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Electronic structure of TiSe2 from a quasi-self-consistent G0W0 approach
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In a previous work, it was shown that the inclusion of exact exchange is essential for a first-principles
description of both the electronic and the vibrational properties of TiSe2, M. Hellgren et al. [Phys. Rev. Lett.
119, 176401 (2017)]. The GW approximation provides a parameter-free description of screened exchange but
is usually employed perturbatively (G0W0), making results more or less dependent on the starting point. In this
work, we develop a quasi-self-consistent extension of G0W0 based on the random phase approximation (RPA)
and the optimized effective potential of hybrid density functional theory. This approach generates an optimal
G0W0 starting point and a hybrid exchange parameter consistent with the RPA. While self-consistency plays
a minor role for systems such as Ar, BN, and ScN, it is shown to be crucial for TiS2 and TiSe2. We find the
high-temperature phase of TiSe2 to be a semimetal with a band structure in good agreement with experiment.
Furthermore, the optimized hybrid functional agrees well with our previous estimate and therefore accurately
reproduces the low-temperature charge-density-wave phase.
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I. INTRODUCTION

TiSe2 is a layered quasi-two-dimensional material that
undergoes an unconventional charge-density-wave (CDW)
transition below 200 K. The apparent interplay between the
CDW and superconductivity at finite pressure or doping [1,2]
has led to numerous studies over the past years aiming to
understand the driving mechanism behind the CDW. Nev-
ertheless, the relative role played by excitonic effects and
electron-phonon coupling is still debated. Experimentally,
strong signatures are observed in both vibrational [3–6] and
angle-resolved photoemission spectra (ARPES) [7–13], and
some studies point to soft electronic modes [14].

First-principles calculations should be able to explain
the exact mechanism of the CDW transition. However, nu-
merically tractable approaches such as the local density
approximation (LDA) or generalized gradient approximations
(GGAs) within density functional theory (DFT) fail to give a
complete picture [5,15,16]. A dramatic improvement is found
when including a fraction of Hartree-Fock (HF) exchange
via the hybrid functionals [12,17,18]. With a result similar
to the DFT + U approach [16,19], the Ti-d levels are then
well described. In addition, the hybrid functionals contain
the long-range Coulomb interaction, which was shown to be
crucial to induce the CDW phase [18]. This fact suggests that
strong electron-hole coupling is at play and that an excitonic
transition could be of importance [20,21]. On the other hand,
it was also found that the standard medium-range hybrid
functional already gives a quantitatively reasonable agreement

between theory and experiment. However, the results were
also shown to be strongly dependent on the hybrid parameters,
making it still uncertain whether a parametrization optimized
on a test-set of standard semiconductors is adequate.

The GW method is computationally more expensive
but provides a parameter-free and physical description of
screened exchange. The bare Coulomb interaction is replaced
by the screened Coulomb interaction, W , which is deter-
mined by the linear density response function approximated
at the Hartree level, i.e., the random phase approximation
(RPA) [22,23]. The GW approximation for the self-energy
is known to produce accurate band gaps on a wide range
of systems [24–27]. It is, however, almost always employed
perturbatively (G0W0), on top of a DFT Kohn-Sham (KS) band
structure, assuming that the KS electronic structure is close
enough to the final result. Other variants that bring results
closer to self-consistency have also been developed [28–31].
An alternative to the fully self-consistent GW scheme is to
look for the optimal KS starting-point via the Sham-Schlüter
equation [32–34]. The resulting KS potential produces a den-
sity similar to the GW density and is known as the RPA
potential [35,36]. The KS RPA band structure can be shown
to provide a consistent starting-point for G0W0 [37,38].

A high-level calculation of the electronic band structure of
TiSe2 in the high-T phase would be valuable. While trans-
port experiments all predict a semimetallic behavior, some
ARPES measurements have found a gap [7,8]. The latter
scenario was supported by the first G0W0 calculation and
interpreted as an excitonic gap [39]. In this work, we will
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reexamine how G0W0 performs on TiSe2 by first showing that
it is a case sensitive to exchange in the starting-point. As a
fully self-consistent calculation is out of reach, we develop a
quasi-self-consistent approach that exploits the local hybrid
potential as an approximation to the local RPA potential. In
this way, we produce a theoretically justified G0W0 solution
that approximates the RPA solution. At the same time, we
generate an RPA-optimized hybrid functional that is used to
study the CDW phase.

The paper is organized as follows. In Sec. II we start
by reviewing the GW formalism and the RPA as a self-
consistent way to do perturbative G0W0. We then introduce
a hybrid functional approach based on the optimized effective
potential. Using this potential, we then develop a quasi-self-
consistent G0W0 scheme and compare it to variants introduced
by others. In Sec. III we present numerical results for Ar,
BN, ScN, TiS2, and TiSe2. We also use the RPA optimized
hybrid functional to study the CDW phase of TiSe2. Finally,
in Sec. IV we present our conclusions.

