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Phase transition into an instanton crystal state
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We propose a class of models exhibiting the instanton crystal phase. In this phase, the minimum of the free
energy corresponds to a configuration with an imaginary-time-dependent order parameter in the form of a chain
of alternating instantons and anti-instantons. The resulting characteristic feature of this state is that the average
of the order parameter over the imaginary time vanishes. In order to study the model in a broad region of
parameters of the model quantitatively, and to prove the existence of the instanton crystal phase, we develop an
efficient numerical scheme, suitable for the exact treatment of the proposed models. In a certain limit, results
demonstrating the existence of the instanton crystal phase are obtained also analytically. The numerical study of
the model shows that there is a phase transition between the instanton crystal and the state with the imaginary-
time-independent order parameter.
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I. INTRODUCTION

The standard way of describing a phase transition is based
on the concept of an order parameter introduced by Landau
[1]. This quantity equals zero in the disordered phase but is
finite in the ordered one. The order parameter can be a scalar,
vector, tensor, etc. The beauty of this approach follows from
the universality of the description because the critical behavior
depends on the symmetry of the order parameter rather than
on the details of the interaction.

Although the Landau theory is by construction applicable
only near the critical point and not too close to it, so that
the fluctuations can be considered small, the concept of the
order parameter provides the means of description of the
ordered phase for all the temperatures below the transition
temperature. As such, in the case of Z2-symmetry breaking,
for example, the order parameter is real and the minimum of
the free energy corresponds to the two possible values +1, −1
(if properly rescaled) of the order parameter.

The situation becomes more interesting in the quantum
limit at low temperatures, where the tunneling effects become
important. The toy model which is usually employed to dis-
cuss these kinds of phenomena is that of a particle moving
in a double-well potential. The convenient way to study the
thermodynamics is to use the Euclidean path integral formal-
ism with the imaginary time τ . The corresponding Euclidean
action of the toy model is introduced as

S =
∫

Ldτ =
∫

dτ

[
1

2

(
dx

dτ

)2

+ 1

2
(x2 − 1)2

]
, (1.1)
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where x is the coordinate of the moving particle. The La-
grangian L can be interpreted as the classical Lagrangian of
the particle in the inverted potential shown in Fig. 1.

One can solve for the minimum of the action (1.1) by
putting its first variation to zero. The action is minimized
by the trajectories x(τ ) ≡ ±1 corresponding to the particle
sitting in either of the minima of the double-well potential.
However, there are also additional imaginary-time-dependent
solutions

x(τ ) = ± tanh (τ − τ0), (1.2)

where τ0 is an arbitrary time. These solutions are usually
called “instantons” or “anti-instantons” depending on the
sign. They describe the classical trajectories connecting the
two “humps” of the inverted potential. In the Hamiltonian
language, these new solutions correspond to the tunneling
between the two “vacua” leading to the splitting of the ground
state. Besides the single-instanton or -anti-instanton solutions,
there are also the solutions consisting of multiple instantons
and anti-instantons chained together.

The action at stationary solutions x(τ ) ≡ ±1 equals zero.
At the same time, its value at the instanton solutions is higher:
Sinst = 4/3. In the condensed matter setting, we should scale
the action (1.1) by the volume of system V . As a result, the
contribution of instanton solutions is exponentially small in
the thermodynamic limit. We should note that this picture
stays valid if we consider any potential with a shape similar to
the one displayed in Fig. 1: there would be instanton solutions;
however, their action would be higher than that for the time-
independent solutions.

It is interesting to note that the study of instanton physics
has been pushed forward in the field of QCD (see, e.g., [2]) in
order to understand the structure of the “ground” state in that
theory. The situation there is quite similar to what we have
just discussed: namely, there are many different minima of the
Euclidean action corresponding to the different vacua of the
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FIG. 1. Inverted potential −V (x) = − 1
2 (x2 − 1)2.

theory, and there are instanton configurations connecting these
vacua. However, the number of vacua is infinite, and the ex-
ponential suppression of the instanton configurations caused
by the increased action is compensated by the increased phase
space factor. As a result, the “ground” state of the system is
described by a nontrivial combination of instantons, which is
referred to in the field of QCD as “instanton fluid.”

In view of these interesting developments, it is natu-
ral to ask whether it is possible to formulate a model, in
the setting of condensed matter physics, that would ad-
mit a thermodynamically stable state described by an order
parameter consisting of a system of instantons and anti-
instantons. Of course, one should expect that such a model
should be considerably more complicated than the simple
toy model given by Eq. (1.1). Still, the question remains the
same.

In this paper, we suggest a model that allows us to ob-
tain in some region of parameters the ground state with the
imaginary-time-dependent order parameter. This order param-
eter can be visualized as a lattice of alternating instantons
and anti-instantons, and therefore we coin for this phase
the name “instanton crystal.” The model contains both inter-
acting fermions and boson modes. It does not contain any
infinite or long-range interactions; thus, this model is, in all
respects, rather conventional for condensed matter physics.
Using the mean-field approximation, we solve this model
both analytically (in certain region of parameters) and nu-
merically. The study reveals a competition between the phase
described by the static time-independent order parameter and
the instanton crystal phase with a transition between the two
phases.

In spite of the popularity of the instanton physics in QCD,
only few works have been done in the past on the investigation
of a possibility of nonperturbative effects in imaginary-time
representation in condensed matter physics. To the best of
our knowledge, this problem was first attacked in Refs. [3–6]
using a two-band model of interacting fermions. A solution
with the chain of instantons and anti-instantons was obtained.
Unfortunately, it was finally concluded that in this model the
free energy for the imaginary-time-dependent configuration

was always higher than for the static configuration. A similar
model with a coordinate instead of the imaginary time τ

had been used long ago as a 1D model of polymers, and a
solution with a chain of kinks and antikinks (spatial analog of
instantons and anti-instantons) had been obtained. Ironically,
in this case, the energy of the “instantons” in the coordinate
space could be lower than that for the homogeneous solu-
tion.

Nonperturbative quantum dynamic effects have been stud-
ied in Ref. [7] using the imaginary-time representation. Also,
instanton–anti-instanton solutions appear in the studies of
nonequilibrium systems [8–12].

Recently, one more attempt has been undertaken [13]
to obtain the instanton crystal. In that work, an additional
interaction term has been added to the previous model of
Refs. [3–6] with the hope that it might make the free energy
of the instanton crystal lower than the static state. Indeed, the
presence of this new term reduced the free energy but using
the perturbation theory could not help proving the existence
of the instanton crystal. Many other guesses remained just
guesses due to the technical difficulties.

In the present paper, we modify the previous models by
introducing bosonic current-like modes which are coupled to
the fermions. In comparison to the previous work [13], we
formulate an effective numerical scheme that enables us to
solve the mean-field equations in the general case. Moreover,
in a certain region of parameters the analytical treatment of the
model is feasible. Results of both the numerical and analytical
study allow us to conclude that the instanton crystal can exist
in the thermodynamic equilibrium. Actually, this work is the
beginning of a systematic study of properties of the instanton
crystal phase.

The paper is organized as follows. In Sec. II, we introduce
the model without discussing its origin. This is because we
hope that the model is rather general. In Sec. III, we minimize
the effective Lagrangian and derive the mean-field equations.
In Sec. IV, we solve the mean-field equations in a certain
region of the parameters of the model and calculate the free
energy, demonstrating the possibility of the instanton crystal
phase. In Sec. V, we describe the numerical scheme for the
solution of mean-field equations, which we use in Sec. VI to
conduct a detailed numerical investigation of the general case.
In Sec. VII, we discuss a possible origin of the model. Finally,
in Sec. VIII, we discuss the results obtained and perspectives
on future studies. The appendices contain technical details of
the calculations.

II. GENERAL MODEL FOR THE IMAGINARY-TIME
CRYSTAL

A. Hamiltonian of the model

In this section, we formulate a rather general macroscopic
model of interacting fermions and bosons without going into
details of its possible origin. The latter will be done in
Sec. VII, but here we simply introduce the general Hamilto-
nian Ĥ and discuss its structure.

The total Hamiltonian Ĥ of the model consists of three
parts:

Ĥ = Ĥ0 + Ĥint + ĤB. (2.1)
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In Eq. (2.1), Hamiltonian Ĥ0 stands for a system of noninter-
acting fermions:

Ĥ0 =
∑

p

c†
p(ε+

p Ǐ + ε−
p �̌3)cp. (2.2)

These fermions live in two bands 1 and 2. Four-component
vectors

cp = (
c1

1p, c2
1p, c1

2p, c2
2p

)
(2.3)

contain as components creation and destruction operators cs
αp

for the fermions from the bands s = 1, 2 with spin projections
labeled by α = 1, 2 (actually, the spin variable α is not very
important here). The vectors c+

p are Hermitian conjugated to
cp and contain creation operators as components. The energies
ε±

p are expressed in terms of the spectra ε1,2(p) in the bands
1,2 as

ε±
p = 1

2 [ε1(p) ± ε2(p)]. (2.4)

The operators �̌i, i = 1, 2, 3, are Pauli matrices acting in the
subspace of the bands 1 and 2, while Ǐ is the identity operator
acting in the same subspace.

The second term Ĥint in Eq. (2.1) stands for the interaction
between the fermions from different bands:

Ĥint = − U0

4V

∑
p1,p2,q

(
c†

p1
�̌2cp1+q

)(
c†

p2
�̌2cp2−q

)

+ Ũ0

4V

∑
p1,p2,q

(
c†

p1
�̌1cp1+q

)(
c†

p2
�̌1cp2−q

)
, (2.5)

where V is the volume of the system. The Hamiltonian Ĥint

contains contact attraction (first term) and repulsion (second
term). Actually, the first term in Eq. (2.5) describes attraction
of fermionic currents, while the second one stands for repul-
sion of charges. More information about the possible origin of
the model and interpretation of the terms in the Hamiltonian is
given in Sec. VII. It is worth emphasizing that the Hamiltonian
Ĥint does not contain any long-range interactions. We should
also note that a model with the Hamiltonian Ĥ0 + Ĥint was
considered previously in Ref. [13] in a form adopted to a direct
use of the mean-field theory.

