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The quantum anomalous Hall (QAH) effect is sometimes observed in twisted bilayer graphene (tBG)
when it is nearly aligned with an encapsulating hexagonal boron nitride (hBN) layer. We propose that the
appearance or absence of the QAH effect in individual devices could be related to commensurability between
the graphene/graphene and graphene/hBN moiré patterns. We identify a series of points in the (θGG, θGBN )
twist-angle space at which the two moiré patterns are commensurate, allowing moiré band theory to be applied,
and we show that the band Chern numbers are in this case sensitive to a rigid in-plane hBN displacement. Given
this property, we argue that the QAH effect is likely only when (i) the (θGG, θGBN ) twist-angle-pair is close enough
to a commensurate point that the two moiré patterns yield a supermoiré pattern with a sufficiently long length
scale, and (ii) the supermoiré has a percolating topologically nontrivial QAH phase. For twist angles far from
commensurability, the hBN layer acts as a source of disorder that can destroy the QAH effect. Our proposal can
explain a number of current experimental observations. Further experimental studies that can test this proposal
more directly are suggested.
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I. INTRODUCTION

Two graphene sheets that have a small orientational
misalignment [twisted bilayer graphene (tBG)] form a
quasiperiodic moiré superlattice, whose electronic structure is
well-described by moiré band theory [1]. Correlated insulat-
ing states [2], Chern insulators [3–6], and superconductivity
[7–10] have been observed in tBG when the twist angle is
close to a magic angle that enables strong correlation physics
associated with exceptionally flat moiré bands. The introduc-
tion of a twist angle as a new tunable degree of freedom has
now been exploited to create strong correlations in a variety
of different multilayer van der Waals systems [11–17].

Recent experiments have shown both nonquantized [3] and
quantized [4,18] anomalous Hall effects can occur in magic
angle twisted bilayer graphene when at least one graphene
layer is nearly aligned with an encapsulating hexagonal boron
nitride (hBN) layer, and the number of carriers per moiré
period is close to an odd integer. The anomalous Hall effect is
normally understood in terms of a mean-field picture, in which
it arises from a combination of spontaneous valley polariza-
tion and nonzero Chern numbers of the valley-projected flat
moiré bands induced by violation of inversion symmetry (C2)
[19–23]. Somewhat mysteriously, the anomalous Hall effect
is not always present even with hBN alignment.

The theoretical description of hBN encapsulated tBG runs
into a fundamental difficulty when one or both hBN layers
are nearly aligned with the tBG layers. Because of the small
lattice constant mismatch between graphene and hBN, the
nearly aligned hBN layers produce additional moiré patterns
[24–29] that are not in general commensurate with the moiré
pattern of tBG. Therefore, the low-energy Hamiltonian is only

quasiperiodic, disallowing all the simplifications that come
from Bloch’s theorem. Similar moiré pattern interplays can
also arise in twisted trilayer graphene [30]. Most of the exist-
ing theoretical work on the anomalous Hall effect [22,23] and
related properties [31–36] of tBG/hBN and hBN/tBG/hBN
systems employs a highly simplified model in which only the
spatially average sublattice energy difference is retained in
the graphene/hBN moiré potentials. The justification for this
expediency is not obvious, since the spatially averaged and
position-dependent tBG/hBN interaction terms have similar
energy scales [28] and are therefore at first sight equally
important.

The aim of this paper is to study the effect of the interplay
between the moiré patterns on the anomalous Hall effect of
encapsulated tBG. For definiteness we will assume that only
one of the encapsulating hBN layers is aligned, which allows
us to restrict our attention to tBG/hBN trilayers. In mean-
field theory, spontaneous valley polarization occurs when the
moiré bands are sufficiently narrow to satisfy a Stoner crite-
rion. It follows that both criteria for a quantized anomalous
Hall effect, topologically nontrivial valley-projected bands,
and valley polarization are simply related to the electronic
structure issues on which we focus.

We notice that at particular combinations of the two twist
angles—θGG between the two graphene layers and θGBN be-
tween the hBN and its adjacent graphene layer—the two
moiré patterns are commensurate. The system is then periodic
in a larger unit cell, allowing the use of Bloch’s theorem
with both moiré patterns present. Recent papers [37,38] have
noticed several such commensurate points in the twist angle
space, and we provide a general description of all commensu-
rate geometries. For a commensurate system, rigid translation

2469-9950/2021/103(7)/075122(13) 075122-1 ©2021 American Physical Society

https://orcid.org/0000-0001-5473-3590
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.075122&domain=pdf&date_stamp=2021-02-11
https://doi.org/10.1103/PhysRevB.103.075122


SHI, ZHU, AND MACDONALD PHYSICAL REVIEW B 103, 075122 (2021)

of the hBN layer by d at a fixed twist angle changes the moiré
band structures, and even moiré band Chern numbers [37].
We characterize this dependence in terms of maps of Chern
numbers and bandwidths versus d, from which electronic
properties can be estimated.

A supermoiré pattern, also known as a moiré of moiré,
is formed when the two moiré patterns are nearly, but not
exactly, commensurate. Supermoiré electronic structure has
been studied in hBN/graphene/hBN trilayers [39–41] and in
twisted trilayer graphene [30,42,43], but not yet in tBG/hBN.
We point out here that the supermoiré can be viewed as a
commensurate structure with spatially varying d. Thus its
electronic properties can be well described by a local moiré
band picture, where local properties are defined by the local
Hamiltonian H (r) = H (d(r)), with H (d ) the Hamiltonian of
the commensurate structure. In this picture, the Chern num-
ber versus d map expands to a spatial Chern number phase
pattern, which is reminiscent of the percolation [44] picture
and of the Chalker-Coddington model [45,46] of the quan-
tum Hall effect. In the present case, however, there are also
semimetal phases due to overlaps between the valence and
conduction bands that are indirect in momentum space. For
the quantum anomalous Hall (QAH) effect, the possible pres-
ence of regions in which the Stoner criterion for spontaneous
valley polarization is not satisfied because of locally larger
bandwidths is also relevant.

