
PHYSICAL REVIEW B 103, 064429 (2021)

Symmetry breaking induced magnon-magnon coupling in synthetic antiferromagnets

Mei Li,1 Jie Lu ,2,* and Wei He3,†

1Physics Department, Shijiazhuang University, Shijiazhuang, Hebei 050035, People’s Republic of China
2College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, People’s Republic of China

3State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

(Received 3 November 2020; revised 18 January 2021; accepted 12 February 2021; published 22 February 2021)

We propose a general theory of ferromagnetic resonance (FMR) spectroscopy for symmetry-breaking syn-
thetic antiferromagnets (SAFs). Generally, both inhomogeneity and different thickness of the two ferromagnetic
sublayers of a SAF result in the intrinsic symmetry breaking, thus excludes the crossing between pure in-
phase and out-of-phase resonance modes with opposite parity. Alternatively, new frequency branches become
hybridization of original bare modes in terms of symmetry breaking induced magnon-magnon coupling, hence
generate an indirect gap in FMR frequencies. The gap widths for several typical cases are presented and
compared with existing data. In particular, for the inhomogeneity case, the indirect gap width is linearly
proportional to the asymmetry degree and takes a square (rather than linear) dependence on the magnon-magnon
coupling strength, indicating a case-by-case recalibration of the measuring method of the latter. Our theory
provides a simple but physical understanding of the rich structure of FMR spectra for asymmetric SAFs.
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I. INTRODUCTION

Synthetic antiferromagnets (SAFs) are magnetic multilay-
ers with two ferromagnetic (FM) sublayers coupled antifer-
romagnetically through a nonmagnetic metallic spacer [1].
They have attracted tremendous interest in the past decades
due to their potential for developing the “SAF spintron-
ics” and wide range of applications in magnetic nanodevices
[2–21]. Compared with the strong exchange coupling in
genuine antiferromagnetic (AFM) materials with terahertz
intrinsic frequencies [22,23], the relatively weak interlayer
coupling in SAFs mainly comes from the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [24–26] thus realizes
gigahertz FM resonance (FMR) frequencies that mature mi-
crowave electronics can match. Similar behaviors have also
been observed in layered crystals [27,28] and compensated
ferrimagnets [29] with AFM interlayer and intersublattice
couplings, respectively. More interestingly, for symmetrical
NiFe/Ru/NiFe [2,16] and FeCoB/Ru/FeCoB SAFs [18–21],
or layered crystal CrCl3 [27], symmetry-protected mode
crossings between in-phase and out-of-phase branches of
FMR spectra have been observed under in-plane external dc
magnetic fields, indicating the absence of coupling between
magnons with opposite parity therein.

In fact, this mode crossing can be eliminated in several
ways. For symmetrical SAFs [20] or layered crystals [27],
extrinsically exerting an oblique dc field will lift the system’s
rotation-symmetry axis away from the SAF plane, thus breaks
the rotation invariance of the hard axis (normal of SAF plane)
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from magnetostatic interaction. This introduces a magnon-
magnon coupling between the original uncoupled modes with
opposite parity, hence hybridizes the two modes and generate
an anticrossing gap. Very recently, strong magnon-magnon
coupling under in-plane dc fields is also proposed by the
dynamical dipolar interaction from nonuniform precession of
magnetic moments in symmetrical FeCoB/Ru/FeCoB SAFs
[18,19]. Besides these externally induced cases, the other
strategy is to break the intrinsic symmetry between the two
FM sublayers in SAFs. In most existing experiments, the
two sublayers are prepared from the same FM materials with
different thickness. A frequency gap can be observed even
under in-plane dc fields [16,17]. In addition, intrinsic asym-
metry should also appear when the two sublayers are made
from different FM materials. However, to our knowledge, the
corresponding FMR measurements are not yet in the press,
which mainly comes from the difficulty in sample preparation.

A lot of theoretical works have been performed to un-
derstand the rich structure of FMR spectra in SAFs [4,14–
18,20,21,27,29]. Representatively, in 2014, a discrete-lattice
approach has been raised for asymmetric NiFe/Ru/NiFe
SAFs [17] under in-plane dc fields, where the RKKY in-
teraction, biquadratic exchange coupling and the uniaxial
anisotropy at the NiFe/Ru interfaces are all considered. In
2019, based on “macrospin” assumption MacNeill et al. pro-
posed a systematic analysis for the gap induction from oblique
dc magnetic fields in which only the bilinear RKKY inter-
action is included [27]. However, they did not consider the
intrinsic symmetry breaking (SB) since the sublayers of their
system are always symmetrical.