The third term ĤB describes a system of current-like modes
labeled by different momenta q:

HB =
∑

q

[
U2

4
(P̂q − Âq)(P̂−q − Â−q) + ω2

qQ̂qQ̂−q

U2

]
,

(2.6)
where Q̂q and P̂−q are conjugated coordinates and momenta
of these modes satisfying the following relations:

Q̂†
q = Q̂−q, P̂†

q = P̂−q. (2.7)

The modes could be, in principle, just phonons, but the latter
generate extremely low currents with respect to the fermionic
ones (of the order m/M, where m is the electron mass, while
M is of the order of atomic masses) that cannot efficiently
interact with fermionic currents.

The current-like modes are coupled to the vector potential
Âq created by the fermions:

Âq = 1√
V

∑
p

c†
p�̌2cp+q. (2.8)

For a typical electron-phonon interaction, the electrons are
coupled to coordinates of phonons. In contrast, in our case,
the fermions are coupled to the momenta of the modes. In
other words, we include in consideration current-current in-
teraction. This is an unusual feature, and it is crucial for our
results. However, we argue in Sec. VII that the existence of
these modes and their interaction with the fermions is not
unrealistic.

We assume that all the coupling constants are not negative,
namely,

U0 � 0, Ũ0 � 0, U2 � 0. (2.9)

As usual, in the limit of large volume V → +∞, one can
replace the sum over the momenta by integrals using the
standard replacement∑

p

(. . .) → V
∫

(. . .)
dp

(2π )d
(2.10)

(d is dimension), which allows one to see that Ĥ is propor-
tional to the volume V , as it should be.

In this paper, we restrict ourselves to studying thermody-
namic real-time-independent properties of the model. In order
to study them, the partition function Z in a grand-canonical
ensemble is introduced in the standard way:

Z = Tr exp

[
− Ĥ − μN̂

T

]
, (2.11)

where μ is chemical potential, and it is convenient in the
following to absorb it into the definition of ε1,2(p).

The Hamiltonian Ĥ , Eqs. (2.1)–(2.8), describes a system of
interacting fermions and bosons, and it does not contain any
long-range interactions. We would also like to emphasize that
neither the Hamiltonian Ĥ nor the partition function Z con-
tains any time dependence, be it real time or imaginary time.
As a consequence, there can be no doubts that the Hamiltonian
Ĥ describes a rather conventional system in thermodynamic
equilibrium.

In principle, one could proceed with the analysis of the
model using the operator formalism. However, it is more
convenient for our study to use the corresponding Lagrangian
formulation based on rewriting the partition function in the
form of the functional integral over commuting and anticom-
muting fields. This way, the imaginary time also enters the
picture. At the same time, we found it instructive to provide
the explicit Hamiltonian of the system in operator formalism:
it helps to stress the fact that we are considering a system
in thermodynamic equilibrium without any pumping or relax-
ation.

B. Field theory for the model under consideration

In the Lagrangian formulation, the partition function Z can
be written in the form of a functional integral as

Z =
∫

exp (−S[χ, χ+, a])DχDχ+Da, (2.12)

075121-3



GRIGORY A. STARKOV AND KONSTANTIN B. EFETOV PHYSICAL REVIEW B 103, 075121 (2021)

where the action S[χ, χ+, a] contains anticommuting
fermionic fields χ s

α (τ ), χ s+
α (τ ) and commuting bosonic fields

aq(τ ) and reads

S[χ, χ+, a] = S0 + Sint + SB + SFB. (2.13)

In Eq. (2.13), the terms S0 and Sint correspond to the terms Ĥ0

and Ĥint in the Hamiltonian approach, Eq. (2.1), respectively.
At the same time, the terms SB and SFB correspond to the
term ĤB.

As usual, the imaginary time τ is defined for 0 � τ � β ≡
1/T , where T is the temperature. The fermionic fields χ s

αp(τ ),
χ s+

αp (τ ) obey standard antiperiodic boundary conditions

χ s
αp(τ + β ) = −χ s

αp(τ ), χ s+
αp (τ + β ) = −χ s+

αp (τ ), (2.14)

and have a structure identical to the vectors cp and c†
p. In con-

trast, the bosonic fields obey the periodic boundary conditions

aq(τ + β ) = aq(τ ). (2.15)

The first term in Eq. (2.13), S0, is the action of
noninteracting fermions,

S0[χ, χ+] =
∑

p

∫ β

0
χ+

p (τ )[(∂τ + ε+
p )Ǐ + ε−

p �̌3]χp(τ )dτ.

(2.16)

The interaction term Sint[χ, χ+] has the form

Sint[χ, χ+] = − U0

4V

∑
p1,p2,q

∫ β

0
dτ

[
χ+

p1
(τ )�̌2χp1+q(τ )

]
× [

χ+
p2

(τ )�̌2χp2−q(τ )
]

+ Ũ0

4V

∑
p1,p2,q

∫ β

0
dτ

[
χ+

p1
(τ )�̌1χp1+q(τ )

]
× [

χ+
p2

(τ )�̌1χp2−q(τ )
]
. (2.17)

The term SB[a] in Eq. (2.13) stands for the action of the
phonon-like modes,

SB[a] = 1

U2

∑
q

∫ β

0

[∣∣∣∣daq(τ )

dτ

∣∣∣∣
2

+ ω2
q|aq(τ )|2

]
dτ, (2.18)

where aq(τ ) are complex fields satisfying

[aq(τ )]∗ = a−q(τ ). (2.19)

The fields aq(τ ) correspond to the coordinates in the lan-
guage of oscillator modes, and daq(τ )/dτ correspond to their
velocities.

Finally, the coupling of the fermions to the current-like
modes is described by the term SFB[χ, χ+] in Eq. (2.13),
which takes the form

SFB[χ, χ+, a]

= − i√
V

∑
p,q

∫ β

0
[χ+

p (τ )�̌2χp−q(τ )]
daq(τ )

dτ
dτ. (2.20)

The terms SB[a] and SFB[χ, χ+] constitute together the
imaginary-time Lagrangian corresponding to the Hamilto-
nian term ĤB. The Lagrangian formulation of the functional

integral can be obtained writing the phase-space functional
integral corresponding to ĤB and then integrating out the
momenta.

In the model under consideration, the expression
χ+

p (τ )�̌2χp+q(τ ) describes a current (see Sec. VII).
Therefore, one can interpret the term SFB[χ, χ+, a] as
the interaction of fermionic and bosonic currents.

In principle, one can integrate out in Eq. (2.12) ei-
ther fermionic or bosonic fields just in the beginning of
calculations. In order to compare the model described by
Eqs. (2.12) and (2.13) with models studied in the previous
works [3–6,13], it is helpful first to integrate out the bosonic
fields. This leads to the following representation of the parti-
tion function Z:

Z =
∫

exp (−Sfermion[χ, χ+])DχDχ+, (2.21)

where the effective fermionic action Sfermion[χ, χ+] takes the
form

Sfermion[χ, χ+]

= S0[χ, χ+] +
∑

q,p1,p2

[
Ũ0

4V

∫ β

0
dτ

[
χ+

p1
(τ )�̌1χp1+q(τ )

]

× [
χ+

p2
(τ )�̌1χp2−q(τ )

] − 1

4V

∫∫ β

0
dτdτ ′K (τ − τ ′|ωq)

× [
χ+

p1
(τ )�̌2χp1+q(τ )

][
χ+

p2
(τ ′)�̌2χp2−q(τ ′)

]]
. (2.22)

The first and the second terms are the same as those in
Eqs. (2.16) and (2.17), while the third one contains both at-
traction and repulsion due to a special form of the interaction
kernel:

K (τ − τ ′|ωq) = (U0 + U2)δ(τ − τ ′)

− U2K0(τ − τ ′|ωq), (2.23)

where

K0(τ − τ ′|ωq) = ωq cosh
[
ωq

(
β

2 − |τ − τ ′|)]
2 sinh βωq

2

(2.24)

is the solution of the differential equation

[
− 1

ω2
q

d2

dτ 2
+ 1

]
K0(τ − τ ′|ωq) = δ(τ − τ ′). (2.25)

Putting in Eq. (2.22) U2 = 0, one arrives at the model
considered in Ref. [13]. Putting in addition Ũ0 = 0, one comes
to the model studied in Refs. [3–6]. Both these models contain
only the interactions local in imaginary time. On the contrary,
in our case, the kernel K (τ − τ ′|ωq) contains the additional
repulsion term which is nonlocal in imaginary time. This term
is very important for the present study. At this point, we would
also like to emphasize that the fermion-fermion interactions
remain short-ranged in the real space.
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III. MEAN-FIELD THEORY

A. Mean-field action

Starting with the effective fermionic action Sfermion[χ, χ+],
we could, in principle, develop the perturbation expansion
in the coupling constants of the interaction terms. However,
the framework of the perturbation theory is not suitable for
studying the type of problems we consider in this paper,
which is typical for strongly correlated systems. The most
common alternative is to perform the change of variables from
the fermionic degrees of freedom to the bosonic collective
degrees of freedom. This transformation is convenient for an-
alytical studies and is absolutely necessary for the numerical
ones.

The standard way to facilitate this change of variables
is to decouple the interaction terms with the help of the
Hubbard-Stratonovich transformation. In our case, this pro-
cedure gives us a model of fermions interacting with auxiliary
bosonic fields bq(τ ) and b1q(τ ) (corresponding to �̌2 and
�̌1 fermionic terms, respectively). Then, the resulting integral
over the fermionic fields χ, χ+ can be calculated exactly to
obtain the final representation of the partition function Z in
the form of a functional integral over the fields bq(τ ) and
b1q(τ ):

Z =
∫

exp (−Sfinal[b, b1])DbDb1, (3.1)

where

Sfinal[b, b1]

= −
∫ β

0
dτ

∑
q

[
2

∑
p

tr(ln ȟp,q)τ,τ − Ũ −1
0

∣∣b1q(τ )
∣∣2

]

+
∑

q

∫∫ β

0
dτdτ ′K−1(τ − τ ′|ωq)bq(τ )b−q(τ ′).

