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Identifying quantum phases and phase transitions is key to understanding complex phenomena in statistical
physics. In this work, we propose an unconventional strategy to access quantum phases and phase transitions by
visualization based on the distribution of ground states in Hilbert space. By mapping the quantum states in Hilbert
space onto a two-dimensional feature space using an unsupervised machine learning method, distinct phases can
be directly specified and quantum phase transitions can be well identified. Our proposal is benchmarked on
gapped, critical, and topological phases in several strongly correlated spin systems. As this proposal directly
learns quantum phases and phase transitions from the distributions of the quantum states, it does not require
priori knowledge of order parameters of physical systems, which thus indicates a perceptual route to identify
quantum phases and phase transitions particularly in complex systems by visualization through learning.
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I. INTRODUCTION

Studying quantum phases and phase transitions in many-
body systems belongs to the most challenging topics in
contemporary physics. The characterization of quantum
phases within Landau paradigm [1,2] often requires certain
prior knowledge of order parameters. For the phases beyond
the Landau paradigm [3], one of the main challenges is how
to find proper “order parameters,” which might be nonlocal or
could not be represented by any observables, to characterize
the quantum phases [4]. While conventional approaches usu-
ally rely on the priori knowledge and human wisdom, machine
learning (ML) provides an alternative way by training an
ML model based on certain given relevant data. One popular
strategy is to utilize a machine learning model (such as neural
network or Boltzmann machine) as the classifier to identify
the phases of many-body systems [5–8]. In these cases, a
supervised learning process is usually involved.

Another promising direction is to incorporate with the
unsupervised learning schemes to reveal the phases. For in-
stance, Wang et al. uses a linear dimensionality reduction
algorithm known as principle component analyses (PCA) [9]
to identify the thermodynamic phase transitions of classical
Ising models [10]. One advantage of the unsupervised learn-
ing schemes is that less prior knowledge is required, such
as the knowledge on the number of phases and the data for
training the model [10–21]. However, the unsupervised learn-
ing of quantum phases are particularly challenging, mainly
due to the exponentially large Hilbert space. In the previous
works, one usually implements Monte Carlo samplings to
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solve this issue [10–15]. It is strongly desired to develop
novel, efficient, and simple schemes to learn quantum phases
via an unsupervised process.

In this work, we propose an unconventional approach to
access the physical information of quantum phases and phase
transitions of many-body systems. Our proposal is to probe
the ground-states (GS) distribution in Hilbert space (denoted
as H) by the unsupervised nonlinear dimensionality reduc-
tion (DR) scheme [19–24] known as t-distributed stochastic
neighbor embedding (t-SNE) [14,25–27]. Such a DR algo-
rithm maps the quantum states from H to a two-dimensional
(2D) feature space (denoted as R2) by stochastically maxi-
mizing the similarity between the GS distribution in H and
that in R2. By simply viewing the distribution in R2 using
naked eyes or employing classical algorithms such as k-means
[28], we show that the ground states can be readily classified
into correct phases and the critical points of quantum phase
transitions can be reliably determined. Our proposal is bench-
marked on one-dimensional (1D) quantum lattice models,
where we visualize that the quantum states in various phases
(including gapped, critical, and topological phases) cluster
into different patterns in R2, and the phase transitions can be
directly specified. Different from the conventional approaches
in many-body physics where one usually focuses on order
parameters, entanglements and so on, our work poses a new
way to view quantum phases from mutual distances between
them. In addition, the present proposal works well not only for
quantum data like quantum states but also for classical data
like image classification.

II. QUANTUM PHASE VISUALIZATION

The central idea of our scheme is to visualize the quantum
states by reducing the dimensionality of the exponentially
large Hilbert space spanned by the quantum states to two

2469-9950/2021/103(7)/075106(11) 075106-1 ©2021 American Physical Society

https://orcid.org/0000-0003-3846-7880
https://orcid.org/0000-0001-7370-4525
https://orcid.org/0000-0003-1844-7268
https://orcid.org/0000-0002-8149-4342
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.075106&domain=pdf&date_stamp=2021-02-02
https://doi.org/10.1103/PhysRevB.103.075106


YANG, SUN, RAN, AND SU PHYSICAL REVIEW B 103, 075106 (2021)

dimensionality using t-SNE. The t-SNE is a nonlinear DR
method that has been widely used in machine learning to
visualize high-dimensional data [26]. Consider a quantum
Hamiltonian Ĥ (α) with α a physical parameter (e.g., a cou-
pling constant or magnetic field), where we suppose a phase
transition occurs at α = αc. When α changes continuously,
the GS’s (denoted as {|ψα〉}) form a manifold in the Hilbert
space H. To proceed, we sample N states by taking N different
values of α. These quantum states are distributed within the
manifold.

