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Equilibrium current vortices in simple metals doped with rare earths
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Dilute alloys of rare earths have played a vital role in understanding magnetic phenomena. Here, we model
the ground state of dilute 4 f rare-earth impurities in light metals. When the 4 f subshells are open (but not
half-filled), the spin-orbit coupling imprints a rotational charge current of conduction electrons around rare-earth
atoms. The sign and amplitude of the current oscillate similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY)
spin polarization. We compute the observable effect, namely, the Ørsted field generated by the current vortices
and the Knight shift.
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I. INTRODUCTION

The conversion of spin currents into excitations of the
charge, phonon, photon, or magnetization degrees of freedom
and vice versa [1] often involves spin-orbit interactions (SOI)
[2]. Examples are the spin-orbit torques [3], charge pumping
[4], magnetoelastic interactions [5], and electric-field-induced
magnetization dynamics [6,7]. The large intra-atomic SOI that
governs the local moments of lanthanides with partially filled
4 f subshells causes novel spin charge coupling [8] and affects
device parameters such as the magnetic damping [9,10]. Rare-
earth (RE) ions with local magnetic moments can partially
or entirely substitute the nonmagnetic yttrium in the ferri-
magnetic insulator yttrium iron garnet Y3Fe5O12 (YIG) [11].
The different magnetic sublattices of RE-IG strongly modify
the magnetic properties [12–14], causing, for example, differ-
ent compensation points for the magnetic and total angular
moments [15]. A more complex phenomenon is a double
sign change of the spin Seebeck effect [16]. Thulium iron
garnet (Tm3Fe5O12) films with perpendicular magnetization
[17–19] can be switched by current-induced spin-orbit torques
[20–22].

These new developments come on top of decades of re-
search on 4 f electrons in bulk metals [23]. For example, RE
impurities in nonmagnetic metals cause an anomalous Hall
effect at low doping concentrations [24]. The magnetization
in rare-earth intermetallics originates from both the 5d and
6s conduction electrons and 4 f moments (see Ref. [25] and
references therein). The hybridization of RE moments with
conduction electrons affects the susceptibility in rare-earth
dialuminides, REAl2 [26], or causes enhanced magnetic mo-
ments of RE dopants in Ag and Au [27].

In topological superconductors, such as the Fe(Te, Se), a
vortex with a Friedel-like oscillatory profile around magnetic
impurities has been reported [28].

Here we present a theoretical study of the coupling of
a 4 f local moment with the Fermi sea of a simple metal
host. We predict a charge current circling the impurity with a
direction that oscillates radially, as illustrated in Fig. 1. Our
starting point for the interaction between the local 4 f mo-
ments and the conduction electrons is the Kondo Hamiltonian
[29]. Its chirality induces a circulating current whose vortic-
ity is governed by the direction of the RE orbital moment
and generates an Øersted magnetic field. The induced radial
current distribution oscillates with the same period as the
Ruderman-Kittel-Kasuya-Yosida (RKKY) spin polarization
[30] and for the same physical reason, i.e., the finite momen-
tum cutoff at the Fermi surface. The predicted trends should
be observable in principle by NMR or scanning microscopy.
The present study of the interaction between conduction elec-
trons and 4 f magnetic moments contributes to understanding
spintronic devices, including rare-earth local moments, such
as interfaces between rare-earth iron garnets and nonmagnetic
metals.

II. LOCAL MOMENTS IN A METALLIC HOST

Rare-earth atoms generally appear in materials as triply
charged cations. Their partially filled 4 f subshell governs
their magnetic properties. The 4 f electrons only weakly inter-
act with their environment [23,31] due to their small orbital
radius and shielding by the more extended and fully occu-
pied 5s and 5p orbitals. This does not exclude a significant
exchange interaction: the conduction electrons of Pt con-
tacts activate the Gd moments in gadolinium gallium garnet
(GGG) [32]. The exchange interaction between a local spin
with conduction electrons of a metal host generates RKKY
spin-density oscillations. Triply charged lanthanide anions
have electronic configuration [Xe] 4 f n, where the number of
4 f electrons n goes from n = 0 for La+3 to n = 14 for Lu +3.
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FIG. 1. Schematic representation of the rotational velocity field
v(r) around a rare-earth ion with orbital moment L embedded in a
free-electron gas.

