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Influence of phonon renormalization in Eliashberg theory for superconductivity
in two- and three-dimensional systems
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Eliashberg’s foundational theory of superconductivity is based on the application of Migdal’s approximation,
which states that vertex corrections to lowest-order electron-phonon scattering are negligible if the ratio between
phonon and electron energy scales is small. The resulting theory incorporates the first Feynman diagrams for
electron and phonon self-energies. However, the latter is most commonly neglected in numerical analyses.
Here we provide an extensive study of full-bandwidth Eliashberg theory in two and three dimensions, where
we include the full back reaction of electrons onto the phonon spectrum. We unravel the complex interplay
between nesting properties, size of the Fermi surface, renormalized electron-phonon coupling, phonon softening,
and superconductivity. We propose furthermore a scaling law for the maximally possible critical temperature
T max

c ∝ λ(�)
√

�2
0 − �2 in two- and three-dimensional systems, which embodies both the renormalized electron-

phonon coupling strength λ(�) and softened phonon spectrum �. Also, we analyze for which electronic structure
properties a maximal Tc enhancement can be achieved.

DOI: 10.1103/PhysRevB.103.064511

I. INTRODUCTION

The current state-of-the-art description of superconductors
is Eliashberg theory [1], which is especially applied in cases
where the more simplified BCS (Bardeen-Cooper-Schrieffer)
treatment [2] cannot capture the main characteristics of a
given system. One of the key aspects to the success of Eliash-
berg theory is the applicability of Migdal’s approximation [3],
which states that higher-order Feynman diagrams for electron-
phonon scattering can be neglected if the ratio of phonon to
electron energy scale is a small number. In such a case it is
sufficient to only consider all lowest-order Feynman diagrams
for the electron and phonon self-energy, although the latter is
neglected in most cases. Such a neglect may be motivated by
the drive for making an extremely complicated problem easier.
Interestingly though, in the original works by Migdal [3] and
Eliashberg [1] the phonon self-energy was included in the cal-
culation in an approximative way. However, for a quantitative
analysis it is a generally accepted procedure to neglect the
back reaction of electrons onto the phonon spectrum.

In available literature the phonon renormalization is most
commonly considered only when checking the validity of
Eliashberg theory calculations [4–7]. The numerical results
are then benchmarked against outcomes of quantum Monte
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Carlo (QMC) [8,9] or dynamical mean-field theory simula-
tions [10]. Comparing conclusions from various authors does
not necessarily lead to a completely coherent picture concern-
ing the validity of Eliashberg theory, but there is consensus
about the existence of a maximal electron-phonon coupling
strength marking the border of applicability. Characteristics of
the superconducting state in such studies are found only by ex-
trapolation from normal-state properties, and, in addition, the
QMC calculations are performed on relatively small lattices
due to the huge complexity of the problem. The most com-
monly studied system in these works is the two-dimensional
(2D) Holstein model [8,11–16], often with additional con-
straints such as half filling, while three-dimensional (3D)
systems are rarely considered in numerical calculations, pre-
sumably due to the large computational complexity.

Another way of checking the validity of the commonly
employed Migdal approximation, and hence of the resulting
Eliashberg theory, is to compute vertex corrections corre-
sponding to additional Feynman diagrams. This has been
attempted in various works under different kinds of approx-
imation [17–26]. The first vertex-corrected self-consistent
Eliashberg theory without further simplifications has been
recently proposed by the current authors [27]. All these works
have in common that one or more additional Feynman di-
agrams to the electron-phonon interaction are studied and
compared to the commonly employed Eliashberg formalism,
that does not include a finite phonon self-energy.

The aim of our current paper is to give a comprehensive
overview of the influence of phonon renormalization occur-
ring within Eliashberg theory when the lowest-order Feynman
diagram for the phonon self-energy is taken self-consistently
into account, rather than commenting much on its validity
with respect to other theories. Our efficient implementation
not only allows one to access sufficiently low temperatures
to study the superconducting state without relying on
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extrapolation of normal-state properties, but also opens the
discussion of 3D systems, which has so far been elusive in
available literature. Our theory is based on a Holstein-like
Hamiltonian, containing a nearest-neighbor tight-binding
model for the electron energies, an isotropic Einstein phonon
mode, and isotropic electron-phonon scattering elements,
controlling the coupling strength in the system. We explore
here in detail the interplay of phonon softening, renormalized
coupling strength, nesting properties, superconducting energy
gap, and, eventually, the maximally possible transition
temperature Tc.

Our theory takes the bare phonon frequency �0, cou-
pling strength λ0, and electron energies ξk as inputs. By
varying these quantities we pinpoint the renormalized cou-
pling strength and phonon softening (momentum dependent
decrease in magnitude) as key ingredients to how our self-
consistent results change. Other crucially important aspects
for the interacting state are Fermi-surface (FS) nesting prop-
erties of ξk and the size of the FS. There exists a critical value
λ�

0 of the bare input coupling, at which the phonon energies
become negative, indicating a lattice instability. Another im-
portant value of λ0 marks the onset of superconductivity, λ�

0 .
In two dimensions we find an enhancement of both λ�

0 and λ�
0

with increased shallowness of ξk, which goes along with less
coherent nesting properties and a decrease in FS size. Notably,
we find that our model systems exhibit maximal supercon-
ducting transition temperatures Tc for an intermediate system
that is not very shallow, but also not ideally nested. For 3D
systems the significance of FS nesting is weakened, such that
trends in λ�

0, λ�
0 , and maximum Tc are mainly dictated by the

FS size. An exception to these tendencies is our most shallow
ξk considered in three dimensions, because in this particular
system nesting is exceptionally coherent due to the special
role taken by the � point of the Brillouin zone (BZ).

From here we proceed as follows: In Sec. II we introduce
the formalism and mathematical steps needed for deriving
a self-consistent and full-bandwidth Eliashberg theory, that
includes all lowest-order processes for electron and phonon
self-energies. The terminology “full bandwidth” is used here
to stress that our equations are solved numerically by taking
into account the complete bandwidth of electron energies ξk,
rather than focusing on a narrow energy window around the
Fermi level, as is common practice in Fermi-surface restricted
calculations. We provide some benchmark checks of our im-
plementation in the Appendix. We continue by introducing
electron dispersions in two and three dimensions (see Sec. III).
In particular, we define in both cases three different energies
via varying the chemical potential, that differ in nesting and
FS properties. In Sec. IV follows an exploration of phase
space, spanned by the different input parameters to our the-
ory. We discuss in detail the aspects of phonon softening,
renormalization of electron-phonon coupling, and the onset of
superconductivity, and try to unravel their complex interplay
by deriving approximate relations between them. In Sec. V the
subject is a closer discussion of the superconducting energy
gap as function of temperature, and consequently the transi-
tion temperatures, in two and three dimensions. Motivated by
the precedent findings we propose a scaling law for the maxi-
mum transition temperature that models our numerical results

to very good accuracy. The paper is concluded in Sec. VI with
a brief discussion on related works, possible extensions to our
theory, and potential future directions.

