

2
x

)
, (101)

which we plot as function of light-matter coupling in Fig. 3.
We find a lower polariton branch that is strongly suppressed
by light-matter coupling while the upper one increases.

It is instructive to repeat the same analysis for the Coulomb
gauge Hamiltonian, Eq. (56). Specifically, splitting the k = 0
sector from the finite momentum modes and disregarding the
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latter, we obtain

H̃C = ωca†a − ωx

2
cos[2γ (a + a†)]σ z

k=0

+ ωx

2
sin[2γ (a + a†)]σ y

k=0. (102)

Using the expressions for the classical spin, we find for the
energy

E = ωc(α′2 + α′′2) − ωx

2
ρ cos θ cos(4γα′)

+ ωx

2
ρ sin θ sin φ sin(4γα′). (103)

As for the dipole gauge Hamiltonian, we find that α′ = α′′ =
0 and sin θ = 0. After performing the Holstein-Primakoff
transformation, we obtain

H̃C = ωca†a + ωxb†b − iγ0ωx(a + a†)(b − b†)

+ γ 2
0 ωx(a + a†)2 − ωx

2
N, (104)

where we neglected the terms of the order 1/N . Diagonaliz-
ing H̃C , we find that there are two polariton branches with
frequencies

ω2
C,± = 1

2

(
ω2

c + ω2
x + 4γ 2

0 ωcωx

±
√(

ω2
c + ω2

x + 4γ 2
0 ωcωx

)2 − 4ω2
cω

2
x

)
. (105)

As expected we find that ω2
d,± = ω2

C,±, which immediately
follows from the fact that the dipole and Coulomb gauge
Hamiltonians are related by a unitary transformation.

At this point a natural question is to compare the polariton
modes we have obtained so far with those that can be obtained
from the Peierls Hamiltonian, Eq. (59), through the very same
calculation. Using Eq. (99) we obtain

H̃P = ωca†a + ωxb†b + 2ig0t̃ (a + a†)(b − b†)

+ g2
0ts(a + a†)2 − ωx

2
N. (106)

We note that H̃C and H̃P both describe the system of two
coupled harmonic oscillators, but with different coupling
strength.

For the Peierls Hamiltonian H̃P the polariton frequencies
read

ω2
P,± = 1

2

(
ω2

x + ω̃2
c ±

√(
ω̃2

c − ω2
x

)2 + 64g2
0t̃2ωcωx,

)
,

(107)

where ω̃c =
√

ωc(ωc + 4g2
0ts). Quite interestingly, we see that

the light-matter coupling g0, which within the Peierls sub-
stitution only amounts to the vector potential amplitude A0,
enters always in front of a hopping term. We can understand
this result by recalling that within the Peierls substitution the
effective momentum matrix element is given by the hopping
operator itself. This has some interesting consequence. In
contrast to the dipole (or Coulomb) gauge Hamiltonian, ωP,±
depends on the hopping amplitude t̃ . Moreover, we emphasize
that the light-matter coupling γ0 = eA0x12

√
N in the polariton

energy of the dipole gauge Hamiltonian and g0 = eA0

√
N in

the Peierls Hamiltonian are different. We note that γ0 depends

on the dipole matrix element between Wannier orbitals, being
dependent on the material properties, while g0 is completely
independent of the material. Thus, we note that by fine-tuning
g0 and t̃ we can match the polariton frequencies obtained from
the dipole gauge and Peierls Hamiltonians. Moreover, we find
that ωP,− goes to zero at g∗

0 = √
ωcωx/(2

√
4t̃2 − tsωx ), pro-

vided that t̃ >
√

tsωx/2. A mode softening within the normal
phase is usually associated with a superradiance transition.
However, in our case, the mode softening comes from making
the approximation of taking into account only k = 0 mode.
We checked that the saddle point α = 0 of the ground-state en-
ergy of the expanded Peierls Hamiltonian calculated at k = 0
changes from minimum to maximum for g0 > g∗

0.

