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Coupled Maxwell and time-dependent orbital-free density functional calculations
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Coupled Maxwell and time-dependent orbital-free calculations are implemented and tested to describe the
interaction of electromagnetic waves and matter. The currents and induced fields predicted by the orbital-free
calculations are compared to time-dependent density functional calculations and very good agreement is found
for various systems including jellium sheets, jellium spheres, atomistic sheets, and icosahedron clusters.
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I. INTRODUCTION

Ground-state density functional theory (DFT) [1] Kohn-
Sham (KS) [2] calculations are very successful in condensed
matter physics, because they provide a reasonably accurate
description of material properties in a computationally man-
ageable way. Mostly these DFT calculations are based on KS
orbitals and, albeit some approaches scale linearly with the
number of orbitals [3,4] for certain systems, in general KS-
orbital-based DFT has cubic scaling with respect to the system
size. Orbital-free (OF) DFT [5–8] became an attractive alter-
native because its main variable is the electron density and
it computationally scales linearly with system size. OFDFT
has shown considerable success in million-atom material sim-
ulations of metals [8–10], warm dense matter [11,12], and
quantum dots [13–17]. Computer codes for efficient imple-
mentation of OFDFT have also been developed [9,18–20].

OFDFT directly calculates the ground-state electron den-
sity, minimizing the energy functional without using KS
orbitals. The minimization leads to a single Schrödinger-like
equation. This equation contains a potential that is derived
from the kinetic energy (KE) functional [21,22] to enforce
the antisymmetry requirement of the many-electron wave
function.

Time-dependent problems, e.g., calculation of electronic
stopping power [12,23], spectra of clusters [19], and plasmon-
ics [24–26], have been also studied with the “time-dependent”
OF (TDOF) approach. In this case a single time-dependent
Schrödinger equation has to be solved with the additional
difficulty that the KE potential is time dependent [27].

The main difficulty of the OF calculations is finding the
appropriate approximations for the kinetic energy functional.

*kalman.varga@vanderbilt.edu

The simplest approximations use local or semilocal expres-
sions, where the energy density depends only on the density
and its derivatives at one spatial point [28–33]. However,
the local and semilocal KE functionals do not have the
correct linear response properties. To correct this, nonlocal
(or two-point) KE functionals were developed invoking the
linear response of the noninteracting homogeneous electron
gas [34–36]. These nonlocal KE functionals work well for a
nearly free electron gas and were developed further for more
complicated cases [37–40]. These functionals are computa-
tionally expensive because they depend explicitly on density
at two spatially separated points. More recently, efficient al-
ternatives based on a line integral representation of the KE
functional have been proposed and tested [13,41,42]. While
nonlocal functionals are considered to be superior, semilocal
functionals are faster and new semilocal functionals have been
developed that show very good accuracy [32,33]. Recent ad-
vances in machine learning techniques were also put to work
in the quest for better KE functionals [20,43–46].

The development of dynamic KE functionals for time-
dependent problems is less advanced than the static ones. In
Ref. [27], a dynamic KE potential is proposed that is time
propagated and forces the system to closely fit the susceptibil-
ity of the noninteracting homogeneous electron gas (Lindhard
function) [47]. In Ref. [23] a local current density dynamic
KE potential is derived by perturbation theory. This approach
is computationally more efficient because it does not require
the time propagation of the KE potential. Both approaches
seem to reproduce the frequency-dependent Lindhard func-
tion nicely.

In this work we use the TDOF approach coupled with the
Maxwell equations to describe the interaction of electromag-
netic waves and matter. In a previous paper [48] we developed
a method to solve the coupled Maxwell TDKS equations. In
this coupled frame, the densities and current are calculated in
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a quantum-mechanical framework in the presence of a time-
dependent vector potential and then the Maxwell equations
are solved with the calculated time-dependent microscopic
currents and densities to obtain the new vector potential. In
order for the coupling of the quantum and Maxwell dynamics
to be significant one needs large systems with many elec-
trons. One can use time-dependent density functional theory
(TDDFT) [49] (as we did in Ref. [48]), but that limits the
application to relatively small systems. The OF approach al-
lows the simulation of much larger systems (on the scale of
millions of atoms [8–14]). The OF approach may allow for
electrodynamic simulations to be performed for systems of
relevant size with a quantum description of the electrons.