Given the data in a high-dimensional space (e.g., the GS’s
{|ψα〉} in the Hilbert space H), one can define the joint prob-
ability for each pair of the data (|ψα〉 and |ψα′ 〉) as

P(DH
α,α′ ) = P(α|α′) + P(α′|α)

2N
, (1)

where N is the number of states and the conditional probabil-
ity is defined by the distances as

P(α|α′) = exp
[−(

DH
αα′

)2
/2σ 2

α

]
∑

β �=α exp
[ − (

DH
αβ

)2
/2σ 2

α

] , (2)

with {σα} the hyper-parameters in t-SNE, and DH
α,α′ is the

measure of the distances in H, which can be chosen as dif-
ferent quantities (see below).

One usually does not directly control {σα} but define a
quantity named as perplexity P . Given P , one can perform
the binary search to determine {σα} that satisfy

log2 P = −
∑

α′
P(α′|α) log2 P(α|α′), (3)

The perplexity controls how nonlocally that one state is re-
lated to others in the joint probability distributions. More
results are provided in Sec. V to show the robustness of phase
visualization with different perplexities.

To map {|ψα〉} onto {yα} in R2, one can randomly initial-
ize {yα} and define the joint probabilities {P(DR

α,α′ )} as the
Student t-distribution [26]

P
(
DR

α,α′
) =

[
1 + (

DR
α,α′

)2]−1

∑
β �=α

[
1 + (

DR
α,β

)2]−1 , (4)

where the measure of the distances in R2 is chosen to be the
Euclidean distances DR

α,α′ = ‖yα − yα′ ‖.
To capture {|ψα〉} by {yα}, the strategy of t-SNE is to

optimize {yα} by minimizing the Kullback-Leibler (KL) di-
vergence [29] between {P(DH

α,α′ )} and {P(DR
α,α′ )}. The KL

divergence is defined as

KL(H,R2) =
∑

αα′
P
(
DH

α,α′
)

log
P
(
DH

α,α′
)

P
(
DR

α,α′
) . (5)

The gradients by varying yα are given by

δKL(H,R2)

δyα
= 4

∑

α′

[
P
(
DH

α,α′
) − P

(
DR

α,α′
)]

(yα − yα′
)

1 + (
DR

α,α′
)2 .

(6)
One may use a gradient-descent approach to minimize
KL(H,R2). The converged yα are considered as the embed-
ding of ψα in R2 where the mutual distances among {|ψα〉}
in H are optimally retained by yα .

FIG. 1. Visualizing quantum states via an unsupervised nonlin-
ear dimensionality reduction: An illustration. The ground states in
the Hilbert space H of exponentially large dimensionality can be
mapped onto a two-dimensional feature space R2 via t-SNE, taking
negative logarithmic fidelity to measure the distance between two
quantum states. Different points in the feature space represent the
ground states at different physical parameters in the Hamiltonian.
The quantum phases and phase transitions can be clearly specified
through the visualized distribution of the states in R2.

To visualize the distribution of certain given GS’s {|ψα〉},
we invoke the recipe of t-SNE and map the states onto the

vectors {yα} living in a 2D feature space R2, i.e., |ψα〉 f→ yα

with yα = [yα
1 , yα

2 ] a two-component vector and f a nonlinear
map from H to R2 (Fig. 1). It should be noted that {yα} in R2

is randomly initialized. To be specific, we start from N given
states {|ψα〉} and define the joint probability distributions
{P(DH

α,α′ )} based on the distances DH
α,α′ between any two of

states |ψα〉 and |ψα′ 〉. Then, we randomly initialize N vectors
{yα} in R2 and define joint probability distributions {P(DR

α,α′ )}
based on the distances DR

α,α′ between any two vectors in {yα}.
We choose the Euclidean distance as DR

α,α′ , and the negative
logarithmic fidelity (NLF) [30,31]

DH
α,α′ = − log(|〈ψα|ψα′ 〉|) (7)

to measure the distance between two GS’s in H.
To capture the distribution of {|ψα〉} by that of {yα}, we

directly optimize {yα} so that the difference between two
probability distributions {P(DH

α,α′ )} and {P(DR
α,α′ )} (averaging

over all possible pairs) is minimized. The DR map is left
implicit. Consequently, the converged vectors {yα} represent
the quantum states {|ψα〉} in the 2D feature space of reduced
dimensionality.