Except for n = 0 (La+3), n = 7 (Gd+3), and n = 14 (Lu+3),
the intra-atomic spin-orbit interaction critically affects the
magnetic properties. Here we address a spin-orbit proximity
effect of such a magnetic moment embedded in a Fermi sea.

A partially occupied 4 f subshell is characterized by a
spin S, an orbital moment L, and a total angular moment
J = L + S [23,33]. For the basis |�〉 ≡ |S, L, J, Jz〉, S2|�〉 =
h̄2S(S + 1)|�〉, L2|�〉 = h̄2L(L + 1)|�〉, J2|�〉 = h̄2J (J +
1)|�〉, Ĵz|�〉 = h̄Jz|�〉, where h̄ is the reduced Planck con-
stant. Hund’s rules specify the quantum numbers S, L, and
J of the ground-state manifold, while Jz depends on the
applied magnetic and electric fields. Within a manifold of
constant S, L, and J , the Wigner-Eckart theorem ensures
collinearity of all angular moment vectors: S = (gJ − 1)J,
L = (2 − gJ )J, and L + 2S = gJJ, where gJ = 3/2 + [S(S +
1) − L(L + 1)]/[2J (J + 1)] is the Landé g factor.

We model the system as a single RE local moment em-
bedded into a free-electron gas, which is appropriate for most
dilute alloys. Conduction electrons interact with the rare-earth
spin and orbital moment via the Kondo Hamiltonian [29].
Here we address equilibrium properties that are affected by
the spin-independent skew scattering but disregard external
current-induced phenomena such as the spin-Hall effect. We
operate in a regime above the Kondo temperature and treat
J, S, and L as classical vectors. The strongly localized 4 f
orbital radius governs the spatial extent of the coupling. When
the 4 f orbital radius is much smaller than the typical wave-
length of the conduction electrons, the moment couples to free
electrons by a contact interaction.

The s- f exchange interaction in the Kondo Hamiltonian
is similar to the s-d Hamiltonian for 3d transition metals
[29,31,34,35]. It reads

Hs f = −Jex

h̄2 δ4f (r)S · h̄σ

2
, (1)

where σ is the vector of Pauli matrices, and δ4f (r) is a Dirac
δ representing the localized 4 f subshell. In a free-electron
gas with Fermi wave number kF , the exchange constant [29]
is Jex = 2e2A3(0)/(7ε0k2

F ), where the radial integral [29]
Ah(n) = ∫ ∞

0 dx1x2
1

∫ ∞
0 dx2x2

2 jn(x1) jn(x2)xh
</xh+1

> R(r1)R(r2),
with x1 = kF r1, x2 = kF r2, x< = min(x1, x2), and
x> = max(x1, x2). Ah(n) can be evaluated numerically

using a Slater-type orbital for the radial part of the 4 f wave
function R(r) ∼ r3e−r/a normalized over a large volume,∫ ∞

0 drr2R2(r) = 1. The constant a is related to the 4 f radius
by 〈r〉 = ∫ ∞

0 drr3R2(r) = 9a/2. With kF = 1.75 Å−1 for Al
and 〈r〉 = 0.6 Å [23], A3(0) = 0.33 and Jex = 5.6 eV Å3.

The so-called spin-independent skew scattering affects
the trajectories of the electron charge and is responsible
for the anomalous Hall effect in metals with RE impurities
[24,29,36]. As shown below, it also affects the ground state.
Its Hamiltonian reads [29]

Hskew = L ·
(

[∇η(r)] × 1

i
∇

)
I2×2, (2)

where I2×2 is the identity matrix in Pauli
spin space, and η(r) = η0δ

4f (r) with η0 =
9e2[A2(1) − (5/9)A4(1)](140ε0 h̄k4

F )−1. For the parameters
introduced above, A2(1) ∼ 0.0885, A4(1) = 0.056, and
h̄η0k2

F = 0.21 eV Å3. Both exchange and skew-scattering
interactions are active in a volume V4f � 10 Å3. The
energy scales 〈Hskew〉 ∼ h̄η0k2

F /V4f = O(10 meV) and
〈Hs f 〉 ∼ Jex/V4f = O(100 meV) are consistent with published
values extracted from experiments, such as the Knight shift
[37], electron spin resonance [38], and magnetoresistance
[39–41]. Hskew deflects free electrons via an effective local
force caused by the 4 f subshell with orbital angular
momentum L. Equation (2) does not contain an explicit
SOI parameter, because we operate in the limit of large 4 f
spin-orbit interaction that generates a finite |L|.

