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We uncover a systematic structure in the single-particle phase diagram of the quasiperiodic Aubry-André-
Harper (AAH) model with power-law hoppings (∼ 1

rσ ) when the quasiperiodicity parameter is chosen to be a
member of the metallic mean family of irrational Diophantine numbers. In addition to the fully delocalized and
localized phases, we find a coexistence of multifractal (localized) states with the delocalized states for σ < 1
(σ > 1). The fraction of delocalized eigenstates in these phases can be obtained from a general sequence, which
is a manifestation of a mathematical property of the metallic mean family. The entanglement entropy of the
noninteracting many-body ground states respects the area law if the Fermi level belongs in the localized regime
while logarithmically violating it if the Fermi level belongs in the delocalized or multifractal regimes. The
prefactor of the logarithmically violating term is significantly larger in the delocalized phase in comparison to
that in the multifractal phase. Entanglement entropy shows the area law even in the delocalized regime for special
filling fractions, which are related to the metallic means.
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I. INTRODUCTION

Quasiperiodic systems or quasicrystals lie at the junction of
periodic and random systems and exhibit nontrivial intermedi-
ate localization properties [1–4]. Unlike the one-dimensional
Anderson model [5], where even an infinitesimal random
potential leads to localization, a nonzero finite quasiperi-
odic potential is essential for the Aubry-André-Harper (AAH)
model to show a delocalization-localization transition in one
dimension [6,7]. Remarkably, even the presence of a mobil-
ity edge (which in the traditional Anderson model can be
seen only in three dimensions) has been reported in vari-
ants of the AAH model [8,9] even in one dimension. The
AAH potential has been realized in experiments of ultracold
atoms studying single-particle localization [10–12] and many-
body localization [13], which has led to a fresh wave of
interest in quasiperiodic systems at zero [14–20] and finite
temperatures [21–23] in recent times. On the other hand,
the study of Hamiltonians with power-law hoppings or in-
teractions (∝ 1

rσ ) has seen a resurgence of interest after such
Hamiltonians were realized in experiments of ultracold sys-
tems [24–35]. When the hopping strength is sufficiently long
ranged, instead of the exponentially localized eigenstates seen
in short-range models, one may obtain algebraically local-
ized eigenstates [36–39]. Despite the rich literature on both
quasiperiodic and long-range systems, the interplay of both
these aspects has only begun to be studied [40–43].

The effect of power-law hoppings which breaks the self-
duality of the quasiperiodic AAH potential has been studied
recently [40]. This study has shown the appearance of multi-
fractal (localized) eigenstates which coexist with delocalized
eigenstates for σ < 1 (σ > 1) [40]. The irrationality of the
quasiperiodicity parameter (α) which renders the Hamiltonian
quasiperiodic is key to the striking physics of this system.

In the present paper, we show, with the aid of a transparent
prescription, the relationship between the fraction of delocal-
ized eigenstates in the different phases of the system and the
parameter α. While most studies of the AAH model choose
this irrational number to be the golden mean (

√
5 − 1)/2,

we obtain a general result for a broader class of irrrational
Diophantine numbers, referred to as the metallic mean family,
of which the golden mean is just one element.

In this paper, we chart out the phase diagram of a single
particle in the presence of the AAH potential and power-law
hoppings when α is set to be a member of the metallic mean
family, with special attention given to the golden mean, silver
mean, and bronze mean. In addition to the delocalized and
localized phases, we obtain mixed phases where the multi-
fractal (localized) states can coexist with delocalized states
for σ < 1 (σ > 1). One of the key findings of our paper is
that the fraction of delocalized eigenstates in these phases can
be obtained from a general sequence, which is related to a
mathematical property of the metallic means (see schematic
in Fig. 1). Moreover, we study the subsystem size scaling of
entanglement entropy [44,45] of the noninteracting fermionic
many-body ground states to characterize different phases in
the model. The delocalized and multifractal Fermi level show
logarithmic violation of the area law of entanglement entropy
with different prefactors in the logarithm term. The prefactor
is found to vary in different phases. In the delocalized regime,
entanglement entropy is surprisingly found to follow the area
law for certain special filling fractions which are related to
the metallic means. We show that such strange behavior at
the special filling fractions [46] may be understood from the
single particle spectrum.