In this work, we demonstrate that intrinsic SB in SAFs
is enough to induce strong magnon-magnon coupling, and
further results in considerable indirect gaps in FMR spectra.
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FIG. 1. (a) Sketch of a typical SAF with saturation magnetization
MA(B),0

s and thickness dA(B) in its two FM sublayers. The macrospins
(mA and mB) of the two sublayers are coupled antiferromagnetically
and tilted at equilibrium as meq

A and meq
B . The unit vectors of the

new x′y′z coordinate system are: ex′ ‖ meq
A − meq

B , ey′ ‖ meq
A + meq

B ,
and ez remains unchanged. (b) Sketch of magnon-magnon coupling
between in-phase and out-of-phase modes. This coupling comes
from the breaking rotation symmetry of magnetostatics and/or mag-
netization under C2y′ (C2y′ MA,0

s meq
A �= MB,0

s meq
B and/or C2y′ MA

s meq
A �=

MB
s meq

B ).

The rest of this paper is organized as follows. In Sec. II,
we briefly introduce the modelization of SAFs. In Sec. III,
the static magnetization configuration of a SAF under dc in-
plane magnetic fields is presented. After that, the dynamical
response of magnetization system to external rf stimuli (i.e.,
FMR spectra) is provided in Sec. IV, which is the central
result of this work. A general theory is proposed first, then
applied to two typical cases of intrinsic SB and compared
with existing experimental data to verify the validity. Finally,
discussions and summary of this work are provided in the last
two sections, respectively.

II. MODEL AND METHOD

The SAF system under consideration is sketched in
Fig. 1(a). The saturation magnetization and thickness of the
upper (lower) FM sublayer are MA,0

s and dA (MB,0
s and dB),

respectively. The crystalline anisotropy in both sublayers are
neglected for simplicity. In typical SAFs, the FM intralayer
nearest-neighbor exchange is much stronger than the in-
terlayer AFM coupling, which lays the foundation of the
“macrospin” hypothesis. By denoting the unit magnetization
vectors within respective sublayers as mA and mB, the total

magnetic energy of the SAF can be written as

Etot = EA · (SdA) + EB · (SdB) + EAFM,

EA = −μ0MA,0
s mA · H + 1

2
μ0

(
MA,0

s mA · n
)2

,

EB = −μ0MB,0
s mB · H + 1

2
μ0

(
MB,0

s mB · n
)2

,

EAFM = 1

2
μ0

(
SdAMA,0

s mA
) · (

λE MB,0
s mB

)
+ 1

2
μ0

(
λE MA,0

s mA
) · (

SdBMB,0
s mB

)
= 1

2
μ0λE S(dA + dB)MA,0

s MB,0
s mA · mB. (1)

Here, EA,B are the energy densities of the two FM sublayers,
respectively. The SAF has an area S with the correspond-
ing surface normal n. The first term in each energy density
is the Zeeman term under an uniform in-plane external
field H, and the second term represents an easy-plane
anisotropy from the magnetostatic interaction of a thin-disk-
shaped FM sublayer. In addition, the expression of AFM
interlayer coupling (EAFM) comes from the simple picture
in which the magnetic moments in one sublayer can be
viewed as sitting in the effective field from the other sub-
layer with the dimensionless effectiveness λE . In literatures,
this term is also expressed via the “interlayer exchange en-
ergy per unit area” JIEC[6,7,10,12,15,18,19,21]. Hence λE =
2JIEC/[μ0MA,0

s MB,0
s (dA + dB)].

The definition of effective field is generalized to the
“macrospin” version as Heff=−μ−1

0 δE/δ(MSd ) with E , M,
d , and S being the magnetic energy, macrospin vector,
thickness and area of a certain film, respectively. The in-
terlayer coupling field in each sublayer then reads HA(B)

AFM =
−λE MB(A)

s mB(A) with the “thickness-modified saturation mag-
netization” of the respective sublayer defined as

MA
s = dA + dB

2dB
MA,0

s , MB
s = dA + dB

2dA
MB,0

s . (2)

After neglecting the damping terms, the coupled Landau-
Lifshitz-Gilbert (LLG) equations are

ṁA = − γ mA × [
H − λE MB

s mB − MA,0
s (mA · n)n

] + τA,

ṁB = − γ mB × [
H − λE MA

s mA − MB,0
s (mB · n)n

] + τB,

(3)

where an overdot means d/dt , γ = μ0γe with μ0 and γe being
the vacuum permeability and electron gyromagnetic ratio,
respectively. At last, τA(B) is the torque on mA(B) which arises
from the rf excitation fields.