The goal of this paper is to implement coupled Maxwell
TDOF calculations and test them against TDDFT results. We
will solve the TDOF and TDDFT equations using a real-space
grid and real-time propagation [50]. The Maxwell equations
are solved using the Riemann-Silberstein formalism [48,51].
To make the TDOF and TDDFT calculations comparable we
add a constraining potential to the TDOF Hamiltonian. This
potential ensures that the initial ground-state densities are the
same in the OF and DFT calculations.

II. FORMALISM

A. Time-dependent Kohn-Sham equations

The TDKS equation for the ith electron orbital is(
ih̄

∂

∂t
− HKS

)
ψi(r, t ) = 0, (1)

where

HKS(r, t ) = − 1

2m
[−ih̄∇r + A(r, t )]2 + VKS(r, t ). (2)

The Kohn-Sham potential,

VKS(r, t ) = Vext (r) + VH[ρ](r) + VXC[ρ](r), (3)

is a sum of the external potential, the Hartree, and the
exchange-correlation terms. The vector potential, A(r, t ), de-
scribes the electromagnetic fields. The TDKS equations can
be solved by time propagation and one can calculate the elec-
tron density and current at any time t as

ρ(r, t ) = 2
Ne/2∑
i=1

|ψi(r, t )|2. (4)

J(r, t ) = 2 Re
Ne/2∑
i=1

[ψi(r, t )∗(−ih̄∇r + A(r, t ))ψi(r, t )]. (5)

where Ne is the number of electrons in the system and each
orbital is occupied by two electrons. This current is input into
the Maxwell equations, which will then propagate a vector
potential A(r, t ).

B. Time-dependent orbital-free equations

The TDOF equation is(
ih̄

∂

∂t
− HOF

)
�(r, t ) = 0, (6)

where

HOF(r, t ) = − 1

2m
[−ih̄∇r + A(r, t )]2 + VOF(r, t ). (7)

The orbital-free potential is defined as

VOF(r, t ) = VKS(r) + VTF[ρ](r) + (a − 1)VW[ρ](r) + Vc(r),

(8)

where VTF is the Thomas-Fermi kinetic energy functional,
VW is the von Weizsäcker potential, and Vc is a constraining
potential that we will define later. a is a numerical coefficient
of the Weizsäcker term. Normally the Weizsäcker term comes
with an “a” multiplier (with values a = 1 to 1/9). Here a − 1
appears because the 1 has to compensate the appropriate part
in the kinetic energy in Eq. (6). In this case the electron density
and current at any time t are

ρOF(r, t ) = |�(r, t )|2, (9)

JOF(r, t ) = 2 Re [�(r, t )∗(−ih̄∇r + A(r, t ))�(r, t )]. (10)

C. Constrained minimization

To compare TDDFT and OF one ideally would use the
same ground-state density, but VKS and VOF produce different
densities, ρ(r) and ρOF(r), respectively. In Ref. [52] we have
presented a constrained density functional approach. This
method can be used to generate a constraining potential that
forces the charge density to be equal to a prescribed density.
In the present case we use the constraint

|�(r)|2 = ρ(r), (11)

where ρ(r) is the density of the ground-state DFT calculation.
The following iterative procedure can be used to calculate

the constraining potential:

� (n+1)(r) = � (n)(r) − x0(ĤOF + λ(n)Q̂ − ε (n) )� (n)(r),

(12)

where x0 controls the convergence,

ε (n) = 〈� (n)|HOF|� (n)〉 (13)

is the energy expectation value, and Q̂ is the density operator
such that

〈� (n)|Q̂|� (n)〉 = |� (n)(r)|2. (14)

Given a desired initial density distribution ρ(r) one looks for
the potential λ(r),

λ(r)ψ (n)(r) = λQ̂ψ (n), (15)

which constrains the density according to Eq. (11).
The constrained minimization allows us to construct an

orbital-free Hamiltonian, HOF, that produces the same self-
consistent potential and density as the TDDFT calculation. In
this way the TDDFT and the OF calculations can be directly
compared. Since the constrained ground-state density is the
same, by setting