The paper is organized as follows. In Sec. II, we describe
the model and metallic means. In Sec. III, we derive the single
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FIG. 1. Schematic of the phases of a single particle in the LRH
model for the quasiperiodicity parameter α, shown in different col-
ors. The colored phases are also labeled by the fraction of delocalized
eigenstates (η) as shown in the figure. Here k = 1, 2, 3 when α

is golden mean, silver mean, and bronze mean, respectively. The
strength of the quasiperiodic potential and power-law hopping pa-
rameter are denoted as λ and σ , respectively.

particle phase diagram for metallic means by analyzing fractal
dimension and inverse participation ratio (IPR) of the eigen-
states. In Sec. IV, we show a general sequence to obtain the
fraction of delocalized states in different phases. In Sec. V, we
analyze the scaling of the ground-state entanglement entropy
of noninteracting fermions to characterize the phases. Then
we conclude in Sec. VI.

II. THE MODEL

The model of interest is the one-dimensional long-range
AAH (LRH) model given by the Hamiltonian

H = −
N∑

i< j

(
J

rσ
i j

ĉ†
i ĉ j + H.c.

)
+ λ

N∑
i=1

cos(2παi + θp)n̂i, (1)

where ĉ†
i (ĉi ) represents the single particle creation (destruc-

tion) operator at site i and corresponding number operator
n̂i = ĉ†

i ĉi. We consider a lattice of total number of sites N ,
where ri j is the geometric distance between the sites i and j
in a ring. Here λ is the strength of the quasiperiodic potential
with the parameter α chosen to be a Diophantine irrational
number [47], e.g., (

√
5 − 1)/2. θp is an arbitrary global phase.

The strength of the long range hopping is controlled by J and
the long range parameter in the hopping σ . We will assume
J = 1 for all the numerics. In the σ → ∞ limit this model
becomes the celebrated AAH model [6,7]. As a consequence
of self-duality [6,7], all the eigenstates are delocalized for
λ < 2J and localized for λ > 2J [47]. For a finite σ , self-
duality is broken.

A. Metallic mean family

Any irrational number can be written as a continued frac-
tion [48] which allows for a successive rational approximation

of it in the form of a/b where a, b are co-prime numbers.
For Diophantine numbers, there always exists a lower bound
to how closely such irrational numbers may be represented
by rational approximations, such that |α − a

b | > ε/b2+ζ with
ε > 0 and ζ � 0 [49,50]. The above property is a sign of the
strength of the irrationality of Diophantine numbers.

It is useful to consider a generalized k-Fibonacci sequence
[51], given by

Fu = kFu−1 + Fu−2, (2)

with F0 = 0, F1 = 1. The limit α = limu→∞ Fu−1/Fu with
k = 1, 2, 3 . . . yields the metallic mean family, the first three
members of which are the well-known golden mean (αg =
(
√

5 − 1)/2), the silver mean (αs = √
2 − 1), and bronze

mean αb = (
√

13 − 3)/2, respectively. A slowly converging
sequence of rational approximations of these Diophantine
numbers is given by Fu−1/Fu for two successive members in
the sequence for a fixed integer k. Each member α of the
metallic mean family satisfies the following relation:

(α)z = k(α)z+1 + (α)z+2, (3)

where k = 1, 2, 3 . . . for α = αg, αs, αb, . . . , respectively,
and z is a non-negative integer. Putting z = 0 in Eq. (3) also
yields an important case, namely, kα + α2 = 1.

III. SINGLE PARTICLE PROPERTIES

Now we consider a single particle in the LRH model with
different parameters αg, αs, and αb which are members of the
metallic mean family. To determine the phases, we calculate
the fractal dimension and IPR of the eigenstates for θp = 0.

A. Fractal dimension

We employ the box counting procedure to determine the
fractal dimension [52–55]. Dividing the system of N sites
into Nl = N/l boxes of l sites each, the fractal dimension is
defined as

D f = lim
δ→0

1

f − 1

ln
∑Nl

m=1 (Im) f

ln δ
, (4)

where Im = ∑
i∈m |ψn(i)|2 computed inside the mth box for

the nth eigenstate |ψn〉 and δ = 1/Nl . In the perfectly delo-
calized (localized) phase D f is unity (zero), whereas for a
multifractal state D f shows a nontrivial dependence on f and
0 < D f < 1.