III. MAGNETOSTATICS OF SAFS WITH INTRINSIC SB

In later sections, we will present a general theory describ-
ing the effects of intrinsic SB on magnon-magnon coupling,
as well as the FMR spectroscopy. As preparation, in this sec-
tion we calculate the equilibrium magnetization orientations
under an in-plane dc magnetic field H with strength H . In the
absence of H, the magnetostatic interaction leaves mA and mB

lying within the SAF plane. Furthermore, the AFM interlayer
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coupling makes them point in opposite directions. First we
construct the original Cartesian coordinate system (ex, ey, ez ):
ez ≡ n, ex = mA(H = 0), and ey = ez × ex. When H = Hey

is applied, in principle mA and mB are pulled away from ±ex

but still in xy plane. Their final equilibrium states are denoted
as meq

A and meq
B , respectively. In addition, since the in-plane

magnetic (either crystalline or shape) anisotropy is neglected,
the “spin-flop” process doe not happen in this system. We then
set φA (φB) as the angle that meq

A (meq
B ) rotates anticlockwise

(clockwise) with respect to ex (−ex). They can be explicitly
solved from the static LLG equations as

sin φA(B) = (H/λE )2 + [MA(B)
s ]

2 − [MB(A)
s ]

2

2HMA(B)
s /λE

. (4)

Next we define a new x′y′z coordinate system based on
meq

A and meq
B : ex′ ‖ meq

A − meq
B , ey′ ‖ meq

A + meq
B , and ez re-

mains unchanged. In principle, ey′ deviates from ey due to
the intrinsic SB. To ensure the noncollinearity of meq

A and
meq

B which is crucial for the definition of x′y′z coordinate
system, the dc field strength H should be limited within the
range HAFM < |H | < HFM with HAFM ≡ λE |MA

s − MB
s | and

HFM ≡ λE (MA
s + MB

s ). For |H | � HAFM (� HFM), meq
A and

meq
B point in the opposite (same) direction thus the SAF falls

into AFM (FM) state. Then we denote C2y′ as the rotation
operator which rotates vectors around the y′ axis by 180◦.
Obviously, C2

2y′ = 1 and C2y′meq
A(B) = meq

B(A). However, since
MA,0

s �= MB,0
s and/or dA �= dB, the joint operation of C2y′ and

A-B sublayer exchange is no longer a symmetric operation of
the entire SAF. This is the fundamental source of magnon-
magnon coupling in SAFs with intrinsic SB, which greatly
enriches the FMR spectra.

IV. MAGNON-MAGNON COUPLING AND FMR SPECTRA
UNDER INTRINSIC SB

A. General theory

When a rf field with frequency f = ω/2π is exerted, the
magnetization vectors are excited to deviate from their equi-
librium orientations and begin to vibrate slightly. We then
expand mA(B) = meq

A(B) + δmA(B)eiωt and τA(B) = τ 0
A(B)e

iωt . In
addition, we introduce δm± ≡ δmA ± C2y′δmB as the mag-
netization responses with even and odd parity (under C2y′ )
to the torque terms τ± = τ 0

A ± C2y′τ 0
B . By putting them into

Eq. (3), keeping up to linear-order terms and performing stan-
dard symmetrization operations, we get our central vectorial
equations for the magnetization excitations δm±,

i
ω

γ
δm± = meq

A ×
{

λE

2

(
MA

s + MB
s

)
(δm± ± C2y′δm±) + λE

2

(
MA

s − MB
s

)
(δm∓ ± C2y′δm∓)

+ MA,0
s ± MB,0

s

4
[ezez · +C2y′ez(C2y′ez )·]δm+ + MA,0

s ± MB,0
s

4
[ezez · −C2y′ez(C2y′ez )·]δm−

+ MA,0
s ∓ MB,0

s

4
[ezez · +C2y′ez(C2y′ez )·]δm− + MA,0

s ∓ MB,0
s

4
[ezez · −C2y′ez(C2y′ez )·]δm+

}
+ τ±. (5)

Now δm+ and δm− are coupled by intrinsic SB terms (proportional to MA
s − MB

s and MA,0
s − MB,0

s ), thus result in strong magnon-
magnon interaction between the bare modes with even and odd parities.

Next we move to the x′y′ plane (identical to the original xy plane) where meq
A(B) resides in and denote φ′ as

the angle between meq
A and ex′ which satisfies cos 2φ′ = [(MA

s )2 + (MB
s )2 − (H/λE )2]/(2MA

s MB
s ). In the local coordi-

nate system “(em ≡ meq
A , eφ′ ≡ ez × em, ez )”, δm± can be decomposed to δm± = δm±,φ′eφ′ + δm±,zez. In the basis of