(3.2)

In Eq. (3.2),

ȟp,q(τ ) = ȟ0p(τ ) + ȟint
p,q(τ ), (3.3)

where

ȟ0p(τ ) = (∂τ + ε+
p )Ǐ + ε−

p �̌3 (3.4)

and

ȟint
p,q(τ ) = − 1√

V

∑
q

[
bq(τ )�̌2 + ib1q(τ )�̌1

]
e−q d

dp . (3.5)

The fields bq(τ ) and b1q(τ ) in Eqs. (3.1)–(3.5) satisfy the
constraint analogous to the one in Eq. (2.19) and obey the
periodic boundary conditions

bq(τ + β ) = bq(τ ), b1q(τ + β ) = b1q(τ ). (3.6)

The function K−1(τ − τ ′|ωq) is the inverse of the interaction
kernel K (τ − τ ′|ωq) and equals (see Appendix A)

K−1(τ − τ ′|ωq) = 1

U0 + U2
δ(τ − τ ′)

+ U2

U0(U0 + U2)
K0(τ − τ ′|ω̃q), (3.7)

where

ω̃q = ωq

√
U0

U0 + U2
. (3.8)

Function K−1(τ − τ ′|ωq) is positive, which guarantees
convergence of the integral over bq in Eq. (3.1).

B. Minimum of the action and mean-field equations

Although Eqs. (3.1) and (3.2) can serve as a direct cal-
culation procedure, explicit computation of the functional
integral (3.1) is still difficult even numerically. This is a rather
typical problem in study of strongly correlated systems. A
standard way to overcome this problem is to start with de-
veloping a proper mean-field approximation. In many cases,
the mean-field theory allows one to understand properties of
new models and figure out what are the possible states, phase
transitions between the states, etc. After these first proper-
ties are understood, one proceeds with studying fluctuations.
Very often they are not so important, at least qualitatively,
but it may happen that they lead to significant changes of
the mean-field picture. However, starting with the mean-field
approximation is the first step that is worth doing.

The mean-field approximation corresponds to the calcula-
tion of the functional integral, Eq. (3.1), using the saddle-point
method. Within this technique one should find the minimum
of the action Sfinal[b, b1] and approximate the free energy F as

F = −T ln Z = T S(0)
final, (3.9)

where S(0)
final is the action Sfinal[b, b1] at the minimum.

It is rather natural to seek the minimum of Sfinal[b, b1] at
coordinate-independent fields. This means that one should
take the fields bq(τ ), b1q(τ ) at q = 0:

bq=0(τ ) =
√

V b(τ ), b1,q=0(τ ) =
√

V b1(τ ). (3.10)

The proportionality of bq=0(τ ) and b1,q=0(τ ) to
√

V is typical
for condensate functions, and b(τ ) and b1(τ ) play the role of
order parameters. In the Hamiltonian language, one can say
that, below the phase transition temperature, a macroscopic
number of bosons is located at the state with q = 0. At the
same time, the fact that b(τ ) and b1(τ ) may depend on τ

signals the possibility of completely new phase transitions and
thermodynamic states.

The fields at nonzero q correspond to the fluctuations
around the saddle point of the action. We will not consider
them in this paper. Neglecting the fluctuations, one can intro-
duce the free energy functional

F[b(τ ), b1(τ )]

≡ T Sfinal[
√

V δq,0b(τ ),
√

V δq,0b1(τ )]

= −TV
∫ β

0
dτ

[
2

∫
dp

(2π )2
tr(ln ȟp)τ,τ − Ũ −1

0 b2
1(τ )

]

+ TV
∫∫ β

0
dτdτ ′K−1(τ − τ ′|ω0)b(τ )b(τ ′). (3.11)

Here,

ȟp(τ ) = ȟ0p + ȟint
p (τ ), (3.12)
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where ȟ0p is determined by Eq. (3.4) and

ȟint
p (τ ) = −b(τ )�̌2 − ib1(τ )�̌1. (3.13)

The equations for the minimum of the free energy func-
tional can be obtained by putting to zero its first variation,

∫ β

0
dτ ′K−1(τ − τ ′|ω0)b(τ ′) =

∫
dp

(2π )d
tr[�̌2Ǧp(τ, τ )],

(3.14)

b1(τ ) = iŨ0

∫
dp

(2π )d
tr[�̌1Ǧp(τ, τ )]. (3.15)

In Eqs. (3.14) and (3.15), the Green’s function Ǧp(τ, τ ′) sat-
isfies the following equation:

ȟp(τ )Ǧp(τ, τ ′) = −δ(τ − τ ′). (3.16)

We should note that putting U2 = 0 in Eqs. (3.14) and (3.15),
we come to the mean-field equations of Ref. [13].

Equations (3.14) and (3.13) admit both the imaginary-time-
independent and the time-dependent solutions. In this paper,
we are going to show that in some region of parameters,
an imaginary-time-dependent solution is energetically more
favorable. However, in order to determine the favorable con-
figuration, one not only needs to obtain the different solutions
of the mean-field equations but to also calculate the corre-
sponding values of the free energy functional and compare
them with each other. As it appears, this is quite a nontriv-
ial task. In Sec. IV, we study analytically the limiting case
of U2 � U0. The general case can only be tackled numeri-
cally. Thus, in Sec. V, we formulate a suitable computational
scheme to treat the case of general parameters, while the
applications of the scheme are discussed in Sec. VI.

It is worth mentioning that the origin of the interesting
physics is the existence of the nonzero imaginary-time-
dependent order parameter b(τ ) . At the same time, the field
b1(τ ) plays rather a supporting role helping to decrease the
free energy for the time-dependent configurations of the field
b(τ ). As a consequence, we are going to neglect the field b1(τ )
in our analysis of the model to simplify the calculations. On
the other hand, the inclusion of this field might be important
for realistic description of experiments.

IV. ANALYTICAL STUDY IN THE LIMIT U2 � U0, Ũ0 = 0

In the case Ũ0 = 0, U2 = 0, the exact solutions of
Eq. (3.14) are known. However, the free energy of the
imaginary-time-independent configuration happens to be the
lowest. In the limit U2 � U0, we can treat the nonlocal term
in the inverse kernel K−1(τ − τ ′|ω0) [see Eq. (3.7)] pertur-
batively making expansion in U2/U0. As a result of these
procedures, one can obtain analytically the first-order cor-
rections to the exact solutions for U2 = 0 as well as to the
corresponding free energies. As we will show, one can identify
the region of parameters for which the free energy of the
time-independent configuration gets pushed above the corre-
sponding energy of the time-dependent configurations.

A. Analysis of the case U2 = 0, Ũ0 = 0

If one puts Ũ0 = 0 and U2 = 0 in Eq. (3.14), it gets trans-
formed into

b(τ )

U0
= −

∫
dp

(2π )2
tr[�̌2Ǧp(τ, τ )], (4.1)

where[
ȟ0p(τ ) − b(τ )�̌2

]
Ǧp(τ, τ ′) = −Ǐδ(τ − τ ′). (4.2)

Equations (4.1) and (4.2) have static solutions b(τ ) ≡ ±γT .
The parameter γT here is determined by the self-consistency
equation

2

U0
=

∫
dp

(2π )2

tanh
β(κ (0)

p +ε+
p )

2 + tanh
β(κ (0)

p −ε+
p )

2

κ
(0)
p

, (4.3)

with

κ (0)
p =

√
(ε−

p )2 + γ 2
T . (4.4)

Of course, there is also a trivial solution b(τ ) ≡ 0; however,
we assume that the parameters of the system are such that
a nontrivial static solution exists and is more energetically
favorable than the trivial one.

The interesting fact is that, besides the static solutions
b(τ ) ≡ ±γT , there is also a whole family of oscillating so-
lutions consisting of the instanton–anti-instanton pairs (see
[3–6,13]), bouncing back and forth between the two static
solutions ±γT . This class of solutions can be written exactly
in terms of Jacobi elliptic function sn(x|k):

b(τ ) = kγ sn(γ (τ − τ0)|k). (4.5)

For a solution corresponding to m instanton–anti-instanton
pairs, the parameters k and γ should satisfy the system of
equations

β = m × 4K (k)

γ
, (4.6)

2

U0
=

∫
dp

(2π )2

|ε−
p |[ tanh β(κp+ε+ )

2 + tanh β(κp−ε+ )
2

]
√[

(ε−
p )2 + γ 2 (1−k)2

4

][
(ε−

p )2 + γ 2 (1+k)2

4

].
(4.7)

The parameter κp is given by

κp = |ε−
p |

√√√√[
(ε−

p )2 + γ 2 (1−k)2

4

]
[
(ε−

p )2 + γ 2 (1+k)2

4

]�(n, k̃)

K (k̃)
, (4.8)

where

n = γ 2k

(ε−
p )2 + γ 2 (1+k)2

4

, k̃ = 2
√

k

1 + k
. (4.9)

In Eqs. (4.6) and (4.7), K (k) is the complete elliptic integral
of the first kind, while �(n, k) is the complete elliptic integral
of the third kind (see, for example, [14,15] to read more about
elliptic integrals and elliptic functions). Equation (4.6) tells
us that the integer number of instanton–anti-instanton pairs
should fit onto the interval [0, β]: one of the periods of sn(x|τ )
is 4K (k). Equation (4.7) obtained from the condition of the
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minimum of the free energy is actually the self-consistency
equation in the mean-field theory. In the case of large periods
of instanton–anti-instanton pairs for which k → 1, Eq. (4.7)
simplifies into Eq. (4.3).

The solutions in the form of elliptic functions were used
in [3–6,13]. For the convenience of the reader, we outline the
derivation of the form of the solutions of Eq. (4.1) and the
derivation of Eqs. (4.7), (4.8), and (4.9) in the Supplemental
Material [16].

B. Expansion in small U2/U0

Since we treat the nonlocal part of the kernel K−1(τ −
τ ′|ω0) as a perturbation, it is convenient to separate the cor-
responding term in the free energy functional, Eq. (3.11). In
the limit U2/U0 � 1, we can neglect U2 when it appears in
combination U0 + U2 and write

F[b(τ )] = F0[b(τ )] + U2

U0
× TU −1

0

×
∫ β

0
dτ ′K0(τ − τ ′|ω0)b(τ )b(τ ′). (4.10)

The perturbative expansion can be obtained if we substitute
the ansatz

b(τ ) = b(0)(τ ) + U2

U0
b(1)(τ ) + · · · (4.11)

into the gap equation

δF[b(τ )]

δb(τ )
= 0. (4.12)

In Eq. (4.11), b(0)(τ ) is one of the solutions of Eq. (4.1) which
is equivalent to δF0[b(τ )]/δb(τ ) = 0.