Figures 2(a)–2(c) show D2 as a function of λ for all single-
particle eigenstates when the quasiperiodicity parameter is
fixed at αg for σ = 0.5, 1.5, and 3.0, respectively. As can be
seen from Fig. 2(a) for σ = 0.5, the fraction of delocalized
eigenstates decreases and fractal states (0 < D2 < 1) appear
in blocks as λ increases. It turns out that these states are ac-
tually multifractal, which we discuss later (see Fig. 3). Hence
there exists a delocalized-to-multifractal (DM) edge in the
eigenstate spectrum. The DM edge goes down in steps as the
fraction of delocalized eigenstates decreases with λ. However,
the position of the DM edge remains unchanged within each
step as the fraction of delocalized eigenstates (denoted as η

hereafter) stays constant in that region. It is found that in the
decreasing steplike regions defined by constant DM edges,
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FIG. 2. (a)–(c) Fractal dimension D2 (in color) as a function of λ and increasing fractional eigenstate index n/N starting from the ground
state for αg and σ = 0.5, 1.5, and 3.0, respectively. (d)–(f) Same plots for αs. (g)–(k) Same plots for αb. For all the plots, N = 1000 and
δ = 0.02.

η = αg, α
2
g, α

3
g, . . . . We denote the steplike regions as Pq

(q = 1, 2, 3, . . .) phases with η = αg, α
2
g, α

3
g, . . . , respec-

tively.
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FIG. 3. (a) Averaged 〈Df 〉 as a function of f for λ = 1.0 and
σ = 0.5 for which the system is in the P2 phase with a DM edge.
(b) Similar plots for λ = 2.0 and σ = 1.5 for which the system is in
the P2 phase with a DL edge. 〈Df 〉 is calculated by averaging over α2

g

fraction of delocalized and (1 − α2
g ) fraction of multifractal/localized

eigenstates. For all plots, system size N = 987 and δ = 1/Nl = 0.02.

Figures 2(b) and 2(c) for σ = 1.5 and 3.0, respectively,
show the appearance of blocks of localized states (D2 ≈ 0)
with increasing λ. This implies that there exists a delocalized-
to-localized (DL) edge, also well known as the mobility
edge. Similar to DM edges, these fixed DL edges contain-
ing phases are also denoted as Pq (q = 1, 2, 3, . . .) for η =
αg, α

2
g, α

3
g, . . . , respectively. D2 of all the eigenstates for

αs and increasing λ is shown in Figs. 2(d)–2(f) for σ =
0.5, 1.5, 3.0, respectively. For αs, one obtains P1, P2, P3, . . .

phases with η = αs + α2
s , αs, α

2
s + α3

s , . . . and DM edges (for
σ = 0.5) and DL edges (for σ = 1.5, 3.0). Similarly, from
Figs. 2(g)–2(k), for αb and σ = 0.5, 1.5, 3.0, respectively,
one obtains P1, P2, P3, . . . phases with η = 2αb + α2

b, αb +
α2

b, αb, . . . and DM edges (for σ = 0.5) and DL edges (for
σ = 1.5, 3.0).

As evidence for multifractality, we plot 〈D f 〉 as a function
of f for the P2 phase (with α2

g fraction of delocalized states)
for σ = 0.5 [in Fig. 3(a)] and σ = 1.5 [in Fig. 3(b)] in the
LRH model with the golden mean αg. Here 〈D f 〉 denotes D f

averaged over α2
g fraction of delocalized and (1 − α2

g ) fraction
of nondelocalized eigenstates. We chose a Fibonacci system
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FIG. 4. (a)–(c) The inverse participation ratio In of the single-particle eigenstates for αg = (
√

5 − 1)/2 with increasing system sizes N =
256, 512, 1024 for σ = 0.5, 1.5 and 3.0, respectively. (d)–(f) Similar plots for αs = (

√
2 − 1) with increasing N for σ = 0.5, 1.5, and 3.0,

respectively. (h)–(k) Similar plots for αb = (
√

13 − 3)/2 with increasing N for σ = 0.5, 1.5, and 3.0, respectively. For all plots, λ is kept fixed
at λ = 2.2. n/N is the fractional eigenstate index.

size N = 987 to reduce the fluctuations due to high-IPR
eigenstates in the delocalized phase (see Appendix). In
Figs. 3(a) and 3(b), 〈D f 〉 averaged over α2

g fraction of eigen-
states shows a similar small variation with f with 〈D f 〉 being
close to 1, which implies these states are delocalized. 〈D f 〉
averaged over (1 − α2

g ) fraction of eigenstates is a fraction
and shows a nontrivial dependence on f for σ = 0.5 whereas
〈D f 〉 is close to 0 and shows almost no dependence on f for
σ = 1.5. This indicates that these states are multifractal for
σ = 0.5 and localized for σ = 1.5. Similar states can be found
in the other Pq phases corresponding to αs and αb.