In this local picture, a global QAH effect can appear only
if the following two conditions are satisfied: (i) the super-
moiré period must be long enough that edge states between
topologically distinct phases do not couple to each other, and
(ii) a topologically nontrivial insulating phase must percolate
across the device. The first condition is always satisfied over a
finite range of twist angles close to a commensurate point, and
the second condition can usually be satisfied by varying the
electrical potential difference U between layers by applying a
gate-controlled out-of-plane electric field.

In the opposite limit in which the two moiré patterns are far
from being commensurate and the local moiré band picture
fails, we assume that the moiré periodic part of the hBN
potential acts like a disorder potential. The moiré bands of
tBG are then widened by scattering from the hBN potential.
In some cases, this broadening effect may also make the full
bandwidth exceed the interaction strength, standing in the way
of spontaneous valley polarization and therefore of the anoma-
lous Hall effect. Our proposals provide a possible explanation
for a number of experimental observations, but they are not
conclusively established by existing experiments.

This paper is organized as follows: In Sec. II we first iden-
tify the commensurate twist angle pairs, and then we discuss
the geometry of tBG/hBN supermoiré systems in terms of
the proximity to these commensurate points. In Sec. III A
we describe the continuum model we use to investigate the
electronic structure. In Sec. III B we present our results for the
spatial pattern of tBG/hBN supermoiré’s phases calculated
from our model in a local-band approximation. In Sec. III C
we estimate the twist angle windows within which QAH
effects can occur in tBG/hBN supermoiré. In Sec. III D we
analyze the limit in which the two moiré patterns are far from
being commensurate. Then in Sec. IV, we use our results
to provide possible explanations of current experiments and

suggest further experimental approaches to test our proposals
in the future. Section V contains the summary and main con-
clusions of this paper.

II. GEOMETRY

A. Commensurate tBG/hBN

We consider a tBG/hBN trilayer system in which the
graphene layer adjacent to the nearly aligned hBN layer is
labeled as layer 1 or G1, while the top graphene layer is
labeled as layer 2 or G2. We let G2 and the hBN layer both
be twisted relative to G1 by small angles, denoted, respec-
tively, as θGG and θGBN. The lattice constant of microscopic
graphene honeycomb aG is taken to be aG =

√
3 × 1.42 Å

[47], α = aBN/aG = 1.017 [48] is the ratio between the hBN
and graphene lattice constants, and the A sublattice of hBN is
taken to be occupied by boron atoms.

The moiré patterns of the G1/G2 and G1/hBN heterojunc-
tions are commensurate if and only if their moiré reciprocal
lattices are commensurate. We show in Appendix A that the
commensurability condition is

n(KBN − K1) = pq3 + qq′
2, (1)

where (n, p, q) is a triplet of coprime integers that char-
acterizes distinct commensurate structures. Here K1 =
(4π/3aG, 0) and KBN = (4π/3aBN)(cos θGBN, sin θGBN) are
the Dirac points of graphene layer 1 and hBN, respectively,
and q3 and q′

2 are defined in Figs. 1(a) and 1(b). For given n, p,
and q, the twist angle pair (θGG, θGBN) is implied by Eq. (1). In
the small twist angle approximation (cos θ, sin θ ) → (1, θ ),

θGG ≈ n

p + q
× 1.1◦, θGBN ≈ p − q

p + q
× 0.55◦. (2)

Exact expressions for the commensurate twist-angle pairs are
discussed in Appendix A.

We focus our attention on integer triplets that satisfy n =
p + q. Geometrically these triplets correspond to the case in

which KBN is on the line
←→
ab illustrated in Fig. 1(a). We

choose these commensurate structures because they yield a
tBG angle θGG ≈ 1.1◦ that is very close to the magic angle ∼
1.05◦ [1]. Only for these twist angles do we expect the strong
correlation physics [7] that is responsible for much of the
interest in tBG/hBN systems to appear. For this series of com-
mensurate points, the area of the supercell is N = n2 times
larger than the corresponding tBG system. It follows that each
moiré band of isolated tBG is split into n2 bands by coupling
to the adjacent hBN layer. We note that commensurate points
are dense in twist angle space, just as rational numbers are
dense on the real line. However, most commensurate points
have very large n, which means that the tBG bands are split
into a correspondingly large number of subbands, and they are
therefore unlikely to lead to observable consequences in finite-
size systems with nonzero disorder. We therefore focus on the
discrete set of low-order commensurate points that we have
identified. Two different n = 1 systems have been identified in
previous work: (p, q) = (1, 0) [37] and (p, q) = (2,−1) [38].
Figures 1(c)–1(e) show schematics of several of the simplest
structures in this series, which we will refer to, respec-
tively, as 60◦ commensurate [Fig. 1(c), (n, p, q) = (1, 1, 0),
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FIG. 1. Schematic reciprocal space geometry of a tBG/hBN system: (a),(b) Generic twist angles: K1, K2, and KBN are Brillouin-zone corner
points of graphene layer 1, graphene layer 2, and hBN, respectively. The mBZs of the G1/G2 and G1/hBN moiré patterns are illustrated by
blue and red hexagons respectively. (c) 60◦ commensurate, (d) 120◦ commensurate, and (e) 90◦ commensurate systems. In (e), the blue dashed,
red dashed, and inner black solid hexagons are, respectively, the mBZs of the G1/G2, G1/hBN heterojunctions, and the entire trilayer. The
high-symmetry points of the mBZs of the commensurate systems are given their conventional labels.

θGBN ≈ 0.55◦], 120◦ commensurate [Fig. 1(d), (n, p, q) =
(1, 0, 1), θGBN ≈ −0.55◦], and 90◦ commensurate [Fig. 1(e),
(n, p, q) = (2, 1, 1), θGBN ≈ 0◦].

In commensurate tBG/hBN trilayers, electronic properties
change when one moiré pattern is laterally translated relative
to the other by a rigid in-plane translation of any one of the
three layers. This contrasts with the bilayer moiré superlattice
case in which the effect of translating one of the two layers
is simply to produce a magnified global shift of the moiré
pattern, which has no consequence in the thermodynamic
limit. In a trilayer, shifting an outside layer only shifts one
of the two moiré patterns, and shifting the middle layer shifts
both, but not necessarily by the same amount. In this paper, we
fix a local AA stacking point of the G1/G2 moiré pattern at
the origin and examine how electronic structure changes when
the hBN layer is translated by d relative to a point at which its
A (boron) site is at the origin (see Fig. 2). A shift in the hBN
layer by d shifts the G1/hBN moiré pattern by

dM = (1 − αRθGBN )−1d. (3)

(Here Rθ is an operator that rotates a vector counterclockwise
by θ .)

