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Localized bases play an important role in understanding electronic structure. In periodic insulators, a natural
choice of localized basis is given by the Wannier functions which depend on a choice of unitary transform
known as a gauge transformation. Over the past few decades, there have been many works that have focused
on optimizing the choice of the gauge so that the corresponding Wannier functions are maximally localized or
reflect some symmetry of the underlying system. In this work, we consider fully nonperiodic materials where
the usual Wannier functions are not well defined and gauge optimization is impractical. To tackle the problem of
calculating exponentially localized generalized Wannier functions in both periodic and nonperiodic systems, we
discuss the ‘iterated projected position (IPP)” algorithm. The IPP algorithm is based on matrix diagonalization
and therefore unlike optimization-based approaches, it does not require initialization and cannot get stuck at a
local minimum. Furthermore, the IPP algorithm is guaranteed by a rigorous analysis to produce exponentially
localized functions under certain mild assumptions. We numerically demonstrate that the IPP algorithm can
be used to calculate exponentially localized bases for the Haldane model, the Kane-Mele model (in both Z2

invariant even and Z2 invariant odd phases), and the px + ipy model on a quasicrystal lattice.
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I. INTRODUCTION

When modeling electronic properties of materials, we of-
ten want to focus attention on a spectral subspace of an
effective single-particle electronic Hamiltonian. To do this,
we must choose a basis (possibly other than the eigenfunc-
tions themselves) to represent this subspace. Not all bases are
equally desirable however; bases which are well localized in
space are particularly useful in both theoretical and computa-
tional studies [1–5].

In insulators (materials with a spectral gap at the Fermi
level), the subspace of interest is the Fermi projection, the
range of the Fermi projector P. When the insulator is periodic,
a natural choice of localized basis is given by the Wannier
functions, which are calculated by integrating a choice of
Bloch basis with respect to the crystal quasimomentum over
the Brillouin zone. Wannier functions however depend on a
choice of unitary transform on the Bloch functions known
as a “gauge transformation.” By making different choices of
gauge, it is possible to change the localization properties of
the corresponding Wannier functions. It is now known that
under certain assumptions it is possible to pick the gauge
on the Bloch functions so that the Wannier functions decay
exponentially quickly away from their maximum value. These
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“exponentially localized Wannier functions” (ELWFs) play a
central role in the study of periodic materials and the modern
theory of polarization [2,3,6–9]. Because of the importance of
ELWFs, much research over the past 30 years has been dedi-
cated to understanding when it is possible to choose the gauge
so that the corresponding Wannier functions are exponentially
localized and how to compute such gauges.

For gapped periodic systems in one dimension there al-
ways exists a choice of gauge so that corresponding Wannier
functions are exponentially localized [1,10]. In contrast, for
gapped periodic systems in two and three dimensions ELWFs
do not always exist. It is now understood that a choice of
gauge corresponding to ELWFs exists if and only if certain
topological invariants vanish [11]. In addition to these theo-
retical results, there has also been great progress with respect
to numerical methods for calculating localized Wannier func-
tions in periodic materials. In seminal work, Marzari and
Vanderbilt proposed a numerical method based on gradient
descent for optimizing the choice of gauge so that the resulting
Wannier functions are as localized as possible [12]. Subse-
quently, this numerical method (and later refinements) were
implemented into the software package WANNIER90 [5]. One
difficulty with the gradient descent procedure proposed by
Marzari-Vanderbilt is that a poor choice of initialization can
lead to Wannier functions which are not well localized. More
recent work has looked at developing alternate optimization
schemes to the one proposed by Marzari-Vanderbilt [13] or
creating a good initial gauge choice by using symmetries in
the underlying system [14]. There also have been propositions
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to generate localized Wannier functions by using techniques
from numerical linear algebra [15,16].

In this paper, we tackle the problem of constructing an
exponentially localized basis for the Fermi projection for non-
periodic insulators and we refer to functions in any such basis
as “exponentially localized generalized Wannier functions”
(ELGWFs). We present the iterated projected position (IPP)
algorithm that we have proven in previous work constructs
ELGWFs under fairly general assumptions [17]. The key dif-
ficulty in fully nonperiodic systems is that Bloch functions
do not exist. Therefore we must find an alternate criterion
(one which does not make reference to the Bloch functions)
for constructing ELGWFs. This problem has been solved in
one dimension through the work of Kivelson [18], Niu [19],
and Nenciu-Nenciu [20]. As the culmination of these works,
it has been proven that in one dimension the eigenfunctions of
the projected position operator PXP, where P is the Fermi
projector and X is the position operator, are exponentially
localized in both periodic and nonperiodic systems. The IPP
algorithm directly extends the work of Kivelson, Niu, and
Nenciu-Nenciu to higher dimensions and is based on diag-
onalizing sequences of projected position operators. As a
result of this, unlike methods which use optimization, such
as Marzari-Vanderbilt functional minimization [12], the IPP
algorithm does not require any initial guesses and cannot get
stuck at local minima. Like the eigenfunctions of PXP in an
infinite periodic system, the output ELGWFs of IPP are gen-
erally closed under lattice translations when the Hamiltonian
is periodic, justifying the terminology “generalized” Wannier
functions.

We numerically demonstrate that the IPP algorithm can
generate ELGWFs for systems with Dirichlet boundary condi-
tions, periodic boundary conditions, time-reversal symmetric
systems (both Z2 invariant even and odd), and quasicrystals.
While we mainly focus on systems in two dimensions, the IPP
algorithm easily generalizes to three dimensions (and higher)
and provably produces ELGWFs under analogous assump-
tions to the two-dimensional case.

The remainder of the paper is organized as follows. We
begin by reviewing the definition of Wannier functions in
periodic systems and the connection between ELWFs and
projected position operators in Sec. II. Having made this
connection, we then introduce the iterated projected position
(IPP) algorithm in Sec. III A. We give an overview of how the
IPP algorithm can be adapted to respect model symmetries
in Sec. III B before giving details for periodic boundary con-
ditions (Sec. III C) and bosonic and fermionic time-reversal
symmetries (Sec. III D). We explain how to intentionally
break time-reversal symmetry as necessary in Sec. III E, and
summarize these results in Sec. III F.

After stating our main results, we turn to make connec-
tions between our results and previous work. In Sec. IV,
we discuss the connection between the IPP algorithm and
Marzari-Vanderbilt functional minimization, and in Sec. V,
we discuss the connection between the IPP algorithm and the
theory of topological invariants. Next, we test the IPP algo-
rithm in a wide range of numerical tests in Sec. VI. Finally, in
Sec. VII, we give an overview of our results and discuss future
directions.

II. PROJECTED POSITION OPERATORS AND
EXPONENTIALLY LOCALIZED WANNIER FUNCTIONS

As discussed previously, in periodic insulators, a natural
choice of a localized basis is given by the Wannier func-
tions. While the present work applies in both the periodic and
nonperiodic cases, it will be worthwhile to briefly review the
basics of Wannier function theory in the periodic case to make
connections with previous work more clear.

For any periodic insulator with crystal lattice �, we can
find an orthogonal basis of (generalized) eigenfunctions of the
Hamiltonian which are also eigenfunctions of lattice transla-
tions. Such a basis of eigenfunctions is known as a Bloch basis
and is denoted {ψnk(r)}, where n denotes the band index and k
denotes the crystal quasimomentum. In two dimensions, given
a Bloch basis {ψnk(r)}, for each R ∈ � the Wannier function
centered at R is defined by the following integral over the
Brillouin zone:

wnR(r) = 1

A

∫
BZ

e−ik·Rψnk(r) dk, (1)

where A is the area of the Brillouin zone.
Now recall that the eigenfunctions of H are only defined

up to a choice of complex phase. Hence, given a choice of
{ψnk(r)}, we could alternatively define the Wannier functions
in Eq. (1) by making the substitution:

ψnk(r) �→ eiλnkψnk(r),

where {λnk}k∈BZ ⊆ R. More generally, for a system with N
bands, this degeneracy is defined by a collection of N × N
unitary matrices {U (k)}k∈BZ and substituting the following ex-
pression into Eq. (1):

ψnk(r) �→
∑

m

U (k)
nm ψmk(r), (2)

which leaves the occupied subspace invariant.
The mapping in Eq. (2) is known as a “gauge transfor-

mation” and an instance of the matrices {U (k)}k∈BZ is known
as “choice of gauge.” By changing the choice of gauge, one
can change whether the corresponding Wannier functions are
localized in space or not.

In Ref. [21], Kohn proved that for inversion-symmetric
crystals in one dimension with an isolated band there always
exists a choice of gauge so that the corresponding Wannier
functions decay exponentially fast in space. This work was ex-
panded on by Des Cloizeaux [22,23] and Nenciu-Nenciu [10]
who proved that for arbitrary periodic insulators in one spatial
dimension, there always exists a choice of gauge so that the
Wannier functions are exponentially localized. Having settled
the question of existence of ELWFs for periodic systems in
one dimension, it is natural to ask how the result generalizes
to periodic insulators in higher dimensions. This question has
been studied in detail by many authors and a full characteriza-
tion of when a basis of ELWFs exists is now known in dimen-
sions two and three. In two dimensions, ELWFs exist when-
ever the Chern number, a topological invariant associated to
the Fermi projection, vanishes. In three dimensions, ELWFs
exist whenever three “Chern-like” topological invariants as-
sociated to the Fermi projection all vanish [1,11,22–27].
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FIG. 1. The sorted nonzero eigenvalues of the operator PXP,
where P is the Fermi projection for a nontopological Haldane model
and X is the standard position operator. The Haldane model was cho-
sen with parameters (v, t, t ′) = (3, 1, 0.5) on a 12 × 12 system with
the Dirichlet boundary conditions (see Appendix A for definition of
parameters).

