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Vibrational motion of a vortex lattice induced near the surface of a type-II superconductor
by an external low-frequency ac magnetic field
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The theoretical description and experimental study of a reversible vibrational vortex motion induced in a
type-II superconductor by a weak low-frequency ac magnetic field are discussed. The case where the external
magnetic field and vortex lines are parallel to the surface of the superconductor is considered. The equilibrium
positions of vortices near a surface, the amplitude of their vibrations, and the contribution of this process to the
dynamic permeability μv are calculated. In these calculations, the interactions of vortices with each other, with
the surface, and with pinning centers are considered within the discrete vortex lattice model. The calculations
in the London approximation are compared with the results obtained within a more accurate model, including
the spatial variation of the order parameter in the vortex core by means of a variational function. It is shown
that the structural parameters of the vortex lattice near the surface depend on the accuracy of the description
of the intervortex interactions, but the contribution μv appears to be model independent. It is important that
this conclusion is valid in the case of the exponential approximation for the interaction between vortex rows.
In this approximation, the problem under consideration is analytically examined, and formulas describing the
dependences of the parameters of the vortex lattice and the contribution μv on the external dc magnetic field and
the characteristics of a superconductor are derived. The theoretical results are compared with experimental data
for a YBa2Cu3Oy high-Tc superconducting single-crystal plate. The magnetic field is parallel to the plate, i.e., to
the crystallographic ab plane. A strong anisotropy of the properties and shape of the crystal is considered when
analyzing the experimental data. A procedure for the determination of the experimental dependence μv (H ) is
described. It is shown that the reversible vibrations of vortices occur near the planes of the single-crystal plate
in the direction of the crystallographic c axis, whereas vortices enter its lateral ends and leave them (along
the structural layers) even at a small magnetic field amplitude of about 1 Oe. It is found that the developed
theoretical description reproduces the experimental data μv (H ) in the entire studied range of temperatures and
magnetic fields under the assumptions that pinning is isotropic and the length of interaction of vortices with
pinning centers is close to the coherence length.
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I. INTRODUCTION

Experimental methods based on the measurements of
quantities characterizing the response of a type-II supercon-
ductor to an external ac magnetic field are widely used to
obtain information on the properties of a vortex system. Vari-
ous regimes of motion of vortices can be induced, depending
both on the amplitude Hm and frequency ω of the ac magnetic
field and on the parameters of the vortex system (the density
of vortices, the degree of their anisotropy, and the relation
between the magnitudes of interactions of vortices with each
other, with the surface, and with pinning centers).

The vibrations of vortices near equilibrium positions are
of fundamental and applied significance. This regime was
first revealed and studied by Campbell [1,2], who proposed
a phenomenological description of the response of a sample
to a weak low-frequency ac field based on the consideration
of the reversible vibrations of vortices in a potential well
produced by the interaction of a vortex with pinning centers.

*pigalskiy@gmail.com

Owing to this process, the ac field penetrates the sample to the
effective depth λC called the Campbell penetration depth. The
λC value is determined primarily by the slope of the pinning
well, which is characterized by the Labusch constant αL.

The theory of this phenomenon was significantly devel-
oped after the discovery of high-Tc superconductors (HTSCs).
Brandt [3,4], Coffey and Clem [5], Clem and Coffey [6], and
other authors [7–9] additionally considered the elasticity of
the vortex lattice, viscous friction, proximity to the surface,
and other factors. The calculations in the cited papers, as
well as in Refs. [1,2], were performed in the continuum ap-
proximation for the local vortex density. It is noteworthy that
many corrections obtained for the Campbell formula become
insignificant in the low-frequency limit, and the expression for
the square of the penetration depth of the ac magnetic field is
reduced to the form

λ2
ac = λ2 + λ2

C = λ2 + B2

4παL
. (1)

Here, λ is the London penetration depth, and B is the magnetic
induction near the surface.
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Experimental studies of HTSCs in the ac magnetic field
showed that the vibrations of vortices strongly affect the mag-
netic characteristics. Measurements of the permeability at the
fundamental and third harmonics for YBa2Cu3Oy (YBaCuO)
powder samples carried out in Ref. [10] revealed that the
contribution of reversible motion increases with the dc field
and temperature. Using the Campbell model, the authors of
Refs. [11,12] determined the parameters of the pinning well
near the irreversibility line. In particular, the temperature
dependences of the critical current density Jc, the Labusch
constant, and the length of interaction of the vortex with
pinning centers were determined in Ref. [11] for YBaCuO
melt-textured ceramic. The measurements performed in the
linear (Campbell) and nonlinear (dissipative) regimes of vor-
tex motion provided information on the nature of the peak
effect (anomalous increase in Jc in the considered regions of
fields and temperatures). In Ref. [13], the Campbell method
was used to analyze the effect of BaZrO3 nanoparticles on
pinning in a YBaCuO nanocomposite film. It was shown
that the introduction of impurity nanoparticles results in an
anomalous increase in the Labusch constant αL(H,T) with an
increase in the dc magnetic field at all temperatures. Consid-
ering the reversible vortex motion, the authors of Ref. [14]
determined the critical current density Jc in the film from the
measurement of nonlinear properties at the third harmonic.
The critical current density Jc thus determined appeared to be
overestimated; this overestimate is larger for a thinner film.
The overestimate factor is about λC/D (D is the thickness of
the film).

The hysteresis of the Campbell penetration depth detected
in Ref. [15] for HTSCs with a high degree of anisotropy (e.g.,
in Bi-based superconductors) is of interest. It was found that
the depth λC depends on the prehistory of the formation of
the vortex system: in the first case, the sample was cooled
in a magnetic field (FC mode), whereas in the second case,
the field was applied after cooling in zero field (ZFC mode).
A smaller λC value in the FC mode compared with the ZFC
mode was attributed by the authors to the difference in the
curvature of the pinning potential well (i.e., αL values) near its
bottom or near the edge because the gradient of the magnetic
field in the ZFC mode is much larger, and vortices are located
closer to the edge of the well. The discovery of this effect
stimulated a cycle of theoretical papers [16–18], where a
quantitative relation between the Campbell penetration depth
and the microscopic parameters of the pinning energy land-
scape was established within strong pinning theory.

The Campbell model implies the existence of quite strong
pinning, at which the size of the pinning potential well is
smaller than the intervortex distance. In the case of weak pin-
ning (e.g., near the irreversibility line), αL → 0, and Eq. (1) is
inapplicable because the positions of vortices become unsta-
ble and λac tends to infinity in the low-frequency limit.

In the regime of reversible vortex vibrations, the variable
component of the magnetic field should displace vortices
near the equilibrium positions, i.e., the amplitude Hm should
not exceed the external field interval �Hvs, where a vortex
lattice is only elastically deformed, whereas the number of
vortices in the sample does not change. In the considered
strong pinning models, the interval �Hvs corresponds to the
displacement of vortices from one edge of the potential well

to the opposite edge, which is accompanied by change of the
sign of the pinning force.