(δm+,φ′ , δm+,z, δm−,φ′ , δm−,z )T, for homogeneous case (τ± = 0) the above coupled vectorial equations are transformed into
their matrix-form counterpart:

i
ω

γ

⎛
⎜⎝

δm+,φ′

δm+,z

δm−,φ′

δm−,z

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

0 −M
0
s 0 −M

0
s κ0

2λE Ms cos2 φ′ 0 2λE Msκ cos2 φ′ 0

0 −M
0
s κ0 − 2λE Msκ 0 −M

0
s − 2λE Ms

2λE Msκ sin2 φ′ 0 2λE Ms sin2 φ′ 0

⎞
⎟⎟⎟⎠

⎛
⎜⎝

δm+,φ′

δm+,z

δm−,φ′

δm−,z

⎞
⎟⎠. (6)

in which M
0
s = (MA,0

s + MB,0
s )/2 and Ms = (MA

s + MB
s )/2

are respectively the average bare and “thickness-modified”
saturation magnetizations, meantime κ0 = (MA,0

s −
MB,0

s )/(MA,0
s + MB,0

s ) and κ = (MA
s − MB

s )/(MA
s + MB

s )
describe the degree of asymmetry between the two FM
sublayers.

Consequently, the secular equation of Eq. (6) becomes

ω̃4−
(

h̃2 + μ
1 + κ0κ

2λE

)
ω̃2+2λE + ν

4λ2
E

(
1 − h̃2

)(
h̃2 − κ2

)=0,

(7)

with ω̃ ≡ ω/(γ HFM), κ < h̃ ≡ H/HFM < 1, μ = (MA,0
s +

MB,0
s )/(MA

s + MB
s ), and ν = (MA,0

s /MA
s ) · (MB,0

s /MB
s ). Gener-

ally, a gap appears as long as κ2
0 + κ2 �= 0. By first fixing H

and solving the above secular equation then further sweep-
ing H , the entire FMR spectrum in the “ω ∼ H” space can
be obtained. In Fig. 2, the dimensionless FMR spectra un-
der different configurations are provided based on Eq. (7).
In all calculations, saturation magnetizations and magnetic
fields are in the unit of MA,0

s and ω is in the unit of γ MA,0
s .

In addition, λE = 0.1. In the absence of any SB, a mode
crossing always exists (see gray dashed curves in Fig. 2).
When any single type of intrinsic SB appears, an anticrossing
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FIG. 2. Anticrossing gap opening when intrinsic SB emerges. In
all calculations based on Eq. (7), λE = 0.1 and MA,0

s is taken as the
unit of saturation magnetizations and magnetic fields. ω is in the unit
of γ MA,0

s . The inequalities of (a) bare saturation magnetization and
(b) sublayer thickness are two sources of intrinsic SB. Each has been
first independently shifted away from the symmetrical configuration
(red and blue curves) in (a) and (b), and then together (magenta
curve) in (c).

gap emerges. While both coexist, the gap width is greatly
enlarged.

To acquire clearer physics meantime provide more conve-
nient fitting tools for experiments, in the following we focus
on two special cases and present more details about the anti-
crossing gap.

B. Same thickness but different material

In the first case, the two FM sublayers have the same
thickness (dA = dB) but are made of different FM materials
(MA,0

s �= MB,0
s ). Then MA(B)

s = MA(B),0
s , thus μ = ν = 1 and

κ0 = κ �= 0. Similar to MacNeill et al. in 2019 [27], now
the secular equation (7) can be rewritten into the eigenvalue

problem of a 2 × 2 matrix as

∣∣∣∣ω̃2
a (h̃) − ω̃2 �̃2

�̃2 ω̃2
o(h̃) − ω̃2

∣∣∣∣ = 0. (8)

Here, ω̃a =
√

1 + (2λE )−1h̃ and ω̃o = [(1 + κ2)(1 −
h̃2)/(2λE ) + (κ2h̃2)/(2λE )]1/2 are the bare in-phase
(acoustic) and out-of-phase (optical) mode frequencies,
respectively. Meantime �̃ = [(2λE + 1)κ2/(4λ2

E )]1/4

describes the dc-field-independent magnon-magnon coupling
strength. This is totally different from what has been
reported in symmetrical FeCoB/Ru/FeCoB SAFs [20] or
double-layered CrCl3 system [27] where the magnon-magnon
coupling strength is linearly proportional to the strength of
oblique dc magnetic fields. The reason lies in the fact that
the driving factor of magnon-magnon coupling therein is
extrinsic and will disappear once the out-of-plane component
of the external field is absent. While in our case, the driving
factor is the intrinsic SB which always exists and is irrelevant
to external stimuli.