B. tBG/hBN supermoiré structures

A supermoiré structure is formed when the two twist angles
are displaced slightly away from a low-order commensurate
point, i.e., when

θGG = θ
npq
GG + δθGG, θGBN = θ

npq
GBN + δθGBN, (4)

where (θnpq
GG , θ

npq
GBN) is the commensurate pair defined by the

integer triplet (n, p, q) defined in Eq. (1), and both δθGG and
δθGBN are ∼ 0.01◦. The period and orientation of the super-
moiré pattern depend on both δθGG and δθGBN.

For sufficiently large supermoiré periods, the supermoiré
structure can be characterized in terms of local commensurate
tBG/hBN systems with the shift parameter d varying slowly
in space. We let d = 0 correspond to local AAA stacking at
r = 0, since in the supermoiré case a global shift of the hBN
layer d(r) → d(r) + d0 does not affect the overall supermoiré
pattern. This can be seen by noting that a shift of hBN causes
a magnified shift of the G1/hBN moiré pattern, which in turn
produces a further magnified shift of the supermoiré pattern,
and this can be canceled by a reselection of the origin.

The analysis in Appendix B shows that in the small twist
angle limit, the magnification factor from d to r is

γ ≡ |r|
|d| ≈ n

|nδθGBN − (peiπ/3 + qe2iπ/3)δθGG| , (5)

and that when the supercell of the (n, p, q) commensurate
system contains N moiré cells of tBG, the ratio ra between the
supermoiré lattice constant asm and the hBN lattice constant
aBN is

ra ≡ asm

aBN
= γ√

N
. (6)

For supermoirés near 60◦, 120◦, and 90◦ commensurate
points,

r120◦,60◦
a = 1√

δθ2
GG + δθ2

GBN ± δθGGδθGBN

(7)

with the + sign for 120◦, and

r90◦
a = 1√

3δθ2
GG + 4δθ2

GBN

. (8)
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FIG. 2. Schematic illustration of two moiré patterns that differ by a rigid displacement d of the hBN layer of a commensurate tBG/hBN
system: (a) d = 0; (b) d 
= 0. As we see, the G1/hBN moiré pattern is shifted. The twist angles and lattice constant mismatches are exaggerated
in this schematic.

III. ELECTRONIC PROPERTIES

A. Model Hamiltonian

In this section, we describe how we model tBG/hBN tri-
layers with arbitrary twist angles θGG and θGBN and hBN layer
translations d. We adopt the commonly employed noninteract-
ing model Hamiltonian, focusing on one valley since the other
valley can be easily obtained by time reversal. The low-energy
degrees of freedom are entirely in the graphene bilayer, but
they have a periodic contribution due to the adjacent hBN
layer that we separate by writing

H (d ) = HtBG + VBN(d ). (9)

The bilayer has four π -electron sublattices counting the two
honeycomb layers. For HtBG we use the well-known four-
sublattice continuum model Hamiltonian of tBG [1], adding a
gate-controlled interlayer potential difference U . We adopt the
ab initio estimates for the same and different sublattice inter-
layer tunneling parameters in tBG by setting wAB = 113 meV
[26] and wAA/wAB = 0.8, a value that accounts approximately
for lattice relaxation [49].

In Eq. (9) we assume that VBN(d ) is nonzero only on the
G1 layer and not on G2. VBN(d ) can be separated [26] into a
spatially averaged term that is independent of position, and a
periodic contribution:

VBN(d ) =
∑

k

(
ψ

†
1k(m0σ

z )ψ1k +
6∑

j=1

ψ
†
1kVj (d )ψ1(k+g j )

)
.

(10)
The first term on the right-hand side (RHS) of Eq. (10) cap-
tures the critical broken inversion symmetry in the G1 layer, as
discussed in previous work [22,23,31–36]. Ab initio calcula-
tions of monolayer graphene/hBN with full lattice relaxation
yield the estimate m0 = 3.62 meV [28], but experiments sug-
gest that m0 is significantly larger [50], possibly as large as
∼ 15 meV [51] and possibly reflecting many-body physics
that is absent in the DFT calculation [52]. Since it is unclear

whether many-body enhancement of m0 is also important in
tBG/hBN, we take m0 = 3.62 meV in most of our explicit
calculations, using the value m0 = 10 meV in some calcula-
tions for comparison purposes.

The second term on the RHS of Eq. (10) accounts for the
G1/hBN moiré pattern. The six transfer momenta g j are from
the first shell of the moiré reciprocal lattices, and the Vj’s
are matrices that act on sublattice degrees of freedom. Ab
initio calculations [28] estimate that all Vj’s are ∼ 10 meV.
These matrices are detailed in Appendix C. We capture the
d dependence of the hopping matrix Vj by multiplying the
Fourier expansion coefficients by phase factors:

Vj (d ) = Vj (0)eig j ·dM , (11)

where the shift dM of the G1/hBN moiré pattern depends on
d via Eq. (3).

B. Anomalous Hall effect at commensurate twist-angle pairs
and supermoiré

Figure 3(a) contains a map of the valence-band Chern
number C versus d for the 120◦ commensurate tBG/hBN
trilayer implied by the model Hamiltonian described above
with U = 0. The Chern numbers were calculated using the
highly efficient method described in Ref. [53]. The structure
present in the Chern number map demonstrates that band
crossings occur as d is varied. In Figs. 3(b)–3(d) we plot
the band structures at the d points highlighted in Fig. 3(a).
The expected band inversion at the Chern number boundary
is apparent in these figures. We emphasize that if the g j 
= 0
terms in Eq. (10) were neglected, then the spectrum would
be independent of d, and the Chern number map would be
monochromatic. The interesting structure is present only be-
cause the G1/hBN moiré pattern has a qualitative influence
on electronic structures.