For systems where the lack of periodicity plays an impor-
tant part in the material’s properties (for example, in systems
with defects or edges) far less is known. When a material is
not periodic, Bloch theory does not apply so trying to find
ELWFs by the usual methods of gauge optimization fails.
Despite this, it has been conjectured that an exponentially lo-
calized basis for the Fermi projection should still exist [19,28–
30] especially when the system in question is close to periodic.
In fact, many of previous results about nonperiodic Wannier
functions were proved by perturbation or “continuity”-type
arguments [1,21,28,29,31–33].

One approach to define Wannier functions in nonperiodic
materials was pioneered by Kivelson in Ref. [18]. In this work,
Kivelson proposed considering the eigenfunctions of the pro-
jected position operator, PXP, as the nonperiodic Wannier
functions. To support this proposal, Kivelson showed that the
exponentially localized Wannier functions found by Kohn in
Ref. [21] are in fact eigenfunctions of PXP. Following up on
the work by Kivelson, Niu argued in Ref. [19] that in one
dimension, the eigenfunctions of PXP should decay faster
than any polynomial. A fully general, rigorous proof that
the eigenfunctions of PXP are exponentially localized in one
dimension was finally given by Nenciu-Nenciu in Ref. [20].
The result by Nenciu-Nenciu is particularly powerful since it
holds for an extremely wide class of systems, not just those
which are close to being periodic.

Along somewhat parallel lines, in Ref. [34], Prodan pro-
posed considering the eigenfunctions of Pe−q

√
X 2+Y 2

P (for
some q > 0) as generalized Wannier functions in nonperiodic
materials in two dimensions. In that work, Prodan showed
that Pe−q

√
X 2+Y 2

P is compact and its eigenfunctions have their
support concentrated on spherical shells of fixed radius.

III. MAIN RESULTS

A. The iterated projected position algorithm

In short, the IPP algorithm is an extension of the proposal
of Kivelson, Niu, and Nenciu-Nenciu to higher dimensions.
The key idea behind the IPP algorithm is the notion of uniform
spectral gaps (see Fig. 1 for a plot of the eigenvalues of an

operator, which has uniform spectral gaps). Informally speak-
ing, an operator has uniform spectral gaps if its spectrum can
be decomposed into a collection of disjoint sets {σ j} j∈J which
are separated by a minimum distance. The main result of our
previous work [17] states that if PXP has uniform spectral
gaps then an exponentially localized basis for range(P) exists
and the basis can be constructed by the IPP algorithm.

For a two-dimensional system, this basis is constructed
by the following steps. First, we let X and Y be a pair of
position operators defined with respect to a pair of nonparallel
coordinate axes. Next, we diagonalize the operator PXP and
assume that PXP has uniform spectral gaps with decomposi-
tion {σ j} j∈J .1 Given the decomposition {σ j}, by the spectral
theorem, for each σ j , we can construct an orthogonal projec-
tor Pj , so that Pj projects onto the span of the eigenvectors
with eigenvalue from σ j . Once we construct the projectors
{Pj} j∈J , the final step of the IPP algorithm is to diagonalize
the operator PjY Pj for each j ∈ J . It can be shown that
the eigenfunctions of PjY Pj are exponentially localized in
both X and Y simultaneously. To summarize these steps: (1)
assume PXP has uniform spectral gaps; (2) construct the
projectors {Pj} j for PXP; and (3) for each j, diagonalize
PjY Pj .

In what follows, we will refer to applying steps 1–3 as
“applying the IPP algorithm using the sequence of position
operators X → Y ”. We emphasize at this point that the spatial
localization of the Wannier functions produced by the IPP
algorithm relies purely on operator-theoretic estimates and
hence does not require translation symmetry, in contrast to
methods relying on Bloch function decomposition.

One can understand why the eigenfunctions of PjY Pj are
exponentially localized in both X and Y simultaneously by
the following argument. Due to the separation between the
different parts of the spectrum of PXP, using techniques
from Combes-Thomas-Agmon theory [35], it can be shown
that the projectors Pj are exponentially localized (i.e., as a
matrix in spatial grid, the entries of Pj decay exponentially
quickly away from the diagonal). Since Pj is also a spectral
projector for PXP it can also be shown that functions from
range(Pj ) are concentrated along a line of the form x = η j for
some η j ∈ R. Since Pj is concentrated along the line x = η j ,
by restricting our focus to range(Pj ) we have reduced the
problem of finding ELGWFs in two dimensions to finding
ELGWFs in “essentially” one dimension. But by reducing to
a one-dimensional problem, a generalization of the proof by
Nenciu-Nenciu [20] shows that the eigenfunctions of PjY Pj

decay exponentially quickly in both X and Y simultaneously.
This argument easily generalizes to any dimension. For

example, in three dimensions, the sequence X → Y → Z cor-
responds to the steps: (1) assume PXP has uniform spectral
gaps; (2) construct the projectors {Pj1} j1 for PXP; (3) for each
j1, assume Pj1Y Pj1 has uniform spectral gaps; (4) construct the
projectors {Pj1, j2} j2 for Pj1Y Pj1 for each j1; and (5) diagonalize
Pj1, j2 ZPj1, j2 for each j1, j2.

1Note that if PXP does not have uniform spectral gaps then the IPP
algorithm fails.
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Furthermore, it can be rigorously proven that the eigen-
functions of Pj1, j2 ZPj1, j2 are exponentially localized in X , Y ,
and Z simultaneously.

B. Preserving and breaking symmetry in the IPP algorithm

Oftentimes we are not simply interested in constructing
ELGWFs, we would also like to guarantee that these EL-
GWFs respect model symmetries such as periodic boundary
conditions and time-reversal symmetries. The key for preserv-
ing or breaking such symmetries in the IPP algorithm lies in
the choice of position operators.

Thus far, we have considered the sequence X → Y for a
two-dimensional system. So long as PXP has uniform spectral
gaps, the IPP algorithm will construct ELGWFs. However,
X → Y is not the only sequence of position operators which
will result in the IPP algorithm constructing ELGWFs. For
example, if we assume PY P has uniform spectral gaps, then
applying the IPP algorithm with the sequence Y → X will
also construct ELGWFs. In fact, the proof from Ref. [17]
generally implies that if X̃ and Ỹ are finite range, self-adjoint
operators and PX̃ P has uniform spectral gaps, then applying
the IPP algorithm with the sequence X̃ → Ỹ will construct
a localized basis. By choosing X̃ and Ỹ to either respect or
break certain symmetries, we can force the results of the IPP
algorithm to also preserve or break these symmetries. In this
work, we demonstrate this principle by exhibiting sequences
of position operators which lead to ELGWFs for a few specific
combinations of boundary conditions and symmetries.

With regards to boundary conditions, we will consider
two kinds of boundary conditions: Dirichlet (open), where
the electronic wave function vanishes at the boundary of the
computational domain, and periodic (closed). In the case of
the Dirichlet boundary conditions, there is no problem using
X → Y as discussed in Sec. III A to produce ELGWFs. We
discuss operators which respect periodic boundary conditions
in Sec. III C.

As for symmetries, although our primary focus is on meth-
ods which can be applied even when crystal lattice translation
symmetries are broken, we will present operators such that
the output of IPP respects this symmetry when it is present
in Sec. III C. We will then discuss when the output of IPP
respects two kinds of time-reversal symmetries: bosonic and
fermionic, in Sec. III D. We will finally discuss how to inten-
tionally break fermionic time-reversal symmetry so that the
output of IPP is exponentially localized even when there is a
topological obstruction to the existence of Wannier functions,
which are simultaneously exponentially localized and respect-
ful of time-reversal symmetry in Sec. III E.

C. Periodic position operators

1. Complex exponential position operators

For finite systems with periodic boundary conditions, the
standard position operators, X and Y , are not the correct
observables to measure position since these operators do not
respect the boundary conditions. This fact is numerically
present in the spectrum of the projected position operator
PXP. In the left part of Fig. 2, we plot a subset of the
sorted nonzero eigenvalues of the operator PXP, where P

FIG. 2. Plot of the largest 240 nonzero eigenvalues of the oper-
ator PXP (left) and Im(ln (Pe2π iX/L1 P)) (right). Here P denotes the
Fermi projection for a nontopological Haldane model on a 30 × 30
system with periodic boundary conditions and X is the standard
position operator. The parameters used are (v, t, t ′) = (3, 1, 0.5) (see
Appendix A for definition of parameters). Notice the last few gaps
close in the left most plot but are uniformly spaced in the rightmost
plot.

is the Fermi projector for a nontopological Haldane model
with periodic boundary conditions. In this figure, we see that
the last few gaps in the spectrum of PXP close. While the
IPP algorithm can still be applied in this case, the resulting
ELGWFs will not be equally well localized (i.e., some of the
generated functions will have significantly larger spread than
the others).

As suggested by Resta in Ref. [36], for a state |ψ〉 in a
finite periodic material, its position in the X direction is better
defined using

x̄ = L1

2π
Imln 〈ψ |e2π iX/L1 |ψ〉

where L1 is the number of sites in the X direction and ln is the
logarithm base e. This leads us to considering the sequence of
projected position operators Pe2π iX/L1 P → Pje2π iY/L2 Pj where
at each step we sort the spectrum by taking the imaginary
part of the natural logarithm of the eigenvalues. In the right
part of Fig. 2, we plot the spectrum of Im(ln (Pe2π iX/L2 P)),
where if A is a diagonalizable matrix with A = UDU −1

then Im(ln (A)) := U Im(ln (D))U −1. Notice that the spec-
trum shows clear uniform gaps.

