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We investigate the superconducting phase transition in a superconductor (S)/ferromagnet (F) bilayer with
Rashba spin-orbit interaction at the S/F interface. This spin-orbit coupling produces spontaneous supercurrents
flowing inside the atomic-thickness region near the interface, which are compensated by the screening Meissner
currents [Mironov and Buzdin, Phys. Rev. Lett. 118, 077001 (2017)]. In the case of a thin superconducting film
the emergence of the spontaneous surface currents causes an increase of the superconducting critical temperature,
and we calculate the actual value of the critical temperature shift. We also show that in the case of a type-I
superconducting film this phase transition can be of the first order. In the external magnetic field the critical
temperature depends on the relative orientation of the external magnetic field and the exchange field in the
ferromagnet. Also we predict the in-plane anisotropy of the critical current, which may open an alternative way
for the experimental observation of the spontaneous supercurrents generated by the spin-orbit coupling.
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I. INTRODUCTION

Superconducting states carrying spontaneous current in
systems with broken time reversal symmetry have been a
subject of interest for more than 20 years [1–10]. Such spon-
taneous supercurrents were predicted for d-wave [1,4,5,10] or
chiral p-wave [7,8] superconductors, for a mesoscopic nor-
mal metal film in contact with a superconductor [11], and
at the interface between a superconductor and a ferromag-
net [6]. These currents are typically carried by Andreev edges
states [1–10] and appear at temperature T well below the
superconducting critical temperature Tc.

Recently, spontaneous supercurrents were predicted to ap-
pear at the interface between an s-wave superconductor (S)
and a ferromagnetic (F) insulator [12]. Contrary to the sponta-
neous supercurrents carried by Andreev bound states [1–10],
these currents appear at the superconducting transition, i.e.,
at T = Tc. The crucial condition for the emergence of these
currents is the presence of Rashba [13] spin-orbit coupling
(SOC) at the S/F interface [12]. Indeed, this SOC produces
the additional term ∝ (σ × p) · n in the effective Hamiltonian
of a conducting electron (n is the unit vector perpendicular
to the S/F interface). As a result, spin and momentum appear
to be coupled, which produces the nontrivial “helicity” of the
electronic energy bands. Since the exchange field makes the
spin-up state energetically more favorable than the spin-down
one, one may expect the emergence of the electric current.
Note that the helical states [14,15] also play an important
role in the emergence of Majorana modes [16], the formation
of Josephson ϕ0 junctions with spontaneous nonzero phase
difference across the junction in the ground state [17–22],

and the appearance of Fulde-Ferrell-Larkin-Ovchinnikov-like
states with finite Cooper-pair momentum [23].

Since spontaneous supercurrents flowing at the S/F inter-
face with SOC appear at T = Tc, these currents can affect
the parameters of the phase transition (the superconducting
critical temperature, the phase diagram in the external mag-
netic field, the critical current, etc.). Although the spontaneous
supercurrents result in the local enhancement of the super-
conductivity near the S/F interface, it was shown [12] that
for a large thickness of the superconductor they do not affect
the superconducting transition temperature, and thus, with an
increase in temperature, the superconductivity is destroyed in
the whole bulk of the sample. This situation is in contrast to
the well-known phenomena arising in superconductors con-
taining twinning planes which locally increase the critical
temperature and favor the emergence of localized supercon-
ducting states above the bulk critical temperature (see, e.g.,
Ref. [24] for a review).

In the present paper we study the effect of the spontaneous
supercurrents on the superconducting phase transition in the
S/F bilayer with finite thickness of the superconducting layer
and SOC of the Rashba type at the S/F interface. We show that
in the case of a thin superconducting film these currents cause
an increase of the superconducting critical temperature Tc,
and we calculate the corresponding critical temperature shift.
Surprisingly, in type-I superconductors the superconducting
phase transition is of the first order even in the absence of
external magnetic field. At the same time, in external magnetic
field the critical temperature strongly depends on the relative
orientation between external magnetic field and the exchange
field in the ferromagnet. Note that in the case of a positive
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FIG. 1. Sketch of a superconducting film placed in contact with a
thin ferromagnetic layer. The spin-orbit coupling at the S/F interface
produces a spontaneous supercurrent js, causing the increase of the
superconducting order parameter inside the superconductor.