When |κ| 	 1 (nearly symmetric), �̃ is negligible thus
the solution of Eq. (8) are approximately ω̃ ≈ ω̃a and ω̃ ≈
ω̃o. For finite κ , when h̃ is close to κ or 1, the solutions
of Eq. (8) only deviate slightly from ω̃a and ω̃o. When the
optical and acoustic modes get closer in frequency, they
will be hybridized by �̃ term and thus a gap is opened.
Direct calculations yield that this gap is an indirect gap
(see Appendix A): the minimum ω̃min

up (maximum ω̃max
down) of

the “up (down)” branch takes place at h̃min
up (h̃max

down), where
h̃min

up �= h̃max
down for nonzero κ . The corresponding dimensionless

gap width reads δω̃ = |κ|√(2λE + 1)/[λE (λE + 1)]. Inter-
estingly, the real gap width δω̃ is linear to |κ| (degree of
asymmetry between the two FM sublayers), which is different
from the square-root dependence of the coupling �̃ on κ . This
is the direct consequence of indirect-gap opening where the
gap width enlargement should be proportional to the square
of the off-diagonal coupling term. Alternatively, in most ex-
isting works the magnon-magnon coupling strength gc/2π is
obtained as half of the minimal frequency spacing (i.e., the
gap size in f ∼ H spectrum) [18,27,29]. This comes from
the “direct-gap opening” hypothesis in which the gap width
is approximately twice of the off-diagonal coupling term. In
summary, in SAFs with two inhomogeneous FM sublayers,
the gap width takes square rather than linear dependence on
the off-diagonal coupling term due to the indirect nature of
the gap. Therefore the measuring method of magnon-magnon
coupling strength in SAFs may need to be recalibrated case
by case.

In Fig. 3, we plot the dependence of magnon-magnon
coupling strength on gap width for different gap openings.
For indirect gaps, �̃ = √

�ω̃ · [(λE + 1)/(4λE )]1/4 while for
direct ones �̃ = �ω̃/2. We set λE = 0.1 and 0 < �ω̃ < 1,
which are reasonable in real SAFs. Obviously, for the same
gap width the magnon-magnon coupling strength for indirect
case is much stronger than direct case. This implies higher
efficiency of inducing magnon-magnon coupling in inhomo-
geneous SAFs. At last, by recalling the definitions of ω̃ and κ ,
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FIG. 3. Dependence of magnon-magnon coupling strength �̃ on
gap width �ω̃ for different types of gap opening. Both are in the
unit of γ HFM and λE = 0.1. Black (red) curve comes from indirect
(direct) gap.

we get the dimensional gap width

δ f =
√

λE (2λE + 1)

λE + 1

γ

2π
|MA,0

s − MB,0
s |, (9)

which should be more useful for experimental physicists.
Clearly, the AFM interlayer coupling and the inhomogeneity
of sublayers are both crucial for the gap opening. On the other
hand, we know that it is very difficult to prepare inhomo-
geneous SAFs (MA,0

s �= MB,0
s ) experimentally, however this

issue is worth exploring further and Eq. (9) should help to
reveal interesting physics.

C. Same material but different thickness

Another interesting case is that the two FM sublayers are
made of the same material (MA,0

s = MB,0
s ) but have different

thickness (dA �= dB), which is the most common choice in real
experiments. Accordingly κ0 = 0, κ = (dA − dB)/(dA + dB)
and μ = ν = 1 − κ2. Now Eq. (7) can not be reorganized to
the 2 × 2 matrix form as that in Eq. (8). However, similar
calculus shows that now the gap is also indirect. The new ex-
tremum, extremum locations and the gap width become more
complicated (see Appendix B), and we then focus on the situa-
tion where |κ| 	 1. After standard linearization operation, the
gap width is approximated to another linear dependence on |κ|
as |κ|[(2λE + 1)/(λE + 1)]3/2/(2

√
λE ). Back to dimensional

form, we have

δ f ′ ≈
√

λE

2

(
2λE + 1

λE + 1

) 3
2 |1 − (dB/dA)2|

2(dB/dA)

γ

2π
MA,0

s . (10)

Equation (10) can be directly compared with exist-
ing experiments in asymmetrical NiFe/Ru/NiFe SAFs
[16,17]. For NiFe(13.6 nm)/Ru(tRu)/NiFe(27.2 nm) SAFs
in Ref. [16], we choose tRu = 4.7 Å as an exam-
ple. By taking MA,0

s = 860 kA m−1 and JIEC ≈ |J1| =
286 μJ m−2, we get λE ≈ 0.015 and δ f ′ ≈ 1.4 GHz.
While for Ni80Fe20(200 Å)/Ru(tRu)/Ni80Fe20(100 Å) SAFs
in Ref. [17], the magnetic parameters for tRu = 3.3 Å are

MA,0
s = 720 kA m−1 and JIEC ≈ 154 μJ m−2. These lead to

λE ≈ 0.016 and δ f ′ ≈ 1.2 GHz. For other Ru thickness,
similar calculations can be performed and all results show
agreement between analytic and experimental data.