The 4 f RE impurities in noble metals hybridize with 5d
virtual bound states of the conduction electrons [42], which
can be parameterized in terms of phase shifts of angular
momentum scattering channels [40]. The enhancement of the
magnetic moments of pure RE metals [43–45] and in RE-
doped Ag and Au [27,46] has been attributed to those 5d
virtual bound states. Here we focus on the spin and orbital po-
larization induced by the Kondo Hamiltonian on conduction
electrons that we describe by plane waves without truncating
an expansion into spherical harmonics. To leading order in
the contact interaction, we may discard hybridization and
orthogonalization corrections.

Next we discuss the RKKY spin polarization due to the
Hs f and the response induced by Hskew. We focus on ions with
partially filled 4 f shells. Gd3+ (L = 0) can create an RKKY
spin polarization, but its Hskew vanishes. We do not address
Eu3+ since its spin and orbital moments cancel in its ground
(J = 0) but not in excited states.

III. RKKY SPIN-DENSITY OSCILLATIONS

In the mean-field, local-density approximation, Eq. (1) for
an RE moment at the origin r = 0 becomes

Hs f = −Jex

h̄2 s(r = 0) · S, (3)

where s(r) ≡ 〈�†
c (r)|h̄σ/2|�c(r)〉 is the spin density of the

conduction-electron wave function �c. For a static moment
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FIG. 2. Distribution of the spin and orbital polarizations close to
a RE local moment in the free-electron gas. (a) RKKY spin-density
oscillations rχ (r)/F0 normalized by F0 = limr→0 rχ (r). (b) Distri-
bution of the induced orbital moment obtained with the regularized
and nonregularized response functions, rF (r)/F1 and r f (r)/F2,
respectively, normalized by their maximum values obtained approxi-
mately for kF r = 3/2, F1 = max [rF (r)], and F2 = max [r f (r)]. The
response is dominantly paramagnetic but oscillates with diamagnetic
contributions. Far from the atom, the spin and orbital responses
share an oscillating algebraic decay cos (2kF r)/r3. As this figure
illustrates, the distributions have a phase difference for small radius.

and to leading order in Jex, we recover the RKKY spin-density
oscillations

〈s〉(r) = Jex

h̄2 χ (r)S, (4)

χ (r) = Deh̄2

16πr3

[
sin (2kF r)

2kF r
− cos (2kF r)

]
, (5)

where χ (r) is the susceptibility and De = mekF (π h̄)−2 the
density of states of the host metal at the Fermi energy.
Figure 2(a) illustrates the characteristic RKKY oscillations in
rχ (r) that contribute to the total spin magnetic moment mS ,

mS = −γ0gS

∫
d3r[Sδ(r) + 〈s〉(r)] = −γ0gS

(
1 + GS

i

)
S,

(6)
where the bare g factor is gS = 2, γ0 = e/(2me) is the modulus
of the gyromagnetic ratio, −e is the electron charge, and the
constant GS

i = JexDe/4. For example, in Al, GS
i ≈ 0.13. The

polarization cloud enhances the total spin magnetic moment
and g factor by GS

i , which can be observed via the imagi-
nary part of the spin-mixing conductance (effective field) at
ferromagnet|normal metal interfaces [47] or spin-dependent

interfacial phase shifts at ferromagnet| superconductor inter-
faces [48].

IV. ROTATIONAL CURRENTS

We now show that the Kondo Hamiltonian generates
equilibrium charge-current vortices around the impurity. In
Fourier representation with linear momentum h̄q and unper-
turbed wave function 〈r|q〉 = eir·q/

√
	, the matrix elements

of the skew-type interaction read

〈q + k|Hskew|q〉 = iη0	
−1e−2k2a2

(k × q) · L, (7)

where e−2k2a2
cuts off an ultraviolet divergence of a δ-function

potential. To leading order in η0, we find a spin-independent
velocity field of conduction electrons (see Appendix A):

〈v(r)〉 = η0

2π3h̄

F (r)

r
L × r̂, (8)

where

F (r) = 1

ar
√

2π

∫ ∞

0

dr′

r′ e− r′2+r2

8a2 f1(r, r′) f (r′), (9)

f1(r, r′) = r′r cosh

(
r′r
4a2

)
− 4a2 sinh

(
r′r
4a2

)
, (10)

f (x/kF ) = 2x(−9 + 2x2) cos (2x) + (9 − 14x2) sin (2x)