(negative) SOC parameter Tc is significantly higher (lower)
for the parallel magnetic configuration in comparison with
the antiparallel one. At the same time, in the case of a type-
II superconducting layer the emergence of the spontaneous
supercurrents also increases the superconducting critical tem-
perature in the absence of external magnetic field and makes it
sensitive to the relative orientation of external magnetic field
and the exchange field if the sample is placed into the field but
the phase transition is of the second order. All the described
phenomena can serve as hallmarks of the spontaneous super-
currents and can be used for experimental detection of these
currents.

This paper is organized as follows. In Sec. II we introduce
the model and study the phase transition in the S/F bilayer
with a type-I superconductor. In Sec. III we calculate the de-
pendence of the critical temperature on the external magnetic
field. In Sec. IV we consider a type-II superconductor. In
Sec. V we analyze the anisotropy of the critical current. In
Sec. VI we summarize our results.

II. FIRST-ORDER PHASE TRANSITION IN THE S/F
BILAYER WITH A THIN TYPE-I SUPERCONDUCTOR

We consider a thin superconducting film of thickness L
placed in contact with a ferromagnetic insulator (see Fig. 1).
We assume the presence of Rashba spin-orbit coupling at the
S/F interface. The free-energy functional of the system under
consideration is given by the following expression [12,25,26]:

F =
∫∫∫

dV

{
α|ψ |2 + β

2
|ψ |4 + 1

4m
|D̂ψ |2

+ (rotA)2

8π
+ [n × h]ε(r)(ψ∗D̂ψ + ψD̂†ψ∗)

}
. (1)

Here α = a(T − Tc0) and β are the standard Ginzburg-Landau
(GL) coefficients, Tc0 is the critical temperature of the bulk
superconductor, D̂ = −ih̄∇ + 2e

c A, A is the vector potential,
n is the unit vector perpendicular to the S/F interface and
directed from the S to F layer, h is the exchange field in the
ferromagnet, ψ is the order parameter of the superconductor,
and ε is the spin-orbit constant, which is nonzero only in the
atomically thin area of the width lso near the S/F interface.

Without loss of generality, let us assume that the exchange
field is directed along the z axis, i.e., h = hez, the x axis
coincides with n, and the S/F interface is located at x = L.

In such a system spontaneous supercurrents flow near the
S/F interface [12]. These currents cause an increase of the
superconducting order parameter in the area of with a width
of ∼ξ (superconducting coherence length) near the S/F inter-
face. If the thickness L of the superconducting film is much
smaller than ξ , i.e., L � ξ , one can expect an increase of the
superconducting critical temperature Tc. Here we find the ac-
tual temperature shift for a type-I superconductor, i.e., for the
case λ � L � ξ , where λ is the London penetration depth.
Also we show that the phase transition is of the first order. For
this purpose, let us calculate the free energy for such a system.
Due to the condition L � ξ we may take ψ (x) ≈ const. Let us
introduce the dimensionless order parameter ϕ = √

β/|α0|ψ ,
where α0 = −aTc0.

Since the spontaneous supercurrents are fully compensated
by the Meissner currents, the magnetic field B = (0, 0, Bz ) is
absent outside the superconductor and has the following form:

Bz(x) =
[

B0exp
(

x−L
λ

)
, 0 < x < L,

0, x > L, x � 0.
(2)

Here λ = λ0/ϕ, where λ2
0 = mc2β/(8πe2|α0|) is the zero-

temperature London penetration depth for the bulk supercon-
ductor. Note that inside the superconducting slab we neglect
the second exponent [see the first line in Eq. (2)] since we
assume λ � L. The resulting magnetic field (2) is continuous
at x = 0 and experiences a jump by the value B0 at x = L
due to the surface spontaneous supercurrents flowing along
the S/F interface. To find the actual value of the jump we
substitute the magnetic field to the free energy and minimize
it with respect to B0. We obtain

A0 = �Hϕ2. (3)

Here �H = 4
√

2Hcmksolso(ξ0/λ0) is the jump of the magnetic
field at the S/F interface due to spontaneous surface supercur-
rents, where Hcm =

√
4πα2

0/β is the thermodynamic critical
magnetic field, kso = mhε/h̄, and ξ0 =

√
h̄2/4m|α0|.