Interestingly, in FeCoB/Ru/FeCoB SAFs, we can acquire
larger λE , although nearly all existing published experi-
ments are performed in symmetrical cases [18–21]. For
symmetrical FeCoB thickness being 15[18,19], 3 [20], and
5 nm [21], the respective λE are estimated to be 0.033,
0.093 and 0.119(0.141) (two samples therein). Combined
with larger saturation magnetization of FeCoB, asymmet-
rical FeCoB/Ru/FeCoB SAFs are expected to open larger
indirect gaps. Our results provide the possibility that by
appropriately designing the thickness ratio of two FeCoB
sublayers, greater gap can be opened which indicates stronger
magnon-magnon coupling. On the other hand, although the
magnon-magnon coupling strength can not be explicitly writ-
ten out as the inhomogeneity case in Sec. IV B, the indirect
nature of the gap here makes it also have square-root depen-
dence on the asymmetry degree |κ| at least when |κ| 	 1
due to the linear dependence of gap width on |κ| at that
time.

V. DISCUSSIONS

At the end of this work, several points need to be clari-
fied. First, in this work the crystalline anisotropy has been
neglected because of two reasons: (i) in most existing ex-
perimental setups, the FM sublayers of SAFs are made from
soft magnetic materials which can be viewed as isotropic;
(ii) the explicit orientations of meq

A and meq
B can hardly be

obtained analytically if the in-plane crystalline anisotropy is
considered (even for the simplest uniaxial case), but they are
crucial for obtaining the vectorial LLG equations and then
the secular equations for FMR frequencies. For the above
reasons, in this work, we choose the isotropic case for sim-
plicity, but it can cover the vast majority of experimental
data. Note that our analytics also holds for perpendicular-
magnetic-anisotropy case as long as we change MA(B),0

s to
MA(B),0

s − HA(B)
K in Eq. (3) where HA(B)

K is the out-of-plane
anisotropic field in the respective sublayer. Another neglected
term is the Gilbert damping term. In most investigations
of spin wave, the damping term is dropped off when only
the resonance spectrum is under consideration. However
when the linewidth is also of interest, the damping pro-
cess should be included in Eq. (5) by a respective term
iωαmeq

A × δm± with α being the Gilbert damping coefficient
[27].

Second, in principle the dimensionless parameter λE de-
scribes the AFM interacting effectiveness of the macrospin in
one sublayer to the other, thus should be independent on the
thickness of two sublayers. This equivalently means that JIEC

is a “bulk” parameter thus should be proportional to the total
thickness of the two sublayers. However, in real experiments,
the atomic layers of the two FM sublayers closest to the
spacer provide most of the energy contribution to JIEC. In ad-
dition, the thicker the two sublayers are, the farther the system
deviates from the “macropin” hypothesis. The combination
of these factors makes the experimental JIEC in thick SAFs
(especially in some early experiments) almost a constant value
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and independent on the total thickness of the two sublayers.
Consequently, λE could no longer be a constant parameter and
inversely proportional to dA + dB. Accordingly, all the ana-
lytics in the main text should be recalibrated. Fortunately, in
recent experiments, the thickness of SAF sublayers have been
reduced to less than 10 nanometers, where the “macropin”
hypothesis holds and almost all atomic layers contribute to
JIEC. Therefore λE is nearly constant and our present theory
holds.

Third, in the main text, we only considered the intrinsic SB
and constructed a theory for describing the resulting magnon-
magnon coupling. In fact, an unified theoretical framework
which combines the effects of both intrinsic and extrinsic
(originating from out-of-plane dc magnetic field components)
SB can be proposed. The details have been provided in
Appendix C. Here we emphasize the difference between
the mechanisms of inducing magnon-magnon coupling by
extrinsic and intrinsic SB. For extrinsic SB, the breaking
rotation symmetry of hard axis n (from magnetostatic in-
teraction) with respect to the pulled up rotation-symmetry
axis (due to oblique dc fields) is the basic reason. While
for intrinsic SB, the new rotation axis is still in the SAF
plane but the entire magnetic layout (including magnetiza-
tion and magnetostatics) is no longer unchanged under the
twofold rotation. The entanglement between magnetization
vibrations with opposite parity results in the strong magnon-
magnon coupling thus greatly affects the FMR spectroscopy
of SAFs.