II. SCREENED EXCHANGE FROM GW

We will focus on studying the performance of the GW
approximation in describing the band structure of the high-T
phase of TiSe2. The results turn out to be strongly dependent
on which approximate GW scheme is used. In this section,
therefore, we start by reviewing the different ways to solve
the GW equations, and we discuss the connections between
GW , RPA, COHSEX (COulomb Hole Screened EXchange),
and hybrid functionals. This will allow us to finally motivate a
quasi-self-consistent G0W0 approach based on the local hybrid
potential.

A. The GW approximation

We define the self-energy as the nonlocal frequency-
dependent potential � that contains all the many-body effect
beyond the Hartree (H) approximation. To first order, in an ex-
pansion in terms of the Green’s function, G, and the Coulomb
interaction, v, � is just the static but nonlocal Fock term of
the HF approximation,

�HF = iGv. (1)

By replacing the bare Coulomb interaction in the Fock term
with the dynamically screened Coulomb interaction, W , we
obtain the self-energy within the GW approximation,

� = iGW. (2)

The screened interaction within the GW approximation is
approximated at the time-dependent Hartree level for which
the irreducible polarizability, P, is approximated with P0, i.e.,
to zeroth order in the explicit dependence on the Coulomb
interaction. We thus have

W = v + vP0W, P0 = −iGG. (3)

From Dyson’s equation,

G = GH + GH�[G]G, (4)

we then have access to the many-body quasiparticle spectrum
contained in G.

It can further be shown that the GW approximation is a
�-derivable approximation [40,41] that obeys physical con-
servation laws and has an underlying action functional. An
example of such an action functional is the Klein functional
[42]

YK = −i�[G] − UH + iTr
[
GG−1

H − 1 + ln(−G−1)
]
, (5)

where UH is the Hartree energy. With the choice

�[G] = 1
2 Tr{ln[1 + ivGG]} (6)

it is easy to see that YK is stationary when G obeys Dyson’s
equation [Eq. (4)], and the self-energy is equal to

� = δ�

δG
= iGW. (7)

At the stationary point, the Klein functional is equal to the
GW total energy as obtained from the standard nonvariational
Galitskii-Migdal energy expression.

Instead of using the Hartree approximation as the zeroth-
order approximation for G, one can start from the DFT KS
system. Dyson’s equation can then be rewritten in terms of
the single-particle KS Green’s function, Gs, and the exchange-
correlation (xc) part of the local KS potential,

G = Gs + Gs[�[G] − vxc]G. (8)

The diagonal of G, i.e., the density, is already exactly
described by Gs. In this way, Gs can be assumed to be “close”
to G, justifying a perturbative treatment of Eq. (8), and thus
circumventing the full solution to the numerically challenging
Dyson’s equation. By writing Eq. (8) in the basis of KS or-
bitals and keeping only the diagonal terms, we can write the
quasiparticle equation as [25,43]

Ek = εk + 〈k|�s(Ek ) − vxc|k〉, (9)

where k refers to the Bloch orbital index. The subscript s
on the self-energy signifies that it is evaluated with Gs. The
energy dependence of �s can either be treated to zeroth order,
i.e., Ek = εk , where εk is the KS eigenvalue, or to first order
in a Taylor expansion around εk . The latter implies that a
renormalization factor

Zk =
[

1 − ∂ Re�s

∂ω

∣∣∣∣
ω=εk

]−1

(10)

should be multiplied in the following way:

Ek = εk + Zk〈k|�s(εk ) − vxc|k〉. (11)

This G0W0 correction, starting from PBE or LDA, is the
most common GW approach to determine the band structure.
The justification of this approach relies, however, on the as-
sumption that PBE or LDA orbitals are similar to the true
quasiparticle orbitals. The renormalization factors are usually
incorporated, but it can be argued that these should be omitted
[37]. The arguments are based on the connection between GW
and the RPA for the total energy [35,44,45], as we will now
discuss.