The resulting free energy reads

F = V

(
α|α0|

β
ϕ2 + |α0|2

2β
ϕ4

)
− S

�H2

8π
λ0ϕ

3, (4)

where V is the volume of the superconducting slab and S is
the surface area of the S/F boundary.

We find the value of the critical temperature Tc and the
order parameter ϕcr at T = Tc by minimizing F with respect
to ϕ and using the condition F = 0, which is fulfilled at the
critical temperature. We find

ϕcr = 1

2

λ0

L

(
�H

Hcm

)2

, (5)

Tc

Tc0
= 1 + 1

8

(
λ0

L

)2(
�H

Hcm

)4

. (6)

We see that the critical temperature, indeed, increases due
to the spin-orbit interaction at the S/F interface. Moreover,
since the order parameter does not equal zero at the transition
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temperature, in the structure under consideration the phase
transition is of the first order. Note that the critical temper-
ature (6) is not divergent when the slab thickness L tends to
zero since we consider the situation λ � L.

The obtained result is valid only if the assumption λ �
L is fulfilled at T = Tc. To check this, we find the London
penetration depth at the critical temperature:

λcr = 2L(
�H
Hcm

)2 . (7)

Since �H/Hcm ∼ ksolso(ξ0/λ0) and (ξ0/λ0) � 1 the assump-
tion λcr � L is valid if ksolso is not very small.

Let us estimate �Tc = Tc − Tc0. Since ε = vso/EF , where
vso is the spin-orbit velocity and EF is the Fermi en-
ergy, the jump in the magnetic field at x = L due to
the spontaneous supercurrents can be estimated as �H ≈
4
√

2Hcm(h/EF )(vso/vF )(ξ0/λ0), where vF is the Fermi veloc-
ity. It is reasonable to take h/EF ∼ 0.1, vso/vF ∼ 0.1. If we
also assume ξ0/λ0 ∼ 50, then we find �H ≈ 3Hcm. Taking
λ0/L ∼ 0.1, we obtain �Tc/Tc0 ≈ 0.1. Since �T � Tc0 the
Ginzburg-Landau approach is applicable.

Note that the first-order phase transition in the S/F bilayer
with Rashba-type spin-orbit interaction and λ0 � L � ξ can
serve as a hallmark of the spontaneous supercurrents flowing
at the S/F interface [12].

A suitable system for the observation of the discussed ef-
fects may be based on thin epitaxially grown layers of extreme
type-I superconductors. For example, recently, the epitaxial
growth of high-quality single-crystalline aluminum films was
demonstrated [27].

III. PHASE TRANSITION IN THE EXTERNAL
MAGNETIC FIELD

In the external magnetic field H0 the critical temperature of
the superconducting phase transition depends on the relative
orientation of H0 and the exchange field h. For simplicity,
let us restrict ourselves to the case H0 = H0ez, where H0

can be both positive and negative. To find the actual Tc(H0)
dependence let us write down the Gibbs free energy of the
system:

G =
∫∫∫

dV

{
α|ψ |2 + β

2
|ψ |4 + 1

4m
|D̂ψ |2

+ (B − H0)2

8π
+ [n × h]ε(r)(ψ∗D̂ψ + ψD̂†ψ∗)

}
. (8)

As before, we consider the case L � ξ and assume ψ ≈
const. Since we also assume λ � L, the magnetic field B =
Bez = rotA inside the superconducting slab reads

B = H0exp
(
− x

λ

)
+ (H0 + �Hϕ2)exp

(x − L

λ

)
. (9)

Calculating the resulting Gibbs free energy, we obtain

G

V
= α|α0|

β
ϕ2+ |α0|2

2β
ϕ4 + H2

0

8π
− H0�H

4π

λ0

L
ϕ− �H2

8π

λ0

L
ϕ3.