However, the vibrational regime of vortex motion can also
occur in the absence of pinning if a finite interval �Hvs of
another nature exists. One of such mechanisms is well known
and is due to the surface energy barrier for the entry and exit of
vortices (the Bean-Livingston surface barrier [19]). It is note-
worthy that the barrier for the entry of vortices (determined
by the condition for the nucleation of a vortex near the surface
of the superconductor) and the barrier for exit (caused by
the electromagnetic interaction of the vortex with the surface)
have different physical natures and, as a result, different field
dependences. In particular, the barrier for the entry of vortices
through a flat superconductor-insulator interface vanishes in
a field of H > Hc, whereas the barrier for the exit of vortices
remains finite up to fields H ∼ Hc2 [20] (where Hc and Hc2

are the thermodynamic and upper critical fields, respectively).
The continuum approximation is often insufficient to cal-

culate the characteristics of the vortex system near the surface,
and it is necessary to use the discrete vortex lattice model.
Vibrations of vortices for the case of negligibly weak pinning
were theoretically considered in Refs. [21–25] within the dis-
crete model. The calculations were performed in the London
approximation (LA), and an expression was obtained for the
contribution μv of this process to the dynamic permeability of
a plate sample in a magnetic field parallel to the plate. It was
shown that the calculations reproduce the experimental data
for the YBaCuO single crystal in a temperature range from
70 K to Tc and in a weak dc field. The discrete vortex lattice
model was also used in Ref. [26] to calculate elastic constants
at the shift of vortices along and across the system of planar
pinning centers.

The vibrational contribution to the permeability was cal-
culated in Ref. [27] within the discrete model more accurately
than in the LA. The decrease in the order parameter in the vor-
tex core was considered by the variational function proposed
in Refs. [28,29]:

f (ρ) = f∞ρ(
ρ2 + ξ 2

v

)1/2 . (2)

Here, ρ is the distance from the center of the vortex and ξv

and f∞ are the effective radius of the core and the order pa-
rameter far from the center of the vortex, respectively, which
are variational parameters determined from the condition of
the thermodynamic potential minimum. For an isolated vor-
tex, ξv = √

2/κ and f∞ = 1 (at Ginzburg-Landau parameter
κ � 1).

The variational method (VM) makes it possible to more
accurately calculate the field of the vortex compared with the
LA and, consequently, the intervortex interactions, as well
as to consider a change in the self-energy of the vortex in
fields H � Hc1, in which the overlap of vortex cores begins
to be noticeable (here, Hc1 is the lower critical field). This
method allows a sufficiently accurate calculation of the equi-
librium magnetization in the entire magnetic field range Hc1 �
H � Hc2 [29–31]. The VM was also applied in Ref. [27] to
calculate the magnetodynamic response of the vortex lattice.
However, only a particular case of an ideal triangular lattice
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neglecting its distortions near the surface was considered in
Ref. [27], and the effect of pinning on μv was not analyzed.

In this paper, problems of the theoretical description and
experimental study of the properties of a vortex lattice un-
dergoing reversible vibrations under the action of an external
low-frequency ac magnetic field are consistently analyzed.
Numerical calculations are performed in Sec. II, where the
structure of the vortex lattice near the surface and the corre-
sponding vibrational vortex contribution μv to the dynamic
permeability are also analytically described. The basic re-
lations determining the static and low-frequency dynamic
properties of the vortex system within the discrete model are
presented. Further, in the weak pinning approximation, the
dependence of the results of calculations on the accuracy of
the approximation used to describe intervortex interactions
is comparatively analyzed. Finally, methods for the inclusion
of pinning, its effect on the magnetodynamic properties of
the vortex lattice, and problems of numerical calculations
are considered in Sec. II, where a method for the analytical
description of the vortex system with pinning is also proposed.
An experimental approach to obtain quantitative information
on μv and the critical current for a YBaCuO HTSC single-
crystal plate in a magnetic field parallel to the surface is
described in Sec. III. Experimental field dependences μv (H )
are analyzed in Sec. IV within the developed theoretical con-
cepts. Finally, the conclusions are formulated in Sec. V.

II. THEORY

A. Basic relations

The properties of the vortex system are calculated within
the commonly accepted discrete vortex lattice model near the
flat boundary of the superconductor when vortex lines are
parallel to the boundary. In this model, the vortex lattice is
nearly triangular and consists of rows parallel to the surface.
The distance between vortices along all rows is the same and
denoted as a. The positions of vortices in neighboring rows are
shifted by a/2. A magnetic field is directed along the z axis,
which is parallel to the surface; the x axis is perpendicular
to the surface; and the y axis is directed along the rows.
This geometry is quite appropriate to a superconducting plate
sample when the external field is parallel to its larger face. For
simplicity, we consider an isotropic case and the anisotropy
of a real HTSC crystal is taken into account when discussing
experimental data.

The equilibrium position xn of the n th row is determined
by the balance condition for all forces acting on each vortex
in this row:

FM (xn) +
n−1∑
i=1

Fv (xn − xi ) −
∞∑

i=n+1

Fv (xi − xn)

−
∞∑

i=1

Fv (xi + xn) + Fp = 0. (3)

Here, the first term is the force induced by the Meissner
screening current; the second and third terms are the forces
induced by other rows of vortices located nearer and farther
from the surface than the n th row, respectively; the fourth
term is the attraction force to the system of images; and the

fifth term is the pinning force (which is negative and positive
for increasing and decreasing external dc fields, respectively).
In the considered geometry, the effects associated with a finite
size of the superconductor L along the z axis and with the
intersection of its boundary by vortex lines are neglected.
These effects are significant if L is not larger than λ [32]. The
system of Eq. (3) allows the calculation of the structure of the
vortex lattice and, thereby, its physical properties.

In this paper, the complex permeability is an experi-
mentally measured quantity characterizing the penetration of
the ac magnetic field into the sample. The real part μ′ of
the permeability in the external magnetic field H (t ) = H +
Hm sin(ωt ) is defined as

μ′(H ) = 1

2πHm

∫ 2π/ω

0
cos(ωt )

[
dB(H, t )

dt

]
dt . (4)

Contributions to μ′ of various physical origins were con-
sidered in Refs. [21,23]. In the limit of small amplitude, where
the number of vortices in the sample remains constant, the
time-dependent part of the magnetic induction contains two
components: B(H, t ) = BM (t ) + Bv (H, t ). The first compo-
nent is related to the oscillation of the Meissner screening
current, and the second component is due to the vibrations
of vortices near the equilibrium positions. These processes
make two contributions to the permeability: μ′ = μM + μv .
The Meissner contribution is independent of the external field;
for a plate sample with the thickness D � λ, considering the
penetration of the field from both sides of the plate, it is

μM = 2λ

D
. (5)

In the case of vibrational motion, when the number of vor-
tices in the sample does not change, the discrete model makes
it possible to refine the physical nature of the variation of the
magnetic induction. As known, the magnetic flux of the vortex

 near the boundary of the superconductor is smaller than
the magnetic flux quantum 
0 and depends on the distance
x between the vortex and the surface. For the flat boundary,

 = 
0[1 − exp(−x/λ)]. As a result, both the amplitude of
the time variation of Bv and the vibrational contribution to
the permeability μv are determined by the characteristics of
motion of vortices located in a relatively thin near-surface
layer with a thickness of ∼λ. This circumstance allowed the
theoretical consideration in Ref. [23], where the following
expression was obtained for the vibrational contribution to the
permeability:

μv = 2
0

Daλ

∑
n

exp
(
−xn

λ

)(
δxn

δH

)
. (6)

The formula in Eq. (6) allows the calculation of μv in terms
of the positions of vortex rows xn and their shifts δxn under a
small variation of the external field δH .