B. Inverse participation ratio

The IPR is a key quantity for studying delocalization-
localization transitions. It is defined as

In =
N∑

i=1

|ψn(i)|4, (5)

where the nth normalized single particle eigenstate |ψn〉 =∑N
i=1 ψn(i) |i〉 is written in terms of the Wannier basis |i〉,

representing the state of a single particle localized at the
site i of the lattice. For a delocalized eigenstate In ∝ N−1

whereas for a localized eigenstate In ∝ N0. For a critical state
In shows intermediate behavior. Here we calculate IPR of
the eigenstates for the LRH model with finite σ . To get a
hint about the phases in the model, here we choose a fixed
λ = 2.2 (which corresponds to the localized phase in the
σ → ∞ limit) and different values of σ = 0.5, 1.5, 3.0 for
quasiperiodicity parameters αg, αs and αb. The IPR of all the
single particle eigenstates for αg are shown in Figs. 4(a)–
4(c) for σ = 0.5, 1.5, and 3.0, respectively. Figure 4(a) shows
that the eigenstates are delocalized (In ∝ N−1) as long as the
fractional index n/N < α3

g . The IPR of the remaining eigen-
states for n/N > α3

g shows an intermediate dependence on N ,
i.e., N−1 < In < N0. It turns out that these eigenstates are
multifractal [40] [see Fig. 3(a)]. Hence a DM edge ex-
ists at n/N = α3

g for σ = 0.5 and λ = 2.2. As shown in
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FIG. 5. Phase diagram: In addition to extended (E ) and localized (L) phases with η = 1, 0, respectively, presence of the mixed phases
with fractional η: P1, P2, P3, . . . phases with (a) η = αg, α

2
g, α

3
g, . . .; (b) η = αs + α2

s , αs, α
2
s + α3

s , . . .; (c) η = 2α2
b + αb, α

2
b + αb, αb, . . . are

indicated. The vertical line separates out the DM edge for σ < 1 from the DL edge for σ > 1. (a)–(c) are for αg, αs, αb, respectively.

Figs. 4(b) and 4(c), the eigenstates are delocalized for n/N <

α2
g whereas the eigenstates are localized (In ∝ N0) for n/N >

α2
g for the same λ and σ = 1.5 and 3.0, respectively. This

implies that there exists a DL (mobility) edge for λ = 2.2 and
σ = 1.5, 3.0. Also we notice that the fraction of the delocal-
ized eigenstates can change with σ for a fixed λ. However, the
occasional presence of the high-IPR states as discussed for
the AAH model (see Appendix), especially in the delocalized
regime are also visible for the LRH model, since values of
N are chosen to be non-Fibonacci numbers in all the plots of
Fig. 4.

We also show the results obtained from the LRH model
for the silver and bronze means. Plots obtained using αs and
λ = 2.2 are shown in Figs. 4(d)–4(f) for σ = 0.5, 1.5, and 3.0,
respectively. These figures indicate that there is a DM edge at
n/N ≈ α2

s + α3
s for σ = 0.5 whereas there is a DL edge at

n/N ≈ αs for σ = 1.5 and 3.0. Figures 4(g)–4(k) are obtained
using fixed αb, λ = 2.2 for σ = 0.5, 1.5, and 3.0, respectively.
It can be seen from Figs. 4(g)–4(k) that there is a DM edge at
n/N ≈ αb for σ = 0.5 whereas a DL edge exists at n/N ≈ αb

for σ = 1.5 and 3.0. We see that in every plot of Fig. 4 the
fraction of delocalized eigenstates can always be expressed as
a function of the parameter α. However, the IPR fluctuations
due to the presence of the high-IPR states in the delocalized
regime continue to persist in these cases also, although they
tend to vanish if N is a Fibonacci number as can be seen in
the AAH model (see Appendix). It is noticeable that the IPR
fluctuations increase in the delocalized regime with σ .

C. Phase diagram

After an extensive analysis, we find that in a particular Pq

phase, the same blocks of multifractal states become localized
as one crosses σ = 1 whereas the corresponding η remains the
same. We chart out the single-particle phase diagram for the
parameter αg in Fig. 5(a), which is also obtained in Ref. [40]
for a Fibonacci N . Figures 5(a)–5(c) contain special states
with high-IPR eigenstates, similar to the AAH model (see Ap-
pendix), even in the delocalized regimes. It is to be noted that
as σ increases the extent of the mixed phases shrinks as the
LRH model approaches the AAH limit. The phase diagrams
for αs and αb are shown in Figs. 5(b) and 5(c), respectively.
The Pq phases (corresponding to αs and αb) in these cases as

well, like with αg, contain DM edges for σ < 1 and DL edges
for σ > 1. The changes in Pq phases at σ = 1 are denoted by
the vertical lines in all phase diagrams.