II. THEORY

We consider a phonon mode with frequency �0 and
electron-phonon coupling that is given by gq. Here the elec-
tronic energies are modeled by a single band dispersion ξk,
with k a BZ wave vector. By setting q = k − k′ we can write
the Hamiltonian as

H =
∑

k

ξk�
†
kρ̂3�k +

∑
q

h̄�0

(
b†

qbq + 1

2

)

+
∑
k,k′

gk−k′uk−k′�
†
k′ ρ̂3�k. (1)

Above we use b†
q and bq as bosonic creation and annihilation

operators, which determine the phonon displacement uq =
bq + b†

−q. The electronic creation and annihilation operators

c†
k,σ and ck,σ are part of the Nambu spinor �

†
k = (c†

k,↑, c−k,↓),
where σ ∈ {↑,↓} is a spin label. The imaginary time τ depen-
dent electron and phonon Green’s functions are, respectively,
given by

Ĝk(τ ) = −〈Tτ�k(τ ) ⊗ �
†
k (0)〉, (2)

Dq(τ ) = −〈Tτ uq(τ )uq(0)〉, (3)

where Tτ is the imaginary-time ordering operator. Both prop-
agators obey a Dyson equation in Matsubara space, reading

Ĝk,m = Ĝ0
k,m + Ĝ0

k,m�̂k,mĜk,m, (4)

Dq,l = D0
q,l + D0

q,l
q,lDq,l , (5)

where we make use of the notation f (k, iωm) = fk,m

with Matsubara frequencies ωm = πT (2m + 1) for generic
fermion functions f , and h(q, iql ) = hq,l for boson functions
h, with ql = 2πT l . The above Eqs. (4) and (5) are solved
for the dressed propagators as functions of the respective
self-energies �̂k,m and 
q,l :

Ĝ−1
k,m = [

Ĝ0
k,m

]−1 − �̂k,m, (6)

D−1
q,l = [

D0
q,l

]−1 − 
q,l . (7)

The noninteracting Green’s functions are defined by
[
Ĝ0

k,m

]−1 = iωmρ̂0 − ξkρ̂3, (8)

[
D0

q,l

]−1 =
(

1

iql − �0
− 1

iql + �0

)−1

=− 1

2�0

(
q2

l + �2
0

)
,

(9)

where we use the Pauli matrices ρ̂i, i ∈ {0, 1, 2, 3}. The
electronic self-energy can be decomposed to the mass en-
hancement function Zk,m, chemical potential renormalization
�k,m, and superconducting order parameter φk,m:

�̂k,m = iωm(1 − Zk,m)ρ̂0 + �k,mρ̂3 + φk,mρ̂1. (10)
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FIG. 1. (a, b) Lowest-order Feynman diagram for the electron
and phonon self-energy, respectively.

Together with Eq. (6) this leads to an inverse electron Green’s
function

Ĝ−1
k,m = iωmZk,mρ̂0 − (ξk + �k,m)ρ̂3 − φk,mρ̂1, (11)

so that after matrix inversion we get

Ĝk,m = [iωmZk,mρ̂0 + (ξk + �k,m)ρ̂3 + φk,mρ̂1]�−1
k,m, (12)

�k,m = (iωmZk,m)2 − (ξk + �k,m)2 − φ2
k,m. (13)

In this paper we take into account all lowest-order pro-
cesses in both the electron and phonon self-energies. The
corresponding Feynman diagrams are shown in Figs. 1(a) and
1(b). By exploiting momentum and energy conservation in the
scattering processes we can translate the Feynman diagram for
the electron self-energy into

�̂k,m = −T
∑
k′,m′

|gk−k′ |2Dk−k′,m−m′ ρ̂3Ĝk′,m′ ρ̂3, (14)

and for the phonon self-energy we obtain


q,l = T |gq|2
∑
k,m

Tr{ρ̂3Ĝk,mρ̂3Ĝk+q,m+l}. (15)

At this point it is convenient to define the electron-phonon
interaction kernel

Vq,l = −|gq|2Dq,l , (16)

so that we can write Eq. (14) as

�̂k,m = T
∑
k′,m′

Vk−k′,m−m′ ρ̂3Ĝk′,m′ ρ̂3. (17)

Combining Eq. (17) with Eqs. (10) and (12) leads to the
Eliashberg equations

Zk,m = 1 − T

ωm

∑
k′,m′

Vk−k′,m−m′
ωm′Zk′,m′

�k′,m′
, (18)

�k,m = T
∑
k′,m′

Vk−k′,m−m′
ξk′ + �k′,m′

�k′,m′
, (19)

φk,m = −T
∑
k′,m′

Vk−k′,m−m′
φk′,m′

�k′,m′
, (20)

from which the superconducting gap function can be defined
as �k,m = φk,m/Zk,m. Inserting Eq. (12) into Eq. (15) gives

the phonon self-energy as function of Zk,m, �k,m, and φk,m:


q,l = −2T |gq|2
∑
k,m

(
ωmZk,m

�k,m

ωm+l Zk+q,m+l

�k+q,m+l

− ξk + �k,m

�k,m

ξk+q + �k+q,m+l

�k+q,m+l
+ φk,m

�k,m

φk+q,m+l

�k+q,m+l

)
.

(21)

The above equations are solved self-consistently in an it-
erative manner: Assuming Zk,m, �k,m, and φk,m are known
from a previous iteration, we first calculate the phonon self-
energy via Eq. (21), by using also Eq. (13). With 
q,l at hand,
and the bare phonon propagator in Eq. (9), we calculate the
phonon Green’s function from Eq. (7), which then determines
the electron-phonon interaction kernel Eq. (16). As final step
we solve for the mass renormalization, the chemical potential
renormalization, and the gap function via Eqs. (18)–(20). This
process is repeated until convergence is reached. From the
results we can calculate the electron filling as

n = 1 − 2T
∑
k,m

ξk + �k,m

�k,m
. (22)

The input to our theory is the electron dispersion ξk, the
phonon frequency �0, and the coupling λ0, which can be
expressed as

λ0 = 〈〈λk−k′ 〉k∈FS〉k′∈FS = 2N0

�0
〈〈|gk−k′ |2〉k∈FS〉k′∈FS, (23)

with N0 the density of states (DOS) at the FS. After solving
self-consistently for the interacting state we have access to the
renormalized coupling strength λq and frequencies �q. These
are, respectively, given as

λq = −N0|gq|2Dq,l=0, (24)

�q =
√

�2
0 + 2�0
q,l=0, (25)

and it is convenient to define λ = 〈〈λk−k′ 〉k∈FS〉k′∈FS as a
measure of the total coupling strength in the system. A nonva-
nishing imaginary part of �q marks a lattice instability.

The theory presented here has been included in the UPP-
SALA SUPERCONDUCTIVITY code (UppSC) [28–33], and we
benchmark our implementation in the Appendix against ex-
isting literature [8]. Momentum and frequency summations
are carried out via efficient Fourier convolution techniques.
For calculations in two dimensions (three dimensions) we use
32 × 32 (32 × 32 × 32) points for the k and q grids. The
number of Matsubara frequencies is always chosen larger than
2000. The equations given in our current paper are formulated
and solved in Matsubara space. Analogously, one can build
up a theory as function of real frequencies, as has been done
in a recent work by Nosarzewski et al., where the authors
discuss the impact of phonon softening on various spectral
properties [34].

