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Gap inversion in quasi-one-dimensional Andreev crystals
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We study a periodic arrangement of magnetic regions in a quasi-one-dimensional superconducting wire. Due
to the local exchange field, each region supports Andreev bound states that hybridize, forming Bloch bands in
the subgap spectrum of what we call the Andreev crystal (AC). As an illustration, ACs with ferromagnetic and
antiferromagnetic alignment of the magnetic regions are considered. We relate the spectral asymmetry index of
a spin-resolved Hamiltonian to the spin polarization and identify it as the observable that quantifies the closing
and reopening of the excitation gap. In particular, antiferromagnetic ACs exhibit a sequence of gapped phases
separated by gapless Dirac phase boundaries. Heterojunctions between antiferromagnetic ACs in neighboring
phases support spin-polarized bound states at the interface. In close analogy to the charge fractionalization in
Dirac systems with a mass inversion, we find a fractionalization of the interface spin.
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I. INTRODUCTION

Nonmagnetic impurities [1] in a superconductor do not
substantially modify its spectrum. In contrast, a magnetic
defect may lead to bound states localized around this region
[2-12]. The features of such bound states depend on the size
of the magnetic impurity and the strength of the exchange in-
teraction [10]. In a quasi-one-dimensional (quasi-1D) ballistic
superconducting wire [13] with a magnetic region one can dis-
tinguish two different limiting cases. In one case the magnetic
exchange coupling is strong and concentrated at a pointlike
impurity, resulting in the appearance of two nondegenerate
states within the superconducting gap with opposite energies
with respect to the Fermi energy. These are the so-called
Yu-Shiba-Rusinov (YSR) states [2—4]. In the other limiting
case the magnetic region has a finite size, and the exchange
energy is small compared to the Fermi energy. Electrons can
go through the magnetic region without being backscattered.
Instead, they can be reflected as holes only via the Andreev
reflection [5]. Such reflection events couple the electron and
hole branches within each valley at the £k points [see sketch
in Fig. 1(a)] and induce two pairs of degenerate bound states in
the superconducting gap with opposite energies £¢j, known
as Andreev bound states. This degeneracy can be lifted if the
two Fermi valleys are coupled via backscattering.

Whereas YSR states are generated by magnetic impurities
of atomic size, Andreev bound states can be found in bal-
listic mesoscopic magnetic regions [10,14]. This latter case
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is well described from a semiclassical perspective [15] in
which electrons, crossing the magnetic region, accumulate a
spin-dependent phase ¢ ®. Here, ® = [ ;T’;h(x) is the phase
accumulated for a collinear exchange field A(x), the Fermi
velocity is vp, and 0 = =+ encodes the difference between
spin-up and -down electrons. Holes accumulate the same
phase, but with opposite sign, e ®.

When several impurities form a periodic chain, it is natural
to expect single-impurity bound states to hybridize, forming
bands. Such bands have been widely studied in chains of mag-
netic atoms in the YSR limit [16-23], mainly motivated by the
appearance of topological phases that may host Majorana zero
modes on the endings of the wire. However, little attention
has been paid to chains of semiclassical magnetic impurities
that can be, for example, realized in a mesoscopic supercon-
ducting wire connected to a periodic array of ferromagnetic
electrodes, as sketched in Fig. 1(b).

In this paper we study these semiclassical chains, which we
denote as Andreev crystals (ACs). We focus on an AC with a
collinear magnetization and analyze its spectral properties and
possible quantum phases that emerge by changing the param-
eters of the chain. Phases are gapped and separated by gapless
regions. We identify the total spin of the system as the ob-
servable which reveals these different phases. As discussed in
Sec. I, from a very general perspective, the spin is determined
by the asymmetry index of the spin-resolved Hamiltonian, i.e.,
the difference between the number of states below and above
the Fermi energy. In gapped systems this index, and hence the
spin, can change only by closing the gap. In Sec. III we focus
on two types of ACs, ferromagnetic and antiferromagnetic
chains, and determine the corresponding spectra. By changing
the magnetic phase ®, we find gapped and gapless phases.
In particular, antiferromagnetic ACs exhibit a sequence of
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FIG. 1. (a) Schematic drawing of the spectrum of a quasi-1D
s-wave superconductor. The electron (dashed blue line) and hole
branches (dashed red line) couple, forming valleys (solid green line)
and opening a gap equal to A at the Fermi surface. As sketched
by the dashed arrows, Andreev reflections couple electron and hole
branches within each valley, whereas normal backscattering events
couple quasiparticles at different valleys. (b) Sketch of a possible
experimental realization of an Andreev crystal: A superconducting
wire (in green) is in contact with ferromagnetic fingers. The latter
induce a local exchange field in the superconductor in the direction of
the white arrows, strong enough to locally break the superconducting
phase. The black curve above the structure represents the localized
Andreev states bounded to each magnetic region which hybridize,
forming the Andreev bands.