8(x/kF )6
,

(11)

and x = kF r. In the δ-function a → 0, the response function
f should used in Eq. (8) instead of F . Outside the 4 f subshell,
F and f are similar, see Fig. 2(b). F , f , and χ oscillate with
wave number 2kF and are approximated by cos (2kF r)/r3 far
from the atom. The integrated modulus of the velocity,

v̄s =
∫

|〈v〉|d3r = 0.01vF

(
(2 − gJ )

√
J (J + 1)

4

)
, (12)

is of the order of a percent of the Fermi velocity vF =
h̄kF /me ∼ 2 × 106 m/s and v̄s ∼ 10 km/s for Al.

The radial density of the orbital angular momentum,

〈l〉(r) ≡
∫∫

dφdθ sin θ

4π
mer × 〈vs(r)〉 = meη0F (r)

3π3h̄
L,

(13)
is at equilibrium always collinear with L and parallel to

it near the origin. Both the orbital density of the rotational
current and the RKKY spin polarization decay algebraically
and oscillate with increasing distance from the origin [see
Fig. 2(b)]. Therefore the current response has paramagnetic
as well as diamagnetic contributions. Note that the spin and
orbital radial distributions have a phase difference for small
radius, as shown in Fig. 2.

The orbital magnetic moment is dressed by the electron gas

mL = −γ0gL

∫
d3r[Lδ(r) + 〈l〉(r)] = −γ0gL

(
1 + GL

i

)
L,

(14)
where the bare orbital g-factor gL = 1, and GL

i =
2meη0k3

F /(3π2h̄), or

GL
i = n4f

Eη

EF
, (15)
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FIG. 3. The z-component of the Ørsted field near a RE atom in
the free-electron gas. Bz

Ø = ez · BØ, as a function distance (r = xex),
where ej is the unit vector along the Cartesian axis j. The field is
normalized by its modulus at the origin b = |B Ø(0)|.

where n4f = V4f n0 is the number of conduction electrons
in the volume of the 4 f subshell, V4f ∼ 10 Å3, with n0 =
k3

F /(3π2) the metal density. The energy of orbital-orbital
coupling is Eη = h̄η0k2

F /V4f , while the host Fermi energy is
EF = h̄2k2

F /(2me). Thus the strength of the rotational current
momentum, with respect to L, is proportional to the ratio of
the orbital coupling and Fermi energies. The proportionality
constant is the average number of conduction electrons subject
to the coupling potential. For the present parameters we find
n4f ≈ 1.8, Eη ≈ 0.02 eV, EF = 11.7 eV, and a relatively small
value GL

i ≈ 1/300.
The current vortex induces an Ørsted field

BØ(r) = −eμ0

4π

∫
d3r′〈v(r′)〉 × r − r′

|r − r′|3 , (16)

where μ0 = 4π × 10−7 J/(mA2) is the magnetic permeability
of free space. The velocity and magnetic fields are propor-
tional to the RE orbital momentum, |〈v〉| ∝ |BØ| ∝ η0|L|. Far
from the RE ion, R � 〈r〉,

BØ(R) = μ0

4π

3(mrc · R)R − R2mrc

R5
(17)

is the field generated by the magnetic dipole mrc = −γ0GL
i L.

BØ is proportional to the dipolar magnetic field by the
4 f orbital momentum (BL), i.e., BØ = GL

i BL, with GL
i  1.

At the origin and for kF = 1.75/Å,

BØ(0) = −3.5 × 10−7eη0μ0a−6(L/h̄),

= 0.06 T

(
(2 − gJ )

√
J (J + 1)

4

)
.

Figure 3 shows the z component of this field as a function of
distance r = xex, where the unit vectors ex and ez point along
the x and z Cartesian axis, respectively. The field is negative
close to the origin but turns positive and decays to zero in an
oscillatory fashion.