III. MODEL SYSTEMS

In this section we introduce two kinds of electron disper-
sions that are employed in the rest of our paper. Starting in
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FIG. 2. (a) Two-dimensional electron energies along high-
symmetry lines of the Brillouin zone. The purple, green, and orange
curves are found from Eq. (26) by choosing μ = −887.5, −437.5,
and 62.5 meV. (b) Fermi surfaces corresponding to panel (a), drawn
in similar color code. (c) Three-dimensional electron dispersion ξk

as calculated from Eq. (27) for different chemical potentials (orange,
μ = −0.125 eV; green, μ = −0.625 eV; purple, μ = −1.075 eV),
shown along high-symmetry lines. (d–f) Three-dimensional Fermi
surfaces colored in correspondence to panel (c). In both two and three
dimensions we use labels (1), (2), and (3) to refer to the electron
energies depicted by orange, green, and purple colors, respectively.

two spatial dimensions we define the electron energies as

ξk = −2t (1)[cos(kx ) + cos(ky)]

− 4t (2) cos(kx ) cos(ky) − μ, (26)

where t (1) and t (2) are the nearest- and next-nearest-neighbor
hopping energies of our tight-binding model, and μ is the
chemical potential. For simplicity we assume here a tetragonal
square-lattice structure in two dimensions, but our results
hold qualitatively also for different symmetries. Whenever
referring to a 2D system, we choose t (1) = W/8 and t (2) =
t (1)/4, where W = 1.5 eV is the electronic bandwidth. We test
three different examples for the choice of μ, the resulting
dispersions along high-symmetry lines of the BZ are shown
in Fig. 2(a), while corresponding Fermi surfaces (same color
code) are plotted in Fig. 2(b). The orange (1), green (2), and
purple (3) curves are, respectively, found using μ = 62.5,
−437.5, and −887.5 meV, and correspond to high, moderate,
and low electron fillings.

Turning now to the case of three spatial dimensions, we use
the electron energies

ξk = − 2t (1)
∑

i=x,y,z

cos(ki )

− 2t (2)
∑

i=x,y,z

∏
j=x,y,z; j 
=i

cos(k j ) − μ. (27)

Similarly as before we use an electronic bandwidth W =
1.5 eV and fix the hopping energies as t (1) = W/8, t (2) =
t (1)/4. We define three dispersions that are shown in Fig. 2(c)
along high-symmetry lines of the simple cubic BZ. The or-
ange (1), green (2), and purple (3) lines represent the choices
μ = −0.125, −0.625, and −1.075 eV, respectively. Again,
the resulting electron fillings are high, moderate, and low.
The FS shown in Fig. 2(d) is very large and resembles to a
good approximation an ideal Fermi gas. As the opposite case,
we have an extremely shallow energy dispersion reflected by
the tiny FS in Fig. 2(f). In Fig. 2(e) we show an intermediate
case. To avoid any possible misunderstandings, we note that
shallow bands are not to be confused with “flat bands” as the
latter host electrons with vanishing velocities and therefore
high electron DOS.

In the following we examine how the choice of electron
dispersion affects our self-consistent results of the Eliashberg
equations in two and three spatial dimensions. For simplifi-
cation we consider here isotropic electron-phonon scattering,
gq = g0. As stated in Sec. II, the input to our Eliashberg equa-
tions is the bare electron-phonon coupling λ0, the electron
dispersion ξk, and the bare phonon frequency �0. Since we
want to study trends with respect to those input parameters
we need to pay special attention to the electron filling that
is calculated as function of the self-consistent results [see
Eq. (22)]. To be able to compare outcomes for different �0,
λ0, and T we need to ensure that n stays constant, which
we achieve by introducing an additional chemical potential
shift δμ, such that the input to the Eliashberg equations is
ξk − δμ [35].

IV. PHONON SOFTENING, COUPLING,
AND SUPERCONDUCTING GAP

As a first step we want to understand how the input param-
eters influence our self-consistent results. For this purpose we
solve the Eliashberg equations in two dimensions as function
of λ0 at T = 20 K for various bare frequencies �0. We show
our results for dispersions (1), (2), and (3) of Fig. 2(a), respec-
tively, in the first, second, and third column of Fig. 3 in the
colors representing each ξk. In all of these columns we show
results for different initial frequencies �0 with line styles as
indicated in the legend of Fig. 3(g). The upper row shows the
renormalized coupling strength as function of λ0, where we
add as guide for the eye the case λ = λ0 as solid gray line.
The middle row shows the minimum renormalized phonon
frequency, again as function of bare input coupling. The max-
imum superconducting gap, defined by � = max

k∈BZ
�k,m=0, is

shown in the lower row.
In Figs. 3(a)–3(c) we observe the well-known behavior

of the renormalized coupling with increasing λ0 [5,8,10],
i.e., λ approaches a divergence, which we define to occur
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FIG. 3. Results for the renormalized coupling strength λ (upper
row), minimum renormalized phonon frequency (middle row), and
maximum superconducting gap (lower row), calculated for our 2D
systems. Results shown in the first, second, and third column are
computed with the orange, green, and purple dispersion of Fig. 2(a),
respectively. Different line styles correspond to bare phonon frequen-
cies �0 as written in the legend of panel (g). The solid gray lines in
panels (a)–(c) refer to λ = λ0.

at λ�
0. As is apparent in Figs. 3(d)–3(f), when λ0 → λ�

0 the
minimal phonon frequency vanishes, indicating a lattice in-
stability. The average frequency on the other hand decreases
approximately linearly with λ0 (not shown). Such tendencies
towards a charge density wave instability occur at exchange
momenta following the most coherent nesting wave vector for
the respective electron dispersion (see discussion below and
Fig. 4). The slight increase in minimum phonon frequency,
seen for �0 = 200 meV in Fig. 3(f), can be interpreted as
signature of a very nonadiabatic parameter choice, hence we
can expect that this feature disappears upon the inclusion of
vertex corrections. From Fig. 2(a) we know that the FS nesting
condition is met less accurately as we go from the orange (1)
to the purple dispersion (3). The phonon self-energy exhibits
less coherent contributions for the shallow energy band (3),
which in turn renormalizes the phonon propagator to a smaller
extent. For this reason we find increasing values of λ�

0 as we
go from the first to the third column in Fig. 3. In line with this
observation we find the fastest decrease of minimum phonon
frequencies as function of λ0 in Fig. 3(d), and the slowest in
Fig. 3(f).

From each of Figs. 3(g)–3(i) we observe that the supercon-
ducting gap opening with respect to λ0 depends on �0. An
increase in the initial phonon frequency reduces the minimal
bare coupling strength needed for a finite superconducting
gap. Further, comparing these three panels shows that the
onset of superconductivity depends also on the electronic dis-
persion. This observation can again be understood in terms of
changed nesting conditions (see the discussion above). When
considering the superconducting gap as function of λ (instead
of λ0), the difference in the onset of � 
= 0 among results cal-
culated for our three 2D electron dispersions becomes smaller.
The onset of superconductivity with respect to λ0 is discussed
in more detail later in this section, and further analysis of the

FIG. 4. Momentum dependent phonon frequencies, normalized
to the initial choice of �0. Calculations were performed at T =
20 K. (a) Results for different bare couplings λ0 as written in the
legend, computed for �0 = 100 meV and the orange dispersion (1)
of Fig. 2(a). (b) Different colors correspond to the choice of 2D
electron dispersion [compare Fig. 2(a)]. With λ0 = 0.2, the three
different line styles represent varying choices of bare frequency �0 as
written in the legend. (c–e) Renormalized phonon frequencies along
high-symmetry lines of the BZ. Different colors correspond to 3D
electron energies as shown in Fig. 2(c). Bare couplings are chosen as
λ0 = 0.05, 0.1, and 0.15.

superconducting state in connection with phonon renormal-
ization is provided in Sec. V.