(10)

FIG. 2. The dependence of the superconducting critical temper-
ature Tc of the S/F bilayer with λ0 = 0.02L and �H = 5Hcm on the
external magnetic field H0 = H0ez. Here ε is the spin-orbit coupling
constant.

Note that the surface contribution to the free energy caused by
spontaneous supercurrents results in the increases( decreases)
of the free energy if H0 ↑↑ h (H0 ↑↓ h).

The critical temperature and the order parameter at the
critical point ϕcr can be found from the system of equations
G = 0 and ∂ϕG = 0, which are fulfilled at T = Tc. From the
second equation we find the critical temperature as a function
of ϕcr :

Tc

Tc0
= 1 − ϕ2

cr + 3

4

(
�H

Hcm

)2
λ0

L
ϕcr + 1

2ϕ

H0

Hcm

�H

Hcm

λ0

L
.

(11)

At the same time, the order parameter obeys the equation

ϕ4
cr − 1

2

(
�H

Hcm

)2
λ0

L
ϕ3

cr −
(

H0

Hcm

)2

+ H0

Hcm

�H

Hcm

λ0

L
ϕcr = 0.

(12)
Solving the equations, we indeed find that the critical

temperature of the superconducting phase transition strongly
depends on the relative orientation of the external magnetic
field and the exchange field: for a positive (negative) SOC
parameter ε, Tc is higher for the parallel (antiparallel) orien-
tation compared to the antiparallel (parallel) one (see Fig. 2).
This finding provides a tool for the experimental observation
of the predicted effect, although the correction to Tc due to
SOC is small. Changing the direction of the external magnetic
field, one can observe the variation of the superconducting
critical temperature. Note that the dependence of the critical
temperature on the magnetic configuration also can be used
for the experimental detection of the sign of the spin-orbit
parameter. Indeed, the critical temperature is higher for the
parallel orientation between the external magnetic field and
the exchange field in comparison with the antiparallel one
only if the spin-orbit constant is positive, while for the neg-
ative SOC parameter the situation is reversed.

Since λ0 � L, we can find approximate analytical expres-
sions for T ↑↑

c and T ↑↓
c , expanding the results obtained from

Eqs. (11) and (12) over λ0/L. To have good agreement be-
tween the exact results and the approximate one, we should
expand these expressions up to third order over λ0/L. If
�H > 0 (�H < 0) for the parallel (antiparallel) magnetic
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configuration, we obtain

T ↑↑(↑↓)
c

Tc0
= 1 − |H0|

Hcm
+ 1

2

√
|H0|
Hcm

�H

Hcm

(
2 + �H

Hcm

)
λ0

L

+ 1

32

(
�H

Hcm

)2[(
�H

Hcm

)2

− 2

]2(
λ0

L

)2

. (13)

At the same time, if �H > 0 (�H < 0) for the antiparallel
(parallel) magnetic configuration, we find

T ↑↓(↑↑)
c

Tc0
= 1 − |H0|

Hcm
−

√
|H0|
Hcm

�H

Hcm

λ0

L

+ 1√
3

(
�H

Hcm

)2(
0.9

H0

Hcm
+

√
3

8

)(
λ0

L

)2

. (14)

Note that the above expressions are invalid when H0 tends
to zero. Assuming H0 � �H from Eqs. (11) and (12), we find

T ↑↑(↑↓)
c

Tc0
= 1 + 1

8

(
�H

Hcm

)4(
λ0

L

)2

± 2|H0|
�H

. (15)

Note that the dependence of the critical temperature on
the in-plane magnetic field orientation is another hallmark of
spontaneous supercurrents flowing at the S/F interface [12]
(in addition to the appearance of the stray magnetic field
near the S/F interface and the anisotropy of the upper critical
field predicted in Ref. [12]). This fact can be used for the
experimental detection of the spontaneous supercurrents.