gapped phases separated, at half-integer values of @/, by
gapless phase boundaries with Dirac points. In Sec. IV we
show that a hybrid system with two such semi-infinite anti-
ferromagnetic ACs may exhibit spin-polarized bound states
at the interface which are similar to the states found in Dirac
systems with a spatial mass inversion [24-27].

II. SPIN POLARIZATION IN SYSTEMS WITH COLLINEAR
EXCHANGE FIELDS

We consider a quasi-1D s-wave superconductor [28] in the
presence of a collinear exchange field, h(x) = 6;h(x), such
that the spin along the z direction is a conserved quantity
(here, 6, stands for the third Pauli matrix). The Bogoliubov—
de Gennes (BdG) Hamiltonian describing the system is block
diagonal in spin with

H, (x) = 1€ + 1 A(x) — oh(x). )

Here, 7;,—; .3 are the Pauli matrices spanning the Nambu
(electron-hole) space, £ stands for the quasiparticle energy
operator, A(x) describes the superconducting order param-
eter, and o is the spin label [29]. From the corresponding
imaginary-frequency Green’s functions (GFs), GT( ne) =
[ie — HT( ]!, one can compute the total spin polarization of
the system at zero temperature:

s=4im T [ SiG@- Gl @
=—1lmTr | — €)— €)]e'r,
470 2t \
where the trace runs over the coordinate ® Nambu space.
Since the spin-up and -down components of the Hamiltonian
are related by the transformation H, = —%,H,;1,, the GFs also
fulfill G, (¢) = —% G4 (—¢€)%,. Substituting this relation into

Eq. (2) and using the cyclic property of the trace, we obtain

28 1 . de 1 1 .
— =—1limTr | — — + — |7
h 2 =0 27 | ie — Hy —ie — Hj

1
2 11—13) Z sgn(Eyny Ye |EntlT .

where E,; stands for the energy of the nth eigenstate of the
spin-up Hamiltonian. The expression in the last line corre-
sponds to the difference between the number of states below
and above the Fermi energy for a given spin projection, and
it is known as the spectral asymmetry index, widely used
in topology [30-32], quantum field theory, and condensed-
matter physics [33-37]. In a gapped system, an adiabatic
deformation of the Hamiltonian can change the value of this
index only by closing and reopening the gap. This precisely
occurs in ACs, as we discuss next.

III. ANDREEV CRYSTALS

We define an AC as a periodic arrangement of semiclassi-
cal magnetic regions in a superconductor. In the following we
consider a quasi-1D structure of collinear magnetic regions
located at the points X,, = an (see Fig. 2) and assume that
the lateral dimensions of the system are small enough to treat
each conduction channel separately and that the width of the
magnetic regions is much smaller than the superconducting
coherence length. The latter allows us to treat the magnetic
regions in the semiclassical limit as pointlike impurities with
a strength proportional to the corresponding magnetic phase
®,,, such that the BdG equation for a spin projection o reads

|: — iWhvp T30, + T A — ohvp Z d,6(x — X,,):| W, (x)
n

= €yo “I’[vn (x)’ (4)

where v = = relates to the two electron-hole valleys at kg .
The key feature of the semiclassical impurities is that quasi-
particles do not backscatter when traversing them and only
accumulate a phase,

W, (X5)

n

= 7B, (X1). 5)

Here, o and 13 reflect the fact that the sign of the accumulated
phase is different for spin-up and -down quasiparticles and
for electrons and holes, respectively, and XX (XX) stands for
the position of the left (right) interface of the nth magnetic
region. The § functions in the first-order differential equation
shown in Eq. (4) are a shorthand notation of the boundary
conditions introduced by the semiclassical impurities, Eq. (5).
The absence of backscattering allows separate treatment of the
two Fermi valleys, so that we can drop the v index for brevity.