Expressions for intervortex interaction forces entering
Eq. (3) depend on the used model. The calculations were
carried out within three models: the LA, the VM considering
the structure of the core, and the exponential approximation
(EA), which is a simplified variant of the LA, where the force
with which a vortex row acts on a probe vortex is described
by an exponential function.
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Below, we use the dimensionless Ginzburg-Landau units,
where the length is measured in units of λ, and the magnetic
field is measured in units of

√
2Hc. In these units, 
0 = 2π/κ ,

Hc2 = κ , and the force is measured in units of κ
2
0/8π2λ3.

The dimensionless magnetic field, magnetic induction, and
force will be denoted by lowercase letters to distinguish them
from the respective dimensional physical quantities.

The expression for the force with which the Meissner cur-
rent acts on the vortex is model independent and has the form

fM (x) = h exp (−x). (7)

As known, the field generated by a vortex at the distance ρ

from its center in the LA has the form

bLA
0 (ρ) = 1

κ
K0(ρ), (8)

where K0 is the modified Bessel function of the second kind.
The total field generated by a row of vortices at the distance x
was calculated in Ref. [33]. The gradient of this field gives the
force with which the row of vortices acts on the probe vortex
in another row:

f LA
v (x) = π

κa

[
exp (−x) ∓ 2

exp (−2πx/a)

1 ± exp (−2πx/a)

]
. (9)

Here, the upper and lower signs correspond to the positions
of the probe vortex with the shift by a/2 along the y axis with
respect to the positions of vortices in the row and without such
shift, respectively.

Within the VM, when the spatial variation of the order
parameter in the vortex core is described by the function in
Eq. (2), the expression for the field of an isolated vortex was
calculated in Ref. [29]:

bVM
0 (ρ) = f∞

κξvK1( f∞ξv )
K0

(
f∞

√
ρ2 + ξ 2

v

)
. (10)

Fields given by Eq. (10) were summed for the row of
vortices in Ref. [30], and the corresponding force acting on
the probe vortex within the VM is given by the expression

f VM
v (x) = π f∞

κaξvK1( f∞ξv )

x

xc

×
[

exp (− f∞xc) ∓ 2
exp (−2πxc/a)

1 ± exp (−2πxc/a)

]
, (11)

where xc = (x2 + ξ 2
v )1/2.

We consider the practically significant field range H <

0.5Hc2, where the overlap of the vortex cores can be neglected
and f∞ = 1 can be set [29]. Figure 1 shows the force with
which the row of vortices acts on the probe vortex calculated
within various models as a function of the distance between
the row and the probe vortex. The distance between the
vortices along the row corresponds to the field h = 20, and
the parameter ξv = ξv0 = √

2/κ corresponds to the isolated
vortex [29]. Arrows mark the distances to the three nearest
rows; the distance between neighboring rows is d = √

3a/2.
As seen, differences associated with the decrease in the order
parameter in the vortex core are manifested only for several
nearest rows. The inclusion of the core most strongly reduces
the repulsion force between vortices in the neighboring rows.

FIG. 1. Force with which the row of vortices acts on the probe
vortex vs the distance to it as calculated (solid lines) by the vari-
ational method (VM), (dashed lines) in the London approximation
(LA), and (dash-dotted line) in the exponential approximation (EA)
in the case of (1,1′) the shift of the probe vortex with respect to
the positions of vortices in the row by a/2 and (2,2′) without shift.
Arrows mark the distances to the three nearest rows.

The dash-dotted line is the distance dependence of the
force calculated within the EA:

f EA
v (x) = π

κa
exp (−x). (12)

The expression in Eq. (12) is obtained from Eq. (9), where
the correction considering the mutual arrangement of vortices
along the y axis (the second term in the square brackets) is
omitted. It is seen that this simplification is manifested only
in the interaction between the neighboring rows. This approx-
imation is important for the consideration of the structure
and dynamics of the vortex lattice near the surface because
it allows the analytical solution of the problem with pinning.

We now consider how the accuracy of the description of
intervortex interaction forces affects the position and mobility
of vortex rows and, as a result, the vibrational permeability μv

for the case of negligibly weak pinning.

B. Case of negligibly weak pinning

In the limit of weak pinning (Fp = 0), the gradient of the
density of vortices in the bulk of the superconductor is absent,
the vortex lattice is triangular and is in a state close to the
thermodynamic equilibrium with the external field. A small
positive or negative deviation of the magnetic induction bv

inside the superconductor from the equilibrium value beq can
occur due to the surface barrier. The corresponding hysteretic
behavior of bv upon the increase and decrease in the magnetic
field was discussed in Refs. [24,25,34]. Below, we neglect this
effect and consider only the equilibrium state bv = beq. This
state corresponds to the minimum of the Gibbs free energy,
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which for the triangular lattice is given by the expression [35]

G=κbv

2π

[
ε0 + 12π

κ

∞∑
n=1

∞∑
m=0

b0(a
√

n2 + nm + m2)

]
− 2bvh.

(13)
Here, ε0 is the self-energy of the vortex per unit length, and
b0(ρ) is the field of the vortex; expressions for these quantities
are different in different approximations. In the LA, b0(ρ) is
given by Eq. (8), and ε0 is specified as (see, e.g., Ref. [36])

εLA
0 = 2π

κ2
[ln (κ ) + C1]. (14)

The constant C1 cannot be determined in the LA; its value
C1 = 0.4968 was calculated in Ref. [37]. In the variational
model, b0(ρ) has the form of Eq. (10), and the expression for
ε0 was obtained in [29]

εVM
0 = πξ 2

v

2
+ π

2κ2
+ 2πK0(ξv )

κ2ξvK1(ξv )
. (15)

The minimization of the Gibbs free energy allows deter-
mination of the equilibrium magnetic induction beq and the
corresponding distance between the vortices along the rows
aeq = (4π/

√
3κbeq )1/2, as well as the variational parameter

ξv in the VM.
In the considered thermodynamically equilibrium state,

the vortex structure and its properties are single-valued func-
tions of h. Calculations included several stages. Considering
possible distortions of the vortex lattice near the surface,
the equilibrium positions xn of Nr vortex rows nearest to
the surface, which satisfy the force balance conditions in
Eq. (3), were determined in the first stage by means of a
numerical procedure. Distortions of the regular triangular
lattice for more remote rows, beginning with Nr + 1, were
neglected, and the distance between rows was assumed to
be deq = √

3aeq/2. In the second stage, a small variation of
the external field δh was introduced with the conservation
of bv . After that, the shifts δxn of the equilibrium posi-
tions of the vortex rows were determined, which allowed
calculating the parameters Cn = (δxn/δh) characterizing the
mobility of the vortex lattice. In the last stage, the vibrational
permeability μv was determined by Eq. (6). The calculations
for large values Nr > 5 required the development of a special
slow descent algorithm to approach the equilibrium xn values
because the simple successive search for equilibrium posi-
tions, beginning with the first row, led to an unstable solution.