One theoretical advantage of the complex exponential po-
sition operators is that whenever the system Hamiltonian has
crystal lattice symmetry and X and Y are defined with respect
to the crystal lattice basis vectors, the output of the IPP algo-
rithm will respect this symmetry. To be more precise, let �

denote a two-dimensional crystal lattice. If the Hamiltonian
commutes with the translation operators

Tv f (r) = f (r + v) (3)

for every v ∈ �, then the Wannier functions generated by the
IPP algorithm will have the property that if W (r) is a Wannier
function, so are TvW (r) for every v ∈ �.

To see this, first note that H commuting with every Tv

implies that P does too. Now, if a1 and a2 are a basis
of the crystal lattice and X and Y are defined with re-
spect to a1 and a2, then Ta2 commutes with Pe2π iX/L1 P and
Ta1 Pe2π iX/L1 P = e2π i/L1 Pe2π iX/L1 PTa1 . It follows that Ta1 Pj =
Pj+1Ta1 and Ta2 Pj = PjTa2 . The conclusion now follows from
Ta1 Pje2π iY/L2 Pj = Pj+1e2π iY/L2 Pj+1Ta1 and Ta2 Pje2π iY/L2 Pj =
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e2π i/L2 Pje2π iY/L2 PjTa2 . As a remark, note that the same argu-
ment holds for the standard position operators X and Y in an
infinite periodic system.

One important difference between using the standard posi-
tion operator X and the complex exponential e2π iX/L1 is that
the projected position operator Pe2π iX/L1 P does not generally
have orthogonal eigenvectors.2 While the projectors Pj are
still well defined in this case, they are not orthogonal pro-
jectors and numerically using these Pj sometimes leads to
trouble. To correct this issue, we apply Löwdin orthogonal-
ization to the eigenvectors of Pe2π iX/L1 P when we construct
Pj and when we construct the final results. This orthogo-
nalization step has not been rigorously justified, but appears
to work well numerically. We leave rigorously proving the
correctness of using Löwdin orthogonalization to future work.
This procedure is at least formally justified by the observation
that for fixed values of X and Y , we have

L1

2π i
(e2π iX/L1 − 1) ≈ X,

L2

2π i
(e2π iY/L2 − 1) ≈ Y, (4)

as Lj → ∞, j = {1, 2}, and hence Pe2π iX/L1 P and Pe2π iY/L2 P
are approximately normal for large system sizes.

2. Real periodic position operators

An alternative to the sequence of complex exponential
position operators which also respects periodic boundary con-
ditions is the sequence

sin (2πX/L1) → cos (2πX/L1)

→ sin (2πY/L2) → cos (2πY/L2).
(5)

The intuition behind this sequence is the following. Recall
that assuming PXP has uniform spectral gaps, we can define
the band projectors {Pj}. Furthermore, for each j, functions
from range(Pj ) are concentrated along lines of the form x =
η j for some η j ∈ R. Suppose that P sin (2πX/L1)P has uni-
form spectral gaps and let’s denote the band projectors for
P sin (2πX/L1)P as {Psin

j }. Based on the previous analysis,
we should expect that functions from range(Psin

j ) are con-
centrated along lines of the form sin (2πx/L1) = η j . Since
sin (2πx/L1) is not injective for x ∈ [0, L1), generally the
range of the projectors {Psin

j } will not be localized along a
single line. To correct this issue, we note that the spectral
projections of the operators Psin

j cos (2πX/L1)Psin
j are local-

ized along a single line, and hence by including cos(2πX/L1)
as well as sin(2πX/L1) in the sequence we obtain similar
localization with respect to x as with PXP. For the same
reason, we must include both sin(2πY/L2) and cos(2πY/L2)
in the sequence.

The sequence (5) has two advantages over the sequence
of complex exponential position operators. First, since these
operators are all self-adjoint, the theory from Ref. [17] does
directly apply and we can rigorously prove the functions
produced by the IPP algorithm are exponentially local-
ized. Second, unlike the complex exponentials, the operators

2Recall a matrix A has orthogonal eigenvectors if and only if it is
normal. That is, if AA† = A†A.

(5) commute with time-reversal symmetry operators (see
Sec. III D).

The sequence (5) has disadvantages relative to the se-
quence of complex exponentials. First, it is more complicated.
Second, it does not have the property that when H has
crystal lattice symmetry, the Wannier functions produced
by IPP retain that symmetry. Indeed, in practice, we find
that using complex exponentials gave better results in sit-
uations where preserving time-reversal symmetries is not
important.

D. Preserving time-reversal symmetries in the IPP algorithm

In applications it may be important for Wannier functions
to preserve time-reversal symmetries. In this work, we con-
sider two kinds of time-reversal symmetry.

The first time-reversal symmetry we consider, which we
refer to as bosonic time-reversal symmetry, is the complex
conjugation symmetry of models which neglect spin when the
Hamiltonian is purely real. Specifically, define the antiunitary
complex conjugation operator C by

C f (r) = f (r). (6)

Then we say bosonic time-reversal symmetry holds whenever
C commutes with the Hamiltonian H . In this case, we would
like the Wannier functions to be invariant under C, i.e., to be
purely real.

The second time-reversal symmetry we will consider is
fermionic time-reversal symmetry. This is the symmetry of
models which do account for spin, under the combined opera-
tion of complex conjugation and spin reversal. The antiunitary
operator � realizing this transformation satisfies, in contrast
to C, the condition

�2 = −1. (7)

In this case, we would like the Wannier functions to be closed
under � in the sense that if W1(r), . . . ,WN (r) is the set of
Wannier functions with centers closest to the origin (note
N must be even because of Kramers degeneracy) then there
exists a unitary matrix V [(7) implies V must also be skew-
symmetric] such that

(W1(r), . . . ,WN (r))� = V �(W1(r), . . . ,WN (r))�. (8)

It can happen that exponentially localized Wannier functions
satisfying (8) do not exist. For periodic systems, it is known
ELWFs satisfying (8) only exist when a Z2-valued topolog-
ical invariant defined through the occupied Bloch functions
(known as the Z2 invariant) vanishes [37,38].

With appropriate choices of position operators, the IPP
algorithm will automatically preserve the above time-reversal
symmetries. We give short proofs in each case, starting with
the case of bosonic time-reversal symmetry.

Suppose H commutes with C, i.e., is purely real, and let X̃
and Ỹ denote real position operators. Since the eigenvectors
of a real Hermitian matrix can always be chosen to be real, we
know that that the projector P (which is a spectral projector
for H) is also real. Since X̃ and Ỹ are real position operators,
using this same reasoning we can conclude that PX̃ P, Pj , and
PjỸ Pj are all real matrices. Therefore the eigenfunctions of
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PjỸ Pj can also be chosen to be real and hence bosonic time-
reversal symmetry is preserved.

Now suppose H commutes with �, and let X̃ and Ỹ denote
position operators which also commute with �. It follows that
� commutes with P, PX̃ P, and PjỸ Pj . But now we have that
� preserves the eigenspaces of PjỸ Pj , which is exactly (8).
We remark that it is easy to see that of the position operators
already introduced, X , Y , and the real periodic position op-
erators (5), commute with both C and �, while the complex
exponential position operators do not.

E. The time-reversal breaker ATRB

In the periodic case, it is well known that the existence
of time-reversal symmetry implies that there is a choice of
Bloch gauge so that the Wannier functions are exponentially
localized [26]. Unfortunately, as shown in Ref. [39] when
the Z2 invariant is nonzero, there cannot exist an orthogonal
basis, which is both exponentially localized and satisfies the
time-reversal symmetry. Since the IPP algorithm preserves
time-reversal symmetry with the choice of position operators
X → Y (see Sec. III D), the IPP algorithm using position
operators X and Y must necessarily fail for Z2 invariant odd
systems.

To avoid this issue, inspired the work in by Silvestrelli,
Marzari, Vanderbilt, and Parrinello [40], we define a local,
bounded, self-adjoint perturbation, ATRB, which anticom-
mutes with time-reversal symmetry and define the “time-
reversal broken” position operators as follows:

XTRB := X + ATRB,

YTRB := Y + ATRB.
(9)

Since ATRB anticommutes with time-reversal symmetry the
position operators XTRB and YTRB no longer commute with
time-reversal symmetry and hence the resulting eigenfunc-
tions of the IPP algorithm will also break time-reversal
symmetry. Importantly, we can choose ATRB so that the the-
oretical results from Ref. [17] still imply that the output of the
IPP algorithm is exponentially localized.

In our numerics, we test the Kane-Mele model which has
four sites per unit cell (A ↑, B ↑, A ↓, B ↓) and therefore
the position operator X can be written as acting locally as
follows (see Appendix A for more details on the Kane-Mele
model):

(Xψ )m,n =

⎡
⎢⎢⎢⎢⎣

mψA↑
m,n

mψB↑
m,n

mψA↓
m,n

mψB↓
m,n

⎤
⎥⎥⎥⎥⎦.

We then introduce a term which couples the up and down spins
at each site:

⎡
⎢⎣

A↑ B↑ A↓ B↓
A↑ 1
B↑ 1
A↓ 1
B↓ 1

⎤
⎥⎦.

FIG. 3. Plot of the first 600 nonzero eigenvalues of
arcsin (P sin (2πX/L1)P) (left) and arcsin (P sin (2πXTRB/L1)P)
(right). Here P denotes the Fermi projection for a Kane-Mele
model with odd Z2 invariant on a 30 × 30 system with
periodic boundary conditions, X is the standard position
operator, and XTRB := X + ATRB. The parameters used are
(v, t, t ′, λR ) = (4, 1, 0.6, 0.5) (see Appendix A for definition of
parameters). We observe that the addition of the time-reversal
breaker ATRB causes gaps in the spectrum to open.