The general solution to Eq. (4) in the region between two
neighboring impurities, X, < x < X1, reads

x=Xn11 _/V;)Q
Y, (x) =B, & |[H+B,e & |-). (6
Here, £ = 2 is the superconducting coherence length,

=
B7) is the amplitude of the contribution from the spinor that

064505-2



GAP INVERSION IN QUASI-ONE-DIMENSIONAL ...

PHYSICAL REVIEW B 103, 064505 (2021)

(@ 1

e/

FIG. 2. Spectrum of (a) ferromagnetic and (b) antiferromagnetic Andreev crystals for energies within the superconducting gap, different
values of ®, and a fixed separation between impurities given by e~*¢ = 0.2. In (a) the solid (dashed) line corresponds to spin-up (spin-down)
states. The insets are top views of the structure that show the unit cells as shaded regions.

decays from the nth magnetic region to the left (right), and

o0/ 1
|£) = m(j:ie]”p)’ )
where e = —VAZ_Aéz’L" is the Andreev factor. Applying the

boundary conditions in Eq. (5) to this relation, we obtain
the equations for the B* coefficients in Eq. (6), which can
be recast into an effective tight-binding model by keeping
terms up to first order in e~“/¢. Specifically, in the limit where
e 9% « 1, coefficients B~ at each site n can be related to BT
as follows:

B ~io Asin®, .

an Az —62 on’

while the rescaled B* coefficients, b,, = sin ®,B},, satisfy a
tight-binding-type eigenvalue problem,
(0w — Won)bon = th1bons1 + thbon—1. (8)

[

Here, the effective eigenvalue w, = Taa is a function of

cos P,
sin @,

the physical energy €,, wo, = is the value of w, at

the energy €p, = A% of the nth single-impurity (spin-

up) bound state [5,14,15], and 1, = — fl;gn is the hopping
amplitude. The expression in Eq. (8) is valid for any AC
with arbitrary distribution of collinear magnetization. Here,
we focus on two cases that show rather different qualitative re-
sults: the ferromagnetic and antiferromagnetic ACs described
by equal magnetic regions pointing in the same, ®, = ®, or
alternating, ®,, = (—1)"®, directions, respectively.

A. Ferromagnetic ACs with ¢, = ®

Ferromagnetic ACs are built by equal magnetic regions
whose exchange field points in the same direction and are
described by a unit cell containing a single magnetic region.
The solution of Eq. (8) for such systems simply reads b,, =
e* and wy (k) = o (wy + 2t cos ka), where k is the Bloch
momentum [38]. Hence, the physical Andreev energy bands
are

€, (k) wgy + 2t coska
= 0 .
A V14 (wo + 2t cos ka)?

€)

where ¢ has to be evaluated at the energy of the single-impurity
level €. In Fig. 2(a) we show the resulting energy spectrum
within the Brillouin zone, —m/a < k < m/a, for different
values of ®. It consists of two symmetric Andreev bands, one
for each spin projection o, centered at o €y. With an increase
of & the two bands overlap but remain independent as they
correspond to different spin projections. As long as there is
a gap between the bands, variations of ® do not modify the
spectrum asymmetry, and thus, the spin polarization per unit
cell remains unchanged [see Eq. (3)]. When the bands overlap,
the spin continuously increases with the further increase of ®
until the bands pass through each other and the gap reopens.
After the reopening, the total spin change is %/2 per Fermi
valley (i.e., i in total).

