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The magnetic properties of black phosphorene nanoribbons are investigated using static and dynamical mean-
field theory. Besides confirming the existence of ferromagnetic/antiferromagnetic edge magnetism, our detailed
calculations using large unit cells find a phase transition at weak interaction strength to an incommensurate (IC)
magnetic phase. A detailed Fourier analysis of the magnetization patterns in the IC phase shows the existence of
a second critical interaction strength, where the incommensurate phase changes to an antiferromagnetic (AFM)
or ferromagnetic (FM) phase. We demonstrate that the difference of the ground-state energies of the AFM and
FM phase is exponentially small, making it possible to switch between both states by a small external field.
Finally, we analyze the influence of strain and disorder on the magnetic properties and show that while the IC
phase is robust to Anderson type disorder, it is fragile against strain.
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I. INTRODUCTION

Phosphorene, a novel promising two-dimensional (2D)
material, has recently attracted much attention owing to its
anisotropic band structure [1–3]. It is a bilayer puckered
honeycomb lattice of black phosphorus with a peculiar band
structure exhibiting Dirac cones in the bulk. Because of
its band structure, phosphorene has been studied in many
theoretical works, particularly in the context of transport stud-
ies [4–7]. Compared to the transition metal dichalcogenide
materials, phosphorene has a high charge carrier mobility
(∼100 cm2/Vs) at room temperature [1], making it favorable
for electronic applications. Moreover, zigzag phosphorene
nanoribbons (ZPNR) exhibit two quasiflat edge states, which
are completely isolated from the bulk states [8–10], in contrast
to the other 2D hexagonal lattice structures such as graphene
[11] and silicene [12]. The nature of these isolated edge
states originating from a large hopping parameter between
two out-of-plane zigzag chains has been discussed in Ref. [8].
Furthermore, a recent study addressed the Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange interaction in ZPNRs. It
found two different characteristic periods of the RKKY inter-
action mediating the magnetic interaction between impurities
[13].

Motivated by theoretical predictions [14–16] and exper-
imental confirmations [17] of edge magnetism in zigzag
graphene nanoribbons, edge magnetism has also been ex-
plored in phosphorene in Ref. [18]. This first study found that
ZPNRs display a magnetic state at the edge in the absence
of a Peierls distortion. However, edge magnetism vanished
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in the fully relaxed structure. On the other hand, the au-
thors of Ref. [19] have shown that edge magnetism of ZPNR
can survive even with structural relaxation. In another paper,
the authors consider tilted black phosphorene nanoribbons
exposed to an external electric field. They found that the mag-
netic ground state can be switched by an electric field from
antiferromagnetic (AFM) to ferromagnetic (FM) [20]. Fur-
thermore, a quantum Monte Carlo calculation demonstrated
a high Curie temperature for edge magnetism of ZPNR [21].
However, previous studies have mainly considered small unit
cells focusing on commensurate FM and AFM states. Mag-
netic states such as spiral phases or incommensurate phases
have not been analyzed. Furthermore, the effect of strain and
disorder on the magnetic states still remains unclear.

In this work, using a tight-binding (TB) Hubbard model,
we numerically study the edge magnetism of ZPNRs using
static mean-field theory (MFT) and dynamical mean-field the-
ory (DMFT). Although QMC must be considered superior to
our mean-field approaches, our (D)MFT is much faster and
thus makes it possible to analyze large unit cells and incom-
mensurate magnetic phases. Furthermore, mean-field theories
have proven to at least qualitatively, and sometimes even
quantitatively, correctly describe magnetism in hexagonal 2D
systems [22], although being numerically less expensive. A
similar combination of techniques has been used to analyze
edge magnetism in zigzag graphene nanoribbons [23] and
nanodots [24].