Vc(r) = λ(r), (16)
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the contributions to the energy from the potentials are the
same:

〈�|VOF|�〉 = 2
N/2∑
i=1

〈ψi|VKS|ψi〉. (17)

The kinetic energy parts in OF,

〈�| h̄2

2m
∇2

r |�〉, (18)

and in TDDFT,

2
N/2∑
i=1

〈ψi| h̄2

2m
∇2

r |ψi〉, (19)

are different, although in numerical calculations the differ-
ence is small. The constraining potential forces a match of
the ground-state OF density to the DFT density, and is then
applied the OF Hamiltonian. The constraining potential is kept
fixed during the time evolution in these calculations.

D. The Riemann-Silberstein formalism

In a previous paper [48] we developed an approach to
solve the coupled Maxwell TDKS equations in a numerically
efficient way using the Riemann-Silberstein formalism. The
Riemann-Silberstein (RS) vector is defined as

F(r, t ) =
√

ε0

2
E(r, t ) ± i

√
1

2μ0
B(r, t ),

where B and E are magnetic and electric fields. In this formal-
ism the Maxwell equations can be rewritten in the form

∇ · F = 1√
2ε0

ρ

and

ih̄
∂F
∂t

= c

(
S · h̄

i
∇r

)
F − ih̄√

2ε0
J, (20)

where S are 3 × 3 the spin-1 Pauli matrices. The attractive
feature of this formalism is that Eq. (20) is similar to a time-
dependent Schrödinger equation and can be solved with time-
propagation approaches used in quantum mechanics. As it is
described in detail in Ref. [48], the Helmholtz decomposition
of the Riemann-Silberstein vector allows the removal of the
longitudinal component which is responsible for the Hartree
potential. The Hartree potential is calculated by solving the
Poisson equation using the electron density as it is standard in
the conventional DFT calculations. Further details of coupling
the Maxwell equations to the TDDFT Hamiltonian are given
in Refs. [51,53].

To solve the Maxwell equation the electron density and
current are calculated by solving the TDKS or TDOF equa-
tions and then used to calculate F at time t + �t/2. Once
F is known, the vector potential, A, at t + �t needed in the
quantum equations can be calculated from E in a leapfrog
algorithm [48].

FIG. 1. Side view (xy plane) of nanoclusters and metal sheets
used in the calculations: (a) Al147 and (b) Al55 icosahedrons and
(c) Al thin film. The laser propagates in the x direction. In the case
of Al thin film the system is periodic in the y and z directions.

III. RESULTS

In this section we present test calculations comparing
Maxwell TDDFT and Maxwell TDOF calculations. Taylor
time propagation is used to solve the TDKS [Eq. (1)] and
TDOF [Eq. (6)] equations. The time step in the time evolution
of these equations is �t = 0.02 a.u., and the time step in the
propagation of the RS vector [Eq. (20)] is �t/20. The TDKS
and the TDOF equations are solved on a numerical grid using
a nine-point finite difference representation for the kinetic en-
ergy [50]. The grid spacing is �x = �y = �z = 0.5 for both
jellium and for systems with atoms. The number of grid points
is N = Nx × Ny × Nz, where Ni is the number of grid points
in the i = x, y, z directions. The RS equations are solved in
Fourier space [48] corresponding to the same grid. The local
density approximation is used for the exchange-correlation
potential [54] and the pseudopotential for Al is taken from
Ref. [55]. Free or periodic boundary conditions (PBCs) are
used in different directions as indicated in the examples. To
avoid reflection of wave functions or electromagnetic waves,
complex absorbing potentials (CAPs) are added at the bound-
ary. The same CAP is used as in Ref. [48]. Examples of system
geometries are shown in Fig. 1.

The first step of the approach is a ground-state DFT calcu-
lation to determine the initial wave function and initial density.
Figure 2 compares the ground-state density of the DFT and
the OF calculation for an Al55 icosahedron cluster with 165
electrons, using a geometry that is adapted from Ref. [56].
To compare the ground-state densities between DFT and the
OF calculations, the orbital-free density was not constrained
in this case, i.e., Vc = 0. The densities of the DFT and the
OF calculations are very close, but slight differences in the
density cause a large difference in the potential (Fig. 2 shows
the magnitude of the necessary constraining potential) and in
the energy.