VI. SUMMARY

In summary, we have proposed a simple but revealing the-
ory for understanding the rich structure of FMR spectroscopy
in asymmetrical SAFs, where the twofold rotation symmetry
of either the magnetization or magnetostatics fails. The intrin-
sic SB in SAFs causes entanglement between magnetization
vibrations with opposite parity, thus excites strong magnon-
magnon coupling between the bare in-phase and out-of-phase
modes, then eventually results in the anticrossing gap in mi-
crowave absorption spectroscopy. Furthermore, the indirect
nature of this gap leads to square (rather than linear) depen-
dence of gap width on magnon-magnon coupling strength.
This new picture helps to understand the rich experimental
data of FMR spectra for existing SAFs and future measure-
ments on other SAF or SAF-like systems.
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APPENDIX A: DETAILS FOR “SAME THICKNESS BUT DIFFERENT MATERIAL”

In this case, dA = dB but MA,0
s �= MB,0

s . Then MA(B)
s = MA(B),0

s , thus μ = ν = 1, κ0 = κ �= 0. The secular equation in Eq. (7)
of the main text is simplified to

ω̃4 −
(

h̃2 + 1 + κ2

2λE

)
ω̃2 + 2λE + 1

4λ2
E

(
1 − h̃2

)(
h̃2 − κ2

) = 0. (A1)

The two branches turn out to be

ω̃up,down = 1

2
√

λE
·
√[

2λE h̃2 + (1 + κ2)
] ±

√[
2(λE + 1)h̃2 − (1 + κ2)

]2 + 4(2λE + 1)κ2, (A2)

where “+(−)” means up (down) branch. Direct calculation yields that the extremum and extremum locations are as follows:

ω̃
min(max)
up(down) =

√
2λE + 1

4λE (λE + 1)
(1 ± |κ|) (A3)

at

h̃min(max)
up(down) =

√
1 + κ2 ∓ 2λE |κ|

2(λE + 1)
. (A4)

For nonzero κ , h̃min
up �= h̃max

down thus resulting in the dimensionless indirect gap:

δω̃ = ω̃min
up − ω̃max

down =
√

2λE + 1

λE (λE + 1)
|κ|. (A5)

Note that ω̃ = ω/[γ λE (MA
s + MB

s )] and κ = (MA
s − MB

s )/(MA
s + MB

s ), then finally we get the dimensional gap width as shown
in Eq. (9) in the main text, which takes place around H ≈ (h̃min

up + h̃max
down)HFM/2 and f ≈ (ω̃min

up + ω̃max
down)γ HFM/(4π ).
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APPENDIX B: DETAILS FOR “SAME MATERIAL BUT DIFFERENT THICKNESS”

Now MA,0
s = MB,0

s but dA �= dB. Thus κ0 = 0, κ = (dA − dB)/(dA + dB) and μ = ν = 1 − κ2. The secular equation in Eq. (7)
of the main text becomes

ω̃4 −
(

h̃2 + μ

2λE

)
ω̃2 + 2λE + μ

4λ2
E

(
1 − h̃2

)(
h̃2 + μ − 1

) = 0. (B1)

The two branches can be directly calculated as

ω̃up,down = 1√
2

·

√√√√√(
h̃2 + μ

2λE

)
±

√
λ2

E + 2λE + μ

λE

√√√√[
h̃2 − (2λE + μ)(2 − μ) − μλE

2(λ2
E + 2λE + μ)

]2

+ (1 − μ)(2λE + μ)3

4(λ2
E + 2λE + μ)2 , (B2)

with “+(−)” indicating up (down) branch. After standard calculus, the extremum and corresponding locations are

ω̃
min(max)
up(down) = 1

2

√
(2λE + μ)

[
(2λE + μ)(1 ± √

1 − μ) − μλE
]

λE (λ2
E + 2λE + μ)

(B3)

at

h̃min(max)
up(down) =

√
(2λE + μ)(2 − μ ∓ λE

√
1 − μ) − μλE

2(λ2
E + 2λE + μ)

. (B4)

The dimensionless indirect gap then takes the following form:

δω̃ = ω̃min
up − ω̃max

down = 2λE + μ

2
√

λE (λ2
E + 2λE + μ)

(√
1 − μλE

2λE + μ
+

√
1 − μ −

√
1 − μλE

2λE + μ
−

√
1 − μ

)
, (B5)

which shows a complicated dependence on the asymmetry degree |κ| = √
1 − μ. To acquire a more clear insight of the gap

width dependence on |κ|, we choose the “small-κ” limit as an example, which corresponds to the case where there is not much
difference between the thickness of two FM sublayers. After standard linearization operation and only keeping the linear terms
of κ , we reach the following result:

δω̃ = ω̃min
up − ω̃max

down ≈ 1

2
√

λE

(
2λE + 1

λE + 1

) 3
2

|κ| (B6)

for |κ| 	 1. Remembering that ω̃ = ω/[γ λE (MA
s + MB

s )], κ = (MA
s − MB

s )/(MA
s + MB

s ) and the definitions of MA(B)
s in the

main text, then the dimensional gap width takes the form in Eq. (10) of the main text, which also takes place around H ≈
(h̃min

up + h̃max
down)HFM/2 and f ≈ (ω̃min

up + ω̃max
down)γ HFM/(4π ).