Let us go back to the Klein energy functional [Eq. (5)] and
keep the �-functional in the GW approximation. From now on
we will add superscripts (�GW , �GW ) as we focus only on this
approximation. If we replace the interacting G, in every term,
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with a noninteracting Gs, we can, after a few manipulations,
write Eq. (5) as

Y GW
K [Gs] = −i�GW [Gs] + Ts[n] + UH + Uext, (12)

where Ts is the kinetic energy of noninteracting KS electrons,
and Uext is the external potential energy. It is easy to see that
�GW [Gs] is exactly the same functional as the xc energy of
the RPA energy functional,

ERPA
xc ≡ −i�GW [Gs] = − i

2
Tr{ln[1 + ivGsGs]}. (13)

Equation (12) is thus merely the RPA total energy, i.e.,
Y GW

K [Gs] = ERPA [35,45,46].
The RPA energy functional can be shown to have a min-

imum when varied with respect to the total KS potential
Vs = vext + vH + vxc. Such a variation can be carried out via
the functional Gs[Vs]. At the minimum vxc = vRPA

xc obeys the
so-called linearized Sham-Schlüter (LSS) equation∫

d2 χs(1, 2)vRPA
xc (2) =

∫
d2 d3 	s(3, 2; 1)�GW

s (2, 3), (14)

where 	s(3, 2; 1) = −iGs(3, 1)Gs(1, 2) and χs(2, 1) =
−iGs(2, 1)Gs(1, 2) [47]. The LSS equation can also be
derived from the condition that the GW density and the KS
RPA density, i.e., the diagonals of G and Gs, are the same to
first order when expanding Dyson’s equation [Eq. (8)].

As the RPA potential is a local KS potential, it does not
reproduce the fundamental gap [32–34]. One can, however,
still calculate the gap, Eg, corresponding to the RPA functional
by taking the derivative of the energy functional with respect
to particle number N . One finds

Eg = I − A = ∂ERPA

∂N

∣∣∣∣
+

− ∂ERPA

∂N

∣∣∣∣
−
. (15)

Evaluating the derivative on the right-hand side “+,” i.e., the
negative of the ionization energy

−I = εv + 〈v|�GW
s (εv ) − vRPA

xc |v〉 (16)

and the derivative on the left hand side “−,” i.e., the negative
of the affinity

−A = εc + 〈c|�GW
s (εc) − vRPA

xc |c〉, (17)

we can write

Eg = EKS
g + 
xc, (18)

where EKS
g is the KS gap and


xc = 〈c|�GW
s (εc) − vRPA

xc |c〉 − 〈v|�GW
s (εv ) − vRPA

xc |v〉.
(19)

To derive these expressions, Eq. (14) has to be used. The
quantity 
xc equals what is called the derivative discontinuity
within DFT [48–51].

It is now clear that the gap obtained from the RPA func-
tional is merely the G0W0 correction of Eq. (11), without
the Zk factor, evaluated with the RPA potential. The RPA
potential can thus be seen as an optimal KS starting point
for G0W0, which produces a gap equal to the gap extracted
from the RPA functional [37]. It has been shown on a number
of semiconductors [38] that using the RPA potential for a

G0W0 calculation brings gaps in closer agreement with self-
consistent GW approaches [30].

By expanding the GW quasiparticle energy around the
zeroth-order RPA KS energy and using Eq. (14), the expres-
sions in Eqs. (16) and (17) are easily extended to the whole
band structure [37],

ERPA
k = εk + 〈k|�GW

s (εk ) − vRPA
xc |k〉. (20)

To conclude, we have reviewed how it is possible to calcu-
late gaps and even the full band structure from the RPA, and
that this corresponds to the perturbative G0W0 result evaluated
with the local RPA potential. These are well-known results
upon which we will base the following discussions.

B. Hybrid functionals and the COHSEX approximation

We will now turn to the simpler COHSEX and hybrid func-
tionals, which are often used as cheaper but self-consistent
alternatives to the GW approach.

The frequency dependence of the GW self-energy allows
for the description of many-body effects such as quasiparticle
lifetimes and satellite spectra but severely complicates a fully
self-consistent solution. Often one is, however, only interested
in the quasiparticle excitation energy for which the nonlocality
of the self-energy plays the most important role. One is then
motivated to approximate � by ignoring the dynamical effects
in W . This implies setting

Wstatic = v + vP0(ω = 0)Wstatic, (21)

and results in the so-called COHSEX approximation

�COHSEX = iGWstatic + 1
2W d

p , (22)

where W d
p = diag[vP0(ω = 0)Wstatic] is a local Coulomb-hole

potential, and the first term is a nonlocal statically screened
exchange operator. The COHSEX approximation can easily
be solved self-consistently but can still be numerically de-
manding since it requires the generation and summation over
all conduction bands. A more drastic approach that avoids the
inclusion of unoccupied bands is to keep the bare Coulomb
interaction as in the HF approximation but scale it down with
a constant α. If we then add a compensating fraction of the
local PBE exchange and a local PBE correlation term, we get
the so-called hybrid functionals

�HYB,α = α�HF + (1 − α)vPBE
x + vPBE

c . (23)

These functionals are structurally similar to COHSEX but not
more demanding than a HF calculation. One of the drawbacks
is that a free parameter is introduced. A fraction 25% (PBE0)
has shown to be reasonable in many molecular systems. In
the HSE06 functional, a second parameter, μ = 0.2 Å−1, that
controls the range of the Coulomb interaction is introduced
[52]. In this way, it is possible to get a good description of
many semiconductors as well.