IV. PHASE TRANSITION IN THE CASE OF A THIN
TYPE-II SUPERCONDUCTING LAYER

In this section we analyze the peculiarities of the super-
conducting phase transition in the S/F bilayer (see Fig. 1)
for the case when the superconducting layer is type II. We
show that in this case the critical temperature also increases
in the absence of the external magnetic field H0 and depends
on the relative orientation between the external magnetic
field and the exchange field. Let us consider the tempera-
tures close to the superconducting transition temperature and
the external magnetic field directed along the z axis so that
H0 = (0, 0, H0). At the point of the phase transition the su-
perconducting order parameter is small, which allows us to
neglect the term ∝ψ |ψ |2 and the term associated with the
spontaneous supercurrents in the GL equation. Choosing the
gauge of the vector potential in the form A = (0, H0x, 0) and
searching for a solution in the form ψ = eikyyψ (x), we obtain
the following GL equation:

αψ (x) − h̄2

4m
∂xxψ (x) + (h̄ky + 2eH0x/c)

4m
ψ (x) = 0, (16)

with the boundary conditions

∂xψ (0) = 0, ∂xψ (L) = 8mhεlso

h̄2

(
h̄ky + 2eH0L

c

)
ψ (L).

(17)

In the absence of the external magnetic field the order pa-
rameter reads ψ (x) = Acoshqx, where q2 = (4mα/h̄2 + k2

y ).
Calculating the free energy, we find

F

S
= A2L

2

(
α + h̄2k2

y

4m

)(
sinh 2ql

2qL
+ 1

)
+ A2 h̄2q2

4m

× L

2

(
sinh 2ql

2qL
− 1

)
− 2A2hεlsoh̄ky cosh2 qL. (18)

Assuming qL � 1 and minimizing the free energy with
respect to ky, we find the optimal modulation vector ky =
4ksolso/L. Since at the critical point F = 0, we obtain the
increase of the superconducting critical temperature:

Tc − Tc0

Tc0
= 16k2

sol2
so

(
ξ0

L

)2

. (19)

Note that the effect is absent in the limit L → ∞, i.e., for a
thick superconducting slab.

When the sample is placed in the external magnetic field,
it is convenient to choose the origin of the x axis to be at the
center of the S film, so the S/F boundary is located at x = L/2,
and the other boundary is at x = −L/2. Following the proce-
dure described in Ref. [28], we introduce the dimensionless
coordinate X = 2x/L, the modulation vector Ky = kyL/2, and
the parameters H̃0 = eH0L2/(2h̄c) and ε0 = −mαL2/h̄2 and
rewrite the GL equation in the following form:

∂XX ψ (X ) + (Ky + H̃0X )2ψ (X ) = ε0ψ (X ). (20)

At the same time, the boundary conditions read

∂X ψ (1) = s(Ky + H̃0)ψ (1), ∂X ψ (−1) = 0, (21)

where s = 8ksolso.
Next, it is useful to introduce the new variable t =√

2|H̃0|(X + Ky/h0). The resulting GL equation and the
boundary conditions are as follows:

−∂ttψ (t ) + 1

4
t2ψ (t ) = ε0

2|H̃0|
ψ (t ), (22)

∂tψ |√
2|H̃0|(−1+Ky/H̃0 )

= 0, (23)

(
∂tψ

ψ

)∣∣∣∣√
2|H̃0|(1+Ky/H̃0 )

= s(Ky + H̃0)√
2|H̃0|

. (24)

The solution of Eq. (22) has the form of the linear combi-
nation of the Weber functions ψ (t ) = AνDν (t ) + BνDν (−t ),
where 2ν + 1 = ε0/|H̃0|. Substituting it into the boundary
conditions, we obtain the following equation, which implicitly
defines the function Tc(H0):

D′
ν (α+)D′

ν (−α−) − D′
ν (−α+)D′

ν (α−)

= s(Ky + H̃0)√
2|H̃0|

[Dν (α+)D′
ν (−α−) − Dν (−α+)D′

ν (α−)],

(25)

where α± =
√

2|H̃0|(±1 + Ky/H̃0).
The maximal value of Tc at fixed magnetic field corre-

sponds to the minimal value of ν, which satisfies Eq. (25).
At fixed Ky and H̃0 this equation has an infinite but discrete
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FIG. 3. The dependence of the critical temperature
Tc on the external magnetic field H0 = (0, 0, H0). Here
ε0 = (1 − Tc/Tc0 )L2/(4ξ 2