In the second step a constrained minimization is used to
generate a potential, Vc, that forces the OF calculation to
produce the same density as ρ, the density obtained by the
DFT calculation. In this step we require

|ρ(r) − ρOF(r)| < ε, (21)

with ε = 10−6. We start with VOF, �, and ρOF calculated in
the OF calculation, setting Vc = 0. Then we set � (1) = �,
λ(1) = 0 and use the iteration defined in Eq. (12) to calculate
� (n+1). The confining potential is updated in each step as
Vc(r) = λ(n)(r).

The calculated Vc is shown in Fig. 2. Using this constrain-
ing potential in VOF one gets exactly the same self-consistent
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FIG. 2. Density and potential profile of an Al55 cluster with 164
electrons. Nx = Ny = Nz = 60 grid points used in the calculation.
Top: Comparison of the unconstrained-OF and DFT electron den-
sities averaged along the x direction, ρ(x) = ∑

y,z ρ(r). Bottom:
The confining and the KS potential averaged along the x direction,
V (x) = 1

NyNz

∑
y,z V (r).

density in the OF and DFT calculations. The constraining
potential is positive in the middle, decreasing the OF density
to make it closer to DFT, and negative away from the center
to pull the OF density closer to that of DFT. To study the
time-dependent behavior of the density in TDDFT and OF in
this case we have calculated the time dependence of the dipole
moment. To start the calculation the initial ground-state wave
functions were perturbed by multiplying them with eikx, with
k = 0.01 a.u. and the systems were time propagated up to T =
500 a.u. The calculated dipole moment d (t ) = ∫

ρ(r, t )xdr is
shown in Fig. 3. The TDDFT and OF dipole moments are very
close to each other in the beginning of the calculation, but later
the oscillations are different. It seems that the constraining po-
tential works well in the initial stage of the time propagation,
but later dynamical effects become important. This can prob-
ably be improved by invoking a dynamical kinetic energy po-
tential [27,57]. The frequency of the oscillation of the dipole
moment remains very similar in the OF and TDDFT calcu-
lations and the resulting absorption spectra are similar (see
Fig. 3). The usefulness of the OF approach for the calculation
of the absorption spectrum of quantum dots using a dynamical
kinetic energy functional has been discussed in Refs. [24,26].

0 20 40 60 80 100t-6
-4
-2
0
2
4

d(
t)

0 0.1 0.2 0.3 0.4 0.5
E

0
50

100
150
200
250

S(
E)

FIG. 3. Time dependence of the dipole moment and the absorp-
tion spectrum of an Al55 cluster (solid line, TDDFT; dashed line,
TDOF). Please see Fig. 2 for details of the calculation. The absorp-
tion spectrum is defined as α(E ) = e2

kh̄

∫
(d (t ) − d (0))eiEt/h̄g(t )dt ,

where g(t ) is a damping function. The dotted line shows the TDOF
results starting from the OF density (without constraining potential).
In this case the starting density, potential, and energy are different
from the TDDFT case and the comparison is more difficult.

To test the coupled Maxwell-TDOF calculations we com-
pare them to coupled Maxwell-TDDFT calculations. First,
we use three test cases from Ref. [48]. In the first case, an
electromagnetic pulse excites a jellium sheet. Because the
Maxwell equations are linear, the electric field can be written
as the sum of an external field and an induced field created
by the electron currents, Etot = Eext + Eind. In this way, the
exciting pulse does not need a source and never has to be time
propagated because its form is analytic. The external field is
given as a Gaussian laser pulse (Eext in Fig. 4):

Eext (r, t ) = (
0, 0, E0e−(t−t0−x/c)2/α2)

. (22)

Here t0 is the pulse shift, and α controls the width of the pulse.
To show the time dependence of the electric field and

currents we define the average electric field as

E(t ) = 1

N

∑
r

E(r, t ), (23)

and

J(t ) = 1

N

∑
r

J(r, t ), (24)

where the sum is over grid points that are not in the CAP
region. In the figures only the z components E = Ez (for Etot ,
Eext, and Eind) and J = Jz are shown.