Including the back reaction of electrons on the phonon
spectrum, via the Feynman diagram shown in Fig. 1(b), leads
to a decrease in the magnitude of frequencies, which is a
well-known behavior commonly referred to as phonon soft-
ening [36]. This phenomenon has been discussed especially
in context of the 2D Holstein model [4,5,12,15], and it marks
tendencies of the system to develop a charge density wave
instability. The question of whether phonon softening is fa-
vorable for superconductivity or suppresses Tc is discussed in
further detail in Sec. V.

To first show the general effect, let us consider the or-
ange dispersion (1) in Fig. 2(a) and a bare frequency �0 =
100 meV. After self-consistently solving the Eliashberg equa-
tions in two dimensions at T = 20 K, we calculate the
renormalized phonon spectrum via Eq. (25). In Fig. 4(a) we
plot our result for �q/�0 along high-symmetry lines of the
BZ for various coupling strengths as indicated in the legend.
In the limit of small λ0 (see blue curve), the renormalization
effects are relatively minor, i.e., �q/�0 stays close to unity
throughout the BZ. The biggest phonon softening occurs at
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q � (π, π ) because the FS is relatively well nested at this
exchange momentum. As we increase λ0 we confirm the
leading instability to be at (π, π ), since the smallest ratio of
renormalized to bare frequencies is observed at this q [see
Fig. 4(a)]. Additionally, phonon softening occurs throughout
the whole BZ, so we observe �q < �0 ∀q for any finite λ0.

We can understand the observed decreases in �q by
expressing the phonon self-energy as 
q,l = −g2

qχ
0
q,l ,

where χ0
q,l is the charge susceptibility [15]. Inserting

into Eq. (25) and using gq = g0 gives �q/�0 =√
�2

0 − 2�0g2
0χ

0
q,l=0/�0 =

√
1 − 2g2

0χ
0
q,l=0/�0 . Therefore

the anisotropy in the renormalized frequencies comes solely
from the susceptibility, which in turn is dominated by
contributions due to FS nesting. In addition we note that
g2

0/�0 ∝ λ0, therefore the phonon softening is expected to
increase with coupling strength, a trend confirmed by our
calculations shown in Fig. 4(a).

To further examine the influence of nesting on the phonon
renormalization we test the three dispersions as shown in
Fig. 2(a). For each ξk we choose initial frequencies �0 =
100, 150, or 200 meV and a coupling strength of λ0 = 0.2.
Our results for �q/�0 are plotted in Fig. 4(b), again as func-
tion of exchange momentum q along high-symmetry lines.
The color code is identical to Fig. 2(a), and we use varying
line styles, as written in the legend, to show results computed
for different �0.

As first observation we find that our results are to a good
approximation independent of the choice of bare phonon
frequency. This is reflected in the fact that all three curves
(different line styles) for any of the electron dispersions fall
almost precisely on top of each other. Therefore we conclude
that �q/�0 is a direct function of λ0 [see Fig. 4(a)] but not of
�0. This can be seen by expressing the above functional form
as �q/�0 =

√
1 − λ0χ

0
q,l=0/N0 via Eq. (23). Notably, there is

still an implicit dependence on �0 hidden in

χ0
q,l = −T

∑
k,m

Tr[Ĝk,mρ̂3Ĝk+q,m+l ρ̂3] (28)

due to the self-consistency of our approach, which is why the
curves are not precisely equivalent.

When comparing results computed for different electron
fillings we find much bigger effects in the renormalized
phonon spectrum. Starting with the orange curves of Fig. 4(b),
we find the most pronounced phonon softening at q = (π, π ).
This case is already discussed above, and can be explained
by well-satisfied nesting conditions at this wave vector. The
green curves show larger values for �q/�0, i.e., the renormal-
ization effects are less pronounced compared to results shown
in orange. From the FS properties [see Fig. 2(b)], we know
that the exchange momentum is no longer close to M when
focusing on the green curve, rather q lies in between � and M
or X . This nesting property is directly translated into results
of Fig. 4(b), where the softest phonons are found along �-M
and X -�. Turning now to the lowest electron filling, the purple
lines (3) in Figs. 4(b) and 2(a), the phonon frequencies �q are
almost as large as their respective �0, for q between M and
X . Since the FS is a very small circle at the center of the BZ,
it is not surprising that the susceptibility peaks only at small

wave vectors. Therefore we observe softer phonons around �

in these results.
In the discussion above we did identify FS nesting as

an important factor when considering phonon softening and
renormalized couplings in two dimensions. We now want to
explore this aspect also in 3D systems, using electron energies
from Fig. 2(c). Fixing � = 100 meV, we solve the Eliashberg
equations for three different coupling strengths, λ0 = 0.05,
0.1, and 0.15, at T = 20 K. The corresponding results for the
phonon spectrum are shown in Figs. 4(c)–4(e), respectively.
Each of these panels contains results for all three electron fill-
ings tested, where we adopt the color code of Figs. 2(c)–2(f).
The first observation is similar to the 2D case, i.e., the phonons
become softer as we increase the coupling strength. This can
be seen by comparing similarly colored curves among differ-
ent panels of Figs. 4(c)–4(e). Further it is apparent that the
phonon softening is generally less pronounced and coherent in
three dimensions. The orange curves (1) in each panel show
a relatively small tendency for phonon softening, while the
smallest �q/�0 are detected at M and R. Effects are even
less prominent for the green lines (2) of each panel, where,
for couplings up to λ0 = 0.15, �q/�0 stays relatively close
to unity throughout the BZ. For the smallest electron filling
(3), which is represented by purple lines in Figs. 4(c)–4(e), we
find the results with highest anisotropy. Throughout most parts
of the BZ the phonon spectrum is to a good approximation
not renormalized, but �q/�0 decreases strongly around �.
This behavior is qualitatively similar to the 2D case shown
in Fig. 4(b), in contrast to the other curves shown here (green,
orange).

From the above discussion we learn that reduced nesting
properties lead to less phonon softening in three dimensions,
compared to the 2D situation. However, very small electron
fillings are an exception to this trend because we observe com-
parable results of �q/�0 in two and three dimensions. The
reason lies in the special role of the � point: When considering
a spherical FS, q ∼ (0, 0, 0) is the only exchange vector with
which FS parts can be connected without dependence on the
angle of wave vector q, hence the susceptibility response in
three dimensions can develop similarly coherent contributions
at � as in two dimensions.

