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Wegner-Wilson loops in string nets
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We study the Wegner-Wilson loops in the string-net model of Levin and Wen in the presence of a string
tension. The latter is responsible for a phase transition from a topological deconfined phase (weak tension) to
a trivial confined phase (strong tension). We analyze the behavior of all Wegner-Wilson loops in both limiting
cases for an arbitrary input theory of the string-net model. Using a fluxon picture, we compute perturbatively the
first contributions to a perimeter law in the topological phase as a function of the quantum dimensions. In the
trivial phase, we find that Wegner-Wilson loops obey a modified area law, in agreement with a recent mean-field

approach.
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I. INTRODUCTION

Lattice gauge theories were introduced by Wegner [1] in
the early 1970s to study classical phase transitions that cannot
be described by a local order parameter. Shortly after, Wilson
proposed a lattice version of quantum chromodynamics to
describe the quark confinement [2], hence extending Wegner’s
work based on the Z, gauge group to arbitrary gauge groups
(see also Refs. [3,4]). In the absence of matter (pure gauge
theories), one generally distinguishes between two phases
characterized by the behavior of nonlocal gauge-invariant
correlation functions defined along a closed contour, dubbed
Wegner-Wilson loops. In the confined (strong-interaction)
phase, the expectation value of these loops in the ground state
decays as e # (area law), whereas in the deconfined (weak-
interaction) phase they behave as e L (perimeter law), where
A and L denote the area and the perimeter of the loop, re-
spectively. When matter is included, the Wegner-Wilson loop
features a perimeter law in both phases and another diagnostic
of the transition is required [5].

In two dimensions, lattice gauge theories are of special
interest since they may host exotic excitations known as
anyons [6,7]. The latter have drawn much attention in re-
cent decades because of their potential use for topological
quantum computation [8—13], and they are considered as a
hallmark of systems with topological order. During the last
three decades, the concept of topological order has become
central in condensed matter physics, and several models have
been proposed to generate topological phases of matter (see
Ref. [14] for a recent review). Among them, the string-net
model introduced by Levin and Wen [15] is particularly inter-
esting since it goes beyond lattice gauge theories and allows
one to build a large class of topological phases. This model is
closely related to the Turaev-Viro model [16—19] and can be

*anna.ritz@u-psud.fr
Tfuchs @lptmc.jussieu. fr
tyidal @lIptmc.jussieu.fr

2469-9950/2021/103(7)/075128(5)

075128-1

seen as a discrete version of some topological quantum field
theories [20,21].

In this article we investigate the behavior of Wegner-
Wilson loops in the string-net model [15] in the presence of
a string tension. This tension is responsible for a phase tran-
sition between a deconfined topological phase (weak tension)
and a confined trivial phase (strong tension). In the deconfined
phase, we compute perturbatively the expectation values of
the Wegner-Wilson loops in the ground state, and we show
that they all obey a perimeter law. In the confined phase, using
perturbative and mean-field approaches, we obtain either a
usual or a modified area law depending on the loop consid-
ered. We also prove that Wegner-Wilson loops associated with
Abelian fluxons commute with the Hamiltonian and remain
constant for any strength of the string tension, indicating a
complete deconfinement of these excitations.

II. THE LEVIN-WEN MODEL

In the string-net model introduced by Levin and Wen [15],
microscopic degrees of freedom are strings defined on the
links of a trivalent graph and obeying a set of rules given by an
input theory. Here we focus on input theories that are unitary
modular tensor categories (UMTCs) (see Refs. [13,22,23] for
an introduction), and we consider the honeycomb lattice as a
prototypical trivalent graph. A UMTC is defined by a set of
ng strings obeying fusion and braiding rules [24]. The trivial
string s = 1 corresponds to the vacuum. Simplest examples of
UMTC are the semion and the Fibonacci theories for which
ng = 2. The Hilbert space H is spanned by all link (string)
configurations satisfying the branching rules that directly stem
from the fusion rules. More precisely, a trivalent vertex con-
figuration (a, b, c) is allowed iff the string ¢ belongs to the
fusion product of strings a and b, i.e., a x b. For any input
UMTC, the dimension of H depends only on the number
of vertices. Violations of these branching rules correspond
to vertex (charge) excitations that we do not consider here.
The Levin-Wen Hamiltonian is defined by a sum of mutually
commuting projectors B, defined on each plaquette p (see
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FIG. 1. Pictorial representation of a five-fluxon state for a theory
with three nontrivial strings s = r, g, y (red, green, and yellow). The
trivial string s = 1 is not represented.

below). The matrix elements of B, in the link basis depend
on the input UMTC [15].