It is easy to check that this matrix is self-adjoint, has eigen-
values ±1, and that it anticommutes with the time-reversal
operator. We propose adding these matrices to the original
position operator X at every site. That is,

((X + ATRB)ψ )m,n :

=

⎛
⎜⎝mI4×4 + 1

2

⎡
⎢⎣

1
1

1
1

⎤
⎥⎦

⎞
⎟⎠

⎡
⎢⎢⎢⎢⎣

ψA↑
m,n

ψB↑
m,n

ψA↓
m,n

ψB↓
m,n

⎤
⎥⎥⎥⎥⎦,

where I4×4 denotes a 4 × 4 identity matrix.
As a note, the factor of 1

2 ensures that the perturbation is
small relative to the lattice spacing. In Fig. 3, we compare the
spectrum of P sin (2πX/L1)P and P sin (2πXTRB/L1)P for a
Kane-Mele model with odd Z2 invariant.

F. Results summary

In this section, we have explained how to adapt the IPP
algorithm so that the resulting Wannier functions have desired
symmetry properties. In Sec. VI, we will present numerical
verifications that the methods of this section compute EL-
GWFs in the following cases. (1) Dirichlet (open) boundary
conditions, no time-reversal symmetry. (2) Periodic boundary
conditions, no time-reversal symmetry. (3) Periodic boundary
conditions, bosonic time-reversal symmetry holds. (4) Peri-
odic boundary conditions, fermionic time-reversal symmetry
holds, Z2 invariant even. (5) Periodic boundary conditions,
fermionic time-reversal symmetry holds, Z2 invariant odd. In
each case, we test the IPP algorithm with and without small
random perturbations to the onsite potential. Note that such
perturbations break translation symmetry and hence Wannier
functions cannot be found using Bloch theory.

When we say that the Z2 invariant is even or odd, we refer
to the Z2 invariant computed from the system without noise.
In cases 1–4, the ELGWFs produced by the IPP algorithm re-
spect boundary conditions and symmetries. In case 5, because
of the presence of the Z2 topological obstruction, to produce
ELGWFs the IPP algorithm intentionally breaks fermionic
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TABLE I. Summary of main results. Here, XTRB := X + ATRB and YTRB := Y + ATRB where ATRB is a local perturbation which breaks
time-reversal symmetry. See Sec. III E for the definition of ATRB and discussion.

No time-reversal symmetry

Dirichlet BCs X → Y
Periodic BCs e2π iX/L1 → e2π iY/L2

Time-reversal symmetry, periodic BCs

Bosonic and Z2 even sin (2πX/L1) → cos (2πX/L1) → sin (2πY/L2) → cos (2πY/L2)
Z2 odd sin (2πXTRB/L1) → cos (2πXTRB/L1) → sin (2πYTRB/L2) → cos (2πYTRB/L2)

time-reversal symmetry. We summarize the sequences of po-
sition operators used in each case in Table I.

IV. CONNECTION WITH MARZARI-VANDERBILT
FUNCTIONAL MINIMIZATION

Despite the fact that finding an exponentially localized
basis is not always possible in two dimensions, in the highly
influential work, Marzari and Vanderbilt [12] proposed choos-
ing the gauge so that the variance of the resulting Wannier
functions over the home unit cell is minimized. As noted in
Marzari and Vanderbilt’s original paper [12], this variance
functional can be separated into two parts: a part which de-
pends on the choice of gauge and a part which is gauge
invariant. Given a basis of Wannier functions on the home
unit cell {wn0}, a simple calculation shows that the gauge
dependent part of the variance functional can be written as
(see Appendix B for more details):∑

n

∥∥P
(
X − μX

n0

)
Pwn0

∥∥2 + ∥∥P
(
Y − μY

n0

)
Pwn0

∥∥2
, (10)

where

μX
n0 := 〈wn0|X |wn0〉 μY

n0 := 〈wn0|Y |wn0〉. (11)

Now notice that∥∥P
(
X − μX

n0

)
Pwn0

∥∥2 = 0

⇐⇒ PXPwn0 = μX
n0wn0

⇐⇒ wn0 is an eigenvector of PXP,

where in the second line we have used that wn0 ∈ range(P).
This calculation shows that minimizing Eq. (10) amounts to
finding Wannier functions {wn0}n, which are approximately
simultaneous eigenvectors of the operators PXP and PY P.
When PXP and PY P do not commute, finding a basis so that
Eq. (10) is exactly 0 is impossible.

Unlike the Marzari-Vanderbilt approach, which tries to
minimize both the X and Y directions simultaneously,
the IPP algorithm takes a “greedy” approach to minimiz-
ing the objective in Eq. (10) in the following sense. As
noted previously by Kivelson [18], in one dimension, the
eigenvectors of PXP can be thought of as the “best” ap-
proximation to an eigenstate of X from range(P). From this
perspective, we can interpret the sequence of diagonaliz-
ations PXP → PjY Pj as first trying to localize in X among
vectors in range(P) and then trying to localize in Y among
vectors in range(Pj ). While there is no reason to expect that
this iterative process will give a basis which is maximally

localized, under the uniform spectral gaps assumption we can
guarantee that this procedure gives a basis that is exponen-
tially localized in both the X and Y directions simultaneously
[17].

V. THE UNIFORM SPECTRAL GAPS ASSUMPTION
IMPLIES TRIVIAL TOPOLOGY IN PERIODIC

MATERIALS

In this section, we restrict to the special case of periodic
systems so that we may make a direct connection between
uniform spectral gaps and the theory of topological invari-
ants. In particular, we will show that in two dimensions the
uniform spectral gaps assumption implies that 1) for general
crystalline insulators the Chern number is zero and 2) for
crystalline insulators with fermionic time-reversal symmetry
that the Z2 invariant is zero. Since in the crystalline case, it
is now well understood that in two dimensions topological
invariants completely characterize whether a basis of ELWFs
exist or not [11], the calculations in this section confirm that
our results are consistent with existing theory.

The idea of connecting the spectrum of PXP as used in
the IPP algorithm to topological invariants is not new. This
connection was first introduced by Soluyanov and Vanderbilt
under the name of Wannier charge centers (WCCs) in the
papers [41,42]. In Sec. V A, we will define the WCCs for a
one-dimensional system with a single band and connect the
WCCs to the spectrum of PXP. While a one-dimensional
system with a single band is exceedingly simple, the tech-
niques used in this simple example generalize easily to higher
dimensions. In Sec. V B, we will extend the construction of
the WCCs to insulators with a single band in two dimensions
and use the properties of the WCCs to show that uniform spec-
tral gaps implies the Chern number must vanish. Finally, in
Sec. V C, using the WCCs, we will show that uniform spectral
gaps implies the Z2 invariant must vanish for an insulator with
two bands and fermionic time-reversal symmetry.

While in the paper we only consider the simplest possible
case (a single band for the Chern number and two bands for
the Z2 invariant), the multiband case follows by a similar
argument by making some straightforward modifications. We
direct interested readers to Ref. [17, Appendix E] where the
multiband case is carefully worked out for the Chern number.
Our presentation follows closely developments due in large
part to Soluyanov and Vanderbilt [42–44], who also show how
to generalize the present ideas to more general cases. Our pre-
sentation also follows the mathematical works [30,38], where
analytic and periodic Bloch function gauges are constructed
rigorously.
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A. The Wannier charge centers and the spectrum
of PXP in one dimension

Let L > 0 be the one-dimensional lattice constant, and take
the Brillouin zone as k ∈ [−π

L , π
L ]. We consider a single iso-

lated Bloch band, denoting Bloch functions associated to the
band by ψ0k . One-dimensional Wannier functions are defined
for each lattice vector R = mL by

W (r, R) = L

2π

∫ π
L

− π
L

ψ0ke−ikR dk. (12)

Niu [19] (following Ref. [24], see also Ref. [12]) has explicitly
displayed an analytic and periodic Bloch function gauge such
that the associated one-dimensional Wannier functions are
eigenfunctions of the operator PXP. We briefly review this
construction now. We start by finding periodic Bloch functions
u(r, k) := e−ikrψ0k in the adiabatic/parallel transport gauge
[45], so that

〈u(·, k)|∂ku(·, k)〉 = 0. (13)

This gauge makes the Bloch functions ψ0k analytic but not
generally periodic in k. However, simplicity of the band im-
plies that

u

(
r,

π

L

)
= e−i 2π

L xλu

(
r,−π

L

)
(14)

for some λ ∈ U (1), where U (N ) denotes the group of N ×
N unitary matrices. To make the gauge periodic, we replace
u(r, k) by

e−i 
L
2π

ku(r, k), (15)

where 
 satisfies ei
 = λ. 
 is not unique, since replacing

 by 
 + 2πm for any integer m will also give an analytic
and periodic gauge. However, shifting 
 by 2π is equivalent
by shifting R by one period in (12), so we may make the
convention WLOG that 
 ∈ [0, 2π ). Direct calculation using
periodicity of the gauge and (13) now shows that

PXPW (r, R) =
(

R + 
L

2π

)
W (r, R). (16)

The quantity

x := 
L

2π
(17)

is known as the Wannier charge center (WCC). Because of
the nonuniqueness of 
, x is defined only mod 2π . With our
convention for 
 however, we can assume WLOG that x ∈
[0, L). Since the choice of R in (12) was arbitrary, it follows
that the spectrum of PXP is σ (PXP) = ZL + x, and hence x
can be read easily from σ (PXP).