III. IDENTIFYING QUANTUM PHASES IN SPIN MODELS
BY VISUALIZATION

A. Landau-type phase transition in 1D transverse
field Ising spin chain

We firstly examine our proposal on the 1D transverse
field Ising model (TFIM) [32], where the Hamiltonian reads
Ĥ (hx ) = ∑

i Ŝz
i Ŝz

i+1 − hx
∑

i Ŝx
i , where Ŝz

i and Ŝx
i stand for

the z- and x-component spin operators, respectively, and hx
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(a) (b) (c)

FIG. 2. The visualizations of distinct quantum phases of the 1D transverse field Ising model in two-dimensional feature space R2 for
three different measuring distances between quantum states. In panel (a), the map is implemented by t-SNE where the distances of states are
measured by the Euclidean distances DM

α,α′ = ‖vα − vα′ ‖ of the MPS parameters. In panel (b), we use PCA for mapping and the entanglement
spectra [16] for measuring the distances of states. Panel (c) shows the results of our proposal, where the map is implemented by t-SNE with
negative logarithmic fidelity (NLF) DH

α,α′ = − log(|〈ψα|ψα′ 〉|) as the distance between the ground state. The antiferromagnetic (AFM) and
polarized ferromagnetic (FM) phases are clearly specified. Each state is represented by a point on a plane of two components (y1, y2) in space
R2, and the color bar indicates the magnitudes of hx . We calculate 50 GS’s at different hx by DMRG, where the values of hx are taken uniformly
from 0 to 1. For DMRG, we take the size of the system L = 80 and the dimension cutoff χ = 30. For t-SNE, we take the number of iteration
steps niter = 5000 and the perplexity P = 24.

is the transverse field. It has been rigorously shown that a
Landau-type quantum phase transition occurs at the critical
field hc

x = 0.5, which separates the antiferromagnetic (AFM)
from polarized ferromagnetic (FM) phases. We employ the
density matrix renormalization group (DMRG) [33] to cal-
culate the GS’s for different transverse fields in the form of
matrix product states (MPS) [34–38]. The visualizations of
quantum phases of the 1D TFIM using three distinct schemes
are presented in Fig. 2.

In Fig. 2(a), we choose the distance between two GS’s
as the Euclidean distance DM

α,α′ = ‖vα − vα′ ‖ for compari-
son, where the vector vα is simply formed by all variational
parameters in corresponding MPS (i.e., all tensor elements).
The t-SNE is used to reduce the dimensionality from Ñ to
2 with Ñ the total number of tensor elements in the MPS.
We adopt the canonical form [39] to fix the gauge degrees
of freedom of the MPS. It is known that MPS can give an
efficient parametrization of the exponentially-large number of
GS’s of the Hamiltonian under study, where Ñ scales only
linearly with the system size [40]. However, our results show
that the states after DR are mixed up in R2. It suggests that
such a parametrization may not reflect well the quantum state
distribution in H.

In Fig. 2(b), we pick the bipartite entanglement spectra
(ES) sα of the GS’s as the input data, which is χ -dimensional
with χ the dimension cutoff in DMRG. Then these ES are
mapped onto R2 by means of PCA [9–13,41]. Different from
the t-SNE, the PCA uses a linear transformation for DR and
obtains the two components in R2 that optimally retain the
covariances of the data in original space. PCA succeeds in
identifying the phase transitions of the classical spin models
based on the sampled spin configurations by Monte Carlo
methods [10–13]. However, for quantum many-body system,
it is hardly to directly input the quantum states to PCA due to
its exponentially large Hilbert space. One way for classifying
the quantum states by PCA is to input the ES of the quantum
states [16], where ES is viewed as the effective feature of
quantum states. The states from the two phases form a 1D

stream in R2 with a break corresponding to the region near
the transition point. Our results by PCA are in accordance with
those on the Kitaev chain [16]. As indicated in Fig. 2(b), it is
not easy to identify the critical point from the distribution of
ES with reduced dimensionality by PCA, possibly due to the
absence of the nonlinearity in the map between H and R2.