Although often used in a DFT context, the hybrid func-
tionals are almost always treated like the HF approximation,
that is, by minimizing the energy with respect to orbitals that
are generated by the nonlocal Fock potential. In this work,
we will instead use the optimized effective potential method
[53] and minimize the hybrid energy with respect to a local
KS potential. The local KS potential corresponding to HF has
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been evaluated for solids before and is know as the exact-
exchange (EXX) potential [54,55]. The local hybrid potential
is given by the sum of the local potentials derived from the
PBE terms and a local exchange potential obtained from an
equation similar to the LSS equation [Eq. (14)] but with �GW

s
replaced by the scaled HF self-energy. We have

vhyb,α
xc = vα

x + (1 − α)vPBE
x + vPBE

c , (24)

where∫
d2 χs(1, 2)vα

x (2) = α

∫
d2 d3 	s(3, 2; 1)�HF

s (2, 3). (25)

The potential vα
x can again be seen as the local potential giving

a density similar to the density of the fully nonlocal potential,
to first order. The gap will, however, differ from the gap of the
nonlocal potential, but, when corrected with the discontinuity


xc = 〈c|α�HF
s − vα

x |c〉 − 〈v|α�HF
s − vα

x |v〉, (26)

the gap is expected to be close to that of the nonlocal hybrid
functional. Gaps calculated in this way using other exchange-
based functionals can be found in Refs. [56,57].

C. Optimal G0W0 starting-point based on a local
hybrid potential

The common crucial ingredient in GW , COHSEX, and
hybrid functionals is the nonlocal exchange term. Due to this
similarity, the hybrids can be used as a way to do approxi-
mate self-consistent GW . Such an approach was developed in
Refs. [31,58]. By using a hybrid as a starting-point for G0W0,
the α parameter is varied until the GW correction vanishes. At
this value, the GW and hybrid eigenvalues agree,

〈k|�GW
s

(
εnl

k

) − �HYB,α
s |k〉nl = 0 ⇒ EGW

k = εnl
k . (27)

Here the matrix elements are evaluated with orbitals generated
by the nonlocal �HYB,α

s , emphasized by the subscript (super-
script) “nl.” This method has been shown to perform well
for molecules, improving the ionization energies as compared
to standard hybrid functionals and G0W0 based on the PBE
starting-point [31]. We note, however, that it is not possible
to derive an equation similar to Eq. (18) combining the Klein
GW energy functional with a nonlocal potential. In fact, it has
been shown to lack an extremum when varied in a restricted
space of nonlocal but static potentials [59].

We will now present a variant that utilizes the RPA energy
and, hence, the optimization with respect to a local potential.
As seen in the previous subsection, a G0W0 correction based
on the local RPA potential is justified via the GW LSS equa-
tion [Eqs. (14) and (20)]. Analogously, a hybrid correction
based on the local hybrid potential is justified via the hybrid
LSS equation. We have

EHYB,α
k = εk + 〈k|�HYB,α

s − vhyb,α
xc |k〉. (28)

We will now approximate the RPA potential in Eq. (20) by
the local hybrid potential

ERPA
k ≈ εk + 〈k|�GW

s (εk ) − vhyb,α
xc |k〉 (29)

and optimize α such that the corrections in Eqs. (28) and (29)
are equal. This is equivalent to

〈k|�GW
s (εk ) − �HYB,α

s |k〉 = 0 ⇒ ERPA
k = EHYB,α

k , (30)

where the self-energy operators are evaluated with orbitals
and eigenvalues from v

hyb,α
xc [instead of �HYB,α

s as in Eq. (27)
above]. In this way, we optimize α such that the DFT hybrid
functional behaves like the RPA functional when varying the
particle number. The difference between this approach and the
one in Ref. [31] lies in which type of reference system is used
to evaluate the GW energy. Allowing for nonlocal potentials
can have a large impact on the energy due to the opening of a
large gap.

Due to a lack of frequency dependence in �HYB,α
s , the

condition in Eq. (30) is, in general, impossible to fulfill for
all bands at every k, but it can be made true for the difference
between the highest occupied level and the lowest unoccupied
level. One thus needs to optimize α using the following con-
dition:

〈c|�GW
s (εc) − �HYB,α

s |c〉 − 〈v|�GW
s (εv ) − �HYB,α

s |v〉 = 0.