B. Uniform spectral gaps implies that the Chern number is zero

In two dimensions, we consider a crystal with lattice vec-
tors v1, v2. We introduce spatial coordinates (r1, r2) such that

r = r1

L1
v1 + r2

L2
v2, (18)

(here Lj := |v j |, j = 1, 2) so that (r1, r2) ∈ [0, L1] × [0, L2]
corresponds to a fundamental cell of the lattice �. Letting w1

and w2 denote dual vectors to v1 and v2 (such that wi · v j =
2πδi j), we introduce k-space coordinates (κ1, κ2) such that

k = κ1

2π
w1 + κ2

2π
w2, (19)

so that k := (κ1, κ2) ∈ [−π, π ]2 corresponds to a fundamen-
tal cell (Brillouin zone) of the dual lattice �∗.

Assuming again a single isolated band, we can attempt to
construct an analytic and periodic Bloch function gauge over
the whole Brillouin zone in 2d by iterating the 1d construction
detailed above. We start by constructing an analytic and peri-
odic (with respect to κ2) gauge along the line (0, κ2) where
κ2 ∈ [−π, π ] by exactly mimicking the 1d construction. We
now extend this gauge to the whole Brillouin zone by parallel
transporting the periodic Bloch functions u(r, 0, κ2) along the
lines (κ1, κ2) where κ1 ∈ [−π, π ] for each κ2. In this way,
we construct a Bloch function gauge over the whole Brillouin
zone which is analytic with respect to κ1 and κ2, but periodic
only with respect to κ2. Using simplicity of the band, we have
that

u(r1, π, κ2) = e−iw1·rλ(κ2)u(r,−π, κ2), (20)

where λ(κ2) ∈ U (1), and λ(κ2 + 2π ) = λ(κ2) by periodicity
of the gauge with respect to κ2.

We can try to “mend” the gauge by replacing the Bloch
functions u(r, κ1, κ2) along each line of constant κ2 by

e−i 
(κ2 )
2π

κ1 u(r, κ1, κ2), (21)

where ei
(κ2 ) = λ(κ2) for each κ2 and the map κ2 �→ 
(κ2)
is assumed analytic. The result of this process is a new
“mended” gauge, which is analytic with respect to κ1 and κ2

and periodic with respect to κ1. The gauge will retain periodic-
ity with respect to κ2 if 
(κ2) = 
(−κ2). It is possible that this
does not hold despite the periodicity of λ(κ2), since this only
implies 
(π ) = 
(−π ) mod 2π . By identifying the ends of
the Brillouin zone, it is natural to view the map κ2 �→ ei
(κ2 ) as
mapping S1 → S1. From this perspective, the mended gauge
will retain periodicity with respect to κ2 if and only if the
winding number of this map is zero.

Nontrivial winding of the map κ2 �→ ei
(κ2 ) can be detected
from the spectrum of the operator PXP as follows. We define
hybrid Wannier functions (HWFs) for each R1 = mL1 where
m ∈ Z by

H (r, R1, κ2) = 1

2π

∫ π

−π

ψκ1,κ2 (r)e−iκ1R1 dκ1. (22)

Then, letting P(κ2) denote the projection onto the Bloch func-
tions along the line (κ1, κ2) where κ1 ∈ [−π, π ] for each κ2

and adopting the gauge just constructed we have by essentially
the same calculation leading to (16),

P(κ2)XP(κ2)H (r1, r2, R1, κ2)

= (R1 + x(κ2))H (r1, r2, R1, κ2),
(23)

where x(κ2) := 
(κ2 )L1
2π

can be understood as the WCC “at κ2.”
Since R1 is arbitrary, we see that the spectrum of P(κ2)XP(κ2)
is σ (P(κ2)XP(κ2)) = ZL1 + x(κ2).

It is clear that if the map κ2 �→ ei
(κ2 ) winds, the map κ2 �→
x(κ2) must sweep out the whole interval [0, L1], and hence the
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FIG. 4. Wannier charge centers xm(k2) of the Haldane model
with size 10 × 90 with parameters such that the Chern number is
zero (v, t, t ′) = (3, 1, 0.5) (left) and nonzero (v, t, t ′) = (0, 1, 0.5)
(right).

spectrum of PXP, given by

σ (PXP) =
⋃

κ2∈[−π,π]

σ (P(κ2)XP(κ2)), (24)

cannot have spectral gaps. It follows that the uniform spectral
gap assumption on PXP implies that the mended Bloch func-
tion gauge constructed above is actually analytic and periodic
in κ1 and κ2, from which ELWFs can be constructed via the
usual construction. In Fig. 4, we plot the imaginary part of
the natural logarithm of σ (P(κ2)e2π iX/LP(κ2)) as κ2 is varied
showing different possible behaviors.3

We finally link these observations to the Chern number.
Noting that in the gauge constructed above the Berry connec-
tion is

i〈u(·, κ1, κ2)|∂κ1 u(·, κ1, κ2)〉 = 
(κ2)

2π
, (25)

we have, using Stokes’ theorem (recall that the mended gauge
is always analytic in κ1 and κ2 and periodic with respect to
κ1), that the Chern number

C = 1

2π
[
(π ) − 
(−π )]. (26)

Hence whenever PXP has spectral gaps the Chern number
must vanish.

C. Uniform spectral gaps implies Z2 invariant is zero

We now consider the same two-dimensional setup as the
previous section with the additional assumption that fermionic
time-reversal symmetry holds, i.e., that there exists an an-
tiunitary operator � such that �2 = −1 and �P(κ1, κ2)� =
P(−κ1,−κ2) where P(κ1, κ2) denotes the projection onto the
set of Bloch functions at (κ1, κ2). We assume the simplest pos-
sible case in this setting, which is of two Bloch bands isolated
from the other Bloch bands of the Hamiltonian, and attempt to
construct a Bloch function gauge k �→ (u(r, k), v(r, k)) which
is analytic, periodic, and respects time-reversal symmetry in
the sense that(

u(r,−k)
v(r,−k)

)
= V �

(
u(r, k)
v(r, k)

)
, V :=

(
0 −1
1 0

)
(27)

for all k in the Brillouin zone.

3As discussed in Sec. III C, P(κ2)XP(κ2) shows boundary effects
in finite systems stemming from the fact that X does not commute
with lattice translations.

Given an arbitrary periodic Bloch function at
(0, 0) u(r, 0, 0), we let v(r, 0, 0) := �u(r, 0, 0). We can
generate analytic and periodic Bloch functions u(r, 0, κ2)
and v(r, 0, κ2) along the line (0, κ2), κ2 ∈ [−π, π ] via the
1d parallel transport procedure as in the previous sections.
Analysis of the unitary realizing parallel transport shows that
this gauge also respects (27). By extending this gauge to the
whole Brillouin zone via parallel transport along the lines
(κ1, κ2), κ1 ∈ [−π, π ] for each fixed κ2, we obtain a gauge,
which is analytic in κ1 and κ2, periodic with respect to κ2, and
respectful of time-reversal symmetry (27). It follows that(

u(r, π, κ2)
v(r, π, κ2)

)
= e−iw1·rU (κ2)

(
u(r,−π, κ2)
v(r,−π, κ2)

)
, (28)

where U (κ2) ∈ U (2) is analytic in κ2, periodic in the sense
that U (κ2 + 2π ) = U (κ2) for every κ2, and satisfies the sym-
metry

U (κ2) = (V �)−1U †(−κ2)V �. (29)

By rotating the set of periodic Bloch functions along the line
(0, κ2), κ2 ∈ [−π, π ], we can assume that U (κ2) is diagonal,
with analytic and periodic eigenvalues λu(κ2), λv (κ2) ∈ U (1)
such that λv (−κ2) = λu(κ2), λu(−κ2) = λv (κ2) for all κ2 [by
(29)]. In particular, we have λu(0) = λv (0). Combining (29)
with periodicity of U (κ2) implies that λu(±π ) = λv (±π ).

Just as in the case without time-reversal symmetry, we
can attempt to “mend” the gauge so it is periodic with re-
spect to κ1 by replacing u(r, κ1, κ2) by e−i 
u (κ2 )

2π
κ1 u(r, κ1, κ2),

where 
u(κ2) is chosen analytically in κ2 such that ei
u (κ2 ) =
λu(κ2) for each κ2 (and the same for v(r, κ1, κ2)). For the
mended gauge to retain time-reversal symmetry, we must
have 
v (−κ2) = 
u(κ2) and 
u(−κ2) = 
v (κ2) (and hence

u(0) = 
v (0)), while the degeneracies of λu(κ2) and λv (κ2)
at 0 and ±π ensure that 
u(π ) = 
v (π ) and 
u(−π ) =

v (−π ) mod 2π . For the gauge to retain periodicity in κ2,
we require the additional conditions


u(π ) = 
u(−π ) and 
v (π ) = 
v (−π ). (30)

Assuming we have chosen the gauge to respect time-reversal
symmetry, these conditions are equivalent to


u(π ) = 
v (π ) and 
u(−π ) = 
v (−π ), (31)

although the second condition is clearly redundant. Recall
that λu(±π ) = λv (±π ) and hence 
u(±π ) = 
v (±π ) mod
2π . Just as in the case without time-reversal symmetry, we
can consider the maps κ2 �→ ei
u (κ2 ), κ2 �→ ei
v (κ2 ) as map-
ping S1 → S1, and conclude that the mending process yields
an analytic and periodic gauge which respects time-reversal
symmetry if and only if the winding numbers of these maps
are both zero (clearly they are equal up to a sign).