In this paper, we demonstrate the existence of an incom-
mensurate magnetic phase at the edge of ZPNR for weak
interaction strengths Uc1 � U � Uc2. With increasing interac-
tion strength, this incommensurate magnetic phase undergoes
a phase transition into the ferromagnetic or antiferromagnetic
phase at Uc2, which has been reported by previous studies.
We show that the difference in the ground-state energies of
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these two states is exponentially small, making it easy to
switch between both states. Besides, to gain more insight into
the realization of magnetism in ZPNRs at weak interaction
strengths, the purpose of this paper is to analyze the effects
of strain and defects on the magnetic state. Such perturba-
tions of the material are ubiquitous in 2D materials [25–31].
Moreover, studies on strain in nonmagnetic phosphorene show
some intriguing features: A first-principles study predicted a
semiconductor-semimetal-metal transition under perpendicu-
lar compression [29]. In Ref. [30], an emergence of a peculiar
Dirac-shaped dispersion for tensile strain in the zigzag edge
is proposed. In another work, it was shown that tensile or
in-plane strain, together with spin-orbit interaction, gives rise
to a topological phase transition [31]. However, the only study
which analyzes the effect of strain on ZPNRs magnetism is
found in Ref. [19]. It predicts that at a critical compressive
strain along the zigzag edge (about 5%), the ground state
changes from an AFM semiconductor to a nonmagnetic metal.
Thus, we here address the effect of strain and Anderson type
disorder on the magnetic properties of ZPNRs and find that
while the incommensurate (IC) phase is very sensitive to strain
and disappears fast, it is robust against Anderson type disor-
der. We also notice that the second critical point Uc2 shifts
to larger values. Thus, one can predict that the AFM/FM
magnetic phase disappears under large strain.

The paper is organized as follows: In Sec. II, we introduce
the theoretical model and formalism used in the numerical
calculations. In Sec. III, we discuss results obtained. Finally,
we summarize and conclude our results in Sec. IV.

II. MODEL AND FORMALISM

In order to study the magnetic properties of ZPNRs, we use
the following tight-binding model:

H =
∑
i j,σ

ti jc
†
iσ c jσ + U

∑
i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
, (1)

where the first summation runs up to the fifth nearest neighbor,
and ti j is the hopping integral proposed in Ref. [32]. These
hopping parameters are t1 = −1.220 eV, t2 = 3.665 eV, t3 =
−0.205 eV, t4 = −0.105 eV, and t5 = −0.055 eV, which are
shown by arrows in Fig. 1. Furthermore, we include a local
density-density interaction. Thus, this model corresponds to a
one-band Hubbard model. To tackle the interaction, we use
static and dynamical mean-field theory. At the static MFT
level, all quantum fluctuations are neglected, and the SU(2)
spin symmetry must be broken artificially in order to capture
the formation of local moments. An extension of the MFT to
account for the local moment formation is the DMFT. The
DMFT approximation accounts for temporal fluctuations and
thus includes local charge fluctuations beyond static MFT.
Indeed, the accuracy of DMFT to predict the critical point,
Uc, in the honeycomb lattice has been reported recently in
Refs. [22,33].

A. Static mean-field theory

Evaluating the Coulomb interaction term in the mean-
field approximation leads to two potentials terms, direct and
exchange terms, which must be solved self-consistently. In

FIG. 1. A schematic view of the ZPNR: The yellow area cor-
responds to the unit cell, which consists of four atoms. The black
arrows show the hoppings up to the fifth-nearest-neighbor hopping
included in our TB model. The red (blue) circles indicate the upper
(lower) layers. The black box is the ribbon unit cell in the y direction.
In the text, Ny refers to the number of ribbon unit cells in the y
direction. The width of the unit cell is specified by Nx , which includes
N = 4 × Nx phosphorus atoms.

the case of the Hubbard model in the collinear approximation,
only the direct potential term is nonzero, and one obtains

U
∑

i

(
〈ni,↑〉ni,↓ + ni,↑〈ni,↓〉

− 〈ni,↑〉〈ni,↓〉 − ni,↑ + ni,↓
2

+ 1

4

)
,

where niσ = c†
iσ ciσ is the number operator and 〈niσ 〉 is the

average electron occupation number for spin-down (↓) and
spin-up (↑) electrons on lattice site i. We focus on the undoped
ZPNR with exactly one electron per lattice site, i.e., we work
with the half-filled Hubbard model.

To calculate the magnetic ground state of Hamiltonian
Eq. (1), we start with a few initial, specific or random, con-
figurations for the average electron occupation number 〈niσ 〉.
Then, by diagonalizing the Hamiltonian, we calculate updated
electron occupation numbers. This procedure is repeated until
the convergence criteria, chosen as η = 10−8, is achieved on
the average electron occupation number. This self-consistent
solution provides the local magnetization mz

i = (ni↑ − ni↓)/2
on each site. Finally, the energies of different states are com-
pared to find the ground state.