Analogously, the corrections to the free energy can be
obtained substituting the ansatz (4.11) into Eq. (4.10). The
first-order correction in the expansion of b(τ ), Eq. (4.11), does
not contribute in the first order to F0[b(τ )], because the b(0)(τ )
is obtained from the condition of the minimum of F0[b(τ )].
Then, the first-order correction to F[b(τ )] comes only from
the second term in Eq. (4.10). All this means that, in the first
order in U2/U0, one can calculate F[b(τ )] by simply inserting
b(0)(τ ), Eq. (4.5), into both the terms in Eq. (4.10).

So, we write the free energy F in the form

F = F[b(0)(τ )]. (4.13)

C. Comparison of the free energies of the
instanton–anti-instanton configurations with the free

energy of the static configuration

Let us consider the static configuration bstatic(τ ) ≡ γT and
a configuration consisting of m instanton–anti-instanton pairs
bm,k

inst (τ ) = kγ sn(γ τ |k) [parameter γ is fixed by the choice of
the parameters m and k according to Eqs. (4.6)–(4.9)]. We
will denote the corresponding free energies as Fstatic and F m,k

inst .

Using Eq. (4.13), we can write

F m,k
inst − Fstatic = {

F0
[
bm,k

inst (τ )
] − F0[γT ]

}
+ TU2

U 2
0

∫∫ β

0
dτdτ ′K0(τ − τ ′|ω0)

× bm,k
inst (τ )bm,k

inst (τ
′)

− TU2γ
2
T

U 2
0

∫∫ β

0
dτdτ ′K0(τ − τ ′|ω0).

(4.14)

To simplify the calculations, we consider the limit k → 1.
In this limit, instanton–anti-instanton configurations spend al-
most all the time in the vicinities of the static configurations
±γ0. Correspondingly, if one neglects the nonlocal interac-
tion term in Eq. (3.14), the difference between the action of
the instanton–anti-instanton configuration and the action of
the static configuration is proportional to the number of the
instanton–anti-instanton pairs. Thus, we can write the differ-
ence of the free energies without the nonlocal interaction as

{
F0

[
bm,k

inst (τ )
] − F0[γT ]

} = T �S0m = γ0�S0

4K (k)
. (4.15)

Here, we used Eq. (4.6) and the fact that one can take the
parameter γ to be equal to γT for k → 1. Since the limit k →
1 also corresponds to the limit of the zero temperature, we take
γT = γT =0 = γ0. The constant �S0 is the action difference for
a single instanton–anti-instanton pair:

�S0 = 2
∫

dp
(2π )2

⎡
⎣ln

1 + γT√
(ε−

p )2+γ 2
T

1 − γT√
(ε−

p )2+γ 2
T

− 2γ0

(ε−
p )2 + γ 2

0

⎤
⎦ > 0.

(4.16)
The correction to the free energy of the static configuration is
evaluated to be

TU2γ
2
0

U 2
0

∫∫ β

0
dτdτ ′K0(τ − τ ′|ω0) = U2γ

2
0

U 2
0

. (4.17)

The correction to the free energy of the instanton–anti-
instanton configuration can be calculated in the limit ω0/γ0 �
1/K (k) using the Fourier expansion for the Jacobi elliptic
function (see Appendix C). This gives us

TU2

U 2
0

∫∫ β

0
dτdτ ′K0(τ − τ ′|ω0)bm,k

inst (τ )bm,k
inst (τ

′)

= U2γ
2
0

U 2
0

× 1

3

(
K (k)ω0

γT

)2

. (4.18)

Combining everything together, we obtain

F m,k
inst − Fstatic = γ0�S0

4K (k)
− U2γ

2
0

U 2
0

×
[

1 − 1

3

(
K (k)ω0

γT

)2]
.

(4.19)

In the limit k → 1, the elliptic integral K (k) diverges: K (k) ∝
− ln (1 − k). (This corresponds to a large period of the
instanton–anti-instanton lattice.) So, it is possible to choose
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k sufficiently close to unity so that

γ0�S0

4K (k)
− U2γ

2
0

U 2
0

< 0. (4.20)

Then, if we keep ω0 sufficiently small, the term quadratic in
ω0 cannot change the sign of the free energy. As a result, the
instanton–anti-instanton configuration can really be energeti-
cally more favorable.

This striking result that already very small coupling con-
stants U2 � U0 can make the state with instantons more
favorable is based on the strong sensitivity of the second
term in Eq. (4.10) to whether the solution b(0) is static or
consists of the instanton–anti-instanton pairs in the imag-
inary time τ . In the former case, this term can be large,
while, in the latter case, its value can considerably be
reduced.

So, we have demonstrated here analytically that there is
a region of the parameters of the model, where the instan-
ton crystal exists. Calculations in a more broad region, as
well as phase transitions between the states, can be stud-
ied only numerically, and this will be done in the next
section.

V. NUMERICAL MINIMIZATION OF THE FREE ENERGY
FUNCTIONAL

At U2 = 0 and Ũ0 = 0, the solutions of Eq. (3.14) with the
different number m of instanton–anti-instanton pairs are topo-
logically distinct. As U2 is gradually turned on, the topological
classes are kept intact. As a result, the solution with m pairs
gets deformed yet the period of the configuration W = β/m is
preserved.

Alternatively, we can access different solutions of
Eq. (3.14) if we minimize the free energy functional (3.11) in
the classes of configurations corresponding to different fixed
periods W = β/m. In order to turn this recipe into a numerical
scheme, we just need to formulate a suitable discretization of
the expression (3.11) for the free energy functional, and find a
way to enforce the restriction on the period of configurations.

We should also note that we are going to neglect the
field b1(τ ) for simplicity. However, the resulting numerical
scheme can be easily adapted to take this extra field into
account.

A. Transformation of the free energy functional

The free energy functional, Eq. (3.11), consists of two
parts: one is the part which is purely quadratic in the fields
b(τ ); another part is the fermionic part which originates from
the integration of the fermionic degrees of freedom. Dis-
cretization of the quadratic part of the free energy functional is
a rather straightforward matter. On the contrary, it is impossi-
ble to directly discretize the fermionic part of the free energy
as it is written in Eq. (3.11). However, it can be recast into
the form suitable for the numerical treatment by replacing the
functional trace with the expression involving a time-ordered
exponential of the energy operator ȟp(τ ). This can be achieved
with the help of the standard trick in the field of determinant
Monte Carlo (see, for example, Ref. [17]). We describe in

detail the transformation of the fermionic part of the free
energy functional in Appendix B.

Using the same regularization as in Appendix B, we write
the quantity of interest in our numerical studies as

F[b(τ )] − Fferm[0]

V

= F loc
quad[b(τ )]

V
+ Fnloc

quad[b(τ )]

V
+ Fferm[b(τ )] − Fferm[0]

V
,

(5.1)

where

F loc
quad[b(τ )]

V
= T

∫ β

0
dτ

b2(τ )

U0 + U2
, (5.2)

Fnloc
quad[b(τ )]

V
= TU2

U0(U0 + U2)

∫∫ β

0
dτdτ ′K0(τ − τ ′|ω̃0)

× b(τ )b(τ ′), (5.3)

and [see Eq. (B11)]

Fferm[b(τ )] − Fferm[0]

V

= −2T
∫

dp

(2π )2
ln

2 cosh βε+
p + Tr

[
T e− ∫ β

0 dτ [ε−
p �̌3−b(τ )�̌2]

]
2(cosh βε+

p + cosh βε−
p )

.

(5.4)

Let us consider configuration b(τ ) with period W such
that m periods of the configuration fit onto the interval [0, β].
We shall rewrite Eqs. (5.1)–(5.4) in such a way that only the
dependence on values of b(τ ) for τ ∈ [0,W ) explicitly enters
the equations. This allows us to fix the period constraint for
the optimization procedure:

F loc
quad[b(τ )]

V
= 1

W

∫ W

0
dτ

b2(τ )

U0 + U2
, (5.5)

Fnloc
quad[b(τ )]

V
= U2

U0(U0 + U2)

1

W

m−1∑
k=0

×
∫∫ W

0
dτdτ ′K0(τ − τ ′ − kW |ω̃0)b(τ )b(τ ′)

= U2

U0(U0 + U2)

1

W

×
∫∫ W

0
dτdτ ′K̃0(τ − τ ′|ω̃0)b(τ )b(τ ′),

(5.6)

where

K̃0(τ − τ ′|ω̃0) = ω̃0 cosh
[
ω̃0

(
W
2 − |τ − τ ′|)]

2 sinh W ω̃0
2

. (5.7)

Note that the expression for the averaged kernel K̃0(τ −
τ ′|ω̃0) is identical to Eq. (3.7) for the kernel K0(τ − τ ′|ω̃0)
with the only difference being that β is replaced by W .

Finally, let us define

Ǔp(τ2, τ1) = T e− ∫ τ2
τ1

dτ[ε−
p �̌3−b(τ )�̌2]. (5.8)
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With the help of this definition, we can rewrite Eq. (5.4) as

Fferm[b(τ )] − Fferm[0]

V

= − 2

mW

∫
dp

(2π )2
ln

2 cosh βε+
p + Tr{[Ǔp(W, 0)]m}

2(cosh βε+
p + cosh βε−

p )
.