Figures 2, 3, and 4(a) show the field dependences of the
distance to the first row x1, its mobility C1, and the resulting
vibrational permeability μv calculated within various models
and at various Nr values (the Ginzburg-Landau parameter
κ = 100). We first consider the case Nr = 1, where possible
distortions of the triangular vortex lattice near the surface are
neglected. It is seen that the x1(h), C1(h), and μv (h) curves
obtained within different models are significantly different.
This conclusion for the case of Nr = 1 was also made in
Ref. [27]. The x1 value obtained in the LA decreases mono-
tonically with increasing field, whereas the x1(h) dependence
obtained within the VM is nonmonotonic, and the first row
is anomalously shifted from the surface in high fields. Fur-
thermore, the mobility of the first row C1 obtained within the
VM is noticeably lower than that in the LA. Consequently, the

FIG. 2. Field dependences of the distance from the surface to the
first vortex row calculated (solid lines) by the variational method
(VM), (dashed lines) in the London approximation (LA), and (dash-
dotted line) in the exponential approximation (EA). The numbers
of rows whose positions were determined from the force balance
conditions in Eq. (3) are indicated next to the lines. The inset shows
the normalized distances from the surface to the first vortex row and
between rows vs the position of the row (h = 20, Nr = 24).

FIG. 3. Field dependences of the shift of the first row of vortices
under a small variation of the external field calculated (solid lines) by
the variational method (VM), (dashed lines) in the London approxi-
mation (LA), and (dash-dotted line) in the exponential approximation
(EA). The numbers of near-surface rows whose positions were deter-
mined from the force balance conditions are indicated next to the
lines.

064509-5



K. S. PIGALSKIY PHYSICAL REVIEW B 103, 064509 (2021)

FIG. 4. (a) Field dependences of the contribution from the vibra-
tions of vortices to the permeability calculated (solid lines) by the
variational method (VM), (dashed lines) in the London approxima-
tion (LA), and (dash-dotted line) in the exponential approximation
(EA). The numbers of rows whose positions were exactly determined
from the force balance condition are indicated next to the lines. (b)
Field dependences of the equilibrium magnetization calculated (solid
line) by the VM, (long dashed line) in the LA, and (short dashed line)
by the analytical formula taken from Ref. [31]. The inset shows the
field dependence of the variational parameter ξv .

dependences μv (h) also differ [see Fig. 4(a)]. The vibrational
permeability μv obtained within the VM is smaller than that
in the LA and is saturated in high fields.

Calculations with larger Nr values carried out in this pa-
per give a surprising result. With an increase in the number
of rows Nr , whose positions were exactly determined from
the force balance equations, the dependence μv (h) becomes
model independent [see Fig. 4(a)]. At the same time, some
differences in the x1(h) and C1(h) curves hold. It is important
that the same dependence μv (h) was obtained in the simplest

EA; the result evaluated in this approximation is shown by the
dash-dotted line in Fig. 4(a).

A strong dependence of the results obtained within
the VM on Nr indicates that the core-induced distortions
of the triangular lattice near the surface are larger than those
in the LA. This difference is demonstrated in the inset of
Fig. 2, where the distances from the first row to the surface
(m = 1) and between rows (m > 1) calculated in the LA and
VM (at Nr = 24) are shown. It is seen that the concentration
of rows near the surface within the VM is higher, but the first
row is farther from the surface. These two factors apparently
compensate each other, and this compensation is one of the
reasons for the constancy of the resulting μv value.

The model independence of the calculated vibrational
contribution to the permeability is a quite unique property.
Calculations within these models give strongly different field
dependences of the equilibrium magnetization [see Fig. 4(b)].
The LA is applicable only in a narrow field range near H ∼
Hc1. Reasons for the strong effect of the structure of the vor-
tex core on the magnetization at H � Hc1 were discussed in
detail in Refs. [29–31,38], where methods for the calculation
of the variational parameters and the magnetization are also
presented.

The positions of vortex rows calculated in the EA are inde-
pendent of Nr , and the triangular lattice is not distorted near
the surface. This result was previously obtained analytically
in Ref. [20] and numerically in Ref. [23]. It is likely due
to the identical exponential form of the interactions of rows
with each other and with the external field. It is important
that this approximation makes it possible to derive analytical
expressions for the considered quantities. Corresponding cal-
culations for the case of negligibly weak pinning were carried
out in Refs. [24,25]. The position of the first row is given by
the expression

x1 = deq

2
+ ln

⎡
⎣ h

b̃v

+
√(

h

b̃v

)2

− 1

⎤
⎦, (16)

where

b̃v = bv

deq

2 sinh(deq/2)
. (17)

The shift of the first row of vortices under a small variation
of the external field is

δx1 = δh√
h2 − b̃2

v

. (18)

The contribution to the permeability from the vibrations of
the vortex lattice has the form

μv = μM
2α2

1

α0 − α2
1

, (19)

where

α1 = exp (−x1), α0 = exp (−deq ). (20)

In Figs. 2, 3, and 4(a), analytical dependences calculated by
Eqs. (16)–(20) coincide with the numerical results obtained
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in the EA (dash-dotted lines). Furthermore, the function in
Eq. (19) describes the common asymptote of the μv (h) curves
calculated in different models with increasing Nr .

C. Effect of pinning

The interaction of the vortex lattice with pinning centers
affects both the equilibrium positions of vortex rows and the
amplitude of their vibrations. As known, the pinning force
depends on the position of the vortex inside the potential well
and reaches the maximum p near its edge. If the gradient of
the magnetic induction changes sign, the pinning force can
vary in the range −p � fp � p. The maximum pinning force
p (per unit length of the vortex) is related to the critical current
density Jc (in units of A/cm2) as

p = 4π2λ3

5κ
0
Jc. (21)

To calculate xn(p), we include pinning forces in the force
balance conditions in Eq. (3). Following the above sequence
of calculations, we first numerically determine the positions
of Nr rows near the surface by solving the system of Eq. (3)
under the assumption that the rows n > Nr satisfy the condi-
tion (xn+1 − xn) = (xNr − xNr−1). Uncertainty associated with
the existence of an infinite set of possible solutions appears
already in this stage of calculations. The reason is that the ad-
ditional condition of the existence of the thermodynamically
equilibrium vortex lattice at x � λ in the case of unpinned
vortices is inapplicable in the presence of pinning. Therefore,
to obtain an unambiguous solution in the case of pinning, it is
necessary to introduce a new physically justified criterion.

The first obvious requirement to this criterion is the contin-
uous passage to the results for the unpinned lattice in the limit
p → 0. We also assume that the vortex system near the sur-
face most closely approaches the thermodynamic equilibrium
with the external field. This postulate was used in numerous
papers, for example, when calculating the magnetization of
a hard superconductor, which were in good agreement with
experiment (see, e.g., Refs. [39,40]). The additional condition
in the EA in the form

(x2 − x1) = deq, (22)

satisfies both requirements. In particular, the first requirement
is satisfied because of the absence of distortions of the triangu-
lar lattice at p = 0 in the EA, for which the distance between
all rows, including two rows nearest to the surface, is deq.
Thus, without loss of generality, the EA with the condition
given by Eq. (22) is used in the further numerical calculations
and in the derivation of analytical expressions.

The dependence of changes in the positions of vortex rows
near the surface calculated on the pinning force is shown in
Fig. 5 for the case of increasing external field, where the
pinning force prevents the penetration of vortices, and the
vortex rows nearest to the surface are shifted toward it. Fig-
ure 5 also demonstrates the opposite effect of pinning. The
appearing gradient of the magnetic induction, which is caused
by a decrease in the density of vortices with an increase in
the distance from the surface, is responsible for the shift of
vortex rows deeper inside the superconductor beginning with
a certain row.

FIG. 5. Shift of vortex rows vs the pinning force directed to the
surface (the case of an increase in the external magnetic field). The
row numbers are indicated next to the lines.