B. Dynamical mean-field theory

A recent study has shown that the transition to the mag-
netic state in graphene is captured remarkably well by the
inclusion of local charge fluctuations [22] in the framework
of a single-site dynamical mean-field theory [34]. Thus, to go
beyond the static MFT and to include local fluctuations, we
also use the real-space DMFT to obtain a magnetic solution
of the ZPNR. As in Ref. [33], each atom of a 8 × 48 large
cluster is mapped onto its own quantum impurity model by
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calculating the Green’s function and the local hybridization
function,

Gi j (ω) = [ω − H − �(ω)]−1
i j , (2)

�i(ω) = G−1
ii (ω) + �ii(ω), (3)

where i and j are indices for the positions of the atoms, H
is the matrix of the tight-binding Hamiltonian on the finite
lattice, �(ω) is the diagonal matrix including the self-energies
of all atoms �i j (ω) = �i j (ω)δi j , �ii is the self-energy of the
atom i, Gi j is the Green’s function matrix, and �i is the
hybridization function of atom i. The hybridization function
together with the local interaction strength completely de-
fine a quantum impurity model necessary in DMFT, which
makes it possible to calculate magnetic states in large clusters
[22,33,35,36]. The quantum impurity model is then solved
using the numerical renormalization group [37,38], which can
calculate dynamical correlation functions and self-energies
with high accuracy [39].

III. RESULTS AND DISCUSSION

In this section, we present the numerical results obtained
by static and dynamical MFT. The ZPNR geometry is shown
in Fig. 1. The geometry is specified by two parameters, Nx and
Ny, which are the width and the length of the cluster. We use
open boundaries in the x direction. A single ZPNR unit cell
is shown as a black box in Fig. 1. For our static MFT calcu-
lations, we use Ny = 120 unit cells in y direction and apply
periodic boundary conditions. Thus, our calculation includes
N = 4 × Nx × Ny phosphorus atoms. The ribbon width plays
an essential role in the creation of the edge states [9], and
it has been shown that the ribbon width must be larger than
about 3 nm for stable edge magnetism, which corresponds to
Nx = 7 in this work.

A. The pristine ZPNRs

We first consider a finite ribbon cluster. Later we exploit
translation symmetry and extend our study to an infinite rib-
bon. We focus here on the single-particle gap and the edge
magnetization, which are two practical observables to under-
stand the magnetic features of ZPNRs. The single-particle gap
is here defined as one half of the charge gap, �sp = (En−1 −
2 En + En+1)/2, where En is the ground-state energy in the
sector with n electrons. The edge magnetization is defined as
mz = 1

Nedge

∑Nedge

i∈edge |〈mz
i 〉|. The temperature is set to zero.

Figure 2 shows the evolution of the single-particle gap (a)
and the edge magnetizations (b) as a function of the Hubbard
interaction U/|t1|, calculated by static MFT. The gap is zero
for interaction strengths U < Uc1 � 0.2|t1|. At this point, the
edge magnetism starts to appear. For 0.2 � U/|t1| � 0.6, the
magnetization at the edge is not homogeneous. Precisely at
the critical point, Uc1, the magnetization pattern of one edge is
an antiferromagnetic state, whose existence has been reported
in Ref. [19]. Further increasing the interaction strength, the
magnetic state becomes an IC antiferromagnetic state (see the
left panel in Fig. 3 and Fig. 4). A more detailed analysis is
given in the next section. As can be seen from Fig. 2(a), the
gap starts to increase from the first critical point Uc1 � 0.2|t1|.
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FIG. 2. Evolution of the single-particle gap (a) and the edge mag-
netization (b) as a function of the Hubbard interaction U/|t1|. Results
for different ZPNR widths Nx = 7, 8, 9 are plotted with different
symbols. In panel (a), the inset shows an exponential curve-fitting
of the gap evolution as a function of 1/Nx at U/|t1| = 0.8. In panel
(b), the inset shows the evolution of the maximum magnetization
mz

max versus the Hubbard interaction. Three different regimes are
labeled and highlighted as (I) nonmagnetic, (II) gapped-IC, and (III)
gapped-AFM (or gapped-FM) regions. The ribbon length is fixed at
Ny = 120, and the periodic boundary condition is implemented in the
y direction.