0 ), and H̃0 = eH0L2/(2h̄c).

number of solutions for ν, and we find the minimal one. Then
we minimize it with respect to Ky and find the minimal value
ν0 for fixed H̃0. As a result, we obtain the dependence ε0(H̃0)
[i.e., Tc(H0)] in the form ε0 = (2ν0 + 1)|H̃0| (see Fig. 3). The
critical temperature is higher for the parallel orientation of the
external magnetic field and the exchange field in comparison
with the antiparallel one. Here we assume that the spin-orbit
coupling parameter ε is positive.

As we can see from the inset in Fig. 3 the weak parallel
magnetic field leads to the initial increase of the critical tem-
perature, which is replaced by the usual decrease at higher
magnetic field. Such peculiar behavior resembles the increase
of the critical temperature in thin Pb films experimentally
observed in Ref. [29]. We may speculate that the local SOC
could be generated at the Pb/substrate interface, while the role
of the exchange field is played by a Zeeman field.

V. CRITICAL CURRENT

In this section we show that the spin-orbit coupling makes
the in-plane critical current of the S/F bilayer anisotropic.
Although the total spontaneous superconducting current gen-
erated by the SOC is zero, it is nonuniformly distributed
across the layers. As a result, for the fixed direction of the
exchange field the local current density (and thus the local
damping of the superconducting order parameter) at a certain
point of the S film becomes dependent on the angle θ between
the external current and the spontaneous current flowing along
the S/F interface. Consequently, the maximal current which
does not destroy the superconducting state (critical current)
also becomes dependent on θ (diodelike effect).

To calculate the critical current of the S/F bilayer we again
consider the system sketched in Fig. 1. First, we consider
the situation when the external transport current of the linear
density J is directed along the y axis. Since the magnetic field
produced by both the current J and the spontaneous surface
current due to SOC is directed along the z axis and depends
only on the x axis, we may choose a vector potential in the
form A = A(x)ŷ0. Also we choose the order parameter ϕ to
be real. Then the density of the free energy accounting for the
nonuniform profile of the order parameter ϕ and the vector

potential A across the structure can be written in the form

F

V
= H2

cm

4π

( − τϕ2 + ϕ4 + ξ 2
0 ϕ′2)

+ A′2

8π
+ A2ϕ2

8πλ2
0

− �HAϕ2

4π
δ(x − L), (26)

where τ = 1 − T/Tc0, ϕ′ ≡ ∂ϕ/∂x and A′ ≡ ∂A/∂x. Vary-
ing the free energy with respect to ϕ(x) and A(x) inside
the S layer, we derive the standard set of Ginzburg-Landau
equations:

−ξ 2
0 ϕ′′ − τϕ + ϕ3 + A2ϕ

/(
2H2

cmλ2
0

) = 0, (27)

−λ2
0A′′ + ϕ2A = 0, (28)

supplemented by the boundary conditions accounting for the
surface energy contribution due to the spin-orbit coupling [the
last term with the δ function in Eq. (26)] and the magnetic field
±(2π/c)J generated by the external transport current J at
the outer boundaries x = 0 and x = L of the superconducting
film:

ϕ′(0) = 0, ϕ′(L) = �HA(L)ϕ(L)/H2
cm, (29)

A′(0) = −(2π/c)J, A′(L) = (2π/c)J + �Hϕ2(L). (30)

The accurate solution of Eqs. (27) and (28) requires fo-
cusing on two features responsible for the anisotropy of the
critical current. The first one is the nonuniform distribution of
the screening Meissner current across the S film. The second
one is the damping of the order parameter at the S/F interface
by the transport current and the subsequent renormalization of
the spontaneous surface current (and the screening Meissner
one). Thus, the terms containing spatial derivatives of the
order parameter and the vector potential cannot be neglected
even in the case of a thin S layer.