We can again link the failure of the mending process to the
spectrum of the operator PXP as follows. Define HWFs for
each R1 = mL1 where m ∈ Z and each ω ∈ {u, v} by

Hω(r, R1, κ2) = 1

2π

∫ π

−π

ψ0k,ω(r)e−iκ1R1 dκ1, (32)

where ψ0k,ω(r) = eik·rω(r, k), and where each periodic Bloch
function is assumed to be in the mended gauge defined above.
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FIG. 5. Wannier charge centers xm(k2) of the Kane-Mele model
with size 10 × 90 with parameters such that the Z2 index is
zero (v, t, t ′, λR ) = (3, 1, 0.6, 0.5) (left) and nonzero (v, t, t ′, λR ) =
(0, 1, 0.6, 0.5) (right).

By essentially the same calculation as in (16), we have

P(κ2)XP(κ2)Hω(r, R1, κ2)

= (R1 + xω(κ2))Hω(r, R1, κ2),
(33)

where xω(κ2) := 
ω (κ2 )L1
2π

. Since R1 is arbitrary, we have
σ (P(κ2)XP(κ2)) = [ZL1 + xu(κ2)]

⋃
[ZL1 + xv (κ2)]. It is

clear that if the maps κ2 �→ ei
ω (κ2 ) wind, the maps κ2 �→
xω(κ2) must sweep out the whole interval [0, L1], and hence
the spectrum of PXP cannot have spectral gaps. It follows that
the spectral gap assumption we make on PXP implies the ex-
istence of an analytic, periodic, and time-reversal symmetric
gauge over the whole Brillouin zone, and hence time-reversal
symmetry-respecting ELWFs by the usual construction. Plots
of σ (P(κ2)XP(κ2)) as κ2 is varied showing different possible
behaviors when time-reversal symmetry holds are shown in
Fig. 5. These figures should be compared with the same fig-
ures when X is replaced by X + ATRB where ATRB does not
respect time-reversal symmetry Fig. 6.

We finally link these observations to the Z2 invariant. Not-
ing that in the gauge constructed above the Berry connection
takes the form

〈ω(·, κ1, κ2)|∂κ1ω(·, κ1, κ2)〉 = 
ω(κ2)

2π
ω ∈ {u, v}, (34)

Fu and Kane’s definition of the Z2 invariant in terms of time-
reversal polarization � [37] becomes

� = 1

2π
([
u(π ) − 
v (π )] − [
u(0) − 
v (0)]) mod 2.

(35)

FIG. 6. Wannier charge centers xm(k2) with the inclusion of
ATRB of the Kane-Mele model with size 10 × 90 with parameters
(v, t, t ′, λR) = (0, 1, 0.6, 0.5) (Z2 invariant odd).

Since we have already fixed a gauge where 
u(0) = 
v (0) and
established that whenever PXP has gaps we have 
u(π ) =

v (π ) we see that � vanishes.

VI. NUMERICAL RESULTS

We now turn to numerically test our method for the Hal-
dane, Kane-Mele, and px + ipy models (which we carefully
define in Appendix A). Note that we only consider tight bind-
ing models in this paper. We expect that the IPP algorithm
can also be applied to density matrices arising from density
functional theory calculations. We leave the implementation
and testing of the IPP algorithm in such a context for future
work.

We will test these models in the following scenarios.
(1) Dirichlet boundary conditions (Sec. VI B): (a) Kane-

Mele model with Dirichlet boundary conditions (Sec. VI B1),
(b) Kane-Mele model with Dirichlet boundary conditions with
weak disorder (Sec. VI B 2), and (c) px + ipy model with
Dirichlet boundary conditions (Sec.VI B 3).

(2) Periodic boundary conditions (Sec. VI C): (a) Haldane
model with periodic boundary conditions (Sec. VI C 1), (b)
Haldane model with periodic boundary conditions with weak
disorder (Sec. VI C 2), and (c) Haldane model with periodic
boundary conditions with strong disorder (Sec. VI C 3).

(3) Time-reversal symmetries (Sec. VI D): (a) Haldane
model with periodic boundary conditions and bosonic time-
reversal symmetry (Sec. VI D 1), (b) Kane-Mele model
with periodic boundary conditions and Z2 invariant even
(Sec. VI D 2), (c) Kane-Mele model with periodic boundary
conditions and Z2 invariant odd (Sec. VI D 3), and (d) Kane-
Mele model with periodic boundary conditions, Z2 invariant
odd, and weak noise (Sec. VI D 4).

To demonstrate the effectiveness of our algorithm, we will
display a number of plots which show the exponential decay
of the generated orthonormal basis.

For the Haldane and Kane-Mele models, we will run our
tests on a 30 × 30 system and make plots of the following
matrix. Here ‖ψn,m‖2 denotes the Euclidean norm of the sites
in the (n, m) cell:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖ψ1,1‖2 ‖ψ1,2‖2 · · · ‖ψ1,30‖2

‖ψ2,1‖2 ‖ψ2,2‖2 · · · ‖ψ2,30‖2

...
...

. . .
...

‖ψ30,1‖2 ‖ψ30,2‖2 · · · ‖ψ30,30‖2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We will plot this matrix as both a 3D surface plot as well as
2D intensity plot on a log scale.

Since the Ammann-Beekner tiling is not a lattice, we can-
not easily translate our results for the px + ipy model to a
matrix as we can for the Haldane and Kane-Mele models.
For this model, we will instead plot the points in Ammann-
Beekner quasilattice and at each point superimpose a circle
whose radius is proportional to the Euclidean norm of the
generalized Wannier function at that site (for an example of
this, see Fig. 12).
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FIG. 7. Plot of all nonzero eigenvalues (left) and the first 200
nonzero eigenvalues (right) of PXP. Here P denotes the Fermi pro-
jection for a Kane-Mele model on a 30 × 30 system with Dirichlet
boundary conditions and X is the standard position operator. The
parameters used are (v, t, t ′, λR ) = (4, 1, 0.6, 0.5) (see Appendix A
for definition of parameters).

To verify the robustness of our algorithm, in some of our
experiments we will randomly perturb the original Hamil-
tonian H by “on-site disorder.” More specifically, we will
consider the disordered Hamiltonian Hdisorder as follows
(where {|i〉} denotes the position basis):

Hdisorder = H +
∑

i

ηi|i〉〈i|,

ηi
i.i.d∼ N (0, σ 2).

(36)

That is, the disorder adds independent draws from a Gaussian
distribution with mean 0 and variance σ 2 to the diagonal
entries of the original Hamiltonian.

A. Comment on diagonalizing projected position operators

While theoretically it is convenient to work with projected
position operators of the form P̃X̃ P̃, for numerical purposes

FIG. 8. Plot of two of the generalized Wannier functions gener-
ated by the IPP algorithm using X → Y for the system from Fig. 7.
A 3D surface plot of the results (left) and the corresponding 2D
logarithmic plot (right).

FIG. 9. Plot of all nonzero eigenvalues (left) and the first 200
nonzero eigenvalues (right) of PXP. Here P denotes the Fermi
projection for a Kane-Mele model with on-site disorder on a 30 ×
30 system with Dirichlet boundary conditions and X is the stan-
dard position operator. The parameters used are (v, t, t ′, λR ) =
(4, 1, 0.6, 0.5) and the disorder variance is σ 2 = 0.5 [see
Appendix A for definition of parameters and Eq. (36) for definition
of on-site disorder].

this matrix is quite large and computing all of the eigenvectors
and eigenvalues of P̃X̃ P̃ is wasteful when the projector P̃
is low rank. At every step in our numerics, we have access
to a matrix with orthonormal columns, B̃, so that P̃ = B̃B̃†.
A simple calculation shows that if v is an eigenfunction of
B̃†X̃ B̃ then B̃v is an eigenfunction of P̃X̃ P̃. Since the matrix
B̃†X̃ B̃ is significantly smaller than P̃X̃ P̃, in our tests of the
IPP algorithm we diagonalize the small matrix B̃†X̃ B̃ to find
the nontrivial eigenfunctions of P̃X̃ P̃.

B. Dirichlet boundary conditions

1. Kane-Mele model, Dirichlet boundary conditions

As a first numerical example, let us consider the Kane-
Mele model with the Dirichlet boundary condition and

FIG. 10. Plot of two of the generalized Wannier functions gener-
ated by the IPP algorithm using X → Y for the system from Fig. 9.
A 3D surface plot of the results (left) and the corresponding 2D
logarithmic plot (right).
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FIG. 11. Plot of all nonzero eigenvalues (left) and the first 100
nonzero eigenvalues (right) of PXP. Here P denotes the Fermi pro-
jection for px + ipy model on the Ammann-Beekner lattice and X is
the standard position operator. The parameters used are (μ, t,�) =
(3, 0.5, 1) (see Appendix A for definition of parameters).

parameters (v, t, t ′, λR) = (4, 1, 0.6, 0.5). In Fig. 7, we plot
all of the nonzero eigenvalues of PXP (left) and the first 200
nonzero eigenvalues of PXP (right); notice the eigenvalues of
PXP has clear spectral gaps. In Fig. 8, we plot some of the
eigenfunctions of PjY Pj ; notice they are clearly exponentially
localized.

2. Kane-Mele model, Dirichet boundary conditions, weak disorder

Next, let’s consider the same system as in Sec. VI B 1 with
the addition of on-site disorder. The parameters for this model
are (v, t, t ′, λR) = (4, 1, 0.6, 0.5) and the on-site disorder has
variance σ 2 = 0.5. In Fig. 9, we plot all of the nonzero eigen-
values of PXP (left) and the first 200 nonzero eigenvalues of
PXP (right); notice that the spectral gaps in PXP are still
present with weak disorder. In Fig. 10, we plot some of the
eigenfunctions of PjY Pj .