Surprisingly, the band gap forms a cusp and decreases for
stronger interaction strengths until it reaches the second crit-
ical point Uc2 � 0.6|t1|. Beyond Uc2 � 0.6|t1|, the gap shows
a linear growth with the Hubbard interaction. The magnetic

FIG. 3. Three different magnetic spatial configurations for
U/|t1| = 0.3 (left panel) and 1.0 (middle and right panels) of the
Hubbard interaction. The width and length of the ribbons are Nx = 7
and Ny = 120. Since we here use a very long ribbon, we only show
a portion of the ribbon in the y direction. The blue and red circles
display the two different local spin directions. We call the magnetic
configuration in the left, middle, and right panel as IC, AFM, and FM
phases.
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FIG. 4. The left panels present the local magnetic modulation mz
i

at one edge of the ZPNRs, and the right panels give their correspond-
ing Fourier transformation for different Hubbard interactions U/|t1|.
The lattice parameters are the same as in Fig. 2.

configuration in this region is illustrated in the middle panel
of Fig. 3, and we refer to it as the AFM phase. While the
magnetization along the edges is homogeneous, the magne-
tization is exactly opposite at both edges. This configuration
has also been predicted by DFT [18] and QMC [21]. However,
besides this AFM phase, we here find another magnetic solu-
tion illustrated in the right panel of Fig. 3. In this magnetic
configuration, both edges are ferromagnetically aligned, and
interestingly its gap and magnetization behavior are almost
the same as in the AFM case. Comparing the ground-state
energies of the AFM and the FM states, we find an exponen-
tially small energy difference of O(10−6) (see Table I). It is
worth mentioning that to find the AFM or the FM states, a
proper initial guess is necessary while finding the IC phase
does not require such an initial guess. We highlight and label

TABLE I. Ground-state energy per atom for the gapped-AFM
and the gapped-FM phase for three interaction strengths.

U/t1 0.8 0.9 1.0

E (eV)/N −3.1342389394 −3.0761689920 −3.0181486070
FM

E (eV)/N −3.1342358713 −3.0761659724 −3.0181456815
AF

the ZPNRs phases in Fig. 2 as follows: (I) nonmagnetic, (II)
gapped-IC, and (III) gapped-AFM (or gapped-FM) regions.

It is intriguing to see that an FM state in a half-filled
Hubbard model has a slightly lower ground-state energy than
the AFM state. However, we might explain this ferromagnetic
state by using the argumentation of Stoner ferromagnetism:
The wave functions of the edge states of the left and the right
edges have some overlap with each other if the width of the
ZPNR is finite. This overlap will lead to an additional positive
energy contribution in the case of an AFM state, which can be
prevented by ferromagnetically aligning both edges. Thus, the
ferromagnetic state has slightly lower energy. The situation
could be similar to graphene zigzag ribbons, where a sharp
semiconductor (AF) to metallic (FM) transition occurs by
varying the ribbon width, which is seen experimentally [17]
and theoretically [40].

Figure 2(b) shows the edge magnetization mz. To calculate
the edge magnetization, we only consider lattice sites along
the border of the zigzag edge. The general behavior is consis-
tent with the gap evolution. A small magnetization appears at
the first critical point Uc1 � 0.2|t1| and increases very slowly
with U until the second critical point Uc2 � 0.6|t1|. Beyond
Uc2, the edge magnetization mz saturates. We note that our
results of phase (III) are in agreement with the quantum
Monte Carlo result reported in Ref. [21], which predicted
long-range order for U > 0.5 eV at zero temperature. The
inset of Figs. 2(b) shows the maximum of the edge magne-
tization mz

max. Interestingly, it captures both the first and the
second critical point and is consistent with the gap evolution.

To obtain more insight into the effect of the ribbon’s width
on the gap and the magnetization, we present in Fig. 2 data
of different widths as a comparison. One can see that the
gap does not depend on the ribbon width for Nx = 7, 8, 9, for
which the data collapse on top of each other. However, for rib-
bon widths smaller than Nx < 7, we find that the gap depends
on the width. The inset in Fig. 2(a) displays the gap evolution
with the inverse ribbon width, fitted by an exponential curve.
We find that the edge magnetization, mz, also collapses on a
single curve for Nx > 6. In particular, all data show the same
saturation value in the region (III). However, we note that the
QMC calculation [21] for room temperature has shown that
the magnetization decreases with the ribbon width.