When the electronic structure of a supermoiré system
is described in a local band picture, the C(d ) map in
Fig. 3(a) expands to a spatial map C(r) = C(d(r)) with
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FIG. 3. (a) Map of valence-band Chern number C vs hBN displacement d for a 120◦ commensurate tBG/hBN moiré superlattice with
zero interlayer potential difference U . Different colors specify different Chern numbers, as illustrated by the legend below. The lighter shades
identify semimetal regions with a gap closing that is indirect in momentum space. The black hexagon is the Wigner-Seitz cell of the hBN layer.
(b)–(d) Band structures of the system at the d values marked by cyan (b), yellow (c), and white (d) dots in map (a). The band structures are
plotted along the red path shown in (e), which includes the point t at which the band touching occurs in (c). Band touching always occurs at
some point in the mBZ along the map’s Chern number region boundaries.

magnification factor γ defined in Eq. (5). When narrow bands
lead to spontaneous valley polarization at odd moiré band
fillings [6,19,33,54], spatial regions with different valley-
dependent Chern numbers will have topologically distinct
QAH or trivial phases. We notice that at some d’s the va-
lence and conduction bands overlap, giving rise to semimetal
regions that cannot support a quantized Hall conductance,
but can in principle support spontaneous valley polarization
and therefore nonzero Hall effects. The entire supermoiré
structure is therefore expected to support a complex spatially
inhomogeneous state containing alternating Chern insulator,
trivial insulator, and semimetal phases. Several samples of
such patterns are plotted in Fig. 4(a)–4(f). We see that at
certain interlayer potential differences U , the C = 1 phase
or the semimetal phase percolates, while at other U ’s no
phase percolates. The percolation properties of different U ’s
are summarized in Table I, where we see that percolation of
the C = 1 phase is most common in nearly 120◦ commen-
surate systems. If many-body effects do enhance m0 or the
single-particle sublattice splitting term in the Hamiltonian is
larger than the estimate employed for these plots, more C = 1
percolation is expected because the original gap opened by
the m0 term of the hBN potential is then larger and less easily
inverted by either U or the g 
= 0 terms of the G1/hBN moiré

potential. This observation is quantified in Appendix D, where
the corresponding results for m0 = 10 meV are summarized.

So far we have assumed full valley polarization. In practice,
valley polarization occurs only if the bands are sufficiently
narrow relative to interaction strength. In Figs. 4(g)–4(i) we
map the conduction-band width W versus position r. It fol-
lows from the Stoner mean-field criterion that spontaneous
valley polarization is likely to be absent when the bandwidth
W exceeds the relevant exchange energy X . Self-consistent
Hartree-Fock calculations in previous work suggest that X ≈
30 meV in tBG with twist angle θGG = 1.1◦ at moiré band fill-
ing factor ν = 1 [19]. Since Hartree-Fock calculations tends
to overestimate the exchange energy, our W (r) maps may
imply that some valley-unpolarized regions, within which
the anomalous Hall conductivity vanishes, may occur in the
supermoiré pattern. (If the number N of tBG moiré cells
in a supercell of the commensurate system is a multiple
of 4, for example in the 90◦ commensurate case, it is not
impossible that the Fermi level could lie within one of the
subband gaps of the original moiré bands.) According to
the results shown in Figs. 4(d)–4(i), unpolarized states are
more likely in semimetal phases of nearly 60◦ commensurate
systems and in C = 1 regions in nearly 120◦ commensurate
systems.

TABLE I. Summary of percolating supermoiré phases of different commensurate structures under various interlayer potential difference
U . S labels percolating semimetal states; X labels states with no percolating phase.

U (meV) −100 −80 −60 −40 −20 0 20 40 60 80 100

60◦ commensurate S S C = 1 C = 1 C = 1 X X S S S S
90◦ commensurate S X X X C = 1 C = 1 C = 1 X X X S
120◦ commensurate C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 X X C = 1 C = 1
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FIG. 4. (a)–(c) Phase maps of a supermoiré structure close to the 90◦ commensurate twist point with δθGG = δθGBN = 0.01◦, under various
interlayer potential differences U . Different colors specify different phases, as illustrated by the legend on the bottom. C is the valence-band
Chern number. The black hexagon is the Wigner-Seitz cell of the supermoiré pattern. At U = 20 meV the C = +1 phase is globally connected,
indicating an overall measurable QAH effect. Otherwise the quantum Hall conductance is not quantized and the longitudinal conductivity is
nonzero. (d)–(f) Phase maps of a supermoiré structure with δθGG = δθGBN = 0.01◦ near (d) 60◦ commensurate; (e) 90◦ commensurate; (f)
120◦ commensurate structures, with U = −20 meV. All three cases have percolating C = 1 phases. (g)–(i) Maps of the local conduction-band
width W of the same systems as in (d)–(f). For 90◦ commensurate, W refers to the difference between the top of the highest miniband and the
bottom of the lowest miniband split from the conduction band of tBG. In a Stoner approximation, spontaneous valley polarization occurs when
an exchange interaction parameter exceeds W .

C. Supermoiré quantum anomalous Hall effect twist angle
windows

Our percolation-like [44,45] picture of the supermoiré
anomalous Hall effect allows the spatial maps in Fig. 4 to
be interpreted using a Landauer-Büttiker transport picture
[55,56]. In this picture, an overall quantized anomalous Hall
conductance occurs only when (i) a topologically nontrivial
QAH phase percolates; or (ii) the edge states between phase
boundaries are sufficiently localized that their coupling can
be neglected. The latter condition requires that the twist angle

pair should be sufficiently close to a commensurate point
that the supermoiré period is large compared to the lateral
localization of the edge states. These considerations lead to
the conclusion that there is a region of finite area in twist angle
space surrounding each commensurate point within which the
QAH effect can occur. Below, we provide an estimate of the
sizes of these twist angle windows.