The field at the origin, BØ(0), couples to the local nu-
clear spin by the Zeeman interaction, which shifts the NMR

FIG. 4. Response functions F (r) and f (r) that describe the
regularized and nonregularized velocities, respectively. They are nor-
malized by the maximum value of F1 ≡ max[F (r)] and by F2 =
F1 f (r0)/F (r0), such that they have the same value at the (arbitrar-
ily chosen) point r0 = 3.34 Å. The inset shows the behavior of the
curves for large distances. As this figure illustrates, the curves have
the same feature outside the rare-earth atom. However, only the
regularized function f is finite inside the 4 f subshell.

frequency by �ω = γN |BØ(0)| ∼ 5 MHz, where γN is the
nuclear gyromagnetic ratio. In NMR experiments, a constant
magnetic field B0ez polarizes the nuclear moments as well as
the 4 f moments along the z direction. The Knight shift K ,
produced by the current and parameterized by the ratio of the
internal and applied magnetic fields [49], at low temperatures
(T � 1 K) is

K ≡ |BØ(0)|
B0

= −0.3%

(
(2 − gJ )

√
J (J + 1)

4

)(
20 T

B0

)
,

(18)
where we assume full polarization of the magnetic moment of
the 4 f subshell. The NMR frequency is typically in the 100-
MHz regime for applied (constant) fields of B0 ∼ 10 T. For
a given rf frequency we therefore predict different resonance
magnetic fields for rare-earth impurities in an insulating and
metallic host. We hope that our results stimulate experiments
that can identify the ground-state current vortices.

Orbital contributions to the Knight shift have been
predicted before [27,50], holding virtual bound states of con-
duction electrons at RE impurities in a metal host responsible
[27]. These theories are not compatible with our model since
they predict effects for half-filled shells without orbital mo-
ment (Gd).

V. CONCLUSIONS

We predict that RE local moments interact with the con-
duction electrons of a metallic host to generate both an
oscillating spin density and charge current, the latter by the
spin-independent skew-scattering interaction. The radial dis-
tribution of the induced velocity field oscillates with the same
period as the RKKY spin polarization induced by the local
exchange interaction. A finite 4 f orbital moment L is nec-
essary to form the current in the electron gas. Therefore the
predicted magnetic field and Knight shift depend linearly with
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|L| ∝ (2 − gJ )|J| and vanish for RE-doped insulators. Fur-
thermore, the induced magnetic field depends on the atomic
number via the Landé g factor ground-state quantum numbers.
Several approximations are crude, but we are confident about
the predicted trends. Relativistic first-principles calculations
of open 4 f subshells in a metal host should improve the
accuracy of the predictions.

The Ørsted fields generated by RE impurities at the sur-
face of a metal with sufficiently large Fermi wavelength
can be measured in principle by scanning magnetometries
based on nanoscale superconducting quantum interference
devices (nanoSQUID) [51] or optically read-out nitrogen-
vacancy (NV) centers [52,53]. RE impurities adsorbed at a
surface two-dimensional electron gas or graphene monolayer
are promising candidate systems to image the predicted equi-
librium current vortices.
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APPENDIX A: ROTATIONAL CURRENTS

Here we derive the linear response of a simple metal to a
rare-earth (RE) magnetic impurity characterized by the classi-
cal vectors S, L, and J, i.e., the spin, orbital, and total angular
momenta, respectively. The conduction-electron orbital an-
gular momentum density l = mer × v(r)relative to the local
moment at the origin, where mev(r) is the linear momentum
density, reads in second quantization (see also Appendix C)

l(r) = h̄r × 1

	

∑
pqγ

ei(q−p)·r p + q
2

a†
pγ aqγ . (A1)

We define the expectation values 〈v〉 = Tr[ρv], where Tr
stands for the trace, and ρ is the density matrix of the full
Hamiltonian. With the time-evolution operator in the inter-
action picture, U (t ) ≡ exp [−(i/h̄)

∫ t
t0

Hskew(t ′)dt ′], the total
density matrix ρ can be written in terms of the ground-state
density matrix ρ0 of the unperturbed free-electron gas with
Hamiltonian H0 and the regularized skew-scattering Hamilto-
nian

Hskew = iη0

	

∑
kq′γ ′

e−2k2a2
a†

q′+k γ ′aq′γ ′ (k × q′) · L, (A2)

where the constant a = 2〈r〉/9, related to the 4 f subshell
radius 〈r〉 ∼ 0.6Å, accounts for the finite spatial extension
of the 4 f Slater-type orbital R(r) ∝ r3e−r/a. The exponential
e−2k2a2

cuts off an ultraviolet divergence that would arrive for
a δ-function perturbation. For an Al host metal, h̄η0k2