(5.9)

B. Discretization scheme

The goal of discretizing the expression for the free energy
is achieved if we replace the function b(τ ) with its values at
the discrete set of imaginary-time points bi = b(τi ). For the
discretization scheme with N points, we are going to take τi =
(i − 1)�τ = (i − 1)W/N , where i runs through integer values
from 1 up to N . It is a straightforward task to write up the
discretized versions of Eqs. (5.5)–(5.9):

F loc
quad[b(τ )]

V
→ F loc

quad[bi]

V
= �τ

W

N∑
i=1

b2
i

U0 + U2
, (5.10)

Fnloc
quad[b(τ )]

V
→ Fnloc

quad[bi]

V
= U2

U0(U0 + U2)

�τ 2

W

×
N∑

i, j=1

K̃0(τi − τ j |ω̃0)bib j, (5.11)

Fferm[b(τ )] − Fferm[0]

V
→ Fferm[bi] − Fferm[0]

V

= − 2

mW

∫
dp

(2π )2
ln

2 cosh βε+
p + Tr[(Ǔp[bi])m]

2(cosh βε+
p + cosh βε−

p )
,

(5.12)

where Ǔp[bi] is the discrete approximation of the time-ordered
exponential:

Ǔp(W, 0) → Ǔp[bi] =
1∏

i=N

e−�τ (ε−
p �̌3−bi�̌2 ). (5.13)

Substituting this expressions into Eq. (5.1), we obtain the
discretized version of the full free energy functional:

F[bi] − Fferm[0]

V

= F loc
quad[bi]

V
+ Fnloc

quad[bi]

V
+ Fferm[bi] − Fferm[0]

V
. (5.14)

To run the optimization procedure, we also need the for-
mulas for the gradient of the free energy:

∂

∂bi

(
F loc

quad[bi]

V

)
= 2�τ

W

bi

U0 + U2
, (5.15)

∂

∂bi

(
Fnloc

quad[bi]

V

)
= U2

U0(U0 + U2)

2�τ 2

W

N∑
j=1

K̃0(τi − τ j )b j,

(5.16)

∂

∂bi

(Fferm[bi] − Fferm[0]

V

)

= − 2

W

∫
dp

(2π )2

Tr
{
(Ǔp[bi])m−1∂biǓp[bi]

}
2 cosh βε+

p + Tr{(Ǔp[bi])m} , (5.17)

where

∂biǓp[bi] =
i+1∏
j=N

e−�τ (ε−
p �̌3−b j�̌2 )

× ∂e−�τ (ε−
p �̌3−bi�̌2 )

∂bi
×

1∏
j=i−1

e−�τ (ε−
p �̌3−b j�̌2 ).

(5.18)

The explicit expressions for the matrices appearing in
Eqs. (5.13) and (5.18) are

e−�τ (ε−
p �̌3−bi�̌2 ) = Ǐ cosh κip�τ − (ε−

p �̌3 − bi�̌2)
sinh κip�τ

κip
, (5.19)

∂e−�τ (ε−
p �̌3−bi�̌2 )

∂bi
= (�̌2 + bi�τ Ǐ)

sinh κip�τ

κip
− bi(ε

−
p �̌3 − bi�̌2)

κip�τ cosh κip�τ − sinh κip�τ

κ3
ip

. (5.20)

Here, the parameter κip is

κip =
√

(ε−
p )2 + b2

i . (5.21)

The scheme we just introduced can be implemented in
the programming language of the choice. Since the scheme
provides the expressions both for the discretized free energy
functional and its gradient, it can be plugged into any first-
order optimization algorithm.

The analytical solutions of Eq. (3.14) without the nonlocal
part of K0(τ − τ ′|ω̃0) can be used as the initial condi-
tions for the optimization procedure. For fixed W = β/m,
this requires us to solve the system of Eqs. (4.6)–(4.9) to
determine the parameters k and γ . Since we neglect the
nonlocal part and do not put U2 = 0, one should replace
U0 by U0 + U2 in Eq. (4.7). Then, the initial condition is

defined as b(0)
i = kγ sn(γ τi|k). Alternatively, one can use in-

stead b(0)
i = kγT sn(γT τi|k), where γT is the solution of the

static gap Eq. (4.3) (but with U0 + U2 instead of U0) and k
is determined from the condition W = 4K (k)/γT . In the end,
both choices of the initial conditions lead to the same results
of the optimization procedure.

C. Variation of the scheme in the limit T → +0

The numerical scheme we introduced in the previous sub-
section can be adapted to treat the limiting case of zero
temperature, which is equivalent to the limit m → +∞. The
only expressions that need to be adjusted are Eqs. (5.12) and
(5.17), which define the discretized version of the fermionic
part of the free energy functional and its gradient.
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Suppose that one calculates the matrix Ǔp[bi] for some
specific value of p. The diagonal decomposition of this matrix
is given by

Ǔp[bi] = Šp

(
λ1p 0
0 λ2p

)
Š−1

p , (5.22)

where we assume that λ1p is the eigenvalue with the largest
absolute value. Then, one can write Eq. (5.12) in the limit
m → +∞ as

Fferm[bi] − Fferm[0]

V

= −2
∫

dp
(2π )2

[
max

(
ln λ1p

W
, |ε+

p |
)

− max
(|ε−

p |, |ε+
p |)].

(5.23)

Analogously, Eq. (5.17) transforms into

∂

∂bi

(Fferm[bi] − Fferm[0]

V

)

= − 2

W

∫
dp

(2π )2
θ

(
ln λ1p

W
− |ε+

p |
)

λ−1
1p

(
Š−1

p ∂biǓp[bi]Šp
)

1,1
.

(5.24)

Here, θ (x) is the Heaviside function, while (Ǎ)i, j denotes the
matrix element i, j of the 2 × 2 matrix Ǎ.

VI. NUMERICAL ANALYSIS OF THE MODEL

A. Zero temperature

In order to perform the actual numerical simulations,
one needs to specify the fermionic dispersion ε1,2(p) [see
Eqs. (2.2) and (2.4)]. As we explain in Sec. VII, the model
introduced in the present paper originates from the spin-
fermion model with overlapping hot spots (SFMOHS) studied
in Refs. [18–20]. As a consequence, we have chosen the
fermionic dispersion in the same form as it appears in
SFMOHS:

ε1(p) = αp2
x − βp2

y − μ, ε2(p) = αp2
y − βp2

x − μ, (6.1)

where μ is the chemical potential. We also introduce an en-
ergy cutoff � limiting the width of dispersion:

α + β

2

(
p2

x + p2
y

)
< �. (6.2)

We should note that in all the computations we neglected
the field b1(τ ), which is equivalent to setting Ũ0 = 0.

In Fig. 2, we display the dimensionless difference between
the free energies of the instanton–anti-instanton and of the
static configurations �F/γ0 = (Finstanton − Fstatic ) at zero tem-
perature as a function of the dimensionless period of the
instanton lattice γ0W and of the dimensionless parameter
ω̃0/γ0 which corresponds to the modified frequency of the
current-like mode [see Eq. (3.8)]. The energy scale γ0, which
we use to make the physical quantities dimensionless, is the
solution of the static gap equation (4.3) at zero temperature
and in the absence of the nonlocal repulsion term. In ad-
dition to that, the same Eq. (4.3) at zero temperature was
used to determine the value of the dimensionless parameter
(U0 + U2)/γ0. The four subplots of Fig. 2 correspond to the
four different values of the ratio U2/U0: (a) U0/U2 = 0.5, (b)

U0/U2 = 1.0, (c) U2/U0 = 2.0, and (d) U2/U0 = 4.0. The pa-
rameters of the fermionic dispersion were kept fixed and their
specific values were α = β = 1.0, �/γ0 = 1.0, μ/γ0 = 0.0.
The results were obtained using the zero-temperature variant
of the numerical scheme described in Sec. V C.

In each of the subplots of Fig. 2, one can clearly identify the
regions where the free energy of the instanton configurations
becomes less than the free energy of the static configuration.
As a consequence, in these regions the instanton crystal phase
should be the one which is thermodynamically stable.

In the instanton crystal phase, the actual period of the lat-
tice is determined by the minimum of the free energy at a fixed
value of ω̃0/γ0. In Fig. 2, the blue curves show the positions
of the minima of �F/γ0 as functions of ω̃0/γ0. These minima
were extracted by interpolation from the same data used to
plot the surfaces. As the value of the parameter ω̃0/γ0 grows,
we observe the transition from the instanton crystal phase to
the phase with the imaginary-time-independent order param-
eter. In Fig. 2, this transition is marked by the blue points at
the end of the blue curves.

Just below the transition, the period and the amplitude of
the instanton lattice has finite values; as a result, the transition
should be accompanied by an abrupt change in the order
parameter. Thus, the transition must be of the first order.
In order to prove this point, we display in Fig. 3 the slope
d (�F/γ0)/d (ω̃0/γ0) = d�F/dω̃0 of the dimensionless free
energy �F/γ0 as a function of ω̃0/γ0 in the instanton crystal
phase at the transition point for the same values of the ratio
U2/U0 as in Fig. 3. In each of the four cases, the slope has the
finite value in the instanton crystal phase, while it is zero in
the static phase, from which one can conclude that in each of
the four cases the transition is accompanied by the jump in the
first-order derivative of the free energy dF/dω̃0 = d�F/dω̃0.

B. Finite temperatures

Besides the quantum phase transitions at zero temperature,
it is also interesting to study how the model may enter the
instanton crystal phase as the temperature is varied. Thus,
we also calculated the dependence of the free energy of the
instanton crystal configuration as a function of the inverse
temperature.

The results of the calculations are presented in Fig. 4.
There, we plot the dimensionless free energy of the instanton
crystal configuration and the dimensionless free energy of the
imaginary-time-independent configuration as functions of the
dimensionless inverse temperature γ0β. The free energies are
determined with respect to the free energy of the normal metal
configuration [b(τ ) ≡ 0]. For the calculations, we used the
same parameters of the fermionic dispersion and the same
set of ratios U2/U0 as we did for the calculations at zero
temperature. In all the cases, the value of the parameter ω̃0/γ0

was fixed: ω̃0/γ0 = 0.08. We should also emphasize that γ0

and (U0 + U2)/γ0 were determined by the static gap Eq. (4.3)
at zero temperature, so that their values stayed constant as the
temperature was varied.