We now turn to a more detailed discussion of the renor-
malized coupling strength λ, which, as we argue below,
does similarly as the phonon softening strongly depend on
FS nesting properties, and hence follows different trends in
two and three dimensions. As stated before, the coupling
diverges as we increase λ0 → λ�

0, with λ�
0 marking a lattice

instability. Recalling the definition λ = 〈〈λk−k′ 〉k∈FS〉k′∈FS, we
combine Eqs. (24) and (7) to write the momentum dependent
coupling as

λq = N0g2
0

[
�0

2
+ 
q,l=0

]−1

, (29)

where we used gq = g0. With 
q,l=0 = −g2
0χq,l=0 and λ0 =

2g2
0N0/�0, we get

λ = 〈〈λk−k′ 〉k∈FS〉k′∈FS

=
〈〈

λ0

1 − λ0χq,l=0/N0

〉
k∈FS

〉
k′∈FS

. (30)
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FIG. 5. (a) Renormalized coupling strength as function of λ0,
calculated in two dimensions for �0 = 100 meV and T = 20 K.
Open circles represent our self-consistent results; solid lines are
obtained from Eq. (31). (b) Critical couplings λ�

0 as function of �0,
shown for different dispersions in two and three dimensions. The
color code used here in panels (a) and (b) reflects the choice of
electron dispersion according to Figs. 2(a) and 2(c). Results obtained
for two dimensions (three dimensions) are shown via solid (dashed)
lines.

We model Eq. (30) by introducing the fitting function

λ ∼ aλ

λ0

1 − bλλ0
, (31)

where aλ reflects the magnitude of the coupling, and bλ is a
measure of the influence due to χq,l=0/N0. Needless to say,
Eq. (31) is an approximation, since we neglect the momen-
tum dependence of the susceptibility. As mentioned earlier,
the renormalized coupling diverges at a critical choice λ�

0 of
the bare coupling strength. We can find an estimate of this
quantity from the denominator in Eq. (31), namely, when
(1 − bλλ0) → 0 we can write

λ�
0 � 1

bλ

. (32)

In Fig. 5(a) we show our self-consistent results for λ as
function of λ0 as open circles, for �0 = 100 meV, T = 20 K,
and the three 2D electron dispersions of Fig. 2(a) (similar
color code). The fitted behavior as described in Eq. (31) is
shown as solid lines for each data set. As is apparent from
this graph, the renormalized coupling strength can be modeled
with the above functional form to a very good approximation.
Repeating the same procedure for �0 = 150 and 200 meV,
and for all three 3D electron energies leads to the curves
shown in Fig. 5(b), where we plot the critical bare coupling
as function of input frequency. Solid (dashed) lines and open
circles (crosses) represent trends in two dimensions (three
dimensions), while colors are again corresponding to the elec-
tron dispersions in Figs. 2(a) and 2(c).

From all curves of Fig. 5(b) we learn that λ�
0 is to first-order

approximation independent of the initial phonon frequency,
which goes in line with observations from Fig. 4(b). Further,
our 2D results reflect the expected behavior with respect to
nesting conditions: The orange dispersion (1) of Fig. 2(a) is
relatively well nested, therefore the susceptibility shows large
contributions that are reflected in the fitting constant bλ. Con-
sequently, the critical input coupling [compare Eq. (32)] is a
small number. As we proceed to the green (2), and eventually
the purple (3) electron dispersion, the nesting becomes less

FIG. 6. Bare coupling strength λ�
0 , corresponding to the onset

of superconductivity, as function of input frequency �0. Results are
computed for T = 20 K, and the color code corresponds to Fig. 2.
(a) Results for 2D electron dispersions. (b) Results for 3D electron
dispersions.

coherent, so that the resulting λ�
0 grows larger. Turning to

the dashed curves of Fig. 5(b) we find a different behavior.
The values for λ�

0 are far less susceptible for changes in
the electron filling. Further, we find smaller values for bλ in
three dimensions than in two dimensions, which clarifies that
nesting in three dimensions is less important. An exception
to this is the result drawn in purple, representing the most
shallow electron dispersion (3). As discussed in connection to
Figs. 4(c)–4(e), this stems from the special role of nesting at
q ∼ (0, 0, 0), which is developed to a larger extent in three
dimensions than in two dimensions. For this reason (large
value of bλ) the purple dashed line not only falls below the
two other curves for 3D systems, but lies also lower than the
purple solid line obtained for the most shallow 2D electron
dispersion (3).

Note that the results of Fig. 5(b) are obtained by fitting
λ in the noncritical range of the input coupling, i.e., for λ0

significantly smaller than λ�
0. Therefore the reported values of

λ�
0 are to be interpreted as qualitative trends, and should not be

taken as precise numbers. Performing a calculation at λ0 ∼ λ�
0

is numerically very difficult, because the input ξk − δμ has to
be gradually adjusted so as to keep the electron filling at the
desired level. If, however, the interplay of δμ, �0, and λ0 is
such that the input coupling is above the respective λ�

0, the
self-consistent Eliashberg loop never converges.

We end this section by looking into the bare coupling
strength λ�

0 , at which the onset of superconductivity occurs,
i.e., the smallest λ0 at which �k,m 
= 0. As is apparent from
Fig. 3, λ�

0 depends both on properties of the electron disper-
sion and on the phonon frequency, hence we want to examine
this quantity closer in two and three dimensions. We choose
phonon frequencies �0 as 70, 100, 150, or 200 meV, T =
20 K and use electron energies from Figs. 2(a) and 2(c) to
show computed results for λ�

0 as function of �0 in Figs. 6(a)
and 6(b), for two and three dimensions, respectively. Open
circles (crosses) represent our data, while solid (dashed) lines
are obtained by a linear fit of the 2D (3D) data. The color
code corresponds to choices of electron dispersion according
to Fig. 2. For each of the curves, both in two and three di-
mensions, we observe a linear decrease in λ�

0 with increasing
frequency. This stems from the fact that renormalized frequen-
cies �q are growing with �0, enhancing the tendencies of the
system to form a superconducting state.
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FIG. 7. Maximum superconducting gap as function of temper-
ature with color code corresponding to the electron dispersions of
Figs. 2(a) and 2(c). The different line styles represent the choices
of initial frequency �0 as written in the legends. For the size of
input couplings λ0 see main text. (a–c) Results for �(T ) for the
2D electron systems. Each panel contains an example for �(T )
shown by the cyan dotted curve, that is obtained by setting 
q,l = 0,
�0 = 200 meV, and matching Tc to the corresponding dot-dashed
curve. (d–f) Results for the 3D systems of Fig. 2(c), with coupling
strengths as described in the main text.

When comparing results for λ�
0 with respect to shallow-

ness and nesting, we find similar trends with those already
observed in Figs. 4 and 5. In the 2D case [Fig. 6(a)], the
orange dispersion (1) has the best nesting conditions, resulting
in a large susceptibility at the nesting wave vector. This in
turn leads to a relatively large renormalized coupling strength
λ. By increasing shallowness of the electron energies, hence
considering the green (2) and purple (3) lines, we obtain de-
creasing magnitudes of χq,l , which results in smaller coupling
strengths. Hence, to achieve similar values of λ as in the well
nested case, λ0 has to be increased. For 3D systems nesting is
generally less coherent, therefore the orange (1) and green (2)
curves in Fig. 6(b) show larger values for λ�

0 than in Fig. 6(a),
with similar reasoning. The very shallow ξk (3), represented
by the purple line, is again the exception due to exhibiting
coherent nesting behavior at (0,0,0), which is why only small
couplings are needed to induce superconductivity.