Let us now analyze the IC phase in more detail by ac-
cessing the real space data of the local magnetization, mz

i .
The real-space data of the local magnetization, mz

i , reveals
how an antiferromagnetic state at one edge changes into the
ferromagnetic state when increasing the interaction strength.
The local magnetization and its Fourier transformation (FT)
are shown in Figs. 4 for different interaction strengths. For
small U/|t1| = 0.25, the local magnetization pattern is an
antiferromagnetic state along one edge, as also demonstrated
by the FT with a single peak at νmax = π . By increasing U ,
one can see how the local magnetization starts to change. The
single peak in the FT splits into two, which move away from
π . Finally, for a Hubbard interactions larger than U > Uc2,
the maximum in the FT occurs at νmax = 0, which signals a
fully aligned ferromagnetic state along one edge. In Fig 5, we
show the position of the maximum in the FT νmax/π plotted as
function of U/|t1|. It can be seen how the maximum decreases
from 1 to 0 within the IC phase.
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FIG. 5. The position of the maximum amplitude in the frequency
domain as a function of the Hubbard interaction U/|t1| in Fig. 4.

Now we use the translational symmetry of the lattice and
probe the magnetic features of an infinite ribbon. To this end,
we focus on the energy dispersion of an infinite ribbon. For a
given wave number k and spin σ the mean-field Hamiltonian
has N states 	kσ (x) with energy εkσ (x). By implementing the
iterative self-consistent technique [23] in the Brillouin zone
(BZ), we can recover the magnetization configuration in ZP-
NRs. It worth to mention that the magnetic unit cell in the IC
phase is much larger than the lattice unit cell. Thus, we use an
unfolding technique to extract the spectral function. Detailed
information about the unfolding is given in the Appendix.

In Fig. 6, the spectral function of the edge states and the
corresponding gap evolution are illustrated. We show that
the quasiflat bands of the edges are isolated from the bulk
bands, which is the most prominent feature of ZPNRs. It is
already known that the hopping t4 term is responsible for the
dispersion of these flat bands [8]. We also note that these
quasiflat modes are almost doubly degenerate. As shown in
Fig. 6 in the nonmagnetic region (Ū ≡ U/|t1| = 0.2), these
bands are degenerate at the BZ boundaries and split toward
the BZ center. Indeed, this splitting becomes smaller for wider
ribbons. The following reasoning may explain this: Increasing
the width of the ZPNRs will reduce the interaction between
both edges, leading to the decrease of the edge splitting at
the BZ center. When entering the magnetic phase (Ū � 0.2),
the bands split at the kb = ±π/2 points at the Fermi energy.
With increasing interaction strength, the gap size increases,
and spectral weight is shifted at k = 0 above the Fermi energy
and at kb = ±π below the Fermi energy. This shift of spec-
tral weight causes the single-particle gap to decrease before
entering the ferromagnetic phase [region (III)]. Finally, the
spectral weight above and below the Fermi energy form two
quasiparticle bands for U > 0.6. In region (III) with com-
mensurate (here, gapped-AFM) edge magnetism, one band is
shifted toward higher energies, and both bands are separated.
The gap is clearly visible in this phase, and we can read off
the gap in the energy dispersion. The gap evolution is thereby
similar as in Fig. 2 directly calculated by the energy. We find a
gap opening when entering the IC phase. The gap width forms
a maximum in the IC phase, decreases toward the AFM phase,
and finally increases linearly in the AFM phase.

To further validate our MFT results, we will now show
DMFT results. As mentioned above, DMFT has proven to
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FIG. 6. Top and middle panels show the spectral function which
is extracted by unfolding the energy spectrum of an extended unit
cell, Ny = 120. The bottom panel shows the evolution of the single-
particle gap. Regions are named as follows: (I) nonmagnetic, (II)
gapped-IC, and (III) gapped-AFM. The width of the ribbon is fixed
at Nx = 7.