(31)

Let us now compare this approach to other GW -schemes.
The most common way to include some form of self-
consistency within GW is to iterate the eigenvalues, i.e.,
solving Eq. (9), while keeping the KS orbitals fixed at the PBE
level. This works well under the assumption that xc effects
beyond PBE are unimportant for the orbitals. An advantage of
our approach is that it does not rely on this assumption as it
takes into account both eigenvalues and orbitals at the same
level of approximation. Another, more advanced, approach,
which takes into account changes in the orbitals via a static but
nonlocal potential, is the “quasiparticle self-consistent GW ”
of Ref. [29]. This approach requires, however, the generation
of the full self-energy matrix and not just the diagonal terms,
making it more expensive than the approach suggested here.
Results from this approach have shown that, indeed, self-
consistency in the orbitals is important [65].

In the next section, we will show that self-consistency has
a very small effect on systems where PBE already gives a
good description of the orbitals. In contrast, for systems where
exact-exchange plays an important role, self-consistency is
necessary and we will show that, via Eq. (31), it is possible to
obtain meaningful results. The validity of the G0W0-approach
is determined by the validity of the RPA for the given system.
Furthermore, by approximating the RPA potential with the
local hybrid potential, we generate, as a by-product, a hybrid
functional that can be used to study other properties such as
phonons and lattice instabilities.

III. NUMERICAL RESULTS

In this section, we start by introducing TiSe2 and the tech-
nical aspects of our calculations. We then present the G0W0

results for TiSe2, TiS2, and a set of well-known systems (Ar,
c-BN, and ScN) for which there already exist both EXX and
G0W0 results in the literature. Finally, we investigate the per-
formance of the RPA optimized hybrid functional in capturing
the CDW phase of TiSe2.

A. System and computational details

The high-T phase of TiSe2 crystallizes in the space
group P3̄m1. It belongs to the 1T family of the layered
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TABLE I. Band gaps (eV) of Ar, c-BN, ScN, TiS2, and TiSe2. The G0W0 results (without renormalization factor) are obtained with G0 of
the approximation in the preceding column. The H-G0W0 results are evaluated with the optimized nonlocal hybrid functional having an equal
gap. The EXX results for Ar, BN, and ScN are compared to EXX results found in the literature. EXXc corresponds to EXX plus a correlation
term at the PBE level. All results (EXX, EXXc, and lhyb) for TiS2 and TiSe2 are obtained with μ = 0.1 Å−1.

Solid PBE G0W0 EXX EXX lit. EXXc G0W0 α lhyb G0W0 α H-G0W0 HSE06 Expt.

Ar 8.65 14.09 9.57 9.61a 9.93 14.30 0.57 9.38 14.19 0.63 14.88 10.32 14.2b

BN 4.54 6.51 5.58 5.57c 5.12 6.78 0.25 4.70 6.61 0.30 6.99 5.85 6.4 ± 0.5c

ScN −0.05 1.01 1.57 1.58d 1.39 0.81 0.17 0.21 0.96 0.24 1.51 0.92 0.9 ± 0.1e

TiS2 −0.10 1.18 1.18 1.03 0.30 0.25 0.17 0.82 0.33 1.17 0.57 0.5 ± 0.1f

TiSe2 −0.63 0.37 0.57 0.38 −0.85 0.20 −0.45 −0.07 0.32 0.40 −0.15 −0.1–0.1g

aReference [38].
bReference [60].
cReference [61].
dReference [62].
eReference [63].
fReference [64].
gSee the text.

transition-metal dichalcogenides with the Ti atom octahe-
drally coordinated by six neighboring Se atoms. A semimetal-
lic behavior is found in most experiments. Below 200 K,
a CDW transition occurs, characterized by a 2 × 2 × 2 su-
perstructure (space group P3c̄1) and the opening of a small
gap. The distortion pattern can be uniquely defined by the
displacement δTi and the ratio δTi/δSe ≈ 3. Standard DFT
functionals predict a phonon instability at the three equivalent
L points. A symmetric combination of these gives the correct
CDW pattern, but with a severely underestimated distortion
amplitude [16]. Hybrid functionals give a better description
and have revealed the important role of HF exchange for the
instability. This possibly hints at the presence of an excitonic
instability. Although a weakly screened electron-hole inter-
action is clearly important, no spontaneous electronic CDW
has so far been generated in bulk TiSe2. Hybrid function-
als induce the CDW via a strong electron-phonon coupling
combined with the enhanced electronic susceptibility at the
L points. This mechanism is given support by the combined
accuracy of the electronic bands, phonons, and distortion
amplitude [18].