V. CRITICAL TEMPERATURES

Let us now turn to the superconducting critical tempera-
ture Tc that can be determined by following the maximum
superconducting gap with T . We define Tc as the smallest
temperature at which � vanishes and use the same electron
dispersions as before [see Figs. 2(a) and 2(c)]. Starting in
two dimensions, we test the initial frequencies �0 being 100,
150, or 200 meV, which are represented in Figs. 7(a)–7(c)
by solid, dashed, and dot-dashed lines, respectively. All pan-
els show the maximum superconducting gap as function of
temperature, with color code corresponding to the choice of
electron dispersion from Fig. 2(a). For each ξk and �0 we
take the largest value of λ0 < λ�

0 for which a solution could

be stabilized, so as to maximize the renormalized coupling
and critical temperature. Furthermore, each panel contains the
result for calculating �(T ) without finite phonon self-energy,
i.e., setting 
q,l = 0, shown by the dotted cyan curves. For
each electron filling we compute these curves by setting �0 =
200 meV and matching Tc with the respective dot-dashed
result.

For Fig. 7(a) we take the parameter choices (�0, λ0) =
(100 meV, 0.205), (150 meV, 0.215), and (200 meV, 0.22).
The resulting critical temperatures lie between 26 and 65 K.
Next we turn to Fig. 7(b): The Fermi surface is smaller
than in the case before, but the electron band (2) is
not yet very shallow. We use (�0, λ0) = (100 meV, 0.34),
(150 meV, 0.41), and (200 meV, 0.42) for the solid, dashed,
and dot-dashed curves. As easily observed, Tc drastically
grows when compared to Fig. 7(a), with the largest critical
temperature almost reaching 200 K. When we finally go to
the results for a shallow band (3) [Fig. 7(c)], Tc ranges be-
tween ≈80 and ≈110 K. Here the curves are produced by
choosing (�0, λ0) = (100 meV, 0.54), (150 meV, 0.53), and
(200 meV, 0.55).

The here observed results can be explained by an intuitive
picture: The dispersion corresponding to Fig. 7(a) exhibits the
best nesting conditions, which leads to enhanced renormaliza-
tion of the phonon propagator (see also Sec. IV). This means
that a substantial part of the available coupling in the system
is “used” for renormalizing the phonon frequency, leaving less
coupling available for Cooper pairing and therefore resulting
in a reduction of � and Tc. In the opposite limit of the shallow
band (3) [Fig. 7(c)], most of the initial coupling strength
is available to form the superconducting state, because the
nesting, and therefore the renormalization of the phonon spec-
trum, is comparatively minor. Consequently Tc is enhanced
when comparing to Fig. 7(a). However, due to the shallowness
of the electron band (3) we face a reduced FS area, there-
fore the Tc’s are larger than in Fig. 7(a), but not maximized.
When comparing the results for �0 = 200 meV to the cyan
dotted curve, found for 
q,l = 0, in each panel we observe
larger values for �/kBTc when the phonon self-energy is fi-
nite. This comparison points towards stronger coupling when
including the self-consistent renormalization of the phonon
spectrum, which is rather intuitive when considering that the
maximally possible λ0 < λ�

0 has been chosen here, leading
to comparatively large values for the renormalized electron-
phonon coupling strength λ.

The results shown in Fig. 7(b) can be seen as example
of how to achieve the highest possible critical temperatures.
The electron dispersion (2) exhibits relatively bad nesting
conditions, while still not being in the limit of a very shallow
band. For achieving a large magnitude of � (and therefore
Tc) a substantial renormalized coupling λ is required, com-
bined with a large FS. The system of Fig. 7(b) lies in an
ideal intermediate regime, where the balance between phonon
renormalization and electron band shallowness is kept. The
FS nesting condition is good enough for achieving a large
λ, but not as ideal as in Fig. 7(a) so as to drive the system
towards a lattice instability before superconductivity can build
up. Additionally the FS size is sufficiently large, in contrast to
Fig. 7(c), so as to boost values for Tc.
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The above interpretation is the intuitive extension of results
well known for the approximation 
q,l = 0. If only the bare
phonon propagator is considered, one recovers the standard
BCS result, i.e., the superconducting critical temperature de-
pends on the phonon frequency and the FS size. An increase
in either of those quantities leads to a growing Tc. In contrast,
as soon as 
q,l is finite, the values of the maximum supercon-
ducting gap and critical temperature decrease to an extent that
depends only on the nesting conditions [compare Figs. 7(a)–
7(c)]. Therefore there should exist an ideal balance between
phonon renormalization and FS size, which maximizes the
critical temperature.

Let us now turn to 3D systems, taking electron energies
ξk from Fig. 2(c). The maximum superconducting gap as
function of temperature is shown in Figs. 7(d)–7(f), where we
test again three phonon frequencies for each electron filling
(see legend). Each curve is obtained by imposing a respective
input coupling λ0 that is close to the lattice instability. In
Fig. 7(d) we plot our self-consistent solutions for (�0, λ0) =
(100 meV, 0.383), (150 meV, 0.4), and (200 meV, 0.42), us-
ing the orange electron dispersion (1) of Fig. 2(c). As
before we find a clear enhancement in the maximally al-
lowed � and Tc with increased phonon frequency. Results
for both maximum superconducting gap and critical tempera-
ture become comparatively smaller in Fig. 7(e), (�0, λ0) =
(100 meV, 0.31), (150 meV, 0.31), (200 meV, 0.33), where
the green dispersion of Fig. 2(c) is used. The reason for this
trend is a decrease in FS size, combined with a less important
role of nesting properties in 3D systems. Finally, we show
�(T ) for the purple 3D dispersion (3) [see Fig. 2(c)], in
Fig. 7(f). Here we found no superconductivity for (�0, λ0) =
(200 meV, 0.15) and (150 meV, 0.12) down to 10 K. The gap
size and Tc for (�0, λ0) = (100 meV, 0.1) are substantially
smaller than in Figs. 7(d) and 7(f). These results can be
explained under the light of an extremely small FS of the
purple electron dispersion (3). Additionally, large parts of
the available coupling are used for renormalizing the phonon
spectrum, due to well-enhanced nesting conditions at q ∼
(0, 0, 0); see also discussions in Sec. IV.

On a related note, our temperature-dependent results en-
able us to explicitly test the well-established practice of using
the same phonon frequencies for all temperatures across the
superconducting phase transition. The phonon spectra are usu-
ally calculated in the normal state, i.e., without taking Cooper
pairing into account, and afterwards used for describing the
superconducting pair condensate at T < Tc. When consider-
ing �q as function of T , we find that this is indeed a valid
approximation. For the model calculations done here, the
changes are in the sub-meV range, with �q slightly growing
as T increases. This rather insignificant trend can be attributed
to thermal broadening, and can conveniently be neglected to
very good approximation.