The next step in the calculations was the determination of
the shift δxn of vortex rows under a small variation of the
external field δh. Since this shift occurs inside the pinning po-
tential well, it is necessary to include the appearing returning
force δ fp = −kpδxn in the force balance conditions in Eq. (3).
(This problem is discussed in more detail in Appendix B). The
corresponding force constant kp characterizing the slope of the
well at the vortex center position is related to the pinning force
as kp = p/lp, where lp is the effective length of interaction
of the vortex with pinning centers. Then μv is calculated by
Eq. (6) as in the case without pinning.

The points in Fig. 6 are the calculated values of the vi-
brational permeability μv as a function of the pinning force
for the parameters κ = 100, lp = 0.02 = 2ξ (where ξ is the
coherence length), and different Nr values. It is seen that
the interaction of vortices with pinning centers significantly
reduces μv , and the results of the calculation strongly depend
on Nr up to a quite large value of Nr = 50. The effect of Nr is
particularly strong at small p values. At Nr > 50, numerical
calculations and achievement of a steady-state solution are
too complicated. It is necessary to analytically analyze the
considered phenomenon. The corresponding calculations are
cumbersome and given in Appendices A and B. The final
expressions for the distance to the first row and for the vibra-
tional contribution to the permeability are presented below.

The distance to the first vortex row is given by the expres-
sion

α1 =
√

α0

1 ± p̃α0

⎡
⎣ h

b̃v

−
√(

h

b̃v

)2

− 1 + p̃2 ± 2 p̃ sinh (deq )

⎤
⎦,

(23)
where p̃ = p/[b̃v cosh(deq/2)], and the upper and lower signs
correspond to decreasing and increasing external fields, re-
spectively. It is seen that the shift of the first row depends on
the sign of pinning: it is larger in the case of decreasing field.
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FIG. 6. Vibrational contribution to the permeability vs the pin-
ning force. The dashed line is the numerical calculation with different
numbers of exactly balanced rows Nr . The solid line is the calculation
by Eq. (24). The inset shows the calculated curve in the lin-log scale.

The expression for the vibrational contribution to the per-
meability has the form

μv = μM

2α2
1

[
1 − 2k̃pα0

(√
1 + k̃−1

p − 1
)
/
(
α0 − α2

1

)]
α0 − α2

1

[
1 + 4k̃pα0/

(
α0 − α2

1

)] , (24)

where

k̃p = p

lp

cosh (deq/2)

b̃v

. (25)

It is easy to verify that Eqs. (23) and (24) with p = 0 have
the form of Eqs. (16) and (19) for the unpinned vortex system,
respectively.

Unlike Eq. (16), the denominator in Eq. (23) can be zero for
the increasing field regime. In this regime, the pinning force is
directed to the surface and impedes the penetration of vortices
inside the superconductor. Pinning can completely prevent the
penetration of vortices at large p values. Indeed, estimates
indicate that this effect is possible in fields slightly above Hc1.
However, at H � Hc1, the condition p(deq/2) 	 1, which
is necessary for the stability of the first row of vortices, is
satisfied at all real parameters of HTSC crystals.

We now consider in more detail the singularities of Eq. (24)
for the vibrational permeability. The numerator and denomi-
nator of this expression vanish at the force constant k̃p = k̃p,c,
where

k̃p,c =
(
α0 − α2

1

)2

4α0α
2
1

. (26)

Numerically, kp,c ∼ 0.01, which corresponds to the pin-
ning force fp,c ∼ 10−4 under the assumption that lp ∼ ξ . It
is easy to show that the quantity μv (k̃p) at k̃p = k̃p,c does not

have singularities and is given by the expression

μv (k̃p,c) = μv (p = 0)
α2

1

α0 + α2
1

, (27)

which is about half the μv value without pinning. These con-
clusions are in good agreement with the data shown in the
inset of Fig. 6.

The value k̃p,c separates the weak and strong pinning re-
gions. The effect of pinning at k̃p 	 k̃p,c is insignificant, and
the structure and low-frequency dynamics of the vortex lattice
are determined by the interactions of vortices with each other
and with the surface. In the opposite limit k̃p � k̃p,c, pinning
becomes the leading factor and Eq. (24) can be represented in
the form

μv = μMk̃−1/2
p . (28)

After the transition to dimensional quantities, this expression
acquires the form

μv = 2λac

D
, where λ2

ac = B
0

4πkp
, (29)

which coincides with the expression for the Campbell pene-
tration depth, where the force constant is given per unit length
of the vortex.

The comparison of calculations by Eqs. (23)–(25) with
the numerical calculations shows that the maximum differ-
ence is observed at weak pinning forces, i.e., in the region
of transition from the free vortex lattice to the pinned one
(see Fig. 6). It is shown in Appendix B that the amplitude
of vortex vibrations decreases exponentially with an increase
in the distance from the surface, and this decrease is faster
for a stronger pinning force [see Eq. (B12)]. Apparently, for
the parameters of the calculated curves in Fig. 6 in the region
of weak pinning, the number of rows whose vibrations effec-
tively contribute to μv is larger than 50, whereas this number
at p > 0.002 is Nr < 50.

In the further consideration, we use only the analytical
description of μv (h, p, lp) by Eq. (24). The inset of Fig. 6
shows in the lin-log scale how μv decreases with increasing
p. This plot makes it possible to determine the threshold
value p ∼ 10–5, beginning with which pinning strongly affects
μv . An estimate of Jc ∼ 2 × 103 A/cm2 is obtained for the
corresponding critical current density from Eq. (21) with the
parameters κ = 70 and λ = 0.2 μm typical of the YBaCuO
HTSC. This low current for HTSC crystals usually occurs
at the temperatures near Tc, so that the effect of pinning on
vibrational vortex motion can be neglected only in this narrow
temperature range.

Figure 7 shows the dependences μv (h) in increasing and
decreasing dc fields at different parameters lp. At large lp >

5ξ , i.e., for a sufficiently smooth potential well, the effect
of pinning on the amplitude of vibrations is not too strong,
and the direction of the shift of the vortex rows nearest to the
surface, which is determined by the direction of the variation
of the dc field, is pronounced. However, as lp decreases to
the most physically reliable value lp ∼ ξ , the pinning well
becomes narrow, so that the effect of pinning is reduced pri-
marily to a decrease in both the amplitude of vibrations and
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FIG. 7. Field dependences of the contribution from the vibrations
of the pinned vortex lattice to the permeability at different lengths
of interaction of vortices with pinning centers lp in units of the
coherence length in the case of (solid lines) increasing and (dashed
lines) decreasing fields. The dash-dotted line is a similar dependence
in the absence of pinning.

μv . In this case, the position of the vortex inside the well can
affect μv only because of the deviation of the shape of the
well from parabolic and the corresponding change in kp. This
effect was observed in cuprate HTSCs with a high degree of
anisotropy [15,16].