Such a construction leads to a topological phase, the exci-
tations of which are identified by determining all closed string
operators that commute with the Hamiltonian, known as the
Wegner-Wilson loops [1,2,4]. As explained in Ref. [15], if C
has n; strings, there are n? such operators, each of them corre-
sponding to one type of elementary excitation. The resulting
doubled achiral topological phase DC = (C,C) consists of
two copies of the input UMTC C with opposite chiralities,
and excitations can be labeled by (s, s’), where s and s’ are
elements of C and C, respectively. However, in the absence
of branching rules violations, only n, elementary excitations
corresponding to s’ = s are present in the system. These achi-
ral excitations (s, s) have a simple interpretation in terms of
plaquette excitations (fluxons) and can be represented as a
string of type s piercing elementary plaquettes (see Fig. 1 for
illustration). For a given theory, this description allows for a
simple counting of the energy-spectrum degeneracies [25-28]
and, hence, of the Hilbert space dimension.

The goal of the present work is to study the behavior of the
Wegner-Wilson loops in the Levin-Wen model in the presence
of a perturbation that plays the role of a string tension and
provides dynamics to the fluxons. More precisely, we consider
the following Hamiltonian:

H=—J,) By—hy L, M
p 1

where (Jp, J;) are nonnegative couplings. The original Levin-
Wen Hamiltonian is obtained by setting J; = 0. The operator
B, is the projector onto the state s =1 in the plaquette p
(fluxon vacuum), and the operator L; is the projector onto
the state s = 1 in the link [/ (string vacuum). Thus, in the
link basis, L, is diagonal and B), is nondiagonal, whereas, in
the fluxon basis, B), is diagonal and L; is nondiagonal. These
operators are given by

1 Ny ; 1 ng )
By=1; ZdSB‘ o L= stL;, )
s=1 s=1

where d; is the quantum dimension of the string s and
D = /Y . d? is the total quantum dimension of the theory
considered. The operator B), injects a closed string s around
the plaquette p and hence “measures” the fluxon state in this
plaquette, whereas L; injects a closed string s around the link
! and “measures” the string state in this link (see Fig. 2 for

FIG. 2. Pictorial representation of various operators acting on a
four-fluxon state (two g and two y). The small yellow loop on the
left represents B}, the small red loop on the right represents L;,
and large red and green loops above and below the lattice represent
the Wegner-Wilson loop Wg'g). The region R is surrounded by the
magenta line (L = 18,A =7) in this example. All loops can be
smoothly deformed as long as no crossings with either nontrivial
strings or links of the lattice are encountered.

illustration). In this context, measurement refers to the funda-
mental relation depicted in Fig. 3 (left), which is reminiscent
of the Aharonov-Bohm effect [11,29]. All operators Bj, and

L,‘/ mutually commute, except when the link / belongs to the
plaquette p.

The Hamiltonian (1) has been first introduced by Gils et al.
in the ladder geometry [30,31] (see also Refs. [32-34] for
related studies). In the honeycomb lattice considered here,
the phase diagram has been the subject of several studies for
some specific theories [26,27,35-37]. For J; = 0, the system
is in a topological (string-net condensed [15]) phase DC with a
ground-state degeneracy that depends on the surface topology
and excitations that are fluxons. By contrast, for J, = 0, the
system is in a trivial (nontopological) phase with a unique
ground state (all links in the trivial state s = 1) and excitations
that are link configurations with nontrivial strings satisfying
the branching rules. These two phases are separated by a
transition point that depends on the theory considered. In two
dimensions, for Abelian theories (Zy fusion rules), this model
has been shown to be equivalent to the quantum Potts model in
a transverse field defined on the dual (triangular) lattice [35],
so that the transition is second-order for N = 2 and first-order
for N > 3. For non-Abelian theories, the situation is less clear.
First studies based on series expansions and exact diago-
nalizations indicate a scenario compatible with second-order
transitions (at least for Fibonacci [26] and Ising theories [27]),
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FIG. 3. Left: a string g is an eigenstate of the operator that injects
a closed string r around it with eigenvalue S,,/S,. For a UMTC with
ng strings, S is a symmetric unitary n; X n; matrix. Right: a pair of
non-Abelian fluxons y inside the region R fuse in r above the lattice

and in y below the lattice. For such a state one has (W;{’g)) = 2{ ;Tg’

3
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but the latest mean-field [36] and tensor-network approaches
[37] rather plead in favor of first-order transitions for all cases.