IV. FRACTION OF DELOCALIZED STATES

After a careful observation of the phase diagrams, one
may propose a sequence which dictates the values of η in Pq

phases corresponding to different quasiperiodicity parameters
α, which belong to the metallic mean family described in
Eq. (2). For any σ > 0 without disorder (λ = 0), η = kα +
α2 = 1, where k = 1, 2, 3 correspond to αg, αs, αb, respec-
tively, and z = 0 in Eq. (3). As the quasiperiodic disorder is
turned on (λ �= 0), η starts decreasing in a sequence according
to Eq. (3) for the metallic mean family, which is depicted
in Fig. 6. Equation (3) implies that one can always express
(α)z as a sum of two bits k(α)z+1 and (α)z+2. In the LRH
model,the bigger bit loses weight at every step becoming
(k − 1)αz+1, (k − 2)αz+1, . . . until it reaches αz+1, where it
disintegrates again according to the rule defined in Eq. (3) and
the new bigger bit starts losing weight at each step. This is a
continuous process as depicted by the sequence in Fig. 6. For
a specific choice of α, one obtains a Pq phase at each step of
the sequence. The top of the sequence corresponds to the fully
delocalized (η = 1) phase. One obtains P1, P2, . . . phases as
one goes down following the sequence. The Pq phases possess
DM (DL) edges if σ < 1 (σ > 1).

We show a schematic of the phase diagram in Fig. 1,
where the colored regions are labeled by η in different phases.
Choosing k = 2 in the sequence depicted in Fig. 6 leads to the
phases labeled by η in Fig. 1. These phases are as follows
→ red: η = 2α + α2 = 1 (delocalized); green: η = α + α2

(P1); orange: η = 2α2 + α3 (P2); purple: η = α2 + α3, 2α3 +
α4, . . . (P3, P4 . . . , respectively) collectively, which appear
as one proceeds further according to the sequence. For large
values of σ and λ, the localized phase appears when η = 0,
shown in blue.

V. ENTANGLEMENT ENTROPY

Here we consider noninteracting spinless fermions in the
LRH model to calculate the entanglement entropy of the
fermionic ground states in different phases obtained in the
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FIG. 6. Depicts how the fraction of delocalized eigenstates (η)
decreases in a manner that uses the rule defined in Eq. (3). One can
express the fraction of the delocalized states as a sum of two bits
kαz+1 and αz+2, out of which the bigger bit loses weight at every
step until it reaches αz+1, where it disintegrates according to the rule
defined in Eq. (3) and then the bigger bit loses weight at each step.
For a specific value of α, at every step of the sequence one obtains a
Pq phase.

previous section. The entanglement entropy in the ground
state of such free fermionic systems is given by [56–58]

SA = −
L∑

m=1

[ζmlnζm + (1 − ζm) ln(1 − ζm)], (6)

where ζm’s are the eigenvalues of the correlation matrix CA,
where CA

i j = 〈c†
i c j〉 with i, j ∈ subsystem A of L sites. For

free fermions in d dimensions, typically, SA ∝ Ld−1 ln L in
metallic phases [59], while it goes as SA ∝ Ld−1 in adherence
to the area-law in the localized phases in the presence of
disorder.

To produce smoother plots, we employ an average of
SA over the 100 realizations of θp uniformly choosing from
[0, 2π ] in all the plots here. We stick to filling fraction
ν = 0.5 of fermions unless otherwise mentioned and αg =
(
√

5 − 1)/2. The SA vs L plots are shown in Figs. 7(a) and 7(b)
at half filling with increasing values of λ for σ = 0.5 and
1.5, respectively. A generic scaling form SA = K ln L + K0

is assumed for this purpose. In Fig. 7(a), concentrating on
σ = 0.5, when λ = 0.1 and 0.5 (delocalized and P1 phases),
the Fermi level is delocalized and hence SA ∝ ln L with K ≈
0.32 and 0.25, respectively. In the same figure, when λ = 1.0
and 2.0 (P2 and P3 phases) the Fermi level is multifractal,
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FIG. 7. (a), (b) The subsystem size L dependence of entangle-
ment entropy SA with increasing values of λ for fermions at half
filling and for σ = 0.5 and 1.5. (c) SA as function of λ for σ =
0.5, 1.5, and 3.0, respectively, for fermions at half filling with L =
N/2. For all plots in (a)–(c), N = 1024. (d) Entanglement entropy SA

as a function of subsystem size L for increasing σ and fixed λ = 2.2.
For all plots, N = 512 for αg and special filling ν = α4

g .