We estimate the lateral localization width λ of the edge
states localized along boundaries between topologically non-
trivial and trivial phases by concentrating on the two crossing
levels and appealing to a Jackiw-Rebbi picture [57,58] of
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FIG. 5. Twist angle windows for QAH effects according to crite-
ria explained in the main text. Quantized regions are shaded blue and
labeled by their (n, p, q) integer triplets. The windows are larger for
low-order commensurate twist angle pairs.

two-dimensional Dirac fermions with a mass gap that varies
smoothly with position. This mapping yields

λ = 2
√

vF

|∇r�| , (12)

where � is the local gap. The typical Fermi velocity, h̄vF ≈
100 meV nm, was estimated from our model calculations by
examining band dispersion at touching points like the one in
Fig. 3(c). Similarly, the rate of variation of the gap with d
is |∇d�| ≈ 300 meV nm−1. For a supermoiré lattice with a
magnification factor |r|/|d| = γ , we have |∇r�| = |∇d�|/γ .
Quantization is accurate when the edge-isolation parameter
ρ ≡ asm/λ, the ratio of gapped state size to edge state local-
ization length, is large. From Eqs. (6) and (12) we find that
when the twist angle is tuned toward a commensurate point
defined by Eq. (1) with n = p + q,

ρ = asm

λ
= aBN

2

√
γ |∇d�|

NvF
, (13)

where N = n2. Since the magnification factor γ depends
smoothly on twist angle, Eq. (13) implies that edge isola-

tion will be achieved over smaller ranges of twist angle near
higher-order (larger N) commensuration points. Here we have
assumed that both vF and |∇d�| retain their order of magni-
tude as n becomes large. The latter assumption is justified by
Eq. (11) since

|∇d�| ∼ |∇dVBN| ∼ ∣∣ig j · (∇ddM )Vj (d )
∣∣ ∼ GBNVBN,

where GBN is the magnitude of the primitive reciprocal-lattice
vector of the hBN, which does not change with n.

We adopt the practical numerical criterion that the Hall
conductance is effectively quantized when the edge isola-
tion parameter ρ exceeds 5, which according to Eq. (13) is
equivalent to γ > 500n2 (ra > 500n). From Eq. (5), the linear
size of the twist angle window that satisfies this criterion is
δθ ≈ 1/γ ≈ 0.1◦/n2. The quantization windows for the series
of twist angle windows up to n = 4 are illustrated schemat-
ically in Fig. 5. Within the largest two of these windows,
the typical supermoiré period is ∼ 0.1–1 μm, compared to
typical tBG/hBN device sizes that are up to tens of microm-
eters [3,4,18]. These considerations imply that devices can in
principle be fabricated with up to tens of supermoiré periods
on a side.

D. Anomalous Hall effect of incommensurate tBG/hBN

In principle, all twist angle pairs are close to some
commensurate point, just as all real numbers are near some ra-
tional number. However, most of these points have extremely
large n and can be practically viewed as incommensurate. In
such a system, the moiré bands are broadened by the G1/hBN
moiré, or split into an extremely large number of minibands.
To roughly assess the influence of the G1/hBN moiré on
electronic structures in this limit we adopt a simplified picture
by treating it as a disorder potential with a scattering rate
estimated using a self-consistent Born approximation:

τ−1
nk = 2�I

nk

h̄
= 2π

h̄

∑
m

6∑
j=1

|〈nk|VBN

∣∣m(k + g j )
〉|2 1

π

�I
m(k+g j )(

εm(k+g j ) − εnk
)2 + (

�I
m(k+g j )

)2 . (14)

Here �I
nk is the imaginary part of the self-energy, |nk〉 is

the Bloch state of the nth band at wave vector k, εnk is the
corresponding band energy, and the g j’s are from the first shell
of the G1/hBN moiré pattern. To simplify this approximation,
we include only the moiré flat bands and assume that the
scattering rate is approximately the same for all states by
letting �I

nk → �I in Eq. (14). This yields

∑
n,m=v,c

1

Nk

∑
k∈mBZ

6∑
j=1

|〈nk|VBN

∣∣m(k + g j )
〉|2(

εm(k+g j ) − εnk
)2 + (�I )2

= 1, (15)

where v and c denote, respectively, valence and conduction
band. We solve Eq. (15) for the disorder energy broadening
�I using an Nk = 50 × 50 mesh to perform the momentum
space integral and a numerical bisection method to fix �I .

Figure 6(a) shows disorder self-energy �I of the tBG bands
calculated in this way, and it compares them with the disorder-

free bandwidths W and gaps shown in the inset. The disorder
broadening is largest when the moiré bands are narrowest, as
expected on the basis of density-of-states considerations, and
it exceeds 10 meV over a broad range of twist angles. Within
a Stoner mean-field picture, spontaneous valley polarization
is expected only when the moiré bandwidth is smaller than
the exchange energy strength. Assuming that the disorder
self-energy �I effectively adds to the bandwidth, the values
reported in Fig. 6 suggest that spontaneous valley polarization
is unlikely in incommensurate tBG/hBN. Since the disorder
broadening effect is in any case sufficient to close the typically
2–3 meV band gap present when the G1/hBN moiré pattern is
ignored, spontaneous valley polarization, even if it is present,
is unlikely to produce a quantized anomalous Hall effect. The
property that an incommensurate tBG/hBN interaction can be
strong enough to close gaps is consistent with our findings for
commensurate systems. As also in that case, a larger value
for m0 = 10 meV would imply more quantum anomalous
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(deg)

FIG. 6. (a) Disorder self-energy �I due to the G1/hBN moiré
potential vs θGBN for a series of θGG values with m0 = 3.62 meV
and interlayer potential difference U = 0. Inset: the energy range of
valence (yellow) and conduction (cyan) bands of near-magic angle
tBG with sublattice symmetry broken by the m0 term of the G1/hBN
potential and the same value of m0. (b) A sample tBG moiré band
structure with m0 = 3.62 meV, plotted along the red path shown in
(c). The band Chern numbers C, the band gap Eg, and the conduction-
band width W0 in the absence of disorder are specified.

Hall effects that are more, but still imperfectly, persistent (see
Appendix D).