2. Fluctuations corrections to photon spectral function

A different approach to obtain polariton modes is to com-
pute the photon Green’s function and look at its poles. As we
are going to see, the advantage of this method is that we also
get information about polariton lifetime, which was missed in
the simple spin-wave theory of the k = 0 sector. Since at the
leading order in N → ∞ photons and electrons decouple, we
have to include Gaussian fluctuations at 1/N order. To this ex-
tent we expand the action up to second order in photonic fields
to include the Gaussian fluctuations in the normal phase [32].
Introducing the Nambu representation of the photon fields as
�†(τ ) = [φ∗(τ ), φ(τ )], the expanded action becomes

S̃eff = 1

2

∫
dτdτ ′�†(τ )

[
D−1

0 (τ − τ ′) − �(τ − τ ′)
]
�(τ ′),

(108)

where D−1
0 (τ − τ ′) is the bare photon Green’s function given

by

D−1
0 (τ − τ ′)

=
(

δ(τ − τ ′)(∂τ + ωc) 0
0 −δ(τ − τ ′)(∂τ − ωc)

)

(109)

and �(τ − τ ′) is the polarization,

�(τ − τ ′)

=

⎛
⎜⎜⎝

δ2 log Z0[�,�∗]

δφ∗(τ )δφ(τ ′)
δ2 log Z0[�,�∗]

δφ∗(τ )δφ∗(τ ′)
δ2 log Z0[�,�∗]

δφ(τ )δφ(τ ′)
δ2 log Z0[�,�∗]

δφ(τ )δφ∗(τ ′)

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
�(τ )=α=0

.

(110)

Here

Z0 =
∫ ∏

k

D[ck,s, ck,p, c∗
k,s, c∗

k,p]e−Sel-ph , (111)

Sel-ph =
∫ β

0
dτ

[
cos{2γ [φ(τ ) + φ∗(τ )]}

×
∑

k

[
εkσ

z
k − 2t̃ sin(k)σ y

k

] − sin{2γ [φ(τ ) + φ∗(τ )]}

×
∑

k

[
2t̃ sin(k)σ z

k + εkσ
y
k

]]
. (112)
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FIG. 4. Spectral function A(ω) as a function of frequency ω/ωc

for ωc/Eg = 1, ts/Eg = 0.5, t̃/Eg = 0.1, and η/Eg = 0.01. Red solid
line corresponds to γ0 = 0.1, green dashed line corresponds to γ0 =
0.3, and blue dot-dashed line corresponds to γ0/Eg = 0.6. There are
three peaks in the spectral function, where the peak around ω/ωc ≈
0.34(= 2Emin

k ) comes the energy gap.

From Eq. (110) we find that the polarization reads

�(ω) =
(

1 1
1 1

)
χ (ω), (113)

where χ (ω) ≡ K (ω) + 〈Jd〉 is the current-current correlator
that has paramagnetic and diamagnetic contributions,

K (τ − τ ′) = 〈TcJp(τ )Jp(τ ′)〉, (114)

Jp = 2γ
∑

k

[
εkσ

y
k + 2t̃ sin(k)σ z

k

]
, (115)

Jd = (2γ )2
∑

k

[
εkσ

z
k − 2t̃ sin(k)σ y

k

]
. (116)

FIG. 5. Spectral function Ak=0(ω) at k = 0 as a function of γ0

and ω/ωc. The parameters are fixed as ωc/Eg = 1, ts/Eg = 0.5,
t̃/Eg = 0.1, and η/Eg = 0.01. Red dashed lines correspond to the
frequencies of the polariton modes given by Eq. (105). There is an
excellent agreement between the two.

Next, we find that

χ ′(ω) = −2γ 2
0

π

[∫ π

−π

dk Ek

+P
∫ π

−π

dk E2
k

(
1

ω − 2Ek
− 1

ω + 2Ek

)]
, (117)

χ ′′(ω) = γ 2
0

∫ π

−π

dk E2
k

[
δ
(

Ek − ω

2

)
− δ

(
Ek + ω

2

)]
. (118)

Moreover, we note that the current-current response functions
vanishes at zero frequency, χ (ω = 0) = 0.