Figure 2(c) demonstrates the results using our proposal,
in which the t-SNE is applied to reduce nonlinearly the di-
mensionality based on the NLF’s [Eq. (7)]. It is obvious that
the states inside the AFM and FM phases cluster, and the
distribution in R2 exhibits an “hourglass” pattern formed by
two oval regions. The critical point between the AFM and
FM phases can be easily identified by naked eyes (or by
unsupervised learning methods where the two ovals touch
each other. In previous works, t-SNE has been used to classify
phases of both the classical spin models [11] and quantum
many-body models [14]. Monte Carlo samplings in a given
basis are required to obtain the data for implementing DR.
The distances among the quantum states are estimated by
Euclidean distances among the sampled (classical) configura-
tions, instead of the states themselves. In this work, we choose
NLF to measure the distances. NLF can be efficiently calcu-
lated using TN representation, where Monte Carlo samplings
are not required. The relevant stochastic errors in the sampling
processes can therefore be avoided. The result in Fig. 2(c)
indicates that the NLF is a more proper choice for measuring
the distance between two GS’s in reducing the dimensionality.
The convergence and robustness against small noises of the
t-SNE with NLF for the visualization of quantum states and
phase transitions as well as for the classical data are presented
in Sec. V.

B. Identifying multiple phases in XXZ spin chain

Determining the critical points of more than two
phases is challenging with the existing machine-learning-
based methods such as confusion [16]. We consider the
1D spin- 1

2 anisotropic XXZ model Ĥ (�) = ∑
i(Ŝ

x
i Ŝx

i+1 +
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(a)

(b)

FIG. 3. (a) The three-dimensional (3D) visualization of distinct
phases in the 1D anisotropic XXZ antiferromagnetic (AFM) Heisen-
berg model with anisotropy �. In addition to the two dimensions of
features y1 and y2 of R2, � is also plotted as the third dimension for
a better visualization. Two expected transition points at � = −1 and
1 are indicated by two semitransparent planes to assist visualization.
(b) The visualization of panel (a) in feature space R2. Three phases
(AFM, XY and FM) are clearly visualized with different patterns in
the 3D or 2D space. There are 400 ground states calculated by dis-
cretizing � with an interval 0.01. We take the system size L = 120,
the dimension cutoff of DMRG χ = 160, iteration steps in t-SNE
niter = 5000 with the perplexity P = 24.

Ŝy
i Sy

i+1) + �
∑

i Ŝz
i Ŝz

i+1 [42] with � representing the mag-
netic anisotropy. This system possesses three phases, say FM
(� < −1), XY (−1 < � < 1), and AFM phases (� > 1) [42].
Figure 3(a) shows the visualization of the quantum phases of
this model in the space spanned by feature y1, feature y2, and
the anisotropy parameter �. The expected transition points
� = −1 and � = 1 are indicated by two semitransparent
planes. While the states in the FM or AFM phase cluster
within the two oval regions of R2 [see Fig. 3(b)], the states in
the XY phase form a 1D stream. The phase transition points
can be accurately identified as the end points of this stream,
which touch on the � = 1 and −1 planes, respectively.

Recall that for the TFIM, the gapped FM and AFM phases
are separated by a critical point at hx = 0.5. The states in the
two phases cluster into two ovals in the feature space, where
the touching point corresponds to the critical point. Different
from the XXZ model, the FM and AFM phases are connected
not by a point but a finite region −1 < � < 1, in which the
system is in a gapless XY phase. We may observe that a 1D
stream corresponding to such a gapless region appears, and
consequently the two ovals are separated.

C. Topological-to-magnetic phase transitions in spin-1 chains

To further demonstrate the visualized patterns and the iden-
tification of phase transitions by our proposal, we turn to
the spin-1 antiferromagnetic Heisenberg uniform chain in a
magnetic field (hz), where the Hamiltonian reads Ĥ (hz ) =∑

i

∑
κ=x,y,z Ŝκ

i Ŝκ
i+1 − hz

∑
i Ŝz

i . For hz < hc1 with the transi-
tion point hc1 � 0.414, the system is in a topological phase
known as Haldane phase [43–46] with nontrivial boundary
excitations and long-rang string orders [47–49]. For hc1 <

hz < hc2 (hc2 = 4), the system is in a gapless and topologically
trivial magnetic phase know as Luttinger liquid (LL) phase
[46]. For hz > hc2 , the system is in a fully polarized (FP)
phase, which is also a gapped phase. As shown in Fig. 4(a),
similar patterns as those of the XXZ model appear, where the
Haldane, LL, and FP phases are obviously separated. The
gapped Haldane and FP phases are visualized as ovals, and
the gapless LL phase is visualized as a 1D stream. It should
be noted that the visualization of LL phase can be influenced
by the number of quantum states sampled therein. Insufficient
number of sampled states could result in incorrect visualiza-
tions. One simple way to avoid such a potential issue is to
check the visualizations with different numbers of states.