For the cases U2/U0 = 0.5, U2/U0 = 1.0, and U2/U0 =
2.0, which correspond to Figs. 4(a)–4(c), we observe that
as the temperature is lowered (equivalently, as the inverse
temperature grows), the system first undergoes a second-order
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FIG. 2. Dimensionless difference of the free energies �F/γ0 = (Finstanton − Fstatic )/γ0 at zero temperature as a function of the dimensionless
period of the instanton lattice γ0W and of the dimensionless parameter ω̃0/γ0, characterizing the current-like mode. The four subplots
correspond to the four different values of the ratio U2/U0: (a) U0/U2 = 0.5, (b) U0/U2 = 1.0, (c) U2/U0 = 2.0, and (d) U2/U0 = 4.0. The
parameters of the fermionic dispersion were fixed and their specific values are described in the main text. The blue curves show the minima of
�F/γ0 at fixed value of ω̃0/γ0 as a function of ω̃0/γ0. The blue points at the end of the blue curves mark the transition between the instanton
crystal phase and the static phase.

transition to the static phase at temperature Tstatic. As the
temperature is lowered even further, there is a transition into
the instanton crystal phase at temperature Tinst , which cor-
responds to the intersection of the two free energy curves
on the plots (marked by black dots). Since the slopes of the
free energy curves at the intersection point are different, this
transition is accompanied by a jump in the first derivative
of the free energy; henceforth, it is of the first order. On
the contrary, for the case U2/U0 = 4.0 which corresponds
to the plot Fig. 4(d), we observe that the system under-
goes transition to the instanton crystal phase without ever
entering the static phase. Overall, the picture observed in
Fig. 4 suggests that as the value of U2/U0 grows larger, Tinst

moves closer to Tstatic until the point where they coincide. For
larger values of U2/U0, Tinst > Tstatic and the transition to the
instanton crystal phase happens without the intermediate
static phase.

The instanton crystal phase has a rather peculiar feature.
As the temperature is lowered, more and more instanton–anti-
instanton pairs can fit onto the interval [0, β]. As a result, there
is a series of first-order transitions characterized by the change
in the number of the periods of the instanton lattice m by 1. In
Fig. 4, these transitions are marked by red dots.

Finally, we would like to discuss the order of the tran-
sition from the normal metal to the instanton crystal phase
in the case where is no intermediate static phase involved.
This transition is of the second order, which can be un-
derstood from the following argument. Let us consider the
configurations with a single instanton–anti-instanton pair. Let
us also assume for a moment that there is no nonlocal re-
pulsion, so that the instanton–anti-instanton configuration is
described by Eqs. (4.5)–(4.9). The instanton–anti-instanton
configuration has a minimal period W0 which is finite. This
period corresponds to the solution of the system (4.6)–(4.9)
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FIG. 3. The slope d (�F/γ0)/d (ω̃0/γ0) (black dashed lines) of the dimensionless free energy difference �F/γ0 as a function of ω̃0/γ0

(blue curves) in the instanton crystal phase at the transition point (red dots) to the static phase. The four subplots correspond to the same four
different values of the ratio U2/U0 as in Fig. 2: (a) U0/U2 = 0.5, (b) U0/U2 = 1.0, (c) U2/U0 = 2.0, and (d) U2/U0 = 4.0.

with k = 0: W0 = 4K (0)/γk=0. The instanton–anti-instanton
configuration has the form b(τ ) = γ ksn(γ τ |k); thus, as the
period gets close to W0, k gets close to zero and the amplitude
of the configuration vanishes in the limit W → W0 + 0. Now,
if we take into account the nonlocal repulsion term, its effects
should vanish together with the amplitude of the instanton–
anti-instanton configuration. From this we can conclude that
the minimal period of the configuration would stay the same,
and the amplitude of the instanton–anti-instanton configura-
tion would vanish in the limit W → W0 + 0 as before. The
transition to the instanton crystal phase happens when 1/T =
W0. As the order parameter vanishes at the transition, we
expect it to be of the second order.

VII. POSSIBLE PHYSICAL ORIGIN OF THE MODEL

A. Previous models

The idea of investigating the present model, Eqs. (2.1)–
(2.8), originates from the previous studies of superconducting
cuprates using the so-called spin-fermion (SF) model. This
phenomenological model has been proposed in order to en-
able analytical study of the low-energy physics of cuprates

[21–24]. The philosophy underlying this approach is based
on integrating out the high-energy degrees of freedom (of
the order of the bandwidth) and writing an effective model
containing only the low-energy excitations. Of course, after
such an integration one obtains a very complicated effective
Lagrangian that can hardly be treated analytically. In this
situation, the only thing that can be done is to simplify the
resulting effective model by reducing it to a form containing
a small number of different types of the excitations. It is im-
portant to have a sufficiently simple form of these excitations
and of their interactions.

Originally, the spin-fermion model [21] was introduced as
an effective model containing the fermions in the vicinity of
the Fermi surface interacting with bosonic antiferromagnetic
waves propagating with vector Q close to the antiferromag-
netic vector QAF. The latter are assumed to be the remnants
of the parent insulating AF state. A weak interaction between
the fermions and the antiferromagnetic waves is most efficient
at 8 points of the Fermi surface that can be connected by the
vector QAF (hot spots). The resulting interaction is strongly
peaked at the wave vector Q0 = (π,−π ) corresponding to the
antiferromagnetic order with vector QAF and is described by
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FIG. 4. Comparison between the dimensionless free energy of the instanton crystal configuration (blue curves) and the dimensionless free
energy of the static configuration (orange curves) as functions of the dimensionless inverse temperature γ0β. The free energy of both of the
types of configurations was determined with respect to the free energy of the normal metal configuration. As the inverse temperature grows,
the instanton crystal undergoes first-order transitions characterized by the change in the number m of periods of the lattice by 1. The points
of these transitions are marked by the red dots. The four subplots correspond to the same four different values of the ratio U2/U0 as in Fig. 2:
(a) U0/U2 = 0.5, (b) U0/U2 = 1.0, (c) U2/U0 = 2.0, and (d) U2/U0 = 4.0.

a propagator

D0(ω, q) = [
ω2/v2

s + (q − Q0)2 + ξ−2
AF

]−1
. (7.1)

In Eq. (7.1), vs is the spin velocity and ξ is the correlation
length which is supposed to diverge at the antiferromagnetic
transition. It is important to note that the fermions and bosonic
spin waves actually have the same origin. The spin waves in
the effective model are some complicated collective spin ex-
citations of the bare interacting holes constituting the original
microscopic model (we consider the hole-doped cuprates). At
the same time, many details of the microscopic model are
not so important for the investigation of universal phenomena
such as phase transitions, symmetry of the phases, etc.

Having integrated out the high-energy fermions, one loses
the detailed information about the structure of the lattice. At
the same time, one can use Fermi-liquid-like arguments to
conclude that one can still use the basic shape of the Fermi
surface (see Fig. 5). So, identifying the vector Q0 with the
antiferromagnetic vector QAF, one can play with the model
with 8 hot spots and obtain many interesting results at low
energies. On the other hand, one cannot really exclude the pos-

sibility of additional low-lying collective excitations since the
spin-fermion model was introduced on a phenomenological
basis in the first place.

The use of the propagator for the fermion-fermion inter-
action, Eq. (7.1), is motivated by the proximity to the AF

1

2

QAF

FIG. 5. Fermi surface (red) and overlapping hot spots (green).
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quantum critical point (QCP) where ξAF → ∞. Then, one can
consider only small δp ∼ 1/ξAF vicinities of the “hot spots” as
strongly affected by the interaction. However, at temperatures
relevant for, e.g., the pseudogap state [25–27], this argument
does not have to hold because the experimentally reported
correlation lengths [28,29] are indeed rather small. Moreover,
ARPES experiments [27] show that the effects of the pseu-
dogap extend well beyond the hot spots to the Brillouin zone
edges (π, 0), (0, π ) without being significantly weakened.

A different version of the SF model [spin-fermion model
with overlapping hot spots (SFMOHS)] has been introduced
in Refs. [18–20]. As ξAF becomes smaller, the hot spots ex-
pand and can eventually overlap and merge forming two “hot
regions” (see Fig. 5). For the latter to occur, the fermionic
dispersion in the antinodal region should be shallow, which is
supported by the experimental data [30,31] . This (SFMOHS)
model differs from previously used spin-fermion models with
8 hot spots [21–24,32] by the assumption that the hot spots on
the Fermi surface are not isolated, but may overlap and form
antinodal “hot regions.” This can happen when the fermion
energies are not far away from the van Hove singularities in
the spectrum of the cuprates, which corresponds to the results
of ARPES study [30,31,33,34].

The two hot regions 1 and 2 are centered at the middles of
the edges of the Brillouin zone and can be connected by the
vector Q0. Then, one comes to a description in terms of the
fermions located in two bands with the interaction between
the bands. Due to proximity to the van Hove singularity, one
can write the spectra of the fermions in the bands near points
(π, 0) and (0, π ) as

ε1(p) = αp2
x − βp2

y − μ, ε2(p) = αp2
y − βp2

x − μ. (7.2)

The momenta p are counted now from the points (π, 0) and
(0, π ). In Eq. (7.2), μ is the chemical potential and α and β

are constants.
This discussion makes clear the origin of the bare part

of the Hamiltonian Ĥ0, Eqs. (2.2)–(2.4), and of the action
S0[χ, χ+], Eq. (2.16). For investigating interaction of the
fermions via the bosonic spin mode D0(ω, q), Eq. (7.1),
the field theoretical formulation is more convenient than the
Hamiltonian one. As we are interested in studying possible
states different from the antiferromagnets, it is convenient
to single out the pairs with assumed strong correlations.
For example, one could consider particle-particle pairs when
studying superconductivity, or particle-hole pairs for studying
charge density waves and loop currents [13,18–21].

Here, as in Refs. [13,18–21], we are interested in the loop-
current channel and the charge density channel, both in the
vicinity of the vector Q0. The channels with the nontrivial spin
structure of the pairs correspond to weaker interactions and,
thus, are not important.

So, singling out the most interesting pairs, we write the
interaction term in the action in the form

Sint[χ, χ+] → S(current)[χ, χ+] + S(density)[χ, χ+]. (7.3)

In Eq. (7.3),

S(current)[χ, χ+] = −3λ2

8

∫
D0(X − X ′)[χ+(X ′)�2χ (X )]

×[χ+(X )�2χ (X ′)]dXdX ′ (7.4)

stands for attraction of the fermionic loop currents, while

S(density)[χ, χ+] = 3λ2

8

∫
D0(X − X ′)[χ+(X ′)�1χ (X )]

×[χ+(X )�1χ (X ′)]dXdX ′ (7.5)

stands for the repulsion of the fermion densities oscillating at
wave vector Q0 in space, λ is the coupling constant of the in-
teraction between the spin mode and the spins of the fermions,
and X = (τ, r) are vectors containing as components the
imaginary time and space coordinates. The fermionic fields
χ, χ+ have already been introduced in Sec. II. The signs
of the interactions are unambiguously determined by the SF
interaction.