predict the critical point in Graphene adequately when com-
pared to lattice QMC. We here use DMFT for a cluster with
parameters Nx = 8 and Ny = 48. Our results are summarized
in Fig. 7. For weak interaction strengths, 0.7 < U/|t1|, we
find a nonmagnetic solution. We note that any (even a mag-
netic) initial guess for these interaction strengths converges
to the same nonmagnetic state. Furthermore, we find a stable
magnetic state at the edges of ZPNR for U/|t1| > 1.4, which
corresponds to phase (III) in MFT. As with MFT, we can
find a stable AFM and a stable FM state. As in Graphene,
local fluctuations included by DMFT shift the critical point
to stronger interaction strengths compared to static MFT.
More interestingly is the question about the existence of the
IC phase. For interaction strengths U/|t1| < 1.4, we do not
find a converged magnetic solution. However, when starting a
DMFT calculation with a magnetic SU(2)-broken initial state
for 0.7 < U/|t1| < 1.4, we find a small magnetization at the
edges of the ZPNR, which does not vanish when iterating the
DMFT calculation. If we start the DMFT in this regime with
an inhomogeneous magnetic state, then the magnetization
configuration changes in each iteration without completely
vanishing, but we cannot find a converged solution. We note
here that to find an incommensurate state with DMFT, a large
cluster and an appropriate initial guess are necessary. Thus,
we interpret these DMFT calculations as an attempt to stabi-
lize an incommensurate state. However, as we cannot find a
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FIG. 7. DMFT calculations of the edge magnetization (top panel)
as a function of the Hubbard interaction U/|t1| for a ZPNR width
Nx = 8. Two different regimes are labeled and highlighted as (I)
nonmagnetic and (II) AFM gapped (or FM gapped) regions. Bot-
tom panels show the spectral functions for three different Hubbard
interactions. The ribbon length is fixed at Ny = 48 using periodic
boundary conditions in the y direction.

converged solution, we cannot calculate further properties of
this phase.

An advantage of DMFT over static MFT is that spectral
functions can readily be calculated and include lifetime ef-
fects due to correlations. The spectral functions calculated
by DMFT are shown in Fig. 7. In contrast to static MFT,
DMFT already includes modifications of the spectral function
in the nonmagnetic phase (I). For U/|t1| = 0.8 (converged
nonmagnetic solution), we find some (blurred) spectral weight
below the quasiparticle band at k = 0. This spectral weight
should correspond to the splitting of the quasiparticle band
at the center of the BZ, which is smeared out because of
correlations. Furthermore, we find some spectral weight above
the quasiparticle band at kb = ±π . With increasing interac-
tion strength, spectral weight is particularly transferred from
the quasiparticle band lying at the Fermi energy to energies
below the Fermi energy, slowly forming a second band. At
the same time, the spectral weight moves to higher energies at
kb = ±π . These two processes finally form two bands, which
are clearly visible for U/|tt | = 1.6 with a gap between them.
While in static MFT, the formation of a gap takes place when
entering the AFM phase (III), in DMFT this separation al-
ready starts in the nonmagnetic phase due to local fluctuations.

Finally, we want to examine the above mentioned gapped-
FM phase in more detail, which coexists with the gapped-
AFM phase. We repeat the previous calculations, using a
proper initial guess to obtain the FM phase. The results
are depicted in Fig. 8. We note that when both edges are
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FIG. 8. Same as in Fig. 6, but for the FM case. Regions are as
follows: (I) nonmagnetic, (II) gapped-IC, and (III) gapped-FM. Red
and blue lines in the spectral functions correspond to different spin
directions.

ferromagnetically aligned, we can also find the IC phase. The
gap evolution reveals a small dome in the region (II). The gap
opens at the first critical point, Uc1, forms a maximum and
then decreases when approaching the second critical point
Uc2. In the region (III), the gap increases linearly with the
Hubbard strength interaction. It is interesting to note that the
energy dispersion of the AFM state (Fig. 6) and the FM state
(Fig. 8) are almost identical. However, while in the AFM state,
all edge modes are spin degenerate, in the FM state, the edge
modes above the Fermi energy have a definite spin-directions
and the edge modes below the Fermi energy exhibit an oppo-
site spin direction. Furthermore, there is a slight additional
splitting of the edge modes around k = 0 in the FM state,
which is absent in the AFM state. This small splitting is
responsible for the energy difference between the AFM and
the FM state.