F = 0.21
eV Å3. Then,

〈v(r)〉 = Tr[ρ0Û
−1(t )vÛ (t )],

≈ Tr

[
ρ0

(
1 + i

h̄

∫ t

−∞
Hskew(t ′)dt ′

)
v

·
(

1 − i

h̄

∫ t

−∞
Hskew(t ′)dt ′

)]
,

= i

h̄

〈 ∫ t

−∞
dt ′[Hskew(t ′), v(r)]

〉
0

, (A3)

where 〈A〉0 = Tr[ρ0A]. This leads to

〈v(r)〉 = − i

me	

∫ t

−∞
dt ′ ∑

pqγ

ei(q−p)·r p + q
2

〈[a†
pγ (t )aqγ (t ), Hskew (t ′)]〉0

= η0

me	2

∑
kq′γ ′

e−2k2a2
∑
pqγ

ei(q−p)·r p + q
2

(k × q′) · L

∫ t

−∞
dt ′〈[a†

pγ (t )aqγ (t ), a†
q′+k γ ′ (t ′)aq′γ ′ (t ′)]〉0.

(A4)

The susceptibility is

χ (t − t ′) = �(t − t ′)
∑
γ γ ′

〈[a†
pγ (t )aqγ (t ),

a†
q′+kγ ′ (t ′)aq′γ ′ (t ′)]〉0, (A5)

where � is the Heaviside step function with time derivative

∂tχ (t − t ′)

= δ(t − t ′)
∑
γ γ ′

〈[
a†

pγ (t )aqγ (t ), a†
q′+kγ ′ (t ′)aq′γ ′ (t ′)

]〉
0

+�(t − t ′)
∑
γ γ ′

〈[∂t (a
†
pγ (t )aqγ (t )),

a†
q′+kγ ′ (t ′)aq′γ ′ (t ′)]〉0. (A6)

∂t [a†
pγ (t )aqγ (t )] can be calculated by the Heisenberg equation

for the electron gas H0 = ∑
kγ εka†

kγ akγ with parabolic dis-

persion relation εk = h̄2k2/(2me),

∂t (a
†
pγ aqγ ) = 1

ih̄
[a†

pγ aqγ , H0]

= 1

ih̄

[
a†

pγ aqγ ,
∑
kγ ′

εka†
kγ ′akγ ′

]

= − i

h̄
(εq − εp)a†

pγ aqγ , (A7)

and ∑
γ γ ′

[
a†

pγ aqγ , a†
q′+kγ ′aq′γ ′

]

=
∑

γ

(
δq,q′+ka†

pγ aq−kγ − δp,q′a†
p+kγ aqγ

)
. (A8)

χ then satisfies the equation of motion(
∂t + i

h̄
(εq − εp)

)
χ(t − t ′)

= δ(t − t ′)

〈∑
γ

(
δq,q′+ka†

pγ aq−kγ − δp,q′a†
p+kγ aqγ

)〉
0

.

(A9)
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In the frequency domain, with χ (t ) =
(2π )−1

∫
dωχ (ω)e−iωt ,

χ (ω) = ih̄

∑
γ 〈δq,q′+ka†

pγ aq−kγ − δp,q′a†
p+kγ aqγ 〉0

εp − εq + h̄ω + i0+

= 2ih̄
δq,q′+kδp,q−k fp − δp,q′δq,p+k fq

εp − εq + h̄ω + i0+ , (A10)

where fp is the (spin-degenerate) Fermi-Dirac distribution.
Substituting χ into Eq. (A4) after transformation into the
frequency domain and in the steady state (ω → 0),

〈v(r)〉 = η0

me	2

∑
kq′

e−2k2a2
∑
pq

ei(q−p)·r(p + q)

· [(k × q′) · L]ih̄
δq,q′+kδp,q−k fp − δp,q′δq,p+k fq

εp − εq + i0+

= iη0h̄

me	2

∑
pq

e−2a2|p−q|2 ei(q−p)·r(p + q)

(
L · −p × q fp − q × p fq

εp − εq + i0+

)