Figure 4(b) shows the pattern formed by the GS’s of the
spin-1 Heisenberg AFM model on zigzag chain with nearest-
neighboring (NN) and next-nearest-neighboring (NNN) cou-
plings Ĥ (J1, J2) = ∑

i

∑
κ=x,y,z(J1Ŝκ

i Ŝκ
i+1 + J2Ŝκ

i Ŝκ
i+2), where

J1 and J2 denotes the strength of the NN and NNN couplings,
respectively. Such a system is frustrated [50] as there is a
competition between two kinds of resonating valence bond
configurations, of which both possess nontrivial topological
properties. A quantum phase transition occurs at (J2/J1)c �
0.744 [51], where the system is in the Haldane phase and the
NNN Haldane phase on two sides of the critical point. Again,
an “hourglass” pattern emerges, where the two phases cluster
in two oval areas. The touching point with J2/J1 = 0.745 ±
0.005 (the interval of the discretization step δ(J2/J1) = 0.005)
accurately identifies the transition point.

IV. AUTOMATIC IDENTIFICATION OF QUANTUM
PHASES BY K-MEANS

After mapping the ground states to the two-dimensional
feature space R2, we show that different quantum phases can
be distinguished simply by naked eyes from how the quantum
states are distributed in R2. Below, we show that one may
use k-means algorithm [28] to classify the states based on the
distributions in R2.

K-means method is an unsupervised learning algorithm
and can be used to implement classification tasks. For a set
of samples {yα}, k-means partitions them into K clusters {Sk}
with k = 1, . . . , K . The center of each cluster (denoted as
{mk}; also called the centroids) can be defined by the samples
therein as

mk = 1

Nk

∑

yα∈Sk

yα, (8)

where Nk is the number of samples in Sk .
To classify {yα}, one performs the following two steps

iteratively. The first step is to assign the samples to the K

075106-4



VISUALIZING QUANTUM PHASES AND IDENTIFYING … PHYSICAL REVIEW B 103, 075106 (2021)

H
al
da
ne

0.42

LL
FP

FIG. 4. The visualization of quantum phases in the spin-1
Heisenberg chain (a) in different magnetic field hz, and (b) the
visualization of those of the spin-1 Heisenberg antiferromagnetic
zigzag chain with different strength of the next-nearest neighboring
(NNN) couplings J2/J1 (the nearest neighboring coupling is fixed at
1). In panel (a), the Haldane phase Luttinger liquid (LL) phase and
fully polarized (FP) phase are clearly specified, where it gives the
critical field hz1 = 0.42 ± 0.02. and hz2 = 4 ± 0.02 In panel (b), the
two distinct Haldane phases are obviously separated, which shows
the critical NNN coupling (J2/J1) = 0.745 ± 0.005. The distance of
quantum states is measured by DH

α,α′ = − log(|〈ψα|ψα′ 〉|). We take
250 values of hz and 40 values of J2/J1 with the interval δh = 0.02
and δJ2/J1 = 0.005 for the two models, respectively. We take the sys-
tem size L = 128 and 100, the dimension cutoff of DMRG χ = 128
and 60 for panels (a) and (b), respectively. Iterative steps in t-SNE
niter = 5000 with the perplexity P = 20 for both.

clusters according to the given {mk}, where any sample in a
given cluster should possess the smallest Euclidean distance
to the center of this cluster than to other centers. It means that
the samples are divided into K sets {Sk} by satisfying

Sk = {yα : ‖yα − mk‖ � ‖yα − m j‖ ∀ j}, (9)

where ‖yα − mk‖ represents the Euclid distance between the
sample yα and the center mk , and j goes over all centers.
The second step is to update {mk} based on the present {Sk}
according to Eq. (8). These two steps are executed iteratively
until {mk} converges.