3. px + ipy model, Dirichlet boundary conditions

Since the IPP algorithm does not make any assumptions
about the underlying symmetries in the system, we can easily
apply it to quasilattice systems such as the px + ipy model
on the Ammann-Beekner lattice. In the following tests, we
choose parameters (μ, t,�) = (3, 0.5, 1) so that the gap in
the Hamiltonian opens and the system is nontopological. In
Fig. 11, we see that PXP has clear gaps and in Fig. 12 we see
that the eigenfunctions of PjY Pj are exponentially localized
about their center.

FIG. 12. Plot of two of the generalized Wannier functions gener-
ated by the IPP algorithm using X → Y for the system from Fig. 11.
The radius of the circle at each point in the lattice is proportional to
the Euclidean norm of the generalized Wannier function at that site.

FIG. 13. Plot of all nonzero eigenvalues (left) and the first 200
nonzero eigenvalues (right) of Imln (Pe2π iX/L1 P). Here P denotes the
Fermi projection for a Haldane model on a 30 × 30 system with
periodic boundary conditions and X is the standard position operator.
The parameters used are (v, t, t ′) = (3, 1, 0.5) (see Appendix A for
definition of parameters).

C. Periodic boundary conditions

Now that we’ve tested Dirichlet boundary conditions, we
move on to test periodic systems. For these tests, we will use
the sequence of position operators e2π iX/L1 → e2π iY/L2 .

1. Haldane model, periodic boundary conditions

We first consider a nontopological Haldane model with
periodic boundary conditions and parameters (v, t, t ′) =
(3, 1, 0.5). In Fig. 13, we plot all of the nonzero eigenvalues
of Imln (Pe2π iX/L1 P) (left) and the first 200 nonzero eigen-
values of Imln (Pe2π iX/L1 P)(right); notice these eigenvalues
have clear spectral gaps. In Fig. 14, we plot some of the
eigenfunctions of PjY Pj .

FIG. 14. Plot of two of the generalized Wannier functions gen-
erated by the IPP algorithm using e2π iX/L1 → e2π iY/L2 for the system
from Fig. 13. A 3D surface plot of the results (left) and the corre-
sponding 2D logarithmic plot (right).
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FIG. 15. Plot of all nonzero eigenvalues (left) and the first 200
nonzero eigenvalues (right) of Imln (Pe2π iX/L1 P). Here P denotes the
Fermi projection for a Haldane model with on-site disorder on a 30 ×
30 system with periodic boundary conditions and X is the standard
position operator. The parameters used are (v, t, t ′) = (3, 1, 0.5) and
the disorder variance is σ 2 = 0.5 [see Appendix A for definition of
parameters and Eq. (36) for definition of on-site disorder].

2. Haldane model, periodic boundary conditions, weak disorder

When we add any amount of unstructured disorder to a
periodic system, the periodicity in the system is lost and there-
fore Bloch theory does not apply. Despite this issue, the IPP
algorithm is robust to disorder so still it produces ELGWFs.

To numerically show this, let’s consider the Haldane model
with parameters (v, t, t ′) = (3, 1, 0.5) as in Sec. VI C 1 with
the addition of on-site disorder with variance σ 2 = 0.5. In
Fig. 15, we plot all of the nonzero eigenvalues (left) and the
first 200 nonzero eigenvalues of Imln (Pe2π iX/L1 P) (right); no-
tice that the spectral gaps are still present with weak disorder.
In Fig. 16, we plot a few of the results of the IPP algorithm.

3. Haldane model, periodic boundary conditions, strong disorder

Next, we consider a periodic Haldane model with ex-
tremely strong on-site disorder. When disorder is added,

FIG. 16. Plot of two of the generalized Wannier functions gen-
erated by the IPP algorithm using e2π iX/L1 → e2π iY/L2 for the system
from Fig. 15. A 3D surface plot of the results (left) and the corre-
sponding 2D logarithmic plot (right).

FIG. 17. Plot of all nonzero eigenvalues (left) and the first 200
nonzero eigenvalues (right) of Imln (Pe2π iX/L1 P). Here P denotes the
Fermi projection for a Haldane model with on-site disorder on a 30 ×
30 system with periodic boundary conditions and X is the standard
position operator. The parameters used are (v, t, t ′) = (3, 1, 0.5) and
the disorder variance is σ 2 = 100 [see Appendix A for definition of
parameters and Eq. (36) for definition of on-site disorder].

Anderson localized states appear with energy in the gap of the
periodic model. Thus we can no longer assume the Hamilto-
nian with disorder has a spectral gap. Although the statement
of our rigorous results requires a spectral gap, the IPP algo-
rithm still yields an exponentially localized basis for the Fermi
projection in this case. This is consistent with the observation
that disorder causes the entries of the Fermi projection to
decay exponentially away from the diagonal even without a
spectral gap.

The parameters for this model are (v, t, t ′) = (3, 1, 0.5)
and the on-site disorder has variance σ 2 = 100. In Fig. 17,
we plot all of the nonzero eigenvalues (left) and the first 200
nonzero eigenvalues of Imln (Pe2π iX/L1 P) (right); notice that
the spectral gaps persist with the strong disorder. In Fig. 18,
we plot some of the results of the IPP algorithm.

FIG. 18. Plot of two of the generalized Wannier functions gen-
erated by the IPP algorithm using e2π iX/L1 → e2π iY/L2 for the system
from Fig. 17. A 3D surface plot of the results (left) and the corre-
sponding 2D logarithmic plot (right).
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FIG. 19. Plot of all nonzero eigenvalues (left) and the first 200
nonzero eigenvalues (right) of arcsin (P sin (2πX/L1)P). Here P de-
notes the Fermi projection for a Haldane model on a 30 × 30 system
with periodic boundary conditions and X is the standard position op-
erator. The parameters used are (v, t, t ′) = (3, 1, 0.6) (see Appendix
A for definition of parameters).

D. Time-reversal symmetry tests

For our last numerical tests, we will test the IPP algo-
rithm for systems with bosonic time-reversal symmetry and
fermionic time-reversal symmetry (both Z2 invariant even and
odd cases).

1. Haldane model, periodic boundary conditions, bosonic
time-reversal symmetry

As our first numerical test of the relationship between the
IPP algorithm and time-reversal symmetry. We consider a
Haldane model with parameters (v, t, t ′) = (3, 1, .5i) (where
i = √−1). In this case, the Haldane Hamiltonian has only
real entries and therefore satisfies bosonic time-reversal
symmetry. Since the eigenvectors of a Hermitian matrix
with real entries can always chosen to be real, it is

FIG. 20. Plot of two of the generalized Wannier functions gener-
ated by the IPP algorithm using sin (2πX/L1) → cos (2πX/L1) →
sin (2πY/L2) → cos (2πY/L2) for the system from Fig. 21. A 3D
surface plot of the results (left) and the corresponding 2D logarithmic
plot (right).

FIG. 21. Plot of all nonzero eigenvalues (left) and the first 400
nonzero eigenvalues (right) of arcsin (P sin (2πX/L1)P). Here P de-
notes the Fermi projection for a Kane-Mele model on a 30 × 30
system with periodic boundary conditions and X is the standard posi-
tion operator. The parameters used are (v, t, t ′, λR ) = (4, 1, 0.6, 0.5)
(see Appendix A for definition of parameters).

easy to see that performing the sequence of diagonaliz-
ations sin (2πX/L1) → cos (2πX/L1) → sin (2πY/L2) →
cos (2πY/L2) will always generate real Wannier functions
without any additional computational effort. In Fig. 19, we
plot all of the nonzero eigenvalues (left) and the first 200
nonzero eigenvalues of arcsin (P sin (2πX/L1)P) (right). In
Fig. 20, we plot some of the results of the IPP algorithm.

2. Kane-Mele model, periodic boundary conditions,
Z2 invariant even

For our first test of fermionic time-reversal symmetry, let
us consider the Kane-Mele model with even Z2 invariant. For
this test we use parameters (v, t, t ′, λR) = (4, 1, 0.6, 0.5). In
Fig. 21, we plot the nonzero eigenvalues (left) and the first 400

FIG. 22. Plot of two of the generalized Wannier functions gener-
ated by the IPP algorithm using sin (2πX/L1) → cos (2πX/L1) →
sin (2πY/L2) → cos (2πY/L2) for the system from Fig. 21. A 3D
surface plot of the results (left) and the corresponding 2D logarithmic
plot (right).
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FIG. 23. Plot of all nonzero eigenvalues (left) and the first 400
nonzero eigenvalues (right) of arcsin (P sin (2πXTRB/L1)P). Here P
denotes the Fermi projection for a Kane-Mele model on a 30 × 30
system with periodic boundary conditions and XTRB is the “time-
reversal broken” position operator introduced in Sec. III E. The
parameters used are (v, t, t ′, λR ) = (0, 1, 0.6, 0.5) (see Appendix A
for definition of parameters).

nonzero eigenvalues of arcsin (P sin (2πX/L1)P). In Fig. 22,
we plot some of the results of the IPP algorithm.

3. Kane-Mele model, periodic boundary conditions,
Z2 invariant odd

For our next test, let us consider the Kane-Mele model
with odd Z2 invariant. For this test, we will use parameters
(v, t, t ′, λR) = (0, 1, 0.6, 0.5).

As discussed in Sec. III E, due topological obstructions,
the Z2 invariant odd case requires we modify the choice
of position operators to break time-reversal symmetry. For
these purposes, in Sec. III E, we introduced the time-reversal
breaker, ATRB, and observed that adding ATRB to the stan-
dard position operators causes gaps to open in the spectrum

FIG. 24. Plot of two of the generalized Wannier func-
tions generated by the IPP algorithm using sin (2πXTRB/L1) →
cos (2πXTRB/L1) → sin (2πYTRB/L2) → cos (2πYTRB/L2) for the
system from Fig. 23. A 3D surface plot of the results (left) and the
corresponding 2D logarithmic plot (right).