The precise momentum dependence of the propagator
D0(ω, q) is not important for us. Therefore, to simplify the
model, we replace the propagator by a constant in frequency-
momentum space or, equivalently, by the δ function in
imaginary time and real space. Thus, we arrive at Eq. (2.17)
for the interaction part of the action. The inclusion of the
long-range part of the Coulomb interaction renormalizes
the coupling constant in S(density)[ξ, ξ+]. As a result, we keep
the couplings Ũ0 and U0 in Eq. (2.17) as independent con-
stants.

The model only with the interaction S(current)[χ, χ+] was
studied in Ref. [20], and the earlier proposed d-density wave
(DDW) state [35] was obtained in the mean-field approx-
imation. This state corresponds to the static loop current
modulated with the vector QAF and flowing around the CO2

elementary cells. In this case, the instanton–anti-instanton
solutions for the order parameter could be obtained; however,
the free energies of these configurations were higher than that
of DDW state.

In Ref. [13], it was argued that a stable instanton–anti-
instanton crystal state can be obtained if one adds an extra
interaction term S(density)[χ, χ+] to the model. However, this
result was based on an analytical computation involving per-
turbation expansion up to the second order in the absence of
a “small parameter.” In order to get a conclusive proof of
the stability of the instanton–anti-instanton crystal state, we
designed the numerical scheme described in Sec. V. Unfor-
tunately, although the inclusion of the S(density)[χ, χ+] term
lowered the free energy of the instanton–anti-instanton con-
figurations, numerical analysis revealed that DDW state was
still energetically more favorable.

On the other hand, in Secs. IV and VI, we have seen that
introducing the interaction of the fermions with an additional
bosonic mode can drastically change the situation and make
the state with the imaginary-time-dependent order parameter
thermodynamically stable.

B. Interaction of fermions with the bosonic current-like mode

Integrating out the high-energy modes in microscopic
models leaves a lot of possibilities for low-energy modes ob-
tained after this procedure. This is especially true for cuprates
which have a very complicated structure. The only possibility
to model the emerging low-energy modes is to introduce them
phenomenologically.
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According to this philosophy, the integration of the high-
energy degrees of freedom in the spin-fermion model is
assumed to lead to the appearance of the bosonic spin modes
which are identified with the surviving low-energy antifer-
romagnetic fluctuations near the antiferromagnetic quantum
critical point. In particular, large values of the propagator
D0(ω, q) at the antiferromagnetic vector QAF follow from this
fact. These bosonic modes couple to the spins of the fermions
corresponding to the magnetic origin of the interaction. Given
the phenomenological character of the spin-fermion model,
it is plausible to assume the possibility of the appearance of
additional low-energy bosonic modes which couple instead to
the magnetic moments induced by the fermion loop currents
modulated in space at the wave vector QAF.

The bosonic modes described by the Hamiltonian (2.6) are
precisely of this type. There, we have a system of oscillators
with momenta P̂q and coordinates Q̂q labeled by different
wave vectors q. It is assumed that these wave vectors are
counted from QAF, and their lengths are not large. The interac-
tion of these modes with the fermionic currents is included in
a gauge-invariant manner by coupling the former to the vector
potential Aq created by fermions [see Eq. (2.8)].

In the Lagrangian formulation, one writes the action SB,
Eq. (2.18), with the coordinate field aq(τ ), while the interac-
tion of the bosonic and fermionic currents is given by the term
SFB[χ, χ+, a], Eq. (2.20).

It is worth emphasizing that the Hamiltonian of the model
and the corresponding action describe a system of particles
with different p and q and, in this sense, do not differ from
the standard many-body models. The interesting effects show
up when one studies the condensate of particle-hole pairs with
dominating contribution at q = 0 [see Eq. (3.10)].

VIII. DISCUSSION AND OUTLOOK

We have proposed a thermodynamic model of interacting
fermions and bosonic current-like modes. It does not contain
any special features like long-range or infinite-range interac-
tion. Using the methods of the field theory, we introduced
collective boson degrees of freedom and integrated out the
fermionic ones, reducing the model to a system of interacting
bosons. The model cannot be solved exactly and, as usual,
one starts with developing a mean-field approximation. In our
formulation, the mean-field equations are just equations for
the minimum of the bosonic action. This fact considerably
simplifies both analytical and numerical study.

We have demonstrated that the system can be (in addition
to normal metal phase) either in the stationary phase with a
conventional imaginary-time-independent order parameter or
in the instanton crystal phase. The numerical investigation at
zero temperature, performed in Sec. VI, reveals the existence
of a quantum phase transition between these phases. It is also
shown that the derivative of the free energy ∂F/∂ω̃0 experi-
ences a jump at the transition indicating that it is a first-order
transition.

In addition to that, in Sec. VI, we also performed the
numerical investigation of the temperature dependence of the
free energy of the model. The results of our calculations in-
dicate that, as the temperature is lowered, the transition from
normal metal phase to the instanton crystal phase can happen

either via an intermediate stationary phase or directly. In the
former case, the transition from the normal metal phase to the
stationary phase is of the second order, while the subsequent
transition into the instanton crystal phase is of the first order.
In the latter case, the direct transition into the instanton crystal
phase is of the second order. As the temperature is lowered
further, there are a series of first-order transitions correspond-
ing to the change of the number of the periods of the instanton
lattice.

As the results have been obtained using the mean-field
scheme, it is important to understand how fluctuations near
the saddle-point solution affect the results. For this purpose,
one should make expansion of the effective action up to the
second order and check the eigenvalues of the correspond-
ing quadratic form. The stability of the long-range order is
endangered by the fluctuations associated with the gapless
zero modes, and in our case, there is a zero mode originat-
ing from the translational invariance of the instanton lattice.
On the other hand, we consider the model with at least two
spatial dimensions, and the order parameter in the absence
of instantons corresponds to discrete Z2-symmetry breaking.
Also, the imaginary time acts as an extra dimension, which
helps to reduce the effect of the fluctuations. Overall, the
role of the fluctuations is an open question which we plan on
investigating in the future.

It is hard to speak about the possible experimental observa-
tion of the instanton crystal phase at this stage. In this paper,
we considered only the equilibrium properties of the system.
As a result, we can only suggest looking for the discontinuity
in the derivative of the free energy. The significant amount
of information about the system, on the other hand, can be
obtained by measuring its response to various probes. As a
consequence, another important direction of our future studies
is the analysis of the real-time correlation functions. This task
is challenging and deserves a special treatment. Therefore, we
decided not to touch on the subject in this paper.
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APPENDIX A: INVERSION OF THE INTEGRAL
OPERATOR DESCRIBING THE EFFECTIVE FERMION

INTERACTION

The interaction kernel K (τ − τ ′|ωq) was defined in
Eq. (2.23) as

K (τ − τ ′|ωq) = (U0 + U2)δ(τ − τ ′)

− U2 K0(τ − τ ′|ωq), (A1)

where the function

K0(τ − τ ′|ωq) = ωq cosh
[
ωq

(
β

2 − |τ − τ ′|)]
2 sinh ω0

2

(A2)
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is the Green’s function for a certain differential operator [see
Eqs. (2.24) and (2.25)]:[

− 1

ω2
q

(
d

dτ

)2

+ 1

]
K0(τ − τ ′|ωq) = δ(τ − τ ′). (A3)

As it turns out, that is all we need to construct the inverse
of the integral operator described by kernel K (τ − τ ′). Let us
denote the kernel for the inverse operator as K−1(τ − τ ′). It
should satisfy∫ β

0
dτ ′K (τ − τ ′)K−1(τ ′ − τ ′′) = δ(τ − τ ′′). (A4)

Let us seek K−1(τ − τ ′) in the form

K−1(τ − τ ′) = Aδ(τ − τ ′) + g(τ − τ ′), (A5)

where A is a yet unknown parameter and g(τ − τ ′) is an
unknown function. In order to determine them, let us plug the
ansatz (A5) into Eq. (A4):

δ(τ − τ ′′) = A(U0 + U2)δ(τ − τ ′′) − AU2 K0(τ − τ ′′)

+ (U0 + U2)g(τ − τ ′′)

− U2

∫ β

0
dτ ′K0(τ − τ ′)g(τ ′ − τ ′′). (A6)

It seems reasonable to put A = (U0 + U2)−1. Thus, we ob-
tain the following integral equation for the unknown function
g(τ − τ ′):

(U0 + U2)g(τ − τ ′′) − U2

∫ β

0
dτ ′K0(τ − τ ′)g(τ ′ − τ ′′)

= U2

U0 + U2
K0(τ − τ ′′), (A7)

or, equivalently,

g(τ − τ ′′) − U2

U0 + U2

∫ β

0
dτ ′K0(τ − τ ′)g(τ ′ − τ ′′)

= U2

(U0 + U2)2
K0(τ − τ ′′). (A8)

Let us apply the differential operator from Eq. (A3) to both
sides of Eq. (A8). This way, we get[

− 1

ω2
q

(
d

dτ

)2

+
(

1 − U2

U0 + U2

)]
g(τ − τ ′′)

= U2

(U0 + U2)2
δ(τ − τ ′′). (A9)

We can further rewrite it as[
−U0 + U2

U0ω2
q

(
d

dτ

)2

+ 1

]
g(τ − τ ′′)

= U2

U0(U0 + U2)
δ(τ − τ ′′). (A10)

This equation has the same functional form as Eq. (A3) which
K0(τ − τ ′|ωq) satisfies. As a result, we can write the solution

right away:

g(τ − τ ′) = U2

U0(U0 + U2)
× K0(τ − τ ′|ω̃q), (A11)

where

ω̃q =
√

U0

U0 + U2
× ωq. (A12)

APPENDIX B: TRANSFORMATION OF THE FERMIONIC
PART OF THE FREE ENERGY FUNCTIONAL

Let us focus on the part of the free energy functional (3.11)
which originates from integrating out the fermionic degrees of
freedom:

Fferm[b(τ )]

TV
= −2

∫
dp

(2π )2

∫ β

0
dτTr[ln ȟp]τ,τ . (B1)

Here, we neglect the field b1(τ ), so that

ȟp(τ ) = ȟ0p(τ ) − b(τ )�̌2, (B2)

where ȟ0p(τ ) is defined in Eq. (3.4).
We can rewrite equivalently∫ β

0
dτTr[ln ȟp]τ,τ = Trτ,s ln [ȟp(τ )] = ln det

τ,s
[ȟp]. (B3)

Here, Trτ,s stands for combined trace in the subspace of an-
tiperiodic functions and in the subspace of the bands 1 and 2,
while detτ,s stands for the combined determinant in the same
subspaces.