We apply k-means to categorize the ground states of spin-1
antiferromagnetic Heisenberg chain into two phases (K = 2)
after mapping those states onto R2 space by t-SNE. In Fig. 5,
the numbers represent the ground states with reduced dimen-
sionality {yα} in different magnetic fields α, and the two
stars represent the centers {mk}. The states divided into two
clusters are marked by different colors. To begin with, one first
randomly initializes the positions of the centers, with which
the states are divided into two clusters according to Eq. (9).
After four steps of iterations, {mk} converges, and the states
in different phases are successfully divided to the two clusters.
Figure 5(f) shows how the centers converge by making use of

D(nit ) =
K∑

k

‖mk (nit ) − mk (nit − 1)‖, (10)

with {mk (t )} the centers after t iterations. We find that D(t )
decreases almost to 0 for nit = 4.

Though K is previously known in the above example, it can
also be determined automatically when one does not know
how many clusters that the samples should be divided into.
We refer to the silhouette coefficient (SC) [52] and Calinski-
Harabasz index (CHI) [53,54] for this purpose. The SC is
defined as

SC = 1

J

J∑

α=1

Dα
out − Dα

in

max
(
Dα

out, Dα
in

) , (11a)

Dα
in = 1

Nk(α) − 1

∑

yα′ ∈Sk(α)

‖yα′ − yα‖, (11b)

Dα
out = 1

N − Nk(α)

∑

yα′
/∈Sk(α)

‖yα′ − yα‖, (11c)

where k(α) represents the cluster that the αth data point be-

longs to, D j
in (D j

out) is the average distance of sample j to
others in (not in) the same cluster. The value of SC ranges
from −1 to 1. The optimal K is chosen so that SC → 1 [52].

The CHI is defined as [53]

CHI = Trace(B)/(K − 1)

Trace(W )/(J − K )
, (12a)

Trace(B) =
K∑

k=1

Nk ‖ mk − m0‖2, (12b)

Trace(W ) =
K∑

k=1

∑

yα∈Sk(α)

‖yα − mk‖2
. (12c)

B is the between-cluster scatter matrix and W is the within-
cluster scatter matrix; m0 is the centroid of the whole
dataset. The optimal K is chosen so that CHI reaches its
maximum [53].

For the grounds states of the spin S = 1 antiferromagnetic
Heisenberg uniform chain and zigzag chain, Fig. 6 shows the
SC and CHI calculated from the distribution of the ground
states in R2. One can see that the optimal number of clusters
should be K = 2, consistent with the fact that there are two
phases for each system. In this way, one does not need priori
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Panels (a)-(e) demonstrate the evolution of samples classified into different clusters (marked by red or blue) and the centers of
clusters (indicated by the two stars) after different iteration time in k-means. The numbers in panels (a)-(e) denote the magnitudes of the
applied magnetic fields. f shows the difference of the centers before and after the nit th iteration [see Eq. (10)], showing that the iteration
converges only after nit = 4 steps.

knowledge about either the properties of the original states or
the number of phases.

V. ROBUSTNESS OF T -SNE FOR QUANTUM
PHASE IDENTIFICATION

Fig. 7 show in t-SNE, how the distribution in R2 of
the ground states of the transverse field Ising model con-
verges. Remind that for N given states |ψα〉 in the Hilbert
space H, the t-SNE directly optimizes yα in R2 that are the
N corresponding low-dimensional vectors after reducing the
dimensionality. Initially, yα are randomly determined. Fig-
sures 7(a)–7(e) show the yα after nit iterations with nit =

(a) (b)

FIG. 6. The SC [Eq. (11a)] and CHI [Eq. (12a)] versus K for
the spin S = 1 antiferromagnetic Heisenberg uniform chain (a) and
zigzag chain (b).

250, 300, 350, 400, 500, respectively. One can see that after
nit � 400 iterations, the distribution converges, where the two
quantum phases are clearly visualized. The KL divergence,
which indicates the difference between the distributions of the
samples in H and R2, decays with nit as shown in Fig. 7(f).
A GIF was provided [55] to animatedly show how the states
cluster in R2 as the iteration time increases.