= iη0h̄

me

∫
d3 p

(2π )3

∫
d3q

(2π )3
e−2a2|p−q|2 ei(q−p)·r

(p + q)[L · (q × p)]
fp − fq

εp − εq + i0+

= iη0h̄

me

∫
d3 p

(2π )3

∫
d3q

(2π )3
e−2a2|p−q|2 ei(q−p)·r

(p + q)[L · (q × p)]
fp

εp − εq + i0+ + c.c., (A11)

where c.c. stands for the complex conjugate of the other terms.
Using

e−2a2|p−q|2 =
√

2

32π3/2a3

∫
d3r′ei(q−p)·r′

e−r′2/(8a2 ), (A12)

we can write the regularized velocity, 〈v(r)〉, as the integral of
the nonregularized one, 〈v∞(r)〉. The latter has a divergence
in the origin due to the δ nature of the skew scattering when
a → 0, as shown later:

〈v(r)〉 =
√

2

32π3/2a3

∫
d3r′e−r′2/(8a2 )〈v∞(r + r′)〉,

〈v∞(r)〉 =iη0
h̄

me

∫
d3 p

(2π )3

∫
d3q

(2π )3
ei(q−p)·r(p + q)

· [L · (q × p)]
fp

εp − εq + i0+ + c.c. (A13)

The angular part of the integral over q =
q(sin θq cos φqx̂ + sin θq sin φqŷ + cos θqẑ) reads

I1 ≡ i
∫ π

0
dθq sin θq

∫ 2π

0
dφqeiq·r(q + p)[L · (q × p)]

= 4π i

qr3
[qr cos (qr) − sin (qr)][L × p + i(r · J × p)p]

− 4π i

qr3
[3qr cos (qr) − (3 − q2r2) sin (qr)](r̂ · L × p)r̂,

(A14)

such that the angular integral over p =
p(sin θp cos φpx̂ + sin θp sin φpŷ + cos θpẑ) of the previous
expression is∫ π

0
dθp sin θp

∫ 2π

0
dφpe−ip·rI1

= −32π2

pqr5
[pr cos (pr) − sin (pr)]

× [qr cos (qr) − sin (qr)]L × r̂, (A15)

which reveals the rotational (i.e., ∝ L × r̂) character of the
current:

〈v∞〉 = − η0

π4h̄r5
L × r̂

∫ kF

0
d pp[pr cos (pr) − sin (pr)]

(A16)∫ ∞

0
dq

q[qr cos (qr) − sin (qr)]

p2 − q2 + i0+ + c.c. (A17)

Using cos (qr)=(eiqr+e−iqr )/2 and sin (qr)=(eiqr − e−iqr )
/(2i),∫ ∞

0
dq

q[qr cos (qr) − sin (qr)]

p2 − q2 + i0+

= −1

4

∫ ∞

−∞
dqq

eiqr (qr + i) + e−iqr (qr − i)

q2 − (p + i0+)2 , (A18)

the integral over q can be carried out by a contour integral in
the complex plane. For r > 0 only the poles with a positive
(negative) imaginary part contribute for integrands containing
eiqr (e−iqr),∫ ∞

0
dq

q[qr cos (qr) − sin (qr)]

p2 − q2 + i0+ = −π i

2
(pr + i)eipr,

(A19)
and

〈v∞〉 = η0

2π3h̄r5
L × r̂

∫ kF

0
d pp[pr cos(pr) − sin(pr)]

× (ipr − 1)eipr + c.c.

= − η0

π3h̄r5
L × r̂

∫ kF

0
d pp[pr cos (pr) − sin (pr)]

[cos(pr) + pr sin(pr)]. (A20)

The p integral is straightforward, leading to

〈v∞(r)〉 = η0

2π3h̄

f (r)

r
L × r̂, (A21)

f (x/kF ) = 2x(−9 + 2x2) cos (2x) + (9 − 14x2) sin (2x)

8(x/kF )6
,

(A22)

where x = kF r. f (r) oscillates with wave number 2kF , as
expected for the response of a degenerate electron gas. More-
over, for r � 〈r〉, f (r) ∝ cos (2kF r)/r3, as well known from
the RKKY spin polarization. Finally, the divergence at the
origin limr→0 |〈v∞(r)〉| = ∞ comes from δ-function skew-
scattering potentials (a → 0) and can be avoided by using
Eq. (A13):

〈v(r)〉 = η0

2π3h̄

F (r)

r
L × r̂, (A23)
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F (r) = 1

ar
√

2π

∫ ∞

0

dr′

r′ e− r′2+r2

8a2

·
[

r′r cosh

(
r′r
4a2

)
− 4a2 sinh

(
r′r
4a2

)]
f (r′). (A24)

Both response functions are plotted in Fig. 4.
The angular average of the orbital moment density,