In the following, it is also convenient to regularize Fferm

by subtracting the constant term corresponding to the normal
metal configuration b(τ ) ≡ 0. This way, we obtain

Fferm[b(τ )] − Fferm[0]

TV
= −2

∫
dp

(2π )2
ln

detτ,s [hp]

detτ,s
[
h0p

] .

(B4)
It is hard to work directly with the functional determinants.

However, we can reexpress the ratio of two functional de-
terminants in terms of the time-ordered exponentials of the
corresponding operators (this is the standard trick in the field
of determinant Monte Carlo; for proof of this relation, see, for
example, [17]):

detτ,s
{
Ǐ∂τ + [

ε+
p Ǐ + ε−

p �̌3 − b(τ )�̌2
]}

detτ,s
[
Ǐ∂τ + (

ε+
p Ǐ + ε−

p �̌3
)]

= dets
[
Ǐ + T e− ∫ β

0 dτ [ε+
p Ǐ+ε−

p �̌3−b(τ )�̌2]
]

dets
[
Ǐ + e−β(ε+

p Ǐ+ε−
p �̌3 )

] , (B5)

where T is the time-ordering operator, and we used the ex-
plicit expressions for ȟp(τ ) and ȟ0p(τ ). We should note that
this particular form with Ǐ + T exp[· · · ] is attributed to the
fact that we considered the functional determinants of the
operators with antiperiodic boundary conditions.

The expression in Eq. (B5) can be further simplified. First,
for 2 × 2 matrices, one can show by direct substitution that

det [Ǐ + Ǎ] = 1 + det Ǎ + TrǍ. (B6)
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Second, since Ǐ commutes with any 2 × 2 matrices, we can
write in Eq. (B5)

T e− ∫ β

0 dτ [ε+
p Ǐ+ε−

p �̌3−b(τ )�̌2] = e−βε+
p T e− ∫ β

0 dτ [ε−
p �̌3−b(τ )�̌2]

(B7)

and

e−β(ε+
p Ǐ+ε−

p �̌3 ) = e−βε+
p e−βε−

p �̌3 . (B8)

Finally, we should note that for the time-ordered operator in
Eq. (B7),

det
s

[
T e− ∫ β

0 dτ [ε−
p �̌3−b(τ )�̌2]

] = T e− ∫ β

0 dτ tr[ε−
p �̌3−b(τ )�̌2] = 1,

(B9)

which follows from Liouville’s theorem and from the fact that
Pauli matrices are traceless.

Substituting Eqs. (B6)–(B9) together into Eq. (B5), we
obtain

dets
[
Ǐ + T e− ∫ β

0 dτ [ε+
p Ǐ+ε−

p �̌3−b(τ )�̌2]
]

dets
[
Ǐ + e−β(ε+

p Ǐ+ε−
p �̌3 )

]
= 2 cosh βε+

p + tr
[
T e− ∫ β

0 dτ [ε−
p �̌3−b(τ )�̌2]

]
2(cosh βε+

p + cosh βε−
p )

. (B10)

Now, we can rewrite Eq. (B4) as

Fferm[b(τ )] − Fferm[0]

TV

= −2
∫

dp

(2π )2
ln

2 cosh βε+
p + tr

[
T e− ∫ β

0 dτ [ε−
p �̌3−b(τ )�̌2]

]
2(cosh βε+

p + cosh βε−
p )

.

(B11)

Instead of the normal metal configuration, we could
have used a static configuration b(τ ) ≡ γ to regularize the
fermionic part of the free energy functional. In this case, one
can write
Fferm[b(τ )] − Fferm[γ ]

TV

= Fferm[b(τ )] − Fferm[0]

TV
− Fferm[γ ] − Fferm[0]

TV

= −2
∫

dp

(2π )2
ln

2 cosh βε+
p + tr

[
T e− ∫ β

0 dτ [ε−
p �̌3−b(τ )�̌2]

]
2[cosh βε+

p + cosh β

√
(ε−

p )2 + γ 2]
.

(B12)

APPENDIX C: CORRECTION TO THE FREE ENERGY OF
THE INSTANTON–ANTI-INSTANTON CONFIGURATIONS

DUE TO THE NONLOCAL REPULSION

Let us consider the integral appearing in Eq. (4.18), which
describes the correction to the free energy of the instanton–
anti-instanton configuration due to repulsive interaction:

�F repul
inst = TU2

U 2
0

∫∫ β

0
dτdτ ′K0(τ − τ ′|ω0)bm,k

inst (τ )bm,k
inst (τ

′).

(C1)

Here, bm,k
inst (τ ) = γ ksn(γ τ |k) is the configuration with m

instanton–anti-instanton pairs and the parameter γ is fixed

by the choice of the parameters m and k according to
Eqs. (4.6)–(4.9).

In order to evaluate the integral, it is convenient to use the
known Fourier decomposition of the snoidal Jacobi function
(see Ref. [14]):

bm,k
inst (τ ) = γπ

K (k)

+∞∑
n=1

sin
[

γπ (2n−1)
2K (k) τ

]
sinh

[ (2n−1)πK (k′ )
2K (k)

]
= γπ i

2K (k)

+∞∑
n=−∞

exp [−i2πm(2n − 1)T τ ]

sinh
[ (2n−1)πK (k′ )

2K (k)

] , (C2)

where the complementary modulus is k′2 = 1 − k2 and we use
the fact that mT = γ /[4K (k)]. In addition to that, we need the
Fourier decomposition for the kernel K0(τ − τ ′|ω0):

K0(τ − τ ′|ω0) =
∑
�n

T ω2
0

ω2
0 + �2

n

e−i�n (τ−τ ′ ), (C3)

where �n = 2πT n are bosonic Matsubara frequencies. Sub-
stituting Eqs. (C2) and (C3) into Eq. (C1), one obtains

�F repul
inst = T 2U2

U 2
0

∑
�l

K0�l b�l b−�l

= U2

U 2
0

4γ 2

π2

+∞∑
n=−∞

1

1 + [
(2n − 1) πγ

2ω0K (k)

]2

× 1( 4K (k)
π2 sinh

[ (2n−1)πK (k′ )
2K (k)

])2 . (C4)

In the limit k → 1 − 0, we can replace γ by the corre-
sponding value γ0 = γT =0 for the static configuration. Also,
in this limit K (k′) = K (0) = π/2. In Eq. (C4), the first factor
is naturally cut off at |n| ∼ K (k)ω0/γ0. At the same time, the
nonlinearity of hyperbolic sine kicks in for |n| ∼ K (k). If we
assume that ω0/γ0 � 1, the convergence of the series is then
determined by the first factor; thus, one can safely replace
the hyperbolic sine by its argument. As a result, Eq. (C4)
transforms into

�F repul
inst ≈ U2

U 2
0

4γ 2
0

π2

+∞∑
n=−∞

1

1 + [
(2n − 1) πγ0

2ω0K (k)

]2

1

(2n − 1)2
.

(C5)

The series appearing in this equation can be summed in the
closed form to give

�F repul
inst = U2γ

2
0

U 2
0

[
1 − γ0

ω0K (k)
tanh

ω0K (k)

γ0

]
. (C6)

Finally, in the limit ω/γ0 � 1/K (k), we can Taylor-expand
the hyperbolic tangent up to the third order to obtain

�F repul
inst = U2γ

2
0

U 2
0

× 1

3

(
ω0K (k)

γ0

)2

. (C7)
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APPENDIX D: DETAILS OF THE IMPLEMENTATION OF
THE NUMERICAL SCHEME

In this Appendix, we would like to mention several de-
tails which are important for the speed and stability of the
implementation.

The most crucial part is the calculation of the time-ordered
exponential Ǔp[bi]. In the case of large period of the con-
figuration W , it is easy to overflow the exponent of the
floating-point numbers used to store the matrix elements.
This problem may be overcome if Ǔp[bi] is calculated in
extended-precision arithmetics. A complementary solution to
this problem is to use the different regularization of the
fermionic part of the free energy functional. In Eq. (5.1), we
subtracted the constant corresponding to the fermionic part of
the free energy of the normal metal configuration. Instead, we
could subtract Fferm[γT ] where γT is the solution of the static
gap equation (4.3) with U0 replaced by U0 + U2. (The idea
here is not to put U2 = 0 but to neglect the nonlocal quadratic
part of the free energy functional.) In this case, Eqs. (5.12)
and (5.17) can be rearranged in such a manner that, instead of
Ǔp[bi], one needs to calculate

e−W
√

(ε−
p )2+γ 2

T Ǔp[bi] =
1∏

i=N

e−�τ
√

(ε−
p )2+γ 2

T e−�τ (ε−
p �̌3−bi�̌2 ),

(D1)

which happens to be much more numerically stable.

The calculation of the nonlocal part of free energy and its
gradient, Eqs. (5.11) and (5.16), requires the computation of
matrix-vector products

N∑
j=1

K̃i− jb j, (D2)

where the matrix K̃i− j is

K̃i− j = K̃0(τi − τ j |ω̃0). (D3)

In Fourier space, the matrix-vector product of this type
reduces to the element-wise multiplication of vectors. As
a result, these products can be efficiently computed via
the following sequence of steps: calculate the fast Fourier
transform of b j ; multiply it element-wise by the precom-
puted Fourier transform of K̃i, j ; make another fast Fourier
transform.

For the numerical calculations in this paper, we im-
plemented the numerical scheme using the programming
language Julia [36]. This language combines the fast proto-
typing of Python, Matlab, and Mathematica with the speed
of Fortran, C, and C++. For optimization, we used the
L-BFGS algorithm [37,38] implemented in the Optim.jl
library [39].
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