SA ∝ ln L but the magnitude of SA is drastically lower with
K ≈ 0.13. The logarithmic scaling behavior indicates that
the multifractal states are essentialling extended states but
with nonergodicity. The nonergodicity is reflected in the low
magnitude of the prefactor in comparison with the ergodic
extended/delocalized states. In Fig. 7(b), for σ = 1.5, when
λ = 0.1 and 1.3 (delocalized and P1 phases), the Fermi level
is delocalized and SA ∝ ln L with K ≈ 0.33 and 0.24, respec-
tively. However, when λ = 2.0 and 3.0 (P2 and P3 phases) the
Fermi level is localized, the magnitude of SA is much lower,
and it abides by the area law (K ≈ 0). Transitions of Fermi
level at half filling are shown in Fig. 7(c) for σ = 0.5, 1.5,
and 3.0, respectively. For σ = 0.5, the Fermi level undergoes
a DM transition at λ = 0.75. For σ = 1.5 and 3.0, the Fermi
level undergoes DL transitions at λ = 1.5 and λ = 1.85, re-
spectively, as also evident from Figs. 2(a)–2(c).

We have also checked that the qualitative behavior of SA

versus L plots in the half-filled free fermionic ground state
barely changes in the phase diagram for αs and αb. How-
ever, similar to the AAH model [46] (see Appendix), the
LRH model too shows area-law behavior for special fillings
ν even in the delocalized regime. An example of this is shown
in Fig. 7(d) for λ = 2.2 and σ = 0.5, 1.5, 3.0, and special
filling ν = α4

g . In all these plots, SA abides by the area law.
However, the magnitude of SA is significantly smaller for
σ = 3.0. We point out that while the single particle results
depend on whether the system size is a Fibonacci number, the
many-particle measures do not show such a dependence on
the system size (see Appendix for details).

Next we further analyze the prefactor K of the log term
from the subsystem size dependence of SA for αg. In Fig. 8(a),
we show K as a function of λ for increasing values of σ for the
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σ = 3.0

(a)
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FIG. 8. (a) The prefactor K of the logarithmic term as a function
of λ for fermions at half filling and for increasing values of σ . (b) K
as a function of (no-special) filling fraction ν in the mixed phases P1,
P2 and extended/delocalized (E ) phase for σ = 0.5 and 1.5. For all
plots, N = 1024 for αg.

fermionic ground state at half filling. In the delocalized phase
of a clean system for σ > 0, K ≈ 0.33. When λ is turned
on, the Fermi level at half filling in the P2 phase becomes
multifractal or localized for σ < 1 and σ > 1, respectively.
In the P1 phase, although being a mixed phase, the Fermi
level and all other states below it remain delocalized at half
filling with the values of K lying around 0.25. This shows
that the nature of the delocalized states changes with λ. In
the P2 phase the values of K for the multifractal Fermi level
(for σ < 1) decrease with σ showing the change in multi-
fractality of the Fermi level with σ . K ≈ 0 for σ > 1 as the
Fermi level gets localized at half filling. In the σ = ∞ limit
(AAH model [60,61]) K ≈ 0.33, 0.26, and 0, respectively, in
the delocalized phase, at the critical point and in the local-
ized phase. In Fig. 8(b), we show K as a function of the
nonspecial values of filling fraction ν. The plots show that
in the extended/delocalized (E ) phase K depends very little
on ν whereas in the mixed phases (P1, P2) K may depend
significantly on ν as shown in the figure for σ = 0.5 and 1.5.

VI. CONCLUSIONS

We uncover an intricate pattern of the localization structure
of the AAH potential in the presence of long-range hop-
pings when the quasiperiodicity parameter is a member of
the metallic mean family. In addition to the fully delocalized
and localized phases, we obtain a coexistence of multifrac-
tal (localized) eigenstates with delocalized eigenstates for
σ < 1 (σ > 1). The fraction of delocalized eigenstates in
these phases can be obtained from a general sequence which
is a manifestation of a mathematical property of the metallic
mean family. The entanglement entropy of a noninteracting
fermionic ground state respects the area law if the Fermi
level belongs in the localized regime while logarithmically
violating it if the Fermi level belongs in the delocalized or
multifractal regimes, although the magnitude in the multi-
fractal regime is significantly lower than in the delocalized
one. A study of the prefactor of the logarithmically violationg
term in the subsystem size scaling of entanglement entropy
shows interesting behavior in different phases. The entan-
glement entropy surprisingly follows the area-law for certain
special filling fractions even in the delocalized regime. These
special filling fractions are related to the metallic means. In

this paper, we make an attempt to show how the inherent
mathematical structure in the metallic means manifests itself
in the single-particle and many-particle properties of a class
of quasiperiodic models. Studies of this kind are very rare in
the literature [62,63]. Hopefully, our work will help motivate
further research in this direction.
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In this Appendix, we discuss the results involving the IPR,
fractal dimension, and entanglement entropy of the AAH
model with nearest-neighbor hopping (σ → ∞ limit of the
LRH model) and quasiperiodic potential.