Figure 4(a) shows the induced currents for coupled and un-
coupled cases. In the uncoupled case, the Maxwell equations
are not time propagated and Etot = Eext. For the coupled case,
the Maxwell equations are time propagated and the currents
produce an induced field opposite to Eext. It is this induced
field that deexcites the electrons and causes the current to
fall back to zero. The results of the TDDFT and TDOF cal-
culations agree up to four significant digits for the induced
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FIG. 4. Comparison of TDOF and TDDFT simulations showing
the averaged currents (top) and the electric fields (bottom). The sys-
tem is lithium jellium consisting of 36 electrons in a 328-a.u.-wide
sheet contained within a box of Nx = 1152, Ny = Nz = 8. CAPs were
used in the x direction and PBCs were used in the y and z directions.
The system was excited by a Gaussian pulse with a peak electric field
of E0 = 0.02 a.u., a width of α = 2.0 a.u. and a shift of t0 = 6 a.u.
The results of the TDDFT and TDOF calculations agree up to four
significant digits for the induced currents and induced fields, making
the TDDFT and TDOF calculations indistinguishable.

currents and induced fields and one cannot distinguish the
results in Fig. 4.

The perfect agreement is very surprising considering that
18 orbitals are time propagated in TDDFT and only one in
TDOF. We see later that this agreement is mostly due to
symmetry of the jellium sheet system. Figure 4(a) also shows
that in the uncoupled case the system stays in an excited state

0 200 400 600 800 1000-200

-100

0

100

200

J

0 200 400 600 800 1000
t

-0.1

0.0

0.1

E

Eind
Eext
Etot

(a)

(b)

FIG. 5. Calculated currents and induced fields in the case of
a laser pulse incident from the left on a 232-a.u.-thick sheet of
aluminum jellium of 400 electrons within a box of Nx = 640, Ny =
Nz = 16. Also in this case the OF and TDDFT curves are on top of
each other. CAPs were used in the x direction and PBCs were used
in the y and z directions. The system was excited by a Gaussian pulse
with a peak electric field of E0 = 0.1 a.u., a width of α = 206 a.u.,
ω = 0.05695 a.u., and a shift of t0 = 400 a.u.
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FIG. 6. Comparison of the cell average currents in time result-
ing from a strong laser pulse incident from the left on a sphere
of aluminum jellium of 236 electrons in a box of Nx = 192 a.u.,
Ny = Nz = 60 a.u. CAPs were used in the x direction and PBCs were
used in the y and z directions. The system was excited by a Gaussian
pulse with a peak electric field of E0 = 0.1 a.u. with a width of α = 2
a.u. and a shift of t0 = 5 a.u.

while in the coupled case the system relaxes to the ground
state and the electric current decreases to zero.

In the second test case (see Fig. 5) a sheet of aluminum
jellium is irradiated with a laser pulse of the form

Eext (r, t ) = (0, 0, E0e−(t−t0−x/c)2/α2
sin(ω(t − x/c))). (25)

The TDDFT and OF currents and induced electric fields are
in perfect agreement, up to three significant digits. In this
case the electric field penetrates the thick Al sheet, generating
strong currents. Still, the results of the TDDFT calculations
with 200 orbitals and the orbital-free calculation are the same.

In the third example, a jellium sphere of radius 12.8 a.u.
containing 236 electrons is used with a short Gaussian pulse
(see Fig. 6). In this case the induced electric field is negligible.
The OF and TDDFT currents are very close to each other
during the laser pulse, but after the excitation the time

0 200 400 600 800 1000

-40
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40

J
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TDDFT

0 200 400 600 800 1000
t

-0.1

0.0

0.1

E

Eind
Eext

(a)

(b)

FIG. 7. The same system as described in the caption of Fig. 6 but
with the laser pulse of Fig. 5.
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FIG. 8. Comparison of OF and TDDFT currents and induced
electric fields in a 36-atom, 96-electron Al sheet. Nx = 200, Ny =
Nz = 31, and �x = �y = �z = 0.4932 a.u. are used. A CAP is
added in the x direction and PBCs in the y and z directions. The
parameters of the laser field are given in the caption of Fig. 5.