IV. DISCUSSION

When tBG/hBN devices are fabricated, θGG can be accu-
rately controlled to a precision of order of ∼ 0.1◦ because the
two graphene sheets are extracted from a common exfoliated
single-layer crystal [59]. This advantage is not present when
aligning the graphene and hBN layers, and θGBN is therefore
far less precisely controlled. Nominally aligned samples may
have differences in orientation in the range of ∼ ±1◦. If the
orientation angle is random within this range, the two moiré
patterns will generally be incommensurate, and therefore, we
have argued, likely to show only a weak or zero anomalous
Hall effect. If by chance θGBN falls into one of the twist angle

windows identified in Fig. 5, devices are likely to exhibit a
quantized Hall conductance. Close to these twist angle win-
dows, the Hall conductance is likely to be large, but still
not quantized. This provides a possible explanation for the
fact that accurately quantized Hall conductances seem to be
observed relatively rarely in experiments on tBG/hBN. Our
expectation that the Hall conductance is more likely to be
quantized for twist angle pairs closer to a commensurate point
is consistent with the experimental observation of a quan-
tized Hall resistance in a sample with measured twist angles
θGG ≈ 1.15◦ and θGBN ≈ ±0.6◦ [4], which is close to either
the 60◦ or the 120◦ commensurate point depending on the
sign of θGBN, and a nonquantized Hall resistance in a sample
with θGG ≈ 1.2◦ and θGBN ≈ ±0.8◦ [3], which is further from
a commensurate twist-angle-pair point.

Since there will always be a difference in local lattice
bonding energy per area between regions with different val-
ues of the hBN sliding vector d, a supermoiré structure will
spontaneously expand regions in which d is close to the most
energetically preferred value [60]. For samples smaller than a
supermoiré period, this process will induce relaxation toward
a uniform phase with the energetically preferred value of d. At
present, we do not know whether or not these uniform samples
are more likely to be Chern insulators, trivial insulators, or
semimetals.

In larger samples, the supermoiré pattern can introduce
intrinsic inhomogeneity at the micrometer scale. One con-
sequence is that the measured Hall conductance can be a
device-specific quantity, even for devices that have the same
twist angles. This scenario is consistent with the fact that in
some devices the quantum anomalous Hall effect is observed
[4] for some source, drain, and voltage contact choices and not
for others. The observation of domain walls [18] that remain
pinned even when the magnetization has apparently saturated
is also consistent with device scale inhomogeneity. Persistent
pinning might be associated with a local absence of valley
polarization, as discussed in Sec. III B.

The relationship we propose between commensurability
and the appearance of the QAH effect in tBG/hBN could
be tested by measuring the twist-angle pair of a nearly com-
mensurate device using Bragg interferometry [61]. In this
technique, a high-energy electron beam with sub-moiré size
is rastered through and diffracted by both graphene and hBN
layers. In tBG, the intensity of the Bragg disks varies with
electron-injection position with moiré periodicity as a result
of spatially varying interference between the two graphene
layers. For nearly commensurate tBG/hBN, we expect this
periodicity to be further modulated with a larger periodic-
ity, namely the supermoiré, by a perturbation from the hBN
layer.

The absence of an anomalous Hall effect in a large device
could signal the absence of valley polarization at any point,
or a complex valley-polarization domain structure. These
circumstances can be distinguished in principle by using
nano-ARPES [62,63] to separately detect energy and momen-
tum distribution functions in opposite valleys to see if they
are different [64]. Valley polarization can also be measured
locally by looking for valley-contrasting optical properties
[65–67].
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V. SUMMARY AND CONCLUSIONS

Trilayer van der Waals heterojunctions have two inde-
pendent relative twist angles. We have identified a series of
(θGG, θGBN) twist-angle pairs in tBG/hBN trilayer systems
at which the graphene/graphene and graphene/hBN moiré
periodicities are commensurate and θGG is close to the magic
angle at which isolated tBG moiré bands are narrow and
support strong correlation physics. We use a noninteract-
ing continuum model Hamiltonian that accounts for both
moiré patterns to address the trilayer electronic properties. Al-
though the active degrees of freedom are localized in the two
graphene layers, the hBN layer produces an effective external
potential that includes both a position-independent term and a
position-dependent term that is often ignored [22,23,31–36].
We find that when the position-dependent terms are retained,
the band structures and Chern numbers of commensurate
trilayers change as the hBN layer is rigidly displaced by trans-
lation vector d. When only the translationally invariant mass
terms are included in the Hamiltonian, the electronic structure
is d-independent, and the Chern number maps are uniform
at C = 1. This finding proves that the role of the position-
dependent terms in trilayers, which have the periodicity of the
graphene/hBN moiré, is essential.

Building on this result, we analyze the role of the
graphene/hBN moiré in tBG/hBN trilayers, focusing on their
importance for the appearance or absence of the QAH effect
at odd integer moiré band fillings. When the twist angle pair
is close to a commensurate point, a long-period supermoiré
pattern is formed that can be viewed as a slow spatial vari-
ation of the hBN translation vector d. When analyzed using
a local moiré band picture, the supermoiré at odd integer
moiré band filling factors is characterized by a spatial map of
distinct states, including correlated insulating states with vari-
ous Chern numbers, semimetal states, and valley-unpolarized
states. We argue that an overall QAH state is possible only
when a topologically nontrivial insulating phase percolates
and the twist angle pair is close enough to a commensurate
value. For twist angles far from commensurate points, we
assume that the hBN moiré potential acts like a disorder
potential, which we treat using a self-consistent Born ap-
proximation. We argue that that the anomalous Hall effect
is unlikely to occur in this regime because of the disorder-
induced band-broadening effect.

Our proposal can explain the experimental observation
of both quantized and nonquantized anomalous Hall effects,
as well as states with no anomalous Hall effect at all, in
tBG/hBN samples. The supermoiré picture also provides pos-
sible interpretations of unexplained inhomogeneities observed
in some experiments that act as pinning centers of orbital
ferromagnetism. Direct verification of our proposal could be
achieved by performing Bragg interferometry moiré structure
and transport measurements in the same sample.

Earlier experimental [39,43,68,69] and theoretical [30,40–
42,70] work has addressed the rich electronic properties of
other trilayer systems, including hBN/graphene/hBN trilay-
ers and the twisted trilayer graphene system. This manuscript
shows that the tBG/hBN trilayer system is also an attractive
platform to study bi-moiré electronic structures, and to study
the interplay between strong correlations and quasiperiodicity.