In this work, we aim for the more sophisticated GW
method that allows for a physical description of the screened
interaction. Due to the increase in computational cost, we have
been limited to the high-T phase. The low-T CDW phase will
be studied with the RPA-based hybrid functional, optimized
according to the procedure described in the previous section.

In addition, we have determined the gap of TiS2, which is
structurally identical to TiSe2 but lacks a CDW transition, at
least in the bulk. We have only found one GW study of TiS2

where the gap was determined to 0.75 eV [66], which can be
compared to the experimental result of around 0.5 eV [64]. We
have also looked at solid Ar (a van der Waals bonded large-
gap insulator), c-BN (an sp bonded insulator), and ScN (a pd
bonded semiconductor) in order to illustrate the workings and
validity of the equations derived in Sec. II.

The hybrid calculations have been performed with VASP

[67–69], QUANTUM ESPRESSO [70] (QE), and the CRYSTAL

program [71]. Whenever comparisons could be made, these
codes, despite using different pseudopotentials, or in the latter
case a Gaussian basis set, agree rather well. For example, pd

gaps agree within 0.05 eV. For TiS2 and TiSe2 we have used a
range-separation parameter of μ = 0.1 Å−1 in all hybrid cal-
culations. We chose a range twice as large as in HSE06 since
our previous work on TiSe2 indicated that HSE06 was some-
what too short-ranged [18]. The local hybrid potential was
calculated with QE using an iterative algorithm for solving
the LSS integral equation [Eq. (25)] (see Ref. [72] for further
details). The GW self-energy was subsequently evaluated us-
ing the YAMBO code with full frequency integration [73,74].
For testing the optimization scheme in Eq. (27) we switched
to the VASP code, which allows the self-energy to be evaluated
with a hybrid G0. Agreement between different codes that use
different numerical techniques and pseudopotentials is still
hard to achieve within GW [75,76]. Nevertheless, for Ar and
c-BN, results on the PBE-G0W0 level agree within 0.05 eV.
For the pd gapped systems, we found variations up to 0.1 eV
(TiS2 and TiSe2) and 0.2 eV (ScN), which should be taken into
account when comparing the different schemes. We used a
12 × 12 × 6 and 10 × 10 × 4 k-point grid for TiSe2 and TiS2,
respectively. Up to 500 unoccupied bands were included in the
self-energy.

B. G0W0 results

In Table I we present the band gaps of Ar, c-BN, ScN, TiS2,
and TiSe2. The PBE results are presented in the first column,
and the G0W0 results, obtained on top of the PBE orbitals, are
presented in the second column. The renormalization factor is
omitted in all G0W0 calculations. To demonstrate the accuracy
of our implementation of the LSS equation, the gaps obtained
within the EXX approximation (third column) are first com-
pared to values found in the literature. We find a very good
agreement in all cases where results are available. The EXXc

results are obtained by adding the PBE correlation potential
to the EXX potential. This EXXc potential is then used for
obtaining the G0W0 results in the next column. In this way,
we provide both extremes of the α-range: PBE (α = 0) and
EXXc (α = 1.0). The α parameter is then optimized according
to Eq. (31). The optimized value of α, the KS gap of the cor-
responding local hybrid potential (lhyb), and the final G0W0

gap are presented in the following three columns. As a result
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FIG. 1. Band structure and p, d-orbital projected density of
states in the high-T phase of TiSe2. EXXc (full lines) compared to
PBE (dashed lines).

of Eq. (31), the G0W0 gap has to be the same as the pertur-
bative gap of the nonlocal hybrid functional [Eq. (28)] with
parameter α. Finally, we present the H-G0W0 results, which
are obtained using the optimization scheme of Eqs. (27), the
HSE06 results, and experimental values.

Looking at the results for Ar and c-BN, we immediately see
that the G0W0 results are not so sensitive to which KS potential
is used. The EXX potential increases the KS gap by around
1 eV, but this leads only to a small increase of 0.2–0.3 eV
in the G0W0 gap. By optimizing α, we find a gap in between
(α = 0.57 for Ar and α = 0.25 for c-BN). These values are
consistent with RPA in a sense that both RPA and the hybrid
functional give the same gap when evaluated with the orbitals
of the optimized local hybrid potential. We note that the H-
G0W0 results generally lead to larger values of α.