APPENDIX: IPR, FRACTAL DIMENSION, AND
ENTANGLEMENT ENTROPY IN THE AAH MODEL

The AAH model has a self-dual point at λ = 2, where the
Hamiltonian in position space maps to itself in momentum
space. As a consequence, all the single-particle eigenstates
are delocalized for λ < 2 and localized for λ > 2 [6,64]. But
earlier studies [46,65] of the same model based on the golden
mean as the quasiperiodicity parameter have shown the ex-
istence of energy-dependent localization properties. Here we
extend the study to the case of metallic means. We discuss the
results for various quantities ahead.

1. IPR

IPR of all single particle eigenstates for λ = 1 (delocalized
phase) is shown in Fig. 9(a) for a non-Fibonacci N = 1024
and different values of α. There exist eigenstates with
high IPR for fractional index n/N = αg, α

2
g, α

3
g (≈ 0.618,

0.382, 0.236), etc. for the golden mean. Similarly, high-IPR
eigenstates are also found for the cases of silver mean (αs)
and bronze mean (αb) at n/N = αs + α2

s , αs, α
2
s + α3

s , α
2
s , . . .

(≈ 0.58, 0.41, 0.24, 0.17, . . .), etc. and n/N = 2αb +
α2

b, αb + α2
b, αb, . . . (≈ 0.69, 0.39, 0.3, . . .), respectively. The

single-particle energy spectra of these systems show large
gaps at the positions where the high-IPR states exist [46]
as shown in Fig. 9(c). In this figure, the level-spacing

n = En+1 − En with En being the energy of the nth
eigenstate. Total number of level spacings M = N − 1.

These high-IPR eigenstates seem to vanish if N is chosen
to be a Fibonacci number as shown in Fig. 9(b) for λ = 1
and N = 610, 360, and 408 for αg, αs, and αb, respectively.
However, we remark that the large gaps still continue to persist
in the energy spectra as also shown in Fig. 9(d). The high-
IPR eigenstates show an anomalous system-size dependence.
As an example, we show the scaling of IPR of the special
eigenstates with N in Fig. 10 for λ = 1.0 and αg. Here N
is restricted, respectively, to be non-Fibonacci and Fibonacci
in Figs. 10(a) and 10(b). For non-Fibonacci N , the scaling
behavior is severely anomalous and deviates from 1/N . For
Fibonacci N , the scaling behavior is less anomalous and close
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FIG. 9. (a) IPR of the single particle eigenstates In for different
values of α and fixed N = 1024. (b) Similar plots for N = 610, 408,
and 360 for αg, αs, and αb, respectively. For these plots, n/N in the
x axis stands for the fractional index of eigenstates. (c) Consecutive
level-spacings 
n = En+1 − En for different values of α and fixed
N = 1024. (b) 
n’s for N = 610, 408, and 360 for αg, αs, and αb,
respectively. n/M in the x axis stands for the fractional index of level
spacings, where total number of spacings M = N − 1. For all plots,
λ = 1 in the AAH model. The legend shown in (b) applies also to
(a), (c), and (d).

to 1/N (although not exactly 1/N), which is represented by
the dashed line for nonspecial delocalized eigenstates.

2. Fractal dimension

The fractal dimension D2 is calculated for each sin-
gle particle eigenstate for λ = 1 and different parameters
αg, αs, and αb in a system of non-Fibonacci number of

102 103

N

10-3

10-2

10-1

I n

(a)

102 103

N

10-3

10-2

I n

(b)

FIG. 10. (a) IPR of the special eigenstates with fractional index
n/N = α3

g, α
2
g, αg as a function of system size N , which is a non-

Fibonacci number. (b) Similar plots for N , which is a Fibonacci
number corresponding to αg. For all plots, λ = 1. The dashed line
represents 1/N dependence of IPR of the nonspecial delocalized
eigenstates.
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FIG. 11. (a) Fractal dimension D2 of the single-particle eigen-
states for different values of α and fixed N = 1000. (b) Similar plots
for N = 610, 408, and 360 for αg, αs, and αb, respectively. For all
plots, λ = 1 in the AAH model. n/N in the x axis stands for fractional
index. Here δ = 1/Nl = 0.01.