B. Antiferromagnetic ACs with &, = (—1)"®

Antiferromagnetic ACs, formed by equal magnetic impu-
rities with the direction of their exchange fields alternating
between up and down along the z axis, show some features
of greater interest. In this case the unit cell contains two
antialigned impurities [see the inset sketch in Fig. 2(b)], and

it is convenient to rewrite Eq. (8) as follows:
(Gwa - QO)Cam = fcomfl + fTCam+17 (10)

where now Co = [boom boam+1]’ is a spinor and the

matrices
o fao t s (0 —t
QO_(; —a)0>’ T‘(o 0)

correspond to the unit-cell Hamiltonian and the intercell
hopping, respectively. Equation (10) describes a chain with
a diatomic unit cell and the dispersion relation w, =

++/w§ + 4t% sin” ka. This dispersion relation translates into
the following Andreev bands:

N Wi + 412 sin’ ka
1 + w? + 412 sin” ka’

1L

€ (k)
A

12)

shown in Fig. 2(b). Because the period is doubled with re-
spect to the ferromagnetic case, the number of bands is also
doubled. There are two bands per spin species which are fully
symmetric with respect to the Fermi energy, and therefore, the
spin polarization is zero [see Eq. (3)]. The spectrum shows
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FIG. 3. (a) Sketch of a junction between two antiferromagnetic
Andreev crystals. (b) Energy of the spin-up (solid lines) and spin-
down (dashed lines) bound states in a symmetric inverted junction,
dp = -0, = &, in terms of ® and for different values of e~/
[Eq. (18)]. The dotted black lines are the single impurity Andreev
levels ¢, that determine the gap edges

cos ¢

a gap equal to 2wy =23 5. The gap is finite for all @,
except for half-integer values of @/, when it closes and the
spectrum exhibits a Dirac point at kp = 0. In the vicinity of
the critical values, ® = 7w (] + %), where [ is an integer, the
eigenvalue problem of Eq. (10) linearized around the Dirac
point in the k space reads

oWy — Wy

2itka
which has the form of a 1D Dirac equation with @, playing
the role of the mass. The closing and reopening of the gap
are associated with a sign change of the mass term (gap
inversion). Interestingly, the gap can also get inverted without
closing: at values of & = [z the Andreev bands merge into the

continuum of the spectrum and reenter the superconducting
gap in inverted order [10].

Wy + Wy

—2itka >Ca(k) -0, (13)

IV. INVERTED ANTIFERROMAGNETIC AC JUNCTIONS

Various realizations of an inhomogeneous Dirac model
with the mass inversion have been widely studied in quantum
field theory and condensed-matter physics [24-27,36,39,40].
The most striking features of this model are the presence of
bound states at the interface where the mass inversion takes
place and the fractionalization of the interface charge. As we
discuss next, a junction between two antiferromagnetic ACs
with inverted gap is another example of such systems, but with
a fractionalized interface spin instead of a charge.

To establish the analogy, we consider a junction between
two semi-infinite antiferromagnetic ACs, where the separation
between impurities a remains constant all along the structure
and the magnetic regions in the left and right crystals are de-
scribed by a magnetic phase equal to ®; and ®g, respectively
[see the sketch in Fig. 3(a)]. Such a system is described by the
tight-binding equations, Eq. (10), at each side of the junction,
namely,

(cws — QOL)Cam = Amflcamfl + Tm+1C m+1 (14)

at the left chain (m < 0) and

(cws — S,-\ZOR)Cam = Am71C0m71 + Tm+1C m+1 (15)

at the right cklain (m > 0). Here, Qo; (Qor) stands for the
expression of €29 in Eq. (11) with ® = & (® = Pg). We look
for bound states, i.e., solutions that decay as C,,, = Cée"“‘«f

into the left crystal and as C,, = CRe ~me5 into the right
one, where the decay is determined by the positive-real-part

complex number «2® . From Egs. (14) and (15) we find that

KE® -y w(z)L(R) - w?

smh =
2 2|t r)l

, (16)

where #;, = t,,0 and tg = t,,>0, and that the bound state exists
only when the equation

o — WL _
——e¢

— wor
w2, — o2 w2, — w2
W, — @} Wi — @5

is fulfilled. According to Eq. (16) a bound state exists
only if |w,| < |wor| and |w,| < |wor| at the same time.
This implies that Eq. (17) has a solution only in inverted
junctions with sgn(wog) = —sgn(wor). The solution is es-
pecially simple when wor = —wo, = wp and reads w, =
osgn(wp)(V a)(z) + 12 — |t|). This gives the following physical

energy of the bound state:
Joi — 12—t
. (18)
\/1 + (Jd — 12 = t))°

In Fig. 3(b) we show the bound states for both spin projections
as a function of @ for different values of —f sin ® = e~%/%.
Near the inversion point |wy/t| — 0, the bound states are
almost degenerate approaching zero energy, €, — 0. This is
reminiscent of a zero mode in a continuum 1D Dirac model
with mass inversion [24]. As the bandwidth becomes compa-
rable to wy, the states split, forming a symmetric pair of levels
in the gap between the Andreev bands.