In ScN, a pd semiconductor, we see a partially different
behavior. First, PBE predicts a semimetallic ground state with
a pd band overlap. Including exact-exchange, a KS gap of
1.57 eV opens. This rather large variation produces again only
a small variation at the G0W0 level. However, the behavior
of the correction is opposite as compared to the correction in
Ar and c-BN by giving a smaller G0W0 gap with EXXc than
with PBE. This somewhat counterintuitive behavior was noted
already in Ref. [78]. We now look at TiS2, which also has a
pd gap. We see a similar trend but now the GW variation is
larger, ranging from 0.3 eV with EXXc to 1.18 eV with PBE.
In this case, the optimization plays a crucial role. With 25% of
exchange, the gap optimizes to 0.82 eV. After this study, we
are now ready to turn to TiSe2.

The high-T phase PBE band structure has been published
in several previous works, but is repeated here in Fig. 1. The
PBE (and LDA) results differ strongly from ARPES experi-
ments as analyzed in detail in Ref. [16]. Similar to ScN and
TiS2, the Se-p–Ti-d band overlap is severely overestimated
and, in this case, even inverted at �, leading to strong pd
hybridization [16]. Furthermore, the pz orbitals corresponding
to the flattened p-band around � are pushed above the Fermi
level leading to excess d-electron occupation. These large
errors invalidate the use of a standard PBE starting-point for

0 1 2 3 4 5
Position [Å]
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-1.5

-1

-0.5

0

0.5

v x [R
yd

.]

PBE
EXXc
nEXXc-nPBE

FIG. 2. Exchange part, vx, of the KS potential along the [100]
direction. PBE in green with squares and EXXc in black with circles.
The density difference generated by these potentials is also illustrated
(with arbitrary units on the y-axis). Black dots correspond to the
position of the Ti atoms.

G0W0. If we use PBE as a starting-point for G0W0, we open a
gap of 0.37 eV between � and L (see Table I). The band gap
is actually a bit smaller since we also found “Mexican hat”
features around � similar to those reported in Ref. [39]. These
features were found already in the HF term, but they disappear
as soon as the orbitals are updated [18].

In Fig. 1, we also compare the KS band structure of the
EXXc approximation to PBE. The corresponding projected
density of states (PDOS) is shown in the side panel. The inclu-
sion of exchange, even with a KS local potential, corrects the
occupations and opens a gap between � and L. Including the
discontinuity [Eq. (26)], the gap becomes as large as 3.75 eV,
in agreement with a HFc calculation.

In Fig. 2 we have plotted the exchange part of the corre-
sponding KS potentials (PBE and EXXc). The accuracy of our
LSS implementation can be seen from the smoothness of our
EXXc potential. In EXXc we see additional structures around
the Ti atom that are missing in PBE. These barrierlike fea-
tures typically act to localize charges. Looking at the density
difference, EXXc contracts the density around the Ti atom.
According to Eq. (25), we expect a similar behavior in the
HFc approximation.

If we evaluate G0W0 on top of the EXXc band structure,
the gap closes and we find a large band overlap (−0.85 eV).
The magnitude of the variation is very close to the one in
TiS2, and it is clear that a self-consistent scheme is necessary.
At optimal α = 0.2, we find a small band overlap of around
0.1 eV. ARPES has predicted results between −0.1 and 0.1 eV
in the high-T phase [7–13]. Our value is thus a reasonable
prediction and shows that even a metallic solution can be
found within GW . The electron-phonon mechanism found in
Ref. [18] did not crucially depend on the existence of a Fermi
surface, but a semimetallic solution increases the probability
for the existence of a purely electronic CDW.

The band structure along �-M and A-L is shown in Fig. 3
superimposed on the full band structure of a hybrid functional
with 20% of exchange (HYBα=0.2). We see that not only does
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FIG. 3. Left: band structure of the optimal hybrid functional with 20% of nonlocal exchange (HYBα=0.2) compared to the corresponding
lhyb-G0W0 result. Right: energy gain in the supercell as a function of Ti-distortion keeping the ratio δTi/δSe = 3 fixed. Optimal hybrid (red) is
shown together with PBE (green) and the hybrid functional of the H-G0W0 optimization (blue, α = 32%). We have also included HSE06 and
HYBα=0.17(μ = 0.0 Å−1) from Ref. [18].

the band overlap around the Fermi level agree, but the band
dispersions do as well. Dynamical effects in the self-energy
seem important around −3 eV where the pd mixed flat band
is shifted downward in the hybrid functional with respect to
G0W0. Experiments place this band somewhere in between
[79]. In Fig. 4 we have superimposed the same results on an
ARPES experiment by Rohwer et al. [77]. Since spin-orbit
coupling (SOC) is not included, care should be taken when
comparing with experiment. Previous studies have shown that
SOC splits the degenerate p-bands at �, which could have a
small effect on the comparisons. Overall we see a very good
agreement between theory and experiment noting that some of
the deviations can be explained by looking at different values
for kz (see the discussion in Ref. [18]).