B. Strain effects

Next, we want to study the impact of strain and disorder
on the magnetic state. To study strain effects, we follow the
approach developed in Ref. [41,42]. We will focus here on the
tensile strain in the normal direction to the phosphorene plane
[43]. By applying an axial strain, following the Harrison re-
lation [44], the strain-induced modified hopping parameter in
the linear regime can be written as ti ≈ (1 − 2αi

xεx − 2αi
yεy −

2αi
zεz ), where α

j
i are coefficients related to the structure of

phosphorene and ε j is the strain in the j direction.
Before exploring strain effects on the magnetic features,

we briefly comment on the energy dispersion under strain.
Figure 9 presents the energy dispersion for three different
strengths of tensile strain εz = 0.0%, 10%, 20% in the ab-
sence of the Hubbard interaction. It can be seen that the tensile
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FIG. 9. Energy dispersion of ZPNR shown for three different
strengths of tensile strain εz = 0.0%, 10%, 20% in the absence of
the Hubbard interaction U . The two quasiflat edges, isolated from
the bulk, are colored in gold. The width of the ribbon is the same as
in Fig. 4. The horizontal red line marks the Fermi level.

strain has a significant impact on the band structure: The edge
modes are split, which is accompanied by a compression of
the bulk bands. Even for strain εz = 20%, the degeneracy of
the edge modes at the BZ boundaries survives, while one of
the split levels crosses the Fermi energy at k = 0. We also note
that for strain εz = 10%, the bulk band gets flattened, which
is analogous to the strain-induced Landau Levels effects in
graphene [45–48].

We now explore the evolution of the gap and the mag-
netization as a function of the Hubbard interaction in the
presence of tensile strain. Figures 10(a) and 10(c) show the
results for different ribbon widths with fixed strain εz = 10%.
Figures 10(b) and 10(d) show the results for three different
strengths of tensile strain εz = 0.0%, 10%, 20% with a fixed
ribbon width Nx = 7. One profound effect of tensile strain is
the destruction of the intermediate IC phase. For εz = 20%,
the IC phase has almost vanished. We furthermore notice that
the second critical point, Uc2, shifts to a larger value. Thus,
the tensile strain has a tremendous impact on edge magnetism.
This can be understood by the following explanation: Under
tensile strain, the t2 and t4 hopping parameters change more
strongly than the others. As shown in Fig. 9, the tensile
strain splits the edge modes and increases their width. The
increased bandwidth of these modes makes a larger interaction
strength necessary to stabilize the AFM phase. Furthermore,
as mentioned earlier, the t4 hopping term is important for the
shape of the edge mode and thus plays an essential role in
stabilizing the IC phase. Extrapolating the magnetization mz

to larger values of tensile strain for U/|t1| = 0.8, shown in
the inset of Fig. 10(d), we find that magnetism should vanish
at about εz = 50%, which is much higher than the prediction
by first principles in Ref. [19]. We note that a strain of about
εz = 50% is already big enough to destroy the whole structure
of the edge modes. Thus, at the MFT level, we can conclude
that a magnetic to nonmagnetic transition is not feasible.
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FIG. 10. Panels (a) and (c) show the gap and edge magnetization
for different ribbon widths at fixed tensile strain εz = 10%. In panels
(b) and (d), we fix the ribbon width, Nx = 7, and show three different
strengths of tensile strain εz = 0.0%, 10%, 20%. The inset in panel
(d) shows a log-log plot of the mz evolution as a function of the tensile
strain strength at U/|t1| = 0.8 (the line is a power-law fit).

C. Disorder effects

To study the effects of disorder, we include an additional
term along the edges in the Hamiltonian Hw = ∑