〈l〉(r) ≡ 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θmer × 〈v(r)〉

= meη0F (r)

3π3h̄
L, (A25)

with integrated value∫
d3r〈l〉(r) = 4meη0

3π2h̄

∫ ∞

0
drr2F (r)L = GL

i L,

and ∫ ∞

0
drr2F (r) =

∫ ∞

0
drr2 f (r) = k3

F

2
. (A26)

The above equation states that the integrated orbital moment
of both the regularized and the divergent velocity fields are the
same,

GL
i = 2meη0k3

F

3π2h̄
≈ 3.2 × 10−3

(
kF Å

1.75

)3

, (A27)

where in the second step we used η0 for an Al host metal.
The constant GL

i plays the role of a g factor, and then the
rotational current contributes by about 0.3% to the total 4 f
orbital moment.

APPENDIX B: ØRSTED FIELD GENERATED
BY THE EQUILIBRIUM CURRENTS

According to Maxwell’s equations the equilibrium charge-
current vortex around the rare-earth moment generates a
magnetic field Eq. (16):

BØ(R) = −eμ0

4π

∫
d3r′〈v(r′)〉 × R − r′

|R − r′|3 .

The derivation of an analytic expression for general R is
tedious. However, far from the RE ion, R = |R| � 〈r〉, the

Taylor expansion of |RR̂ − r|−3
gives

BØ(R) = μ0

4π

3(mrc · R)R − R2mrc

R5
, (B1)

where mrc = −γ0GL
i L. The above expression is the expected

result of a field generated by the magnetic moment mrc of the
current vortex.

On the other hand, the magnetic field at the origin R = 0
reads

BØ(0) = eμ0

4π

∫ ∞

0
dr

∫ π

0
dθ sin θ

∫ 2π

0
dφ〈v(r)〉 × r̂,

= η0

2π3h̄

eμ0

4π

∫ ∞

0
dr

F (r)

r

∫ π

0
dθ sin θ

×
∫ 2π

0
dφ(L × r̂) × r̂

= −3.5 × 10−7 eη0μ0

h̄a6
L. (B2)

APPENDIX C: ORBITAL ANGULAR MOMENTUM
DENSITY IN SECOND QUANTIZATION

The Pauli equation for an electron wave function ψ(r) with
energy E in a homogeneous magnetic field B reads

Eψ(r) =
[

1

2me
(−ih̄∇ + eA)2 + eh̄

2me
σ · B

]
ψ(r). (C1)

In the symmetric gauge A = 1
2 B × r,

E =
∫

d3rψ†(r)

[
1

2me

(
−ih̄∇+ e

2
B × r

)2
+ eh̄

2me
σ · B

]
ψ(r)

=
∫

d3rψ†(r)

[
− h̄2∇2

2me
− ieh̄

(B × r) · ∇ + ∇ · (B × r)

4me

+ eh̄

2me
σ · B + O

(
B2

)]
ψ(r). (C2)

Then the energy of the Zeeman coupling EZ is

EZ = e

2me
(lT + 2sT ) · B, (C3)

where the factor 2 is the single-electron orbital g factor. In
terms of the total spin sT and orbital lT angular momenta,

sT = h̄

2

∫
d3rψ†(r)σψ(r), (C4)

lT = ih̄

2

∫
d3rψ†(r)(∇ × r − r × ∇ )ψ(r). (C5)

Substituting

ψ(r) = 1√
	

∑
p,α

eip·rχαapα, (C6)

ψ†(r) = 1√
	

∑
q,β

e−iq·rχβ
†a†

qβ, (C7)

where the spinors χ↑ and χ↓ are the basis of σz. The second
quantized version of s(r) and l(r), the local densities of spin
and orbital momentum (relative to the origin), respectively:

sT =
∫

s(r)d3r, (C8)

s(r) = h̄

2

1

	

∑
pqαβ

ei(p−q)·ra†
qβσαβapα, (C9)

and

lT = ih̄

2

∫
d3rψ†(r)(∇ × r − r × ∇ )ψ(r) =

∫
l(r)d3r,

(C10)
with

l(r) = h̄

	
r ×

∑
pqγ

ei(p−q)·rpa†
qγ apγ

= h̄

	
r ×

∑
pqγ

ei(p−q)·r p + q
2

a†
qγ apγ . (C11)

Note that lT = merop × vop, where rop and vop are the position
and velocity operators, respectively.
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