To the right in Fig. 5 we have compared an unoccupied
d-orbital of the local hybrid with the same orbital of the
nonlocal hybrid. The orbitals are very similar despite very
different underlying gaps. The same is true for EXXc/HFc to
the left in the figure, suggesting that not only the density but

E
-E

F

(A)                     M(L)

FIG. 4. Band structure of HYBα=0.2 compared to ARPES at
300 K [77]. Red lines correspond to the A-L path and black lines
to the �-M path.

also orbitals are well-mimicked by the local KS potential. The
effect of exchange on the d-orbitals might be one explanation
for the sensitivity of G0W0 to the fraction of exchange in the
starting-point. The larger α is, the more charge is localized
between the Ti atoms. The charge on the Se atoms, i.e., the
hybridization with Se-p-orbitals, is instead seen to reduce
with α. The H-G0W0 yields a gap of 0.4 eV at 32% of ex-
change, which is much larger than any experimental value.
We also performed a self-consistent COHSEX calculation,
which gives a more reasonable result of 0.12 eV. We stress
that these gaps are not related to the CDW since the symmetry
is preserved in our calculations.

C. RPA optimized hybrid functional

The approach applied above shows that G0W0 predicts
a value for the pd band-overlap that is in good agreement
with many experiments. It also gives us a prediction for α

based on the derivative of the RPA functional. This hybrid
functional can now be used to study the CDW instability, too
expensive for an approach like GW or RPA. For an in-depth
analysis of the CDW instability with hybrid functionals, we

HFc pd = 3.70 eV 

EXXc pd = 0.80 eV lhyb =0.2 pd = -0.45 eV 
Ti

Se

HYB =0.2 pd = -0.14 eV 

0.38 eV -0.45 eV

-0.14 eV3.70 eV

FIG. 5. Isosurface of a Ti-d-orbital along the �-M path [80]. To
the left, EXXc is compared to HFc, and to the right the optimal hybrid
with 20% of nonlocal exchange is compared to the corresponding
local hybrid approximation.
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refer the reader to Ref. [18]. Here we will restrict ourselves to
a comparison between the hybrid functionals obtained via the
different optimization procedures described in Sec. II.

To the right in Fig. 3 we have used the RPA optimized α

to calculate the energy gain in the supercell after distorting
the atoms according to the CDW pattern. We have included
both HSE06 and the “best” hybrid functional (α = 0.17, μ =
0.0 Å−1) from Ref. [18] for comparison. The set of parameters
α = 0.2, μ = 0.1 Å−1 lies very close to the (α,μ) path used
in Ref. [18] and is not so different from the set that agreed best
with experiment. Note, however, that in contrast to Ref. [18],
where the α-parameter was fitted to the band gap and the
phonon frequencies, here it results from a self-consistent cal-
culation.

If we look at the results for the H-G0W0 optimized hybrid
functional with 32% of exchange and a gap of 0.4 eV, we see
that the energy gain strongly reduces. Both the energy gain
and the δTi distortion worsen as compared to PBE. Given that
the PBE underestimates the phonon mode associated with the
CDW amplitude, we do not expect this hybrid functional to
accurately capture the CDW phase.

IV. CONCLUSIONS

In this work, we have applied a self-consistent GW method
to TiSe2 in order to determine the much debated band-
gap/band-overlap without adjustable parameters. We have
also provided a theoretical justification for the choice of
hybrid functional, i.e., the amount of admixture of exact ex-
change.

First of all, it was found that the standard G0W0 prescrip-
tion based on a PBE/LDA starting-point is unreliable due
to qualitative errors in describing the band structure within

PBE/LDA. To overcome this problem, we have developed
a simple quasi-self-consistent approach based on the local
hybrid potential and the RPA functional. This approach allows
for a systematic inclusion of exact-exchange in the starting-
point, which, in the case of TiSe2, has a large impact on, e.g.,
the description of the Ti-d-orbitals and the resulting pd gap. It
is shown that G0W0 converges to a semimetallic ground state
with a band overlap of 0.1 eV. This is in line with transport
experiments and many ARPES results, but it contradicts the
first G0W0 results based on the LDA starting-point.

The G0W0 approach generates a hybrid α-parameter con-
sistent with RPA. With a motivated choice for μ, this hybrid
functional produces an electron-phonon coupling strong
enough to induce the CDW transition. Furthermore, the po-
tential energy surface lies very close to our earlier published
hybrid results, which gave very accurate phonons. While in
our previous work the α-parameter was chosen as a best fit
to both the band gap and the phonon frequencies, here it has
been calculated via a self-consistent procedure involving the
G0W0 method. The results are very similar, providing further
support to the proposed mechanism of the CDW distortion in
TiSe2.
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