Above we have already encountered some aspects concern-
ing the superconducting Tc, in both 2D and 3D systems. In
the following we propose a scaling of the critical temperature,
which can also serve as approximate upper bound. In Fig. 8
we show our maximally possible values for Tc as function
of renormalized phonon frequency, adopting the color code
from Fig. 2. Our computed results for 2D and 3D systems
are, respectively, shown in Figs. 8(a) (open circles) and 8(b)

FIG. 8. Influence of phonon renormalization on Tc in 2D and 3D
systems. Open circles and crosses represent computed values for Tc

as function of renormalized frequency �, where the color code of
Fig. 2(a) (2D) and Fig. 2(c) (3D) is used for panels (a) and (b). The
couplings have been chosen close to the lattice instability. In the main
text we describe how to obtain the approximate upper bounds for Tc

as shown by the dashed lines.

(crosses). For finding these critical temperatures we choose
initial frequencies �0 ∈ [50, 200] meV, and pick the largest
λ0 < λ�

0 for which a solution can be stabilized.
Our results show that the maximum Tc obtained here al-

ways increases as function of renormalized frequency � =
〈�q〉q∈BZ for 2D systems. However, in three spatial di-
mensions this trend is not observed for our most shallow
dispersion (3), where Tc < 10 K for � � 150 meV. For mod-
eling the functional behavior found in Fig. 8, it is worthwhile
considering trends reported by other authors. In Ref. [9],
Esterlis et al. proposed that T max

c ∝ � constitutes a reasonable
upper bound for the critical temperature. However, our results
do not appear linear in the renormalized phonon frequency,
which is why this scaling might be a too crude approximation.
Another proposal was made by Moussa and Cohen, stating
that T max

c ∝
√

�2
0 − �2 [37]. Imposing this form does indeed

lead to satisfying agreement with our data in two dimensions,
but fails to capture the decrease in critical temperature ob-
served for the purple line in Fig. 8(b). We find that the best fit
to our numerical data is given by the scaling expression

kBT max
c ∝ λ(�)

√
�2

0 − �2, (33)

which is shown as dashed lines in Fig. 8. As is apparent from
comparing our data with outcomes of Eq. (33), the functional
dependence in Fig. 8 is quite accurately captured. Especially
for 3D systems the inclusion of λ(�) is crucial to mimic the
observed trends, while the functional dependence proposed in
Ref. [37] would suffice for the 2D cases.

It is important to notice the difference between Eq. (33)
and the more simplified scaling law of Ref. [37], since λ is
not constant with respect to �. To show this explicitly, we
can solve Eq. (25) for the zero-frequency phonon self-energy,
yielding 
q,l=0 = (�2

q − �2
0)/(2�0). We insert this expres-

sion into Eq. (29) and, as an approximation, replace �q by �,
so that

kBT max
c ∼ λ0

�2
0

�2

√
�2

0 − �2. (34)

Here it is furthermore worthwhile to note the functional de-
pendence of the renormalized phonon frequency and bare
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coupling strength within our model, i.e., λ0 = λ0(ξk,�0) and
� = �(ξk,�0).

The interpretation of Eqs. (33) and (34) is rather intuitive:
The highest possible value of Tc depends directly on the
renormalized coupling strength in the system. Additionally,
well-developed phonon softening is advantageous for maxi-
mizing the critical temperature, i.e., having � � �0. These
two effects are not decoupled from each other, since both
depend on nesting properties and the FS size. For two di-
mensions we already observed the trends in Figs. 7(a)–7(c);
the green curve in Fig. 8(a) represents the ideal compromise
between magnitude of the FS (purple curve being suppressed
because the FS is too small) and nesting properties (or-
ange curve being suppressed because phonon softening is
too strong). Going from the orange to the green curve in
Fig. 8(b) reflects the decrease of FS size (compare Fig. 2).
The most shallow 3D system exhibits additionally coherent
nesting at �, so as to produce negative phonon frequencies
before superconductivity can fully develop. Summarizing, we
obtain numerically that the effect of phonon softening is in
general favorable for superconductivity, provided that the un-
renormalized phonon frequency �0 is sufficiently large, such
that the system is not developing a lattice instability before
superconductivity can fully build up.

VI. CONCLUSIONS

In this paper we have investigated the details of Eliash-
berg theory including self-consistent phonon renormalization
on a model basis. We worked out the similarities and dif-
ferences between 2D and 3D systems, identifying nesting
properties and FS size as key aspects. From those follow
directly the trends for phonon softening, electron-phonon
renormalization, and the critical temperature. Our paper there-
fore constitutes an extensive overview of possible effects of
phonon renormalization in Eliashberg theory under Migdal’s
approximation.

Our calculations show that the maximally possible Tc in
two dimensions results from a delicate interplay between FS
size and nesting properties. If the size of the FS is too small,
no strongly increased values for Tc are found. On the other
hand, very coherent nesting, which in our model is associated
with a big FS, drives the system too quickly towards a lattice
instability with increasing coupling strength. Maximal values
for the critical temperature are therefore found in an interme-
diate regime. Comparable values for Tc when neglecting the
phonon renormalization are found for less strongly coupled
systems. In three spatial dimensions, nesting, and therefore
the renormalization of the phonon spectrum, becomes less
coherent. Consistently we find that the magnitude of Tc is
mainly dictated by the size of the FS.

In Sec. IV we have shown that there exists an inherent
bound λ�

0 on the maximal coupling strength, which is not to be
confused with critical values of λ0 in other works. Chubukov
et al. use the notation λcr to describe the border of applicabil-
ity of Eliashberg theory with respect to the electron-phonon
coupling strength [7]. This border is found by comparing
outcomes from Eliashberg theory with QMC simulations in
the normal state, so that for λ > λcr the two theories no longer
produce similar results. The same border of applicability is

denoted λ� in Ref. [8], which, again is not the same coupling
strength as our λ�

0 corresponding to a lattice instability.
As mentioned before, various authors agree on the exis-

tence of a maximal coupling strength up to which Eliashberg
theory produces accurate outcomes. However, this aspect
seems not to be understood completely yet. It has been
claimed that Migdal-Eliashberg theory breaks down at an
input coupling λ0 � 0.4, which was concluded by consider-
ing a 2D Holstein model [7,8]. However, it is by no means
clear whether the same limit exists in real materials, and in
particular in 3D systems, as was implied, e.g., in Ref. [9]. Fur-
thermore, other authors have arrived at deviating conclusions:
In an early work by Marsiglio [4] good agreement between
QMC and Eliashberg theory was found regardless of coupling
strength, provided that the phonon renormalization is taken
self-consistently into account. We therefore conclude that the
correct picture is currently still elusive, and want to stress
again that results presented here are solely derived within
Migdal’s approximation.

There are several aspects that go beyond the scope of the
current paper, but are important to be considered in future
studies for gaining a better understanding of the formalism.
Examples of such extensions would be a nontrivial mo-
mentum dependence in the electron-phonon coupling λq, or
replacing the Einstein phonon frequency �0 by a wave vector
and phonon branch ν dependent frequency ωq,ν . Especially
a ν dependence would require a slight generalization of the
equations used here. For simplicity, we have neglected any
Coulomb repulsion, which should be included in our treat-
ment as well, ideally in a more exploratory manner than
just following the most commonly used practice of setting
μ� = 0.1 [6]. Another major step further would be to extend
the vertex-corrected Eliashberg theory of Ref. [27] by a self-
consistent phonon renormalization, which would then have to
be done by including up to the second-order processes in both
electron and phonon self-energies.