III. EXPERIMENT

A thin superconducting plate in an external magnetic field
parallel to its flat surface is geometrically most appropriate
for the experimental study of vibrational vortex motion. In
this case, the vortex structure is parallel to the surface, and
the demagnetizing factor is negligibly small. In this paper,
the measurements were performed with the YBaCuO HTSC,
which was split from an oriented massive crystal grown by
the method described in Ref. [41]. The plate sample had
the sizes L × W × D = 4.0 × 1.8 × 0.29 mm, where L and W
are the length and width of the flat face (which is parallel
to the crystallographic ab plane), respectively, and D is the
thickness. The condition D � λ was valid at all temperatures.
The sample was additionally saturated with oxygen at 360 °C
during 267 h in an oxygen flow. The onset temperature of
the superconducting transition was 88 K. Figure 8 shows the
x-ray diffraction pattern (CuKα radiation) obtained at reflec-
tion from the flat face of the single crystal. It is seen that
this diffraction pattern contains only (00 l) reflections, which
indicates a pronounced anisotropy with the direction along
the c axis perpendicular to the flat face. The lattice parameter
c = 11.675 Å is slightly smaller than the value c = 11.69 Å
in good samples with the oxygen content y = 6.92 [42]. This

FIG. 8. X-ray diffraction pattern of the studied YBa2Cu3Oy

single crystal.

difference can be due to slight oxygen overdoping or a small
impurity of light elements existing in YBaCuO single crystals.

The response of the sample to the ac magnetic field was
measured on a specially designed setup that is based on
the two-coil method and has sufficiently high stability and
sensitivity to detect small changes in the dependence on the
dc field. The ac field has a frequency of 980 Hz, and the
amplitude varied in the range Hm = 0.1–20 Oe. The dc field
generated by a copper solenoid placed in liquid nitrogen var-
ied in the range of 0–2.5 kOe. The dc and ac magnetic fields
were directed along the long edge of the single-crystal plate.
First, we measured the field dependences of the real and imag-
inary parts of the magnetic susceptibility. The susceptibility
was normalized to the value measured in zero dc magnetic
field at T = 70 K and Hm = 0.1 Oe. Then these results were
recalculated to the permeability because it better describes the
penetration of the ac field into the sample.

Figure 9 shows the field dependences of the real and imag-
inary parts of the permeability measured at 81.0 K. Similar
data were also obtained at different temperatures. It is seen
that the real part of the permeability μ′ increases monotoni-
cally with both the dc field and the amplitude of the ac field,
which indicates an increase in the effective volume into which
the ac magnetic field penetrates. Losses on magnetization
reversal, which are characterized by the imaginary part of the
permeability μ′′, also increase.

As seen in Fig. 9, in addition to the amplitude-independent
(linear) contributions of μM and μv to the permeability
considered above, there is a contribution depending on the
amplitude. This nonlinear contribution is due to the entry-exit
of vortices into-from the sample in the process of modulation
of the external field by the ac component. The amplitude de-
pendences of μ′ at T = 81 K and various dc fields are shown
in the inset of Fig. 9, where the procedure of separation of
the contributions is also demonstrated. The extrapolation of
the dependence μ′(Hm) to Hm = 0 gives the sum μM + μv ,
where the term μM corresponds to zero dc field. It is seen
that changes in μ′ appear beginning with the smallest ampli-
tudes and are close to linear. As known, such an amplitude
dependence is characteristic of the contribution μ′

c caused by
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FIG. 9. Field dependences of the real (μ′) and imaginary (μ′′)
parts of the permeability of the YBaCuO single crystal at T = 81 K
and amplitudes of the ac field Hm = (1) 0.5, (2) 1.0, (3) 2.0, (4) 3.0,
(5) 4.0, (6) 6.0, (7) 8.0, (8) 12.0, and (9) 16.0 Oe. Inset: Amplitude
dependences of the real part μ′ of the permeability of the YBaCuO
single crystal at T = 81 K and H = (1) 0, (2) 0.5, (3) 0.9, (4) 1.5, (5)
2.0, and (6) 2.5 kOe.

the implementation of the critical state if the ac field does not
reach the center of the sample (see, e.g., Refs. [21,43]).

A reason for the possibility of the vibrations of vortices
and their macroscopic shift with the formation of the critical
state simultaneously occurring was studied in Ref. [44]. The
effect of the thickness D of the single crystal, which was
successively reduced by means of grinding, on μv and μ′

c was
revealed. It was found that μv increases inversely proportional
to D, whereas changes in μ′

c are small. This result shows
that the simultaneous occurrence of reversible and irreversible
vortex motions is due to a high anisotropy of the properties of
the HTSC single crystal in the external field directed along
structure layers. Two types of vortex motion are spatially
separated: vortices vibrate near the flat face of the plate in the
direction of the c axis, whereas the entry and exit of vortices
occur along structure layers through the ends of the crystal.

Thus, the analysis of the amplitude dependences of μ′
makes it possible to separate two types of vortex motion and
to determine the corresponding characteristics μv and Jc. The

FIG. 10. Field dependences of the contribution from the vibra-
tions of vortices along the c axis to the permeability of the YBaCuO
single crystal (points) at T = (1) 73.6, (2) 75.9, (3) 78.0, (4) 79.0, (5)
80.0, (6) 81.0, (7) 81.5, and (8) 82.0 K. Calculated curves (dashed
lines) without pinning and (solid lines) considering the pinning are
also shown.

critical current density was calculated from the slope of the
linear segment of μ′(Hm) using the relation [21,43]

μ′
c(Hm) = Hm

(
5

2πJcW

)
. (30)

Here, Jc is the critical current density in A/cm2, W is the
sample dimension in the direction of penetration of the ac field
in centimeters, and Hm is the amplitude of the ac magnetic
field in oersteds.

The amplitude dependences of magnetic losses also con-
firm the implementation of the critical state. The correspond-
ing imaginary part of the permeability in the low-frequency
limit is given by the expression

μ′′(Hm) = μ′′
c (Hm) = Hm

(
10

3π2JcW

)
. (31)

Indeed, the experimental dependences μ′′(Hm) are almost
linear, and the ratio of the slopes of μ′(Hm) and μ′′(Hm) is
very close to a value predicted by Eqs. (30) and (31).

The vibrational permeability and critical current density
thus obtained as functions of the dc magnetic field are shown
in Figs. 10 and 11, respectively. It is seen that the vibrational
permeability μv increases with both the magnetic field H
and temperature. This behavior reflects both an increase in
the vortex density with the magnetic field H and a decrease
in the elastic constants of the vortex lattice with increasing
temperature. The field dependences of the inverse critical cur-
rent density shown in Fig. 11 demonstrate that Jc decreases
monotonically with an increase in both the temperature and
the dc magnetic field.
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FIG. 11. Field dependences of the inverse critical current density
(the pinning force is directed along the ab layers) for the YBaCuO
single crystal. Lines 1–8 correspond to the same temperatures as
the respective lines in Fig. 10. The inset shows the temperature
dependence of Jc(H = 0), where the solid line is the calculation by
Eq. (36).

IV. DISCUSSION

To compare the results of calculations with experimental
data, it is necessary to relate dimensionless quantities in the re-
sulting formulas to the physical characteristics of the sample.
Since the external field is directed along structure layers, the
anisotropy of the magnetic properties of the HTSC should be
considered. As known, the degree of anisotropy is determined
by the ratio γ = λc/λab = ξab/ξc, where λab and λc (ξab and
ξc) are the components of the London penetration depth (co-
herence length). An exception is the thermodynamic critical
field, which is independent of the orientation of the external
field with respect to the axes of the crystal and relates the
magnetic induction (or the magnetic field) to its dimensionless
analog:

B(H ) =
√

2Hcb(h) = κc
0

2πλ2
ab

b(h). (32)

Vibrations of vortices occur in the direction of the c axis;
consequently,

μM = 2λab

D
, (33)

and κ = γ κc should be substituted into Eq. (13) to calculate
the thermodynamic potential.