FIG. 25. Plot of all nonzero eigenvalues (left) and the first 400
nonzero eigenvalues (right) of arcsin (P sin (2πXTRB/L1)P). Here P
denotes the Fermi projection for a Kane-Mele model with disorder on
a 30 × 30 system with periodic boundary conditions and XTRB is the
“time-reversal broken” position operator introduced in Sec. III E. The
parameters used are (v, t, t ′, λR ) = (0, 1, 0.6, 0.5) and the disorder
has variance σ 2 = 0.5 [see Appendix A for definition of parameters
and Eq. (36) for definition of on-site disorder].

of P sin (2πXTRB/L1)P. In Fig. 23, we plot the nonzero
eigenvalues (left) and the first 400 nonzero eigenvalues of
arcsin (P sin (2πXTRB/L1)P). In Fig. 24, we plot some of the
results of the IPP algorithm.

4. Kane-Mele model, periodic boundary conditions, Z2 invariant
odd, weak disorder

As noted in Sec. VI C 2, any amount of unstructured disor-
der destroys the periodicity present in the system and therefore
Bloch theory cannot be applied. Despite this difficulty, the IPP
algorithm remains robust to disorder. For the following tests,
the parameters for the Kane-Mele model are (v, t, t ′, λR) =
(0, 1, 0.6, 0.5) and the on-site disorder has variance σ 2 = 0.5.

FIG. 26. Plot of two of the generalized Wannier func-
tions generated by the IPP algorithm using sin (2πXTRB/L1) →
cos (2πXTRB/L1) → sin (2πYTRB/L2) → cos (2πYTRB/L2) for the
system from Fig. 25. A 3D surface plot of the results (left) and the
corresponding 2D logarithmic plot (right).
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In Fig. 25, we plot the non-zero eigenvalues (left) and the first
400 non-zero eigenvalues of arcsin (P sin (2πXT RB/L1)P). In
Fig. 26, we plot some of the results of the IPP algorithm.

VII. CONCLUSIONS

In this work, we have introduced the iterated projected
position (IPP) algorithm as an optimization-free method
for constructing exponentially localized generalized Wannier
functions in both periodic and nonperiodic materials in two
dimensions and higher. The key assumption underlying the
IPP algorithm is that PXP has “uniform spectral gaps”, which
allows the spectrum of PXP to be decomposed into a disjoint
union of separated sets. Our previous work [17] has shown
that if PXP has uniform spectral gaps then an exponentially
localized basis for the Fermi projection exists. We have shown
that uniform spectral gaps is consistent with previously the
known theory on topological invariants. While previous works
have considered the projected position operator PXP, one key
difference for the IPP algorithm is that we can replace the
standard position operator X with any local, self-adjoint op-
erator X̃ . So long as PX̃ P has uniform spectral gaps, the same
theoretical results for PXP also hold for PX̃ P. We make use of
this freedom in our numerical experiments of the Kane-Mele
model with odd Z2 invariant. For such a model, in agreement
with previously known theory, we find that PXP does not
have uniform spectral gaps and hence the IPP algorithm fails.
To overcome this difficulty, we define a local perturbation
ATRB which explictly breaks time-reversal symmetry and set
X̃ = X + ATRB. Once we define X̃ in this way, we find that
PX̃ P has uniform spectral gaps and verify that using the IPP
algorithm with PX̃ P give functions which are exponentially
localized. We conjecture that that this behavior is generically
true; that it is always possible to construct a modified position
operator X̃ so that PX̃ P has uniform spectral gaps so long as
a localized basis for the Fermi projection exists.
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APPENDIX A: MODEL DEFINITIONS

1. Haldane model

The Haldane model, first introduced by Haldane in
Ref. [46], describes electrons in the tight binding model on the
honeycomb lattice. The Haldane Hamiltonian with parameters
(v, t, t ′) can be written as follows:

HHal = v
∑

j

ξ jc
†
j c j + t

∑
〈 jk〉

c†
j ck + it ′ ∑

〈〈 jk〉〉
ν jkc†

j ck . (A1)

In Eq. (A1), c j is the annihilation operator at site j, v is the
onsite potential difference. ξ j takes the value +1 on A sites and
−1 on B sites, t is the nearest-neighbor hopping amplitude, t ′

FIG. 27. An Ammann-Beekner tiling of a square domain.

is the next-nearest-neighbor hopping amplitude, and ν jk is ±1
depending on the relative orientation between sites j and k.

2. Kane-Mele model

The Kane-Mele model, first introduced by Kane and Mele
in Ref. [47], generalizes the Haldane model to include spin
with time-reversal invariant spin orbit interactions. The Kane-
Mele Hamiltonian with parameters (v, t, t ′, λR) can be written
as follows:

HKM = v
∑
j,σ

ξ jc
†
j,σ c j,σ + t

∑
〈 jk〉,σ

c†
j,σ ck,σ

+ it ′ ∑
g〈〈 jk〉〉,σ

σν jkc†
j,σ ck,−σ

+ iλR

∑
〈 jk〉,σ

c†
j,σ (s × d jk )zck,σ . (A2)

In Eq. (A2), σ ∈ {−1, 1} is the spin degree of freedom c j,σ is
the fermionic annihilation operator at site j on spin σ , v is the
onsite potential difference, ξ j takes the value +1 on A sites and
−1 on B sites, t is the nearest-neighbor hopping amplitude,
t ′ is the next-nearest-neighbor hopping amplitude, ν jk is ±1
depending on the relative orientation between sites j and k,
λR is the strength of the Rashba interaction. s is a vector of
Pauli matrices, and d jk is vector pointing from site j to k.

3. px + ipy model

The px + ipy model on the Ammann-Beekner tiling, first
introduced by Fulga, Pikulin, and Loring in Ref. [48], was
developed as an example for an aperiodic system which
can host weak topological phase (see Fig. 27 for picture of
the Ammann-Beekner tiling). The px + ipy Hamiltonian with
parameters (μ, t,�) can be written in terms of the 2 × 2
matrices Hi and Hjk .

Hj = −μσz,

Hjk = −tσz − i�

2
cos (α jk )σx − i�

2
sin (α jk )σy.

Given these definitions the px + ipy Hamiltonian can be writ-
ten as

Hpx+ipy =
∑

j

c†
jHjc j +

∑
〈 jk〉

c†
jHjkck . (A3)

In Eq. (A3), c j is the fermionic annihilation operator at site j,
μ is the chemical potential, t is the hopping strength between
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neighboring sites, � is the strength of the p-wave pairing, and
α jk is the angle of the bond between site j and site k measured
with respect to the horizontal direction.

APPENDIX B: CALCULATION FOR THE
MARZARI-VANDERBILT FUNCTIONAL

In this section, we will show the equivalence between
Eq. (10) and the gauge dependent part of the Marzari-
Vanderbilt functional from Ref. [12]. These calculations
essentially rederive Eqs. (15) and (16) in Ref. [12] using
different notation.

For this calculation, recall P denotes the Fermi projection
and let us define Q = I − P. Since P is a projection we have
that PQ = QP = 0. Also, recall that we define

μX
n0 := 〈wn0|X |wn0〉 μY

n0 := 〈wn0|X |wn0〉.

By definition the variance in the X direction of wn0 can be
written as

VarX (wn0) =
∫ (

x − μX
n0

)2|wn0(x, y)|2 dx dy

= 〈wn0|
(
X − μX

n0

)2|wn0〉
= 〈wn0|P

(
X − μX

n0

)2
P|wn0〉.

Using the fact that P + Q = I and PQ = QP = 0, we can
rewrite the operator P(X − μ)2P as follows:

P(X − μ)2P = P(X − μ)(P + Q)(X − μ)P

= P(X − μ)P(X − μ)P + P(X − μ)Q(X − μ)P

= P(X − μ)PP(X − μ)P + PXQXP

= (P(X − μ)P)2 + (QXP)†QXP.

Therefore, using that 〈w|A†A|w〉 = ‖Aw‖2, we have that

VarX (wn0) = ∥∥P
(
X − μX

n0

)
Pwn0

∥∥2 + ‖QXPwn0‖2.

A similar calculation in Y shows that

VarY (wn0) = ∥∥P
(
Y − μY

n0

)
Pwn0

∥∥2 + ‖QY Pwn0‖2.

Now taking the sum of the variance over the bands gives us
that the Marzari-Vanderbilt functional is

FMV (w) =
∑

n

VarX (wn0) + VarY (wn0)

=
∑

n

∥∥P
(
X − μX

n0

)
Pwn0

∥∥2 + ∥∥P
(
Y − μY

n0

)
Pwn0

∥∥2

+
∑

n

‖QXPwn0‖2 + ‖QY Pwn0‖2.

Since {wn0} forms a basis for the Fermi projection over the
unit cell, the term∑

n

‖QXPwn0‖2 + ‖QY Pwn0‖2

is just the sum of the traces over the unit cell of the operators
PXQXP and PY QY P. Since the trace is independent of basis,
these two terms are independent of gauge (cf. Eq. (16) in
Ref. [12]).

To see that the remaining terms correspond to the gauge
dependent part of the Marzari-Vanderbilt functional (Eq. (15)
in Ref. [12]) recall that the Wannier functions {wmR} form an
orthogonal basis for range(P). Using this fact we have that∥∥P

(
X − μX

n0

)
Pwn0

∥∥2 =
∑
mR

∣∣〈wmR|(X − μX
n0

)
P|wn0〉

∣∣2

=
∑
mR

∣∣〈wmR|X |wn0〉 − μX
n0〈wmR|w0n〉

∣∣2

=
∑

mR �=n0

|〈wmR|X |wn0〉|2

where we have used that 〈wmR|w0n〉 = δmR,0n.
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