i,σ wini,σ ,
corresponding to nonmagnetic disorder; wi is the strength of

0.0

0.1

0.2

0.3

Δ
sp

w = 0.0|t1|
w = 0.2|t1|

0.0 0.2 0.4 0.6 0.8 1.0

U/|t1|
0.0

0.2

0.4

m
z

w = 0.0|t1|
w = 0.2|t1|

FIG. 11. Evolution of the single-particle gap (upper panel) and
edge magnetization (lower panel) as a function of the Hubbard inter-
action U . Data for clean and disordered cases wi/|t1| = 0.0, 0.3 are
shown. The width of the ribbon is the same as in Fig. 4.
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the disorder at site i, which is randomly chosen in the interval
[−w/2; w/2]. Because the translational symmetry along the
y direction is broken, we solve for the ground state in a finite
cluster with Ny = 120 using the periodic boundary condition.
To be independent of a special configuration of the disorder,
we average over 100 different realizations. The influence of
the edge disorder on the magnetic phases is presented in
Fig. 11. It can be seen that both, the gap and edge magne-
tization, are robust against disorder. We have not found any
deviation in the saturation value of the edge magnetization
in the gapped-AF(FM) phase. Moreover, the evolution of the
gap also indicates the existence of the gapped-IC phase in the
disordered system. This is in contrast to the result of strain in
the preceding section. However, as mentioned before, the hop-
ping parameters t2 and t4, play an essential role in stabilizing
the edge states and its corresponding magnetic features. Thus,
introducing Anderson type disorder will not destabilize these
states.

IV. SUMMARY

We have investigated the edge-state magnetic properties of
black phosphorene nanoribbons using a tight-binding model
with an electron-electron Hubbard interaction U . Our study
aimed to explore the magnetic features of large clusters of
black phosphorene nanoribbons for which numerically expen-
sive techniques such as density functional theory and quantum
Monte Carlo techniques are not feasible. Thus, to study the
model, we have used a combination of static and DMFT.
While our calculations for large U are in agreement with pre-
vious results, we find an incommensurate magnetic phase for
weak interactions. Performing a detailed Fourier analysis of
the magnetization evolution in the IC phase, we find a second
critical interaction Uc2 at which the IC phases changes to an
AFM or FM phase. Finally, we have analyzed the influence
of strain and disorder on the magnetic properties. Our results
show that while the IC phase is robust to Anderson type
disorder, it is fragile against strain.
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APPENDIX: UNFOLDING OF THE GREEN’S FUNCTION

When calculating the band structure for the IC phase, we
use large unit cells including many layers in the y direc-
tion. This yields a folded band structure, which is difficult
to compare with the ferromagnetic or nonmagnetic state. We
therefore unfold the band structure using the Green’s func-
tion as described here. When calculating the cluster Green’s
function with open boundary conditions in the x direction,
but including ky momentum dependence in the y direction we
obtain

G
k′

y

y′
1,y

′
2
(ω) = (

ω + iη − Hk′
y

)−1

y′
1,y

′
2
, (A1)

where 0 � y′
1,2 < Ny correspond to the y component of differ-

ent lattice sites in the unit cell and Hky is the Hamiltonian for
the momentum ky. Because we do not change the x coordi-
nate, we neglect it for convenience. To calculate the unfolded
Green’s function, we need to calculate

Gky (ω) = 1

N

∑
y1,y2

exp [−iky(y1 − y2)]Gy1,y2 (ω), (A2)

where 0 � y1,2 < N and N the is number of lattice sites of
the full lattice which includes M unit cells with Ny atoms,
thus N = MNy. We can calculate Gy1,y2 (ω) from the cluster
Green’s function as

Gy1,y2 (ω) = 1

M

∑
k′

y

G
k′

y

y′
1,y

′
2
(ω) exp[ik′

y(n1 − n2)], (A3)

y1 = n1Ny + y′
1, (A4)

y2 = n2Ny + y′
2. (A5)

We can now calculate the unfolded Green’s function as

Gky (ω) = 1

N

∑
y1,y2

exp [−iky(y1 − y2)]
1

M

∑
k′

y

G
k′

y

y′
1,y

′
2
(ω) exp[ik′

y(n1 − n2)]

= 1

NM

∑
n1,n2

∑
y′

1,y
′
2

∑
k′

y

exp{−iky[(n1 − n2)Ny + y′
1 − y′

2]}Gk′
y

y′
1,y

′
2
(ω) exp[ik′

y(n1 − n2)]

= M2

NM

∑
y′

1,y
′
2

∑
k′

y

δNyky,k′
y
exp[−iky(y′

1 − y′
2)]G

k′
y

y′
1,y

′
2
(ω)

= 1

Ny

∑
y′

1,y
′
2

exp[−iky(y′
1 − y′

2)]GNyky

y′
1,y

′
2
(ω). (A6)

Finally, we can calculate the spectral functions as shown in the main text as

Aky (ω) = − 1

π
Im(Gky (ω)). (A7)
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