From the previous works in machine learning, it is known
that the visualization by t-SNE is robust to the perplexity
P . Figure 8 shows that the ground states of the transverse
field Ising model (TFIM) by t-SNE with different perplexities
form similar hourglasslike patterns. The difference of these
patterns is to what extent the hourglass extends in the two-
dimensional plane. This is consistent with the fact that the
perplexity controls how nonlocally one state is correlated to
others from the joint probability distribution. More specif-
ically, as the dimensionality is reduced, the distribution in
R2 may not respect the mutual relations among the states
in H. For instance, it is possible that one has ||y1 − y2|| <

||y1 − y3|| in H but ||y1 − y2|| > ||y1 − y3|| in R2. A small
perplexity means that the distribution in R2 should in prior
satisfies the mutual relations of distances for those with small
distances. Consequently in the visualization with small P ,
different clusters tend to separate apart mutually. This leads
to a “thinner” hourglass than those with larger perplexities.
Note that in practice, the perplexity is usually smaller than the
number of samples [26].
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Distribution of quantum states in 2D feature space varies with iteration time of t-SNE. The distribution in R2 of the grounds states
of TFIM by t-SNE with the iteration time nit = 250, 300, 350 400, 500 in panels (a)-(e), respectively. Panel (f) shows the KL divergence versus
nit . Here we take the perplexity P = 24, the system size L = 80, and dimension cutoff in DMRG χ = 30. The red and blue numbers represent
the applied magnetic fields, and the green number 0.5 denotes the critical field.

We also investigate the visualization of quantum phases
under noises. The noisy quantum states are defined by

|
α
δ 〉 = √

1 − δ|
α〉 +
√

δ|
random〉, (13)

where |
α〉 is the ground state in the transverse magnetic
field α, and δ is a small constant that controls the strength
of the noise. |
random〉 is a random matrix product state (MPS)
whose bond dimensions are identical to those of the ground

(a) (b) (c)

(d) (e) (f)

FIG. 8. Distribution of quantum states in 2D feature space varies with perplexities of t-SNE. Visualization of the grounds states of TFIM
by t-SNE with different perplexities P = 18, 20, 22, 26, 28, and 30. We take the total iteration times in t-SNE nit = 5000, the system size
L = 80, and dimension cutoff in DMRG χ = 30.
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Distribution of quantum states in 2D feature space varies with noises. The visualization of the ground states of TFIM under small
noise by t-SNE with different strengths of noise δ = 0, 0.01, 0.03, 0.05, 0.07, and 0.1 in panels (a)-(f), respectively. We take the perplexity
P = 24, the total iteration time nit = 1000, the system size L = 80, and dimension cutoff in DMRG χ = 30.

states. All elements of the tensors in |
random〉 are generated
randomly by the Gaussian distribution N (0, 1).

In Fig. 9, we show the visualizations of {|
hx
δ 〉} with δ = 0,

0.01, 0.03, 0.05, 0.07, and 0.1. By increasing δ till approxi-
mately δ = 0.05, we observe that the states in the two phases
still form two clusters which are roughly linearly separable.
However, the two clusters gradually merge into each other
with continually increasing δ, which becomes more and more
difficult to identify the two phases. The separability of the
two clusters can effectively reflect whether our scheme could
work or not for identifying the quantum phases and to what
extent it can tolerate noises. Note that the quantum states
are obtained by DMRG, which themselves contain certain
numerical noises. These results (including those in Fig. 9)
suggest that t-SNE with NLF can resist a small extent noise
attack.

VI. VISUALIZATION OF IMAGES WITH QUANTUM
FEATURE MAP AND NEGATIVE

LOGARITHMIC FIDELITY

Below, we show that our scheme can also be applied to
visualize classical data, such as the images in the MNIST [56]
and fashion-MNIST [57] datasets. To calculate the negative
logarithmic fidelity (NLF) of the classical samples, we firstly
map each pixel xα

n to the Hilbert space [58] by

∣∣φ
(
xα

n

)〉 = cos
πxα

n

4
|0〉 + sin

πxα
n

4
|1〉, (14)

where xα
n with 0 � xn � 1 denotes the value of the nth pixel

in the αth image, and {|i〉} (i = 0, 1) denote the orthonormal
basis in the two-dimensional Hilbert space. Then an image can

be mapped to a product state as

|ψα〉 = |φ(
xα

1

)〉 ⊗ ∣∣φ
(
xα

2

)〉 ⊗ · · · ∣∣φ(
xα

n

)〉
. (15)

Obviously, |ψα〉 is a state defined in the 2L-dimensional
Hilbert space with L the total number of pixels in one image.
The NLF between two images is defined as

DH
α,α′ = − log(〈ψα|ψα′ 〉). (16)

With DH
α,α′ , the images can be visualized by t-SNE by follow-

ing the same the steps for visualizing the ground states.
The visualizations of the images in MNIST and fashion-

MNIST based on NLF are shown in Figs. 10(a) and 10(c),
respectively. As a comparison, the visualizations using the Eu-
clidean distance DE

α,α′ = ‖xα − xα′ ‖ in the t-SNE are shown
in Fig. 10(b) and 10(d) for MNIST and fashion-MNIST, re-
spectively. Both schemes show similar visualization results,
which indicates that our scheme also works well for visualiz-
ing classical data.