The calculation of μv (H ) should include the pinning force
directed along the c axis; additional investigations are required
to determine the magnitude of this force. For this reason, as
a start point, μv (H ) is calculated in the limit of negligibly
small pinning. If the parameters κс = 70 and γ = 5 typical of
the YBaCuO HTSC are used, the London penetration depth
λab is the only fitting parameter in Eqs. (16)–(20) at each
temperature in this case. The calculated curves are shown by
the dashed lines in Fig. 10. It is seen that they poorly describe

FIG. 12. Temperature dependences of (dashed lines, left axis) the
inverse square of the London penetration depth λab (1) calculated
without pinning by fitting Eq. (19) to experimental data and (2) calcu-
lated values used to determine the contribution of pinning to μv (H )
curves and (solid line, right axis) the effective length of interaction
of vortices with pinning centers lp in units of the coherence length
ξab.

the experimental dependences, and the discrepancy becomes
more pronounced as the temperature increases and approaches
Tc. In addition, the corresponding λab(T ) values (Fig. 12)
are not reliable. First, they are noticeably smaller than the
literature data (see, e.g., Ref. [45]). Second, the dependence
λ−2

ab (T ) deviates from an expected linear law in the studied
narrow temperature range near Tc. This behavior of λab(T )
was predicted in Ref. [46] and was experimentally confirmed
in Refs. [45,47] for the YBaCuO HTSC with different degrees
of inhomogeneity.

We now consider the effect of the field-dependent pinning
force on the calculated μv (H ) curves. The pinning force en-
tering Eqs. (23) and (24) corresponds to the critical current
density Jc,ab flowing along the ab plane. Being the refinement
of Eq. (21), the corresponding relation has the form

p = 4π2λ3
ab

5κc
0
Jc,ab. (34)

The layered structure of the system can be responsible
for the anisotropy of the pinning force corresponding to the
anisotropy of critical currents along and across structure lay-
ers. This problem is beyond the scope of this paper. It is
only noteworthy that the study in Ref. [48] of mechanisms of
pinning in the YBaCuO single crystal revealed the dominant
role of point defects (isotropic mechanism of pinning) com-
pared with intrinsic pinning (which is strongly anisotropic)
near Tc. For this reason, the measured Jc(H ) dependences are
used in the calculations by Eq. (34). As seen in Fig. 11, these
dependences are well described by the known Kim-Anderson
model [49,50]:

Jc(H ) = Jc0

(1 + H/B0)
. (35)

It is remarkable that the parameter B0 = 480 Oe deter-
mined by the fitting of Eq. (35) to the experimental data
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is the same within the error for different temperatures. This
value of the magnetic induction corresponds to the intervortex
distance a ≈ √


0/B0 ≈ 0.2 μm and, according to Ref. [50],
characterizes the size of the flux bundle.

The temperature dependences of the critical current density
Jc0 in zero external field are shown in the inset of Fig. 11 and
are well described by the formula [51]

Jc0 = Jc0(T = 0)

[
1 −

( T

Tc

)2]m

. (36)

with the parameters Jc0(T = 0) = 4.3 × 105 A/cm2

and m = 2.
The length of interaction lp of vortices with pinning cen-

ters is also an unknown parameter in the calculations. To
determine lp, we perform the calculations at given λab(T )
values close to the literature data [45]. Figure 12 shows the
used λab values (line 2), which are described by the empirical
dependence λ−2

ab = 2λ−2
0 (1 − T {Tc), where λ0 = 0.135 μm is

the London penetration depth at T = 0. The resulting depen-
dences μv (H ) are shown by the solid lines in Fig. 10. As
seen, the inclusion of pinning makes it possible to obtain
good agreement of the calculated curves with the experimental
data. This agreement is due to a decrease in the pinning force
with increasing field, which leads to the straightening of the
calculated μv (H ) curves. It is interesting that the resulting
lp values are close to the coherence length ξab (see Fig. 12)
despite many assumptions. Another interesting result is an
increase in lp with decreasing temperature, which can be due
to an increase in the rigidity of the vortex lattice.

V. CONCLUSIONS

The reported numerical and analytical calculations of the
properties of the vortex lattice near the surface of a type-II
superconductor in a magnetic field oriented along the surface
provide the following results.

(i) The accuracy of the description of intervortex inter-
actions, which depends on the model of the structure of the
vortex core, affects the calculated positions of vortex rows
and the amplitudes of their reversible vibrations induced by
the external ac magnetic field. However, the contribution μv

of this process to the permeability is model independent.
(ii) It is important that the analytical expressions in

Eqs. (23) and (24) have been derived for the distance from
the surface to the nearest row and the vibrational permeability
μv , respectively, as functions of the parameters of the super-
conductor (λ, κ , Fp, kp) and the dc field. Calculations have
been performed for the discrete vortex lattice, including the
interactions of vortices with each other, with the surface, and
with pinning centers.

(iii) A method for the experimental determination of μv

from the amplitude dependences of the real part of the
permeability has been proposed. The developed theoreti-
cal approaches have been applied to describe data for the
YBaCuO HTSC single crystal in the external magnetic field
parallel to structure layers. It has been shown that the field
dependence of the parameters of the effective interaction po-
tential of vortices with pinning centers should be considered
to achieve good agreement between the calculated and exper-
imental μv (H ) curves.

(iv) The derived relations allow the determination of the
effective length of interaction of vortices with pinning centers
by means of the joint analysis of experimental data for the
magnetodynamic response and the critical current density.

It is noteworthy that Eq. (24) is valid in a wide range of
the elastic constant kp characterizing the slope of the pinning
potential well. In particular, Eq. (24) remains valid in the case
of weak pinning (e.g., near the irreversibility line), where the
classical Campbell approach is inapplicable. In this case, it is
necessary to consider the proximity of the surface in addition
to pinning effects when describing reversible vortex vibra-
tions. In the presence of even a low surface potential barrier,
the amplitude of vibrations am(x), as well as μv , remains finite
even in the absence of pinning.

It is also remarkable that an exponential decrease in am(x)
with an increase in the distance from the surface has been
obtained both within the discrete model and in the continuum
approximation, i.e., am(x) is described by the same function as
the driving force generated by the Meissner current. However,
the scale of spatial variation of the driving force is constant
(London penetration depth), whereas the scale of variation for
the amplitude of vibrations depends on the relation between
the elastic coupling constant of vortices with pinning centers
and the magnetic induction [see Eq. (B12)]. The latter scale
can vary in a wide range and can be much larger than λ.