From the dressed photon Green’s function

D−1(ω) = D−1
0 (ω) − �(ω), (119)

we find that the polariton spectral function reads

A(ω) = 1

π
Im[D11(ω)]. (120)

In the limit η → 0 we arrive at

A(ω) = 1

π

χ ′′(ω)(ω + ωc)2[
ω2 − ω2

c + 2ωcχ ′(ω)
]2 + [2ωcχ ′′(ω)]2

. (121)

We plot the resulting spectral function in Fig. 4 for different
values of light-matter interaction γ0. We see two peaks which

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0(a)

(b)

0.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.0

FIG. 6. (a) Polariton branches for our Coulomb gauge Hamilto-
nian: Red solid lines correspond to the maximum in Ak=0(ω), black
dashed lines correspond to the analytical solution given by Eq. (105),
and blue dot-dashed solid lines correspond to the maximum of the
spectral function A(ω). (b) Polariton lifetime χ ′′(ω±) as a function
of the light-matter coupling γ0. Red solid line corresponds to the
lifetime of the upper polariton branch ω+, while black dashed line
corresponds to the lifetime of the lower polariton branch ω−. The
parameters are fixed as ωc/Eg = 1, ts/Eg = 0.5, t̃/Eg = 0.1, and
η/Eg = 0.01.
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move far apart as γ0 increases and further broadens. Moreover,
there are now three peaks due to the different shape of χ (ω).

To make the connection with the previous section, we
consider only the k = 0 contribution to the spectral function
Eq. (121). We note that in this case both the real and imagi-
nary parts of the polarization χ k=0(ω) have a single peak at
ω/Eg = 1, and, as a result, Ak=0(ω) has two branches as a
function of the light-matter coupling (see Fig. 5). In Fig. 5
we compare those branches with the analytical result and find
perfect agreement.

It is instructive to compare the analytical estimate with the
calculation here. Given the photon Green’s function Eq. (121)
the polariton frequencies are approximately given by the equa-
tion

ω2 ≈ ωc[ωc − 2χ ′(ω)]. (122)

Finally, we compare the maximum of the full spectral
function A(ω), reduced to k = 0 contribution spectral function
Ak=0(ω) and the polariton frequencies obtained analytically
ωC,± in Fig. 6(a). As already noted, there is an excellent
agreement between and the maximum of Ak=0(ω), while the
maximum of A(ω) is quite shifted. This shift comes from the
finite width of the peaks in the full spectral function as it con-
tains contributions from all modes, and not only k = 0 mode.
The width of the polariton branches is plotted in Fig. 6(b).
We note that for small values of the light-matter coupling, the
width of the lower polariton branch χ ′′(ω−) is larger than for
the upper polariton branch χ ′′(ω+), while for large values of
γ0, χ ′′(ω+) is much larger than χ ′′(ω−).

VI. CONCLUSIONS

In this work we have discussed the issue of gauge fix-
ing and gauge equivalence in models of strongly correlated
electrons coupled to quantum light. In particular, we have
presented a general formalism to write down a quantum light-
matter Hamiltonian for projected degrees of freedom, either in
the Coulomb or dipole gauge, which remain fully equivalent
under a change of gauge, i.e., related by a unitary transforma-
tion. While this is naturally implemented in a full microscopic
description of light-matter interactions, its extension to pro-
jected models introduce a number of conceptual and practical
subtleties and have recently spurred significant interest, both
in the solid-state and cavity QED communities.

The central idea of our approach, which generalizes to the
case of strongly correlated electrons the recent developments
obtained for well-known quantum optics models such as Rabi
or Dicke models [49,50], is that projection onto a subset of
degrees of freedom should be done before coupling matter and
light and that appropriate electron-photon coupling should be
generated by applying a unitary transformation to the matter-
only or to the photon-only degrees of freedom, depending on
the chosen gauge, which as a result become entangled.

Our result for the dipole gauge Hamiltonian, containing
a linear coupling of the photon field to the electrons and an
instantaneous self-interaction term for the latter similar to
the continuum case, matches recent results obtained in the
literature [39,54]. The projected Hamiltonian in the Coulomb
gauge instead comes with new features, in particular a highly
nonlinear photon-electron coupling which is a genuine feature