VII. DISCUSSIONS

Our results show that the states in the gapless (XX and
LL) phases are visualized as 1D streams in R2. In contrast,
the noncritical phases (the FM/AFM and gapped topological
phases) are visualized as oval clusters. To explain the cause
of different patterns of the distributions given by the critical
and noncritical phases, we propose the following intuitive
arguments. Normally the distance of two states (in both H
and R2) is positively associated with the difference of their
physical quantities (e.g., magnetizations, correlations, entan-
glement spectrum, etc.). The states within each phase should
cluster because they share similar physics and thus should
have small distances among each other.
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Fashion-

(a) (b)

(d)(c)

FIG. 10. Visualization of classical datasets by t-SNE with NLF
and Euclidean distance. The visualization of the MNIST dataset and
the fashion-MNIST dataset by t-SNE with NLF or the Euclidean dis-
tance. In panels (a) and (c), the images are mapped onto the Hilbert
space, where the distance of two different images are measured by
NLF. In panels (b) and (d), the distance of two different images are
measured by the Euclidean distance in the original feature space.
For both MNIST and Fashion-MNIST datasets, we take 1000 images
(100 images from each class) as the input of t-SNE. We take P = 16
and total iteration times nit = 5000.

The physics of the states within a gapped phase are almost
identical. Consequently, the distances among the states within
one same gapped phase are insignificant. Even the energy
levels do cross due to finite-size effects or numerical errors,
the differences of the physics for these states should be minor.
Therefore, the quantum states are expected to cluster in a
small region in R2. Take the polarized phase in TFIM as
an example. For different hx’s with hx > 0.5, the distances
among the states inside the phase are insignificant compared
with the distances between the states in different phases. In the
vicinity of the critical point, the gap gradually closes, and the
energy levels become dense. Meanwhile, the physical proper-
ties change more drastically as the physical parameter alters.
It turns out that near a critical point the distances between
the quantum states with different parameters become more
significant than those within the noncritical phases.

When two noncritical phases are separated by a critical
phase instead of a critical point, the distances of the states
within the critical phase should be more significant than those
within the noncritical phases. This explains the distribution
of the 1D pattern of the gapless XY phase in the XXZ model
(Fig. 3) and that of the LL phase in the spin-1 Heisenberg
chain [Fig. 4(a)].

Our results suggest that the quantum phase transition
points can be robustly identified by our scheme without
a priori knowing the order parameters. Due to the unin-
terpretability of the nonlinear manifold learning schemes
including t-SNE, the relationship between the shapes of dif-
ferent quantum phases and their physical properties is just a
speculation at present, and the underlying insight behind this
observation is left for our future study. We believe that our
work is still a start-up of unveiling the physical properties of
quantum phases with the geometries of the patterns given by
the ground states with reduced dimensions.

VIII. SUMMARY

In summary, we propose a scheme to visualize quantum
phases and to identify phase transition points via machine
learning. The key idea is to map the quantum states in Hilbert
space H where the distribution of ground states is difficult
to access onto the 2D feature space R2 by the nonlinear
DR method t-SNE, where the negative logarithmic fidelity is
adopted to measure the distances between different quantum
states. It is found that the distribution in R2 exhibits different
patterns for distinct phases, from which the phase transition
points can be readily identified. The success of this proposal
is demonstrated on a few of 1D quantum many-body mod-
els, including those with conventional phases within Landau
paradigm, the topological phases with nonlocal orders, and
the critical phase described by CFT. This present strategy
for visualization through learning works well not only for
quantum data but also for classical data.

While our scheme of visualizing quantum phases via learn-
ing are flexible and general, more rigorous and robust relations
between the distributions in R2 and the physical properties of
the quantum phases (e.g., criticality and topology) space are to
be established. As a nonlinear DR method, the t-SNE works
as a “black box” which guarantees the minimization of the
KL-divergence in a variational sense, and it is unknown how
to interpret it, for instance, what the two features (y1 and y2

in R2) stand for. It is really interesting to seek for the DR
methods with higher interpretability, which would assist us to
unveil more novel properties of quantum many-body systems
by this visualization scheme.
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