FIG. 7. The primitive reciprocal-lattice vectors of the G1/G2
(blue) and G1/hBN moiré patterns (red).

Note added. Recently, we noticed a related preprint [71]
that identifies a series of commensurate twist angle pairs in
tBG/hBN and performed full structural relaxation calcula-
tions. This work supports our speculation that commensurate
moiré structures are likely to be energetically preferred. A
second related preprint [72] has identified the two sim-
plest examples of moiré commensurability, and provides a
complementary analysis of the electronic properties of incom-
mensurate tBG/hBN.
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APPENDIX A: EXACT GEOMETRY OF GENERAL
COMMENSURATE tBG/hBN TRILAYERS

The commensurability of the tBG/hBN trilayer is captured
by the fact that any reciprocal lattice vector of either moiré
pattern is a linear combination of the primitive basis of a
common mini-reciprocal lattice with integer coefficients. This
is equivalent to saying that any reciprocal-lattice vector of one
moiré pattern is a linear combination of the reciprocal basis of
the other moiré pattern with rational coefficients. According
to this condition, we can set

gGBN
1 = p̃gGG

2 + q̃gGG
3 , (A1)

where gGG
j and gGBN

j are defined in Fig. 7, and p̃ and q̃ are
rational numbers with the least common denominator n so
that p̃ = p/n and q̃ = q/n. Rotating both sides of Eq. (A1)
clockwise by 90◦ and scaling by 1/

√
3 yields Eq. (1) in the

main text.
We now solve for the exact expression of the twist angle

pair (θGG, θGBN) in terms of ( p̃, q̃). We first write Eq. (1) in a
complex number form in which 2D vectors are represented
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by complex numbers whose real and imaginary parts are
the two components, i.e., K1 = K , K2 = KeiθGG , and KBN =
KeiθGBN/α. Rotation matrices are then represented by complex
numbers with norm 1, i.e., Rφ = eiφ :

eiθGBN

α
− 1 = (

p̃ei π
3 + q̃ei 2π

3
)
(eiθGG − 1). (A2)

Adding 1 to each side of Eq. (A2) and then multiplying by
complex conjugates yields an equation for θGG that has two
exact solutions modulo 2π :

θ±
GG = arccos

t√
t2 + s2

± arccos
t + 1

2

(
1 − 1

α2

)
√

t2 + s2
, (A3)

where t = r2 + s2 − r, r = ( p̃ − q̃)/2, and s =
√

3( p̃ + q̃)/2.
θ+

GG is typically not small enough to justify the continuum
models that make the use of moiré periodic Hamiltonians. On
the other hand, θ−

GG is small since α is very close to 1.
By similar means, we can also get an equation of θGBN from

Eq. (A2), which has two exact solutions modulo 2π :

θ±
GBN = arccos

r − 1√
(r − 1)2 + s2

± arccos
αr − 1

2

(
α + 1

α

)
√

(r − 1)2 + s2
.

(A4)
Again, θ+

GBN is typically not small enough to justify moiré
band theory.

The three special cases discussed in the main text are
obtained by substituting ( p̃, q̃) = (1, 0), (0,1), and (1/2, 1/2)
into Eqs. (A3) and (A4), and using α = 1.017. We obtain

θ60◦
GG = 60◦ − arccos

(
1 − 1

2α2

)
≈ 1.103◦, (A5)

θ60◦
GBN = θ60◦

GG

2
= arccos

(
1

2α

)
− 60◦ ≈ 0.551◦, (A6)

θ120◦
GG = 30◦ − arccos

[
2√
3

(
1 − 1

4α2

)]
≈ 1.116◦, (A7)

θ120◦
GBN = −30◦ + arccos

[
1√
3

(
α + 1

2α

)]
≈ −0.577◦, (A8)

θ90◦
GG = arccos

√
3

7
− arccos

[
1√
21

(
5 − 2

α2

)]
≈ 1.106◦,

(A9)

θ90◦
GBN = arccos

[
1√
7

(
α + 1

α

)]
− arccos

2√
7

≈ −0.009◦.

(A10)

APPENDIX B: GEOMETRY OF tBG/hBN SUPERMOIRÉ

For a tBG/hBN trilayer with twist angle pair (θGG, θGBN),
the two moiré Bravais lattices are defined by

AGG = (1 − R−θGG )−1a,

AGBN =
(

1 − R−θGBN

α

)−1

a, (B1)

where a is a lattice vector of the G1 graphene layer.
We start from an (n, p, q) commensurate structure with

d = 0, so that the two moiré patterns share AA stacking points
at the origin, and look for other common AA stacking points
r that satisfy

r = (
1 − R−θ

npq
GG

)−1
a1 =

(
1 − R−θ

npq
GBN

α

)−1

a2, (B2)

where both a1 and a2 are G1 lattice vectors. Now we tune the
twist angle pair slightly away by (δθGG, δθGBN), and then the
AA stacking points in both moiré patterns are shifted and their
relative displacement is

dM (r) =
(

1 − R−θGBN

α

)−1

a2 − (1 − R−θGG )−1a1, (B3)

where θGG = θ
npq
GG + δθGG and θGBN = θ

npq
GBN + δθGBN. Writ-

ing a1 and a2 in Eq. (B3) in terms of r using Eq. (B2) yields an
explicit expression for dM (r), and then an explicit expression
of d(r) by using Eq. (3). For small δθGG and small δθGBN,

d(r) =
(

δθGBNR90◦ − α

n
δθGG(pR30◦ + qR−30◦ )Rθ

npq
GBN−θ

npq
GG

)
r. (B4)

To obtain this expression, one needs to make use of the rela-
tion

n

(
1 − Rθ

npq
GBN

α

)
= (pR60◦ + qR120◦ )

(
1 − Rθ

npq
GG

)
, (B5)

which can be extracted directly from Eq. (1).
Further approximation neglecting the difference between

Rθ
npq
GG

, Rθ
npq
GBN

, α, and 1 yields

d(r) ≈
(

δθGBNR90◦ − 1

n
δθGG(pR30◦ + qR−30◦ )

)
r. (B6)

Take the norm of both sides of Eq. (B6) and we get Eq. (5) in
the main text.