of working with a projected model. The nonlinear structure
of the light-matter coupling emerges through phase factors
dressing the electronic degrees of freedom, which generalize
the well-known Peierls phases often used in solid-state con-
text. We show that our projected Coulomb gauge Hamiltonian
reduces to the one obtained through the Peierls substitution
when disregarding the contribution of local on-site orbital
degrees of freedom to the light-matter coupling. Despite the
radically different structure of the projected Hamiltonian in
the Coulomb and dipole gauge we explicitly show their gauge
equivalence, i.e., how one could move from one to the other
by a unitary transformation. These has two important con-
sequences. First, it implies that physical, gauge invariant,
quantities are enforced to be the same when computed us-
ing a different Hamiltonian. Furthermore, it highlights the
importance of treating the nonlinear light-matter coupling of
the Coulomb gauge Hamiltonian nonperturbatively and that
uncontrolled weak coupling expansions can lead to problems
with gauge invariance in the ultrastrong coupling regime. As
a first application of our formalism, we study an interacting
two-orbital model coupled to a single mode cavity with uni-
form vector potential, recently introduced in the context of
excitonic superradiance and related no-go theorems. Working
in the dipole gauge, in which photons only enter linearly,
we derive an effective action for the electronic degrees of
freedom and show that light and matter become fully de-
coupled in the limit ω → 0, thus preventing ground-state
superradiance in accordance with a general no-go theorem.
We recover the same result within our Coulomb gauge Hamil-
tonian that we solve by decoupling electrons and photons
in mean-field theory. Interestingly, we show that, within a
Coulomb gauge formulation, in order to obtain well-defined
results all the way into the ultrastrong coupling regime, it is
crucial to treat the light-matter coupling nonperturbatively. In
fact, we explicitly show that expanding the Coulomb gauge
Hamiltonian to lowest order, as often done in the context of
the Peierls substitution, leads to an unbounded ground-state
energy for sufficiently strong light-matter coupling. Finally,
we compute the polariton spectrum of the model and show
that while the ground state of the system factorizes and lacks
any entanglement between light and matter, finite frequency
excitations (polaritons) depend on light-matter coupling, as
expected from the results obtained within the dipole gauge.
We show explicitly that polariton excitations obtained within
our projected dipole and Coulomb gauge Hamiltonian are
identical for any value of light-matter coupling, a further
demonstration of gauge equivalence. This work suggests sev-
eral possible extensions. From one side it would be interesting
to broaden our model to consider a spatially varying vector
potential, following the recent prediction of superradiance in
such a setup [37,38]. Another promising direction would be to
explore the residual light-matter coupling of finite frequency
excitations and the possibility of turning them superradiant
using a combination of drive and dissipation, as done in other
nonequilibrium contexts.
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APPENDIX A: ELECTRON-ELECTRON INTERACTIONS
IN THE DIPOLE GAUGE

The dipole gauge Hamiltonian is obtained by performing
the unitary transformation HD = UHCU†. Here we present
details on the derivation for the electron-electron interactions
term Hee. To simplify the calculation, we rewrite the unitary
operator U in the form U = eis, where

s = (a + a†)
∫

dr ψ†(r)χ (r)ψ (r). (A1)

By using the Campbell-Hausdorff formula, we obtain

UHeeU† = eisHeee−is

= Hee + [is,Hee] + 1

2!
[is, [is,Hee]] + · · · .

(A2)

Since [s,Hee] = 0, we note that the electron-electron in-
teractions term remains the same after performing the gauge
transformation

UHeeU† = Hee. (A3)

We now show that the same is true in the projected two-
band model discussed in the main text. Specifically, we show
that, given Hee = U

∑
j n j1n j2 and the projected unitary U =

eiγ (a+a† )
∑

j σ
j

x , we have

U †HeeU = Hee. (A4)

To show this we use the transformation rules of the fermionic
and pseudospin operators, given in the main text in Eqs. (54)
and (55). We first rewrite the density electrons at site j and
orbital α = 1, 2 as

n jα = 1 − (−1)ασ z
j

2
, (A5)

which transforms under the action of U † as

U †n jαU =
(

1 − (−1)α
[

cos(2A)σ z
j − sin(2A)σ y

j

]
2

)
,

(A6)

with A = γ (a + a†). The transformed Hubbard interaction
therefore reads, in terms of pseudospin operators,

U †n j1UU †n j2U

= 1
4

(
n2

j − cos2(2A)
(
σ z

j

)2 − sin2(2A)
(
σ

y
j

)2)
= n j1n j2, (A7)

where in the last step we we have used the fact that [n j, σ
α
j ] =

0 and {σα
j , σ

β

j′ } = 2δαβδ j j′ as well as that we can rewrite

the square of the pseudospin operators only in terms of the
density, i.e., (σ z

j )2 = (σ y
j )2 = n j − 2n j1n j2.