dependence of the currents is different. The same system with
the longer pulse is shown in Fig. 7. The OF and TDDFT are
not in perfect agreement as before, but they are similar and
they follow the external pulse with the same delay time. This
test shows the role of symmetry, comparing a sheet and a
spherical jellium system. One can cut the sphere into n slices
in parallel with the direction of the laser. The currents and
density oscillations will be different in each slice depending
on their diameter. In the jellium sheet cases the response is the
same in each slice. Additionally, the jellium sphere presents
a surface which causes reflections of the electron density
driven to the surface by the laser field. In the case of TDDFT,
there are 118 orbitals with different energies and different
reflections. For larger systems the effect of the surface is
expected to be smaller.
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FIG. 9. Comparison of OF and TDDFT currents and induced
electric fields in a 96-atom, 288-electron Al sheet. Nx = 200, Ny =
Nz = 31, and �x = �y = �z=0.4932 a.u. are used. A CAP is added
in the x direction and PBCs in the y and z directions. The laser pulse
has a peak electric field of E0 = 0.1 a.u., a width of α = 200 a.u.,
ω = 0.1139 a.u., and a shift of t0 = 200 a.u.
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FIG. 10. Comparison of OF and TDDFT currents in a 147-atom
icosahedron Al cluster with 440 electrons. The number of grid points
is Nx = 200, Ny = Nz = 60, and a CAP is added in the x direction and
free boundary conditions are used in the y and z directions. The laser
pulse has a peak electric field of E0 = 0.1 a.u., a width of α = 100
a.u., ω = 0.2278 a.u., and a shift of t0 = 100 a.u.

Next we present examples with atoms. In Figs. 8 and 9 OF
and TDDFT calculations of a 32-atom and 96-atom Al sheets
are compared. The agreement of the OF and TDDFT results is
excellent; the thicker (the width is about 42 a.u.) sheet of the
96-atom system has better agreement than the thinner case.
This example illustrates that the presence of atomic potentials
does not greatly affect the agreement between the OF and
TDDFT results.

Finally, we present a calculation for an Al+147 icosahedron
cluster (see Fig. 10). As the TDDFT calculations are compu-
tationally demanding, we use a shorter pulse in this case. The
coupling to the Maxwell equations is also turned of, partly to
increase the speed of the calculation and partly because the in-
duced fields are small as we have seen in the jellium case (see
Fig. 7). The agreement of the TDDFT and OF calculations is
perfect. The reason for the very good agreement is probably
due to the localization of the density by the atomic potentials.
In the jellium case, the electron density is more easily moved
by the field.

IV. SUMMARY

We have implemented and tested the coupled Maxwell and
TDOF calculations to study the interaction of electromagnetic
fields and matter. Nanometer- sized sheets and clusters were
subject to short laser pulses and the induced currents and elec-
tric fields were compared to the result of TDDFT calculations.
The results are in very good agreement, especially for larger
systems. The examples and tests include dipole oscillation
due to an instantaneous kick perturbation, excitation with
a laser field, and coupled Maxwell and quantum dynamics.
The coupled Maxwell case is a rigorous test because the
system does not just follow the dynamics of the laser field
but builds up a nonlinear response. This test is also important
for possible applications. In the examples we have used a
relatively strong electric field in the nonlinear region. We
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have made many test calculations with weaker fields and the
agreement between TDOF and TDDFT is even better in those
cases.

The OF calculations have some limitations for smaller
quantum dots [15–17] and the disagreement can perhaps be
reduced by using more recently proposed kinetic energy func-
tionals [13,14]. In these calculations, a constraining potential
was used to force the OF ground-state density to match the
DFT ground-state density. This step can probably be elimi-
nated by using new generations of kinetic energy functionals
[13,13,14,41,42,58].

Another potential improvement is using dynamic kinetic
energy potentials [23,27]. These potentials have been tested
only in very few cases and further development and tests
might be needed.

In the present work the size of the studied systems is
relatively small because TDDFT calculations are not feasible
for larger systems. The results are promising and larger, physi-
cally more relevant systems will be studied in later works. The
calculations presented in this work are also restricted to simple
electronic structures and further studies for more complicated
cases, e.g., Mg metal clusters, are necessary in the future.
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