sites N = 1000 as shown in Fig. 11(a). In the delocalized
phase, D2 ≈ 1 for the majority of the eigenstates. The large
deviations from D2 ≈ 1 are observed at the fractional eigen-
state index n/N ≈ αg, α

2
g, α

3
g , etc. for αg. Similar deviations

can be seen at n/N ≈ αs + α2
s , αs, α

2
s + α3

s , α
2
s , etc. for αs,

and n/N ≈ 2αb + α2
b, αb + α2

b, αb, etc. for αb. For these spe-
cial eigenstates, 0 < D2 < 1 which implies the presence of
nondelocalized states. Figure 11(b) indicates that the large
fluctuations of D2 seem to vanish and D2 is close to 1 for all
the eigenstates when a Fibonacci number is chosen for N . This
can be understood from Fig. 10(b).

In Fig. 12, we show the fractal dimension D f as a function
of f for the eigenstates with fractional index n/N = α3

g, α
2
g, αg

for λ = 1 and golden mean αg. In this figure, the solid lines
represent the plots for Fibonacci N = 610 whereas the dashed
lines represent the plots for non-Fibonacci N = 1000. We ob-
serve that the solid lines change very little with f and are close
to 1. Here D f deviates a little from 1 because these eigenstates
are not perfectly delocalized as depicted in Fig. 10(b). On the
other hand, the dashed lines show a small variation with f and
their typical value is just a fraction of one. This indicates that
for non-Fibonacci N , the special eigenstates with high IPR

2 3 4 5 6 7 8 9
f

0.0

0.2

0.4

0.6

0.8

1.0

D
f

n / N  = αg
3

n / N = αg
2

n / N = αg

FIG. 12. Fractal dimension Df as a function of f for the single
particle eigenstates with fractional index n/N = α3

g, α
2
g, αg. The solid

lines represent plots for Fibonacci N = 610 whereas the dashed lines
represent plots for non-Fibonacci N = 1000. For all plots, λ = 1,
α = αg and δ = 1/Nl = 0.01.
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FIG. 13. (a) Entanglement entropy SA of the ground state as a
function of fermionic filling ν for different values of α and fixed
N = 256. (b) Similar plots for N = 610, 408, and 360 for αg, αs, and
αb, respectively. For all plots, λ = 1 in the AAH model and size of
subsystem A is L = N/2.

are weakly multifractal whereas for Fibonacci N , the special
eigenstates behave more like the (imperfect) delocalized states
like all other nonspecial states. This is true even for silver
mean αs and bronze mean αb (not shown here).

3. Entanglement entropy

The ground-state entanglement entropy SA of half the sys-
tem (subsystem L = N/2) as a function of filling fraction ν for

λ = 1 is shown in Fig. 13(a) for a non-Fibonacci N = 256 and
different values of α. Here ν = Np/N where Np and N are the
number of particles and number of sites respectively. Similar
to high IPR in Fig. 9(a), significantly low SA is found at
ν ≈ αg, α

2
g, α

3
g , etc. for αg; ν ≈ αs + α2

s , αs, α
2
s + α3

s , α
2
s etc.

for αs; ν ≈ αb + α2
b, αb + α2

b, αb, etc. for αb. But in contrast
to Fig. 9(b) of IPR, the low SA regions seem to persist as
shown in Fig. 13(b) even for Fibonacci N = 610, 408, 360
for αg, αs, αb, respectively. The persisting imperfection of the
special eigenstates (shown in Fig. 10) may be a reason behind
this. The imperfection is captured at a magnified level by the
many-particle entanglement entropy as compared to single
particle IPR for a Fibonacci N . In the delocalized phase,
SA ∝ ln L [46] for all values of ν except for the special val-
ues of ν where SA abides by the area law with significantly
smaller magnitudes. The signature of criticality in the model
is absent for special ν. These properties of the special ν

have been shown earlier in Ref. [46] for αg and hold good
for αs and αb also. However, the nonspecial half-filled (ν =
0.5) ground state shows SA ∝ ln L both in the delocalized
phase and at the critical point (almost ln L) [60,61] whereas
SA ∝ L0 in the localized phase with the prefactor K of the
logarithmic term being approximately 0.33,0.26, and 0, re-
spectively. The logarithmic scaling at the critical point shows
that the multifractal states are extended in nature but non-
ergodic as the prefactor differs from the ergodic delocalized
ones.
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