To understand the factor 1/
√

N in Eq. (6), we must return
to the commensurate system and show that the system is
invariant not only under a change of d by a lattice vector of
the hBN, but also under a change of d by a lattice vector of a
lattice that is N times as dense as the hBN. We look at the shift
of the position of the G1/hBN moiré pattern, dM , due to the
change in d. The system is obviously invariant under a shift of
dM by any G1/hBN moiré lattice vector AGBN, and in fact also
invariant under a shift of the G1/hBN moiré pattern by any
G1/G2 moiré lattice vector AGG, which can be understood by
noticing its equivalence to a shift of the G1/G2 moiré pattern
by −AGG. An example is shown in Fig. 8. We also notice that
combining Eqs. (B1) and (B5) (note that we are dealing with
commensurate systems so θGG = θ

npq
GG , θGBN = θ

npq
GBN) yields
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FIG. 8. Local AA stacking points of the two moiré patterns in a 90◦ commensurate system: (a) dM = 0; (b) dM is the half of a shortest
G1/hBN moiré lattice vector, which is the sum of a G1/G2 moiré lattice vector AGG and a G1/hBN moiré lattice vector AGBN. The two systems
are identical up to a translation. The small blue and large orange dots represent the local AA stacking points of G1/G2 and G1/hBN moiré
patterns, respectively.

the relation between the two moiré Bravais lattices:

nAGG = (pR−60◦ + qR−120◦ )AGBN, (B7)

which is identical to the relation between the two moiré re-
ciprocal lattices characterized by Eq. (A1), up to a mirror
reflection. Since this relation folds the mBZ of the G1/G2
moiré pattern into 1/N of its area, it also folds the spatial
primitive cell of the G1/hBN moiré pattern into 1/N of its
area. Hence we conclude that the system is invariant under a

shift of dM by a lattice vector of a triangular lattice that is N
times as dense as the Bravais lattice of the G1/hBN pattern,
which is equivalent to a shift of d by a lattice vector of a lattice
that is N times as dense as the hBN.

APPENDIX C: DETAILS OF MODEL HAMILTONIAN

The continuum model Hamiltonian of tBG [1] in one mi-
croscopic valley with a tunable interlayer potential difference
U is

HtBG =
∑

k

[
ψ

†
1k

(
− U

2
+ h̄vσ1 · k

)
ψ1k + ψ

†
2k

(
U

2
+ h̄vσ2 · k

)
ψ2k

]
+

(∑
k

3∑
j=1

ψ
†
1kTjψ2(k+q j ) + H.c.

)
, (C1)

where vσ l · k (l = 1, 2) is the graphene Dirac Hamilto-
nian of the lth layer, with σ1 = (σ x, σ y), σ2 = (cos θGGσ x −
sin θGGσ y, sin θGGσ x + cos θGGσ y), and v = 106 m/s,

Tj =
(

wAA e−i 2π
3 ( j−1)wAB

ei 2π
3 ( j−1)wAB wAA

)
(C2)

are the three interlayer tunneling matrices where wAB =
113 meV [26] and wAA = 0.8wAB [49]. The vectors q j are
shown in Fig. 1(b). Note that we have written the Tj matrices
in a convention taking a local AA-stacking point as the origin,
which is different from Ref. [1] where AB-stacking is taken
as the origin.

The hBN layer adds to the Hamiltonian the term VBN

specified in Eq. (10) in the main text, where the six transfer
momenta g j are defined in Fig. 1(b) for arbitrary θGBN. The

transfer matrices Vj depend on d via Eq. (11). C3 symmetry
requires that Vj (0) has the following forms:

V1(0) = V †
4 (0) =

(
C0 + Cz CAB

CAB C0 − Cz

)
, (C3)

V3(0) = V †
6 (0) =

(
C0 + Cz e−i 2π

3 CAB

ei 2π
3 CAB C0 − Cz

)
, (C4)

V5(0) = V †
2 (0) =

(
C0 + Cz ei 2π

3 CAB

e−i 2π
3 CAB C0 − Cz

)
, (C5)

where C0, Cz, and CAB are complex values with dimension of
energy. Different ab initio results of these quantities as well
as the mass term m0 under various assumptions are presented
in Refs. [26–28]. Here we use the most realistic one, “relaxed

TABLE II. Summary of percolating supermoiré phases of different commensurate structures under various interlayer potential difference
U , with m0 = 10 meV. S labels percolating semimetal states; X labels states with no percolating phase.

U (meV) −100 −80 −60 −40 −20 0 20 40 60 80 100

60◦ commensurate C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 S S
90◦ commensurate C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 X S
120◦ commensurate C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1
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(deg)

FIG. 9. Disorder self-energy �I due to the G1/hBN moiré po-
tential vs θGBN for a series of θGG values with m0 = 10 meV and
interlayer potential difference U = 0. Inset: the energy range of
valence (yellow) and conduction (cyan) bands of near-magic angle
tBG with sublattice symmetry broken by the m0 term of the G1/hBN
potential and the same value of m0.

β” in Ref. [28]:

m0 = 3.62 meV,

C0 = 7.03ei(134.54◦ ) meV,

Cz = 6.85ei(60.14◦ ) meV,

CAB = 12.94ei(−13.81◦ ) meV.

(C6)

APPENDIX D: RESULTS FOR LARGER MASS TERM

Table II shows the percolating phase of tBG/hBN super-
moiré structures with m0 = 10 meV and various interlayer
potential difference U . The C = 1 region nearly always per-
colates, except for very large U . Figure 9 shows the estimated
broadening effect �I of the periodical part of the G1/hBN
moiré potential on the tBG bands gapped by the spatially
uniform sublattice asymmetric term with m0 = 10 meV. The
gap increases with θGG, ranging from ∼6 to ∼ 8 meV in
the near-magic angle regime. The broadening effect is large
enough to close the gap except for relatively large θGG and
relatively large θGBN. For larger θGG the original bandwidth W0

is large, thus the full bandwidth W ∼ W0 + �I is very likely
to destroy the valley polarization, resulting in zero anomalous
Hall conductance. For smaller θGG, nonquantized anomalous
Hall conductance is possible.
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