III. WEGNER-WILSON LOOPS

The Hamiltonian (1) may be seen as a generalization of
lattice gauge theories. Indeed, when the input theory is as-
sociated to a group, H describes a pure gauge theory (no
matter) and the transition between the topological and the
trivial phase driven by the fluxon dynamics is a deconfine-
ment/confinement transition of the charge excitations. As
early proposed [1,2], this transition is associated with a change
of behavior of the Wegner-Wilson loops that exhibit a perime-
ter law in the deconfined (topological) phase and an area law
in the confined (trivial) phase (see discussion below). The
tension of these closed loops informs one about the interac-
tion energy between the excitations existing at the extremities
of the corresponding open strings. For instance, in the Z,
case, the closed string obtained by creating and annihilating
a pair of electric charges and that measures the magnetic
flux inside the resulting region indicates that J; is responsible
for the charge confinement while fluxons condense (see, e.g.,
Ref. [38] for more discussion).

Hence, it is of crucial importance to determine the be-
havior of the loops. In their original paper, Levin and Wen
give the procedure to compute the matrix elements of the
Wegner-Wilson loops in the link basis [15]. As explained in
Ref. [39], these expressions are given in terms of F-symbols
and R-symbols of the input theory. In the fluxon basis, the
Wegner-Wilson loop W7(§ ) obtained by creating, moving, and
annihilating a pair of excitations (s, s’) around a given region
R of the lattice, is simply represented by two closed strings,
s and s', above and below this region as depicted in Fig. 2.
In this representation, these loops can be deformed at will,
provided one forbids crossings with nontrivial strings and
with links of the honeycomb lattice. Thus, for J; = 0, one
simply has to evaluate a diagram with loops of type s and
s’ above and below the lattice in the ground state (no-fluxon
state) of the Levin-Wen Hamiltonian. Using graphical rules
[8,23], this directly leads to (W.$") = dydy. As explained
above, the ground-state degeneracy in the topological phase
depends on the surface topology. The results given here and
below are valid for any ground states as long as the region R
is contractible.

IV. THE WEAK-TENSION LIMIT J; < J,

To compute (ng ’5’)) in this limit, we use the same method
as the one used for the toric code in a magnetic field in
Ref. [40]. This approach, based on the perturbative continuous
unitary transformations (PCUT) [41-46], provides a clear pic-
ture of the various processes contributing to the perturbative
corrections. Technically, this perturbative calculation amounts
to evaluate diagrams corresponding to virtual excitations
[see Fig. 3 (right), for example]. For simplicity, we con-
sider here Wegner-Wilson loops defined on a hexagonal-shape
closed region R (see Fig. 2). In the perturbative limit where
A =J1/J, < 1 and for sufficiently large R, one gets the gen-

eral structure

(W']g“?/)) = dsds’ + Z )\'nwl‘l(L)v (3)

n>0

where w,’s are polynomial of order 2 x |n/2], and L is the
number of links defining the contour of R (dimensionless
perimeter). The first terms of this expansion up to order A*
read

wi(L) =0, “4)
wZ(L) = _(dsds’ s s ) D2 s (5)

L(D* +2)
w3 (L) = _(dsds’ s s )— (6)

dydy (94 4+ T1D?) + 98, ¢
U)4(L) = (dsds’ - 6.?,.?’){ 24d d.Db
L[d dy (86 —331D% — 18D*) + 95, ¢]
96 d,dyD°
2

dvdr’ 9 s 7
+ (dyd, )3204 } (7

Calculation details will be given elsewhere [47]. These
expressions suggest that, in the topological phase, Wegner-
Wilson loops obey a perimeter law, i.e., <W7§'S,)> o e,
expected for deconfined phases [4] (see Ref. [40] for a similar
exponentiation).