To calculate the spin S induced at the contact between
the two semi-infinite antiferromagnetic ACs, we average over
all possible terminations of the chains. This is equivalent
to the so-called sliding window average method (see, for
example, Sec. 4.5 of Ref. [41]), used to compute the sur-
face charge density by averaging over all possible unit cell
choices. The calculation is specially simple in the limit when
the single-impurity Andreev states are decoupled from each
other, e=¥% « 1. In a previous work [10], we show that the
spin polarization of a single semiclassical magnetic impurity
of magnetic phase @ in a quasi-1D superconducting wire is

2850(®)/h = 2[(® + F) mod ], where mod stands for the
modulo operation and accounts for a jump by two electronic
spins every time the single-impurity levels cross the Fermi
energy. In Fig. 4(a) we show the staircase shape of Sy(P)
in terms of the magnetic phase for a single semiclassical
impurity. We now consider the junction between the two anti-
ferromagnetic ACs. It has four possible ending configurations:
both chains have the same number of up and down mag-
netic impurities, the right (left) Andreev chain has an extra

[ |Q><[\
N |5a

—4

7)

2= osgn(wyp)
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FIG. 4. (a) Total spin polarization of the single-impurity system
in terms of ®. (b) Spin polarization of the junction between two
antiferromagnetic Andreev chains as a function of ®, and ®g. It is
calculated from Eq. (19), with So(®)) from (a).

up (down) magnetic region, or both chains are unbalanced.
Consequently, the total spin polarization of the junction, cal-
culated from the average over the four possible configurations,
reads

_ So(Pr) — So(Pr)
S T—

Starting from the uncoupled impurities, if one adiabatically
switches on the coupling, the Andreev bands start widening.
However, in the considered configuration the gap never closes,
and as we discussed after Eq. (3), the spin cannot change and
is hence given by Eq. (19). In Fig. 4(b) we show the total
spin of the junction in terms of ®; and ®g. Interestingly, the
spin polarization can now be equal to an odd integer times the
electronic unit, in contrast to the always even value of Sy(P).
By construction, the half-integer spin (per Fermi valley) is
localized at the junction between ACs. In other words, there is
a fractionalization of the interface spin. Such fractionalization

N 19)

is a local effect. In a finite system the contribution from
the edges will always lead to a total integer spin per Fermi
valley. Notice that changes in the spin polarization of ACs is
determined by the change in the spectral asymmetry index,
Eq. (3), and hence, Eq. (19) is valid beyond the nearest-
neighbor tight-binding approximation. This is, indeed, con-
firmed by the exact numerical solution of Eq. (4) [42]

V. CONCLUSIONS

In this work we showed that the spin polarization of a
gapped system with collinear magnetization can change only
upon gap closing. This occurs in Andreev crystals for which
we presented a complete study of their spectral properties
for ferromagnetic and antiferromagnetic configurations. The
spectrum of antiferromagnetic ACs presents a gap that re-
mains open except for half-integer values of the magnetic
phase ®/m, where a Dirac point is formed. We showed that
junctions between antiferromagnetic ACs with inverted gaps
exhibit interfacial bound states and fractionalization of the
surface spin polarization. We proposed realization of these
structures using, for example, a conventional superconduct-
ing wire in contact with ferromagnetic fingers such that a
strong periodic exchange field, 2 >> A, is induced in the su-
perconductor [see Fig. 1(b)]. The fingers may be made of
ferromagnetic metals [43], like Co or Ni, or ferromagnetic
insulators, like EuS or EuO. The spectrum, and in particular
the bound states formed at the interface between two antiferro-
magnetic chains, can be measured by a local tunneling probe,
as, for example, done in Ref. [44]. In the case of a magnetic
probe one can also determine the spin polarization of such
states.
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