In order to find the analytical solution of the Ginzburg-
Landau equations we make several assumptions simplifying
the calculations. First, we restrict ourselves to the most in-
teresting case of the type-II superconductor and assume that
the thickness L of the S film is much smaller than the super-
conducting coherence length so that L � ξ � λ. Second, we
consider the limit of small spin-orbit coupling assuming the
dimensionless parameter μ = �Hλ0/(HcmL) is small (μ �
1). These assumptions allow us to expand the functions A(x)
and ϕ(x) over x, keeping the terms up to (L/ξ )3 in order to ac-
count for the nonuniform distribution of the superconducting
current across the S film:

A = A0 + A1x + A2x2 + A3x3,

ϕ = ϕ0 + ϕ1x + ϕ2x2 + ϕ3x3.

Also in the resulting perturbation theory it is enough to con-
sider the terms proportional to μ and neglect the higher order
contributions.

Substituting the expansion for A and ϕ into Eqs. (27)
and (28) and boundary conditions (29) and (30), we find the
dependence of the external current J on the dimensionless

064504-5



ZH. DEVIZOROVA et al. PHYSICAL REVIEW B 103, 064504 (2021)

vector potential a0 = A0/(Hcmλ0):

J = cHcmL/(8πλ0)
(
2τa0 − 2τμ + 3μa2

0 − a3
0

)
× [

1 − L2
(
2τ + 4a0μ − 3a2

0

)/(
8λ2

0

)]
. (31)

Then the critical current Jc of the S/F bilayer can be obtained
as the maximum of the dependence J (a0) for a0 > 0. This
maximum corresponds to a0 = μ and can be written in the
form

J±
c =

√
2LcHcmτ 3/2

6π
√

3λ0

(
1 ± �H

L
√

τ

2
√

6Hcmλ0

)
. (32)

Here the + (−) sign corresponds to the current flowing paral-
lel (antiparallel) to the y axis.

Expression (32) clearly shows the anisotropy of the critical
current, which differs for the two opposite directions of the
current flow. The difference between the critical currents J±

c is
proportional to the spontaneous magnetic field �H generated
at the S/F interface due to the SOC. Note that the critical
current is higher if the exchange field in the F layer is parallel
to the magnetic field generated by the external current at
x = L and lower in the opposite case. Equation (32) can be
straightforwardly generalized for the case of the arbitrary di-
rection of the external current in the plane of the S/F structure.
In this case the ± sign in the brackets should be replaced with
cos θ , where θ is the angle between the direction of the current
and the y axis.

The predicted diode effect provides an alternative way
for the experimental observation of the spontaneous currents
generated by the SOC. To protect the S/F bilayer from the
distraction caused by the heating effects one may use pulse
currents [30].

VI. CONCLUSION

To sum up, we developed a theory of the superconducting
phase transition in a superconductor/ferromagnet bilayer with
Rashba-type spin-orbit interaction at the S/F interface and
L � ξ (see Fig. 1) using the Ginzburg-Landau approach. In
the case of λ � L the phase transition is of the first order even
in the absence of external magnetic field. Moreover, its critical

temperature is higher than in the bulk superconductor. In the
external magnetic field H0 the critical temperature depends on
the mutual orientation of H0 and the exchange field inside the
ferromagnet and the sign of the spin-orbit coupling parameter:
for a positive (negative) SOC parameter it is higher (lower)
for the parallel orientation in comparison with antiparallel
one (see Fig. 2). Both these results are manifestations of the
spontaneous supercurrents flowing at the S/F interface [12]
and can serve as hallmarks of these currents. Moreover, the
dependence of the critical temperature on the magnetic con-
figuration can be used for the experimental detection of the
sign of the SOC parameter. In the case of a type-II supercon-
ducting layer the phase transition is the second-order one; its
critical temperature also increases in the absence of external
magnetic field and depends on the relative orientation between
the external magnetic field and the exchange field if the former
is present. We also showed that the critical current of the S/F
bilayer reveals anisotropy in the plane of the layers. The re-
sulting diodelike effect may provide an alternative way for the
experimental observation of the spontaneous superconducting
currents generated by the SOC at the S/F interface.
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