APPENDIX B: PHOTONIC ACTION

The photonic Hamiltonian Hph = ωca†a is equivalent to a
one-dimensional harmonic oscillator. To make the connection
explicit, we rewrite the photonic operators a (a†) as

a =
√

ωc

2
x + i

√
1

2ωc
p, (B1)

a† =
√

ωc

2
x − i

√
1

2ωc
p, (B2)

where x and p are the position and momentum operators,
respectively, and we find that Hph = (1/2)(ω2

c x2 + p2).
The photonic action reads

Sph = 1

2

∫ β

0
dτ

[
ω2

c x(τ )2 + p(τ )2 + 2ix(τ ) ṗ(τ )
]
, (B3)

where the full derivatives x2, p2, and xp were omitted. Per-
forming the Gaussian integration over x(τ ), we obtain for the
photonic action

Sph[p] = 1

2

∫ β

0
dτ

[
px(τ )2 + ṗ(τ )2

ω2
c

]
. (B4)

APPENDIX C: MEAN-FIELD SOLUTION: DIPOLE GAUGE
HAMILTONIAN

Here we present details of the mean-field solution of the
light-matter Hamiltonian in the dipole gauge, Eq. (53). We as-
sume that there are no correlations between the electronic and
photonic systems. This allows us to do the factorization of the
wave function as |�〉 = |ψ〉|φ〉, where |ψ〉 (|φ〉) corresponds
to the electronic (photonic) system. Moreover, we assume that
|φ〉 is a coherent state, such that the photonic order parameter
α could be introduced as 〈α|a|φ〉 = α

√
N . Also, we note that

in general α has both real and imaginary parts, thus it could be
written as α = α′ + iα′′. To treat (

∑
k σ k

x )
2

term in the dipole
gauge Hamiltonian given by Eq. (53), we employ a mean-field
approximation as(∑

k

σ k
x

)2

=
∑

k

(〈
σ k

x

〉 + [
σ k

x − 〈
σ k

x

〉])

×
∑

q

(〈
σ q

x

〉 + [
σ q

x − 〈
σ q

x

〉])

= 2M
∑

k

σ k
x − M2, (C1)

where M = ∑
q〈σ q

x 〉. And the electron-electron interactions
Hamiltonian Hee could be approximated by using Eq. (79).

We start by solving the photonic mean-field Hamiltonian
that reads

Hmf
D,ph = ωca†a + iωcγ M(a − a†). (C2)
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Rewriting a and a† in terms of the position x and momentum
p operators as in Appendix B, we arrive at

Hmf
D,ph = 1

2 [ω2
c x2 + (p −

√
2ωcγ M )2], (C3)

which is the Hamiltonian for a one-dimensional harmonic os-
cillator. Using that 〈φ|x|φ〉 = 0 and 〈φ|p − √

2ωcγ M|φ〉 = 0,
we obtain that α′ = 0 and α′′ is given by

α′′ = γ0
M

N
. (C4)

However, in the Coulomb gauge we obtained that the pho-
tonic order parameter is zero for any two-orbital model. To
make the connection between the expectation value of the
photonic operators in the Coulomb and dipole gauge, we
should apply the unitary transformation U (χ ) to the photonic
annihilation (creation) operators. This brings us to

U (χ )†aU (χ ) = a + iγ
∑

k

σ k
x . (C5)

We write the electronic mean-field Hamiltonian in the form
Hmf

D,el = ∑
a ha

kσ
a
k , with a = x, y, z, and the coefficients ha

k are

given by

hx
k = −2ωcγ

√
N

(
α′′ − γ M√

N

)
− UI ′, (C6)

hy
k = 2t̃ sin(k) + UI ′′, (C7)

hz
k = εk − U

m

2
. (C8)

Next, we find the ground-state energy of the dipole gauge
Hamiltonian. To simplify the calculations we put U = 0 and
we obtain

EGS

N
= ωc

[
(α′)2 +

(
α′′ − γ M√

N

)2]

− 1

N

∑
k

√
ε2

k + 4t̃ sin2(k). (C9)

We note that, as in the case of the ground-state energy calcu-
lated in the Coulomb gauge, Eq. (85), EGS is separated into
a sum of the energy of the photonic system and electronic
system, respectively.
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