The results obtained in this paper can be useful for deter-
mining the parameters of the pinning energy landscape. This
information is of particular significance for oriented HTSC
films, which are used to fabricate second-generation HTSC
wires. The results obtained for the single crystal are com-
pletely applicable for these objects in the external magnetic
field parallel to the surface. The joint analysis of the field de-
pendences of the low-frequency permeability and the critical
current density makes it possible to obtain quantitative infor-
mation on the depth and effective size of the pinning potential
well. These data are important for seeking the most efficient
types of pinning centers to increase the critical current of
HTSC materials.
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APPENDIX A: POSITIONS OF VORTEX ROWS

To determine the equilibrium positions of vortex rows in
the presence of pinning, it is necessary to solve the system of
Eq. (3). To reduce formulas, we introduce the dimensionless
variables

h′ = κah

π
, f ′

p = κa fp

π
. (A1)

064509-12



VIBRATIONAL MOTION OF A VORTEX LATTICE … PHYSICAL REVIEW B 103, 064509 (2021)

Then the force balance conditions in Eq. (3) for a vortex in
the n th row in the EA acquires the form

h′ exp (−xn) +
n−1∑
i=1

exp (xi − xn) −
N∑

i=n+1

exp (xn − xi )

−
N∑

i=1

exp (−xi − xn) + f ′
p = 0, (A2)

(the pinning force is negative for an increasing dc field and is
positive for a decreasing dc field). The total number N of rows
considered should be quite large (Ndeq � 1) and, as shown
below, does not enter the final formulas. Further, we use a
mathematical trick proposed in Ref. [52] to describe a vortex
structure in an inhomogeneous Josephson junction. Later, it
was successfully applied to calculate the vortex structure in a
hard superconductor [53]. Following those papers, we intro-
duce the auxiliary variables

αn = exp (−xn + xn−1), n � 2, (A3)

K1 = 0, Ki+1 = αi+1(1 + Ki ), (A4)

GN+1 = 0, Gi = αi(1 + Gi+1), (i = 1 . . . N ). (A5)

As a result, the balance condition in Eq. (A2) acquires the
form

Kn − Gn+1 + α1 · · · αn(h′ − G1) + f ′
p = 0. (A6)

Further, the summation of Eq. (A6) from n = k to N in
Ref. [53] gave an equation including N. Such an approach
is hardly applicable to calculate the vortex lattice near the
surface; for this reason, we modify it and sum Eq. (A6) from
n = 1 to k � 2:

Gk+1(Kk + 1) − (G1 − α1 · · ·αkGk+1)(h′ − G1) − k f ′
p = 0.

(A7)
The joint solution of the system of Eq. (A6) with n = k and

Eq. (A7) leads to a quadratic equation for Gk+1, which has the
solution

Gk+1= − 1 − f ′
p

2
+1

2

√(
1 − f ′

p

)2 + 4G1(h′ − G1) + 4k f ′
p.

(A8)
Cases of Eq. (A5) for i = 1, 2 together with Eq. (A8) for

k = 2, 3 and with the previously introduced boundary condi-
tion in Eq. (22), which in the accepted notation has the form
α2 = α0, constitute a closed system of equations. Its solution
gives the following formula for the distance from the surface
to the first vortex row:

α1 =
h′ −

√
h′2 + 4 f ′

p − A

1 + f ′
p +

√
(1 − f ′

p)2 + A
, (A9)

where

A = 4α0

[
1

(1 − α0)2 − f ′2
p

1

(1 + α0)2

]
. (A10)

Further, passing from h′ and f ′
p back to h and fp and

considering Eq. (17), one can transform Eq. (A9) to Eq. (23).

APPENDIX B: VIBRATIONAL CONTRIBUTION TO THE
PERMEABILITY

As mentioned above, the permeability μv is determined by
both the positions of vortex rows and their shift δxn under a
small variation of the external field δh. To calculate δxn, it is
necessary to add an elastic returning force to the force balance
conditions:

(h′ + δh′) exp (−xn − δxn) +
n−1∑
i=1

exp (xi + δxi − xn − δxn)

−
N∑

i=n+1

exp (xn + δxn − xi − δxi )

−
N∑

i=1

exp (−xi − δxi − xn − δxn) + f ′
p − k′

pδxn = 0,

(B1)

where k′
p = f ′

p/lp.
Expanding Eq. (B1) in small parameters δxi and δh′, con-

sidering Eq. (A2), and using the introduced variables, we
obtain

δh′ exp (−xn) + δxn[−Gn+1 − Kn

−α1 · · · αn(h′ − G1) − k′
p

]
+

n−1∑
i=1

δxi exp (xi − xn)

+
N∑

i=n+1

δxi exp (xn − xi )

+ exp(−xn)

[
1 +

N∑
i=1

δxi exp (−xi )

]
= 0. (B2)

To further simplify Eq. (B2), we substitute the expression
for Kn from Eq. (A6), multiply by exp(−xn) = α1 · · · αn, and
introduce the variables

βn = α1 · · · αn
δxn

δh′ . (B3)

As a result, Eq. (B2) is transformed to

βn
(
2Gn+1 + 1 − f ′

p + k′
p

)
=

n−1∑
i=1

βi(αi+1 · · ·αn)2

+
N∑

i=n+1

βi + (α1 · · ·αn)2

(
1 +

N∑
i=1

βi

)
. (B4)

Up to a constant factor, the variables βn are the terms of the
sum in Eq. (6) determining μv . It is easy to verify that

μv

μM
= 2X, (B5)

where

X =
∞∑

n=1

βn. (B6)
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The numerical calculations showed that the effect of pin-
ning on the permeability μv is due to the variation of the
distance from the surface to the nearest row and to a decrease
in the amplitude of vortex vibrations. At the same time, the
effect of variation of the distances between rows (magnetic
field gradient) is insignificant. For this reason, the difference
of the distances between the rows from the equilibrium value
is neglected, i.e., αn = α0 (n � 2). In addition, f ′

p in Eq. (B4)
for superconductors with κ � 1 can be neglected compared
with k′

p because k′
p ∼ κ f ′

p. Then Eq. (B4) in the limit N → ∞
acquires the form

βn

[
1 + α0

1 − α0
+ k′

p

]
= X + α2

1α
2(n−1)
0 (X + 1)

−
n−1∑
i=1

βi
[
1 − α

2(n−i)
0

]
. (B7)

The general solution of Eq. (B7) will be sought with the
trial function

βn = X (1 − y)yn−1. (B8)

It is easy to verify that this function satisfies Eq. (B6).
Equation (B7) is valid at any n values if

X (1 − y)

[
1 + α0

1 − α0
+ k′

p

]
− X = α2

1 (1 + X ),

α2
1 (1 + X ) + X (1 − y)α2

0(
α2

0 − y
) = 0. (B9)

The solution of this system of equations finally gives

X =
α2

1

[
2
(
α0 − α2

1

) + k′
p

(
1 − α2

0

) −
√

k ′2
p

(
1 − α2

0

)2 + 4k′
pα0

(
1 − α2

0

)]
2
[(

α0 − α2
1

)2 − k′
pα

2
1

(
1 − α2

0

)] . (B10)

This formula acquires the form of Eq. (24), if Eq. (B5) is
considered and k′

p is changed to kp according to

k′
p = f ′

p

lp
=

(
fp

lp

)
κa

π
= kp

κa

π
= kp

2
√

α0

b̃v (1 − α0)
. (B11)

The choice of the trial function for βn is one of the most
unobvious steps in the solution of this problem. This function
should satisfy the physical requirement of the exponential
decrease in the amplitude of vortex vibrations with an increase
in the distance to the surface. This requirement is imposed

because the external force generating the vibrations of vortices
is due to the Meissner current and decreases exponentially
with an increase in the distance from the surface. According
to Eqs. (B3) and (B8),

δxn = δx1 exp [(n − 1)(deq + ln y)]. (B12)

In the absence of pinning, y = α0, δxn = δx1, and the vor-
tex lattice vibrates as a whole. In the case of pinning, y < α0,
and the amplitude of the vibrations of vortices decreases ex-
ponentially with an increase in n.
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