Here we have solely considered optical phonon modes
but it is worthwhile noting that potentially deviating results
are to be expected for acoustic modes (characterized by
ωq=(0,0),ν = 0). We have seen that the momentum dependent
decrease in the magnitudes of optical phonon frequencies gen-
erally follows the nesting wave vector. However, for acoustic
frequencies this is not necessarily true, since the correspond-
ing electron-phonon interaction λq,ν must then acquire a
nontrivial momentum dependence, which has the constraint
λq=(0,0),ν = 0. Further, if a multibranch system is considered,
not all branches are expected to be softened to the same ex-
tent, which makes it rather difficult to predict the outcome of
calculations similar to those we performed here for our model
systems.

Additionally, we note that real materials have a degree
of freedom not incorporated in our theory, which is struc-
tural transformations. A good example for discussing this
phenomenon is the high-temperature superconducting hy-
drides [38,39]. These materials undergo one or more structural
phase transitions when subject to external pressure (see, e.g.,
Ref. [40]). By calculating phonon spectra via density func-
tional theory it is found that phonon softening is responsible
for such structural reconfigurations, since nonstable phases
lead to imaginary frequencies at the nesting wave vector.
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Therefore, for either optical or acoustic phonon modes, the
actual system adopts an atomic configuration that is stable
with respect to the lattice vibrations. Our analysis is valid for
testing different coupling strengths within one stable phase,
but not across such phase transitions.
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APPENDIX: BENCHMARK CALCULATIONS

In the following we benchmark our formalism by compar-
ing it to existing literature to show that our implementation is
reliable and in agreement with other approaches. Specifically,
we compare our results with those of Ref. [8], where the
authors compare outcomes of quantum Monte Carlo calcula-
tions with results from Migdal-Eliashberg theory, computing
the charge density wave and superconducting susceptibilities.
The temperatures considered in this work exceed the phase
transition, i.e., the system is in the interacting but nonsuper-
conducting state. For their Eliashberg calculations the authors
include the electron and phonon lowest-order Feynman dia-
grams, similar to our present paper. The aim in this section is
to reproduce Figs. 3 and 4 published in Ref. [8].

Esterlis et al. [8] use a two-dimensional tight-binding
model with nearest- and next-nearest-neighbor hopping ener-
gies t and t ′. Their ratio is taken as t ′/t = −0.3. The electron
filling is fixed at n = 0.8. For both figures that we are inter-
ested in, the temperature is T = t/16, the adiabaticity ratio is
�0/EF = 0.1 (with EF the Fermi energy), and the coupling
strength is chosen from λ0 ∈ {0.2, 0.4, 0.5}. The functional
form of their tight-binding approach reads

ξk = −2t[cos(kx ) + cos(ky)] − 4t ′ cos(kx ) cos(ky) − μ

(A1)

for the electron energies [41]. The chemical potential μ has
to be adjusted so as to fix the electron filling at the cho-
sen value. In contrast to our theory presented here, Esterlis
et al. [8] have focused on properties above Tc using a scalar
function �(k, ωm), while our Nambu formalism allows us
to directly access superconducting properties. We can make
contact between the two formulations by considering only the
(11) matrix element of �̂k,m:

−Im�̂
(11)
k,m = ωm(Zk,m − 1), (A2)

which is equivalent to the scalar self-energy of Ref. [8].
In Figs. 9(a)–9(c) we show our results for Eq. (A2) as solid

lines in all three panels, corresponding to different choices of
λ0. We plot −Im�̂

(11)
k,m at those FS momenta, that produce the

maximal (blue curve) and minimal (red curve) magnitude of
the result. As comparison we extracted results from Ref. [8]
at two different FS angles (see the orange and green dashed
lines). It is directly apparent that the curves coincide to a very
good degree. Next, we attempt to reproduce the renormalized

FIG. 9. (a–c) Imaginary part of the (11) element of the electron
self-energy as function of Matsubara frequencies. Results shown
in panels (a), (b), and (c) are obtained for λ0 = 0.2, 0.4, and 0.5,
respectively. Dashed curves are taken from Ref. [8], at FS angles
as written in the legend. Blue and red solid lines correspond to our
results computed from Eq. (A2), where we show curves at those
FS momenta that produce the maximum (blue) and minimum (red)
magnitude for the self-energy. (d) Phonon frequencies, normalized
to the bare input �0, along high-symmetry lines of the BZ. Different
colors represent input couplings as written in the legend. For each λ0

we show our results as solid lines, and curves taken from Ref. [8] are
shown with dashed lines.

phonon frequency spectrum of Ref. [8], which can be obtained
with the same set of parameters as described above. We show
our results for λ0 = 0.2, 0.4, and 0.5 in Fig. 9(d) via solid
brown, gray, and purple lines, respectively. As before, we
find good agreement with results by Esterlis et al., plotted as
dashed curves in similar color code.

The small deviations between our results and those of
Ref. [8] observed in Fig. 9 can be likely attributed to dif-
ferent choices for the momentum grid size and number of
Matsubara frequencies. Further, potential differences can arise
from numerical details of the implementation, e.g., the way of
performing the momentum and energy integrals, or how the
aspect of electron filling is handled.
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[17] V. N. Kostur and B. Mitrović, Phys. Rev. B 48, 16388 (1993).
[18] O. Gunnarsson, V. Meden, and K. Schönhammer, Phys. Rev. B

50, 10462 (1994).
[19] E. J. Nicol and J. K. Freericks, Physica C 235–240, 2379 (1994).
[20] P. Miller, J. K. Freericks, and E. J. Nicol, Phys. Rev. B 58,

14498 (1998).
[21] J. P. Hague, J. Phys.: Condens. Matter 15, 2535 (2003).
[22] L. Pietronero and S. Strässler, Europhys. Lett. 18, 627

(1992).
[23] P. Benedetti, C. Grimaldi, L. Pietronero, and G. Varelogiannis,

Europhys. Lett. 28, 351 (1994).

[24] P. Paci, E. Cappelluti, C. Grimaldi, and L. Pietronero, Phys.
Rev. B 65, 012512 (2001).

[25] L. Boeri, E. Cappelluti, C. Grimaldi, and L. Pietronero, Phys.
Rev. B 68, 214514 (2003).

[26] E. Cappelluti, S. Ciuchi, C. Grimaldi, and L. Pietronero, Phys.
Rev. B 68, 174509 (2003).

[27] F. Schrodi, P. M. Oppeneer, and A. Aperis, Phys. Rev. B 102,
024503 (2020).

[28] The UppSC code provides a package to self-consistently solve
the anisotropic, multiband, and full-bandwidth Eliashberg equa-
tions for frequency-even and odd superconductivity mediated
by phonons, charge fluctuations, or spin fluctuations on the
basis of ab initio calculated input.

[29] A. Aperis, P. Maldonado, and P. M. Oppeneer, Phys. Rev. B 92,
054516 (2015).

[30] J. Bekaert, A. Aperis, B. Partoens, P. M. Oppeneer, and M. V.
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