V. THE STRONG-TENSION LIMIT J, > J,

In this other limiting case, the behavior of the Wegner-
Wilson loops is completely different and it is more appropriate
to work in the original link basis. For J, = 0, keeping in mind
that the ground state is the product state ®;|1);, where |1);
denotes the state s = 1 in the link /, one straightforwardly gets
(W(S 5 )) = §,,¢. However, contrary to the topological phase,
the first nontrivial contribution occurs at order (1/A YA, where
A is the number of plaquettes inside the region R (dimension-
less area). More precisely, one has

5,8 1 4
(W7(2 )> = 85,5/ + yR(dsds/ - 35,5“)(@)
+ 01/, ®)

where yr is a purely combinatorial factor that depends on
the region R but not on the theory C. For instance, if R
consists in two adjacent plaquettes, one has yg = 11/90. This
behavior can be interpreted as an area law for the quantity

<W7(2S,S’)> - Ss,s’ (06 e_#A-

VI. MEAN-FIELD APPROACH

It is interesting to compare the results obtained perturba-
tively with the ones computed from the mean-field ansatz
introduced in Ref. [36]
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where A is the normalization constant, 0 <o <1 is a
variational parameter, and Z, = 2B, — 1. This variational
state, which interpolates between one exact ground state for
Jp = 0(a = 0), and the exact ground state for J; = 0 (a = 1),
leads to

o.5) D*(B,)y — 1\"
<WR7 >a = ‘Ss.s’ + (dsds’ - 55,5/) 1 s (10)
D> -1
where (O), = (¢|O|a). This mean-field approach relies on a
description in terms of decoupled plaquettes which is encoded
in the following factorization property [36]:

1+ a)? 4
<HBP> =]‘[<Bp)a:[ (1+a) ] (11)
PER o PER

D2(1 — a)? +4a
In the topological phase, one has @ =1 and (B,), =1
[36]. Thus, this ansatz yields a trivial perimeter law which
corresponds to the leading-order contribution in A° given in
Eq. (3), ie, (W;g"vl))a = d,dy. By contrast, in the strong-
tension limit (trivial phase), one finds

1
o= LN + 0(1/)Lz (12)
1 1D*—1 2)
(Bpla = 55 + > —3pz +OU/A) (13)
o o 1 A
W), = s+ g~ 5)<E> FOaT

(14)

Hence, it is remarkable to observe that the mean-field re-
sult (14) reproduces the perturbative result (8) with a factor
yr = 1/3% that only depends on the area (but not on the
shape) of R within this approximation.

VII. DISCUSSION

Let us now discuss the results that can be inferred from the
perturbative calculations. Three cases must be distinguished
according to the nature of the strings defining the Wegner-
Wilson loops W;z”’):

(1) If & = s and d; = 1, one can use the following identity
(valid for any Abelian strings s and s'):
[18. s

(YY) HBA l_[BsBa

PER PER PeER

to show that sz”) = 1. Here, 5 denotes the dual (or conju-
gate) string of s, i.e., 1 € s x 5 [15]. This is in agreement with
the perturbative results given in Eqs. (4)—(8) as well as the
mean-field approach [see Eq. (10)]. We conclude that Abelian
fluxons are always completely deconfined. In other words,
(W) = 1, for all A.

(2) If s = ¢ and d; > 1 (non-Abelian strings), Eq. (15) is
not valid. In this case, one gets a perimeter law in the topolog-
ical phase and a modified area law in the trivial phase. Indeed,
Eq. (8) indicates that hm NS Y)) = 1, which is reminiscent

of a deconfinement of ex01tat10ns (s, s) in the trivial phase.
(3) Ifs # s, (W) /(d,dy) depends only on D and R (at

least at the order considered here) and obeys a perimeter law

in the topological phase and an area law in the trivial phase.

VIII. PERSPECTIVES

To go beyond the present work, several extensions should
be considered. Concerning input theories, one may study the
case of UMTCs with nontrivial Frobenius-Schur indicators
such as semion or SU (2), theories [22] and/or with nontrivial
multiplicities. Input theories that are not UMTCs are also of
interest. In that respect, the simplest example is the Z, gauge
theory for which there are four Wegner-Wilson loops labeled
Wi—i...4 in Ref. [15]. It turns out that, in the charge-free sector,
(W) = (W3) = 1, and the expression of (W,) = (W) can be
obtained from Egs. (4)—(8) by settingdy =dy =1, D = V2,
and §; ¢y = 0. More generally, discrete gauge theories associ-
ated to non-Abelian gauge groups (see Ref. [15] for a concrete
example based on the S3 group) definitely deserve special
attention.
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