APPENDIX C: UNIFIED THEORY INCLUDING OBLIQUE DC FIELDS

In this Appendix, we provide a unified theory that includes both an oblique dc magnetic field H (with strength H) and intrinsic
SB effects. As preparation, we redefine the global Cartesian coordinate system (ex, ey, ez ) as follows: ez ≡ n thus the oblique
angle of H with respect to SAF plane is ψ ≡ sin−1(ez · H/H ) which satisfies 0 � ψ < π/2, ey is parallel to the in-plane field
component H − H sin ψez, and ex = ey × ez. As indicated in the main text, without H the unit magnetization vectors in the two
sublayers orient oppositely in a certain in-plane direction in the absence of any in-plane anisotropy due to the AFM interlayer
coupling. When H is applied, in principle, they are pulled out of xy plane and their final equilibrium states are denoted as meq

A
and meq

B , respectively. We then set θA(B) as their respective polar angles, and φA (φB) being the angle that in-plane component of
meq

A (meq
B ) rotates anticlockwise (clockwise) with respect to ex (−ex). These four angles can be explicitly solved as

cos θA(B) = MB(A),0
s H sin ψ

λE
(
MA

s MB,0
s + MB

s MA,0
s

) + MA,0
s MB,0

s

,

sin φA(B) =
(

H
λE

cos ψ
)2 + [MA(B)

s sin θA(B)]
2 − [MB(A)

s sin θB(A)]
2

2 H
λE

cos ψ · MA(B)
s sin θA(B)

. (C1)

Next we define a totally new x′y′z′ coordinate system based on meq
A and meq

B : ex′ ‖ meq
A − meq

B , ey′ ‖ meq
A + meq

B , and ez′ ‖
meq

A × meq
B . The noncollinearity of meq

A and meq
B is crucial for the construction of new x′y′z′ coordinate system. This is equivalent

to require 0 < | sin φA(B)| < 1, i.e., 0 � HAFM < |H | < HFM, in which (HAFM)2 and (HFM)2 are the two roots of the quadratic
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equation ax2 − 2bx + c = 0 with

a = cos4 ψ

λ4
E

+
[
(MA

s MB,0
s )2 − (MB

s MA,0
s )2]2

sin4 ψ[
λE

(
MA

s MB,0
s + MB

s MA,0
s

) + MA,0
s MB,0

s
]4 +

[
(MA

s MB,0
s )2 + (MB

s MA,0
s )2]2 sin2 ψ cos2 ψ[

λ2
E

(
MA

s MB,0
s + MB

s MA,0
s

) + λE MA,0
s MB,0

s
]2 ,

b =
[
(MA

s )2 + (MB
s )2]

λ2
E

cos2 ψ +
[
(MA

s )2 − (MB
s )2][(MA

s MB,0
s )2 − (MB

s MA,0
s )2]

[
λE

(
MA

s MB,0
s + MB

s MA,0
s

) + MA,0
s MB,0

s
]2 sin2 ψ,

c =
[(

MA
s

)2 − (
MB

s

)2
]2

. (C2)

After constructing the new x′y′z′ coordinate system, the C2y′ operator remains its original physical meaning: it rotates vectors
around the y′ axis by 180◦. Still, we take the combinations of magnetization vibrations in the two FM sublayers, δm± = δmA ±
C2y′δmB, as our central variables to obtain the FMR spectra. The resulting dynamical vectorial equations have the same form as
that in Eq. (5) of the main text, however the physics embedded has been greatly enriched since now C2y′ez �= −ez.

Accordingly, to obtain the matrix form of dynamical equations, we move again to the new x′y′ plane (now differs from
the original xy plane) where meq

A(B) reside in. In the local coordinate system “(em ≡ meq
A , eφ′ ≡ ez′ × em, ez′ )”, δm± can be

decomposed to δm± = δm±,φ′eφ′ + δm±,z′ez′ . In the basis of (δm+,φ′ , δm+,z′ , δm−,φ′ , δm−,z′ )T, for homogeneous case (τ± = 0)
Eq. (5) in the main text is transformed into its matrix-form counterpart:

i
ω

γ

⎛
⎜⎝

δm+,φ′

δm+,z′

δm−,φ′

δm−,z′

⎞
⎟⎠ =

⎛
⎜⎜⎝

p1 p2 p3 p4

q1 + 2λE Ms cos2 φ′ −p1 q2 + 2λE Msκ cos2 φ′ −p3

p3 p4 − 2λE Msκ p1 p2 − 2λE Ms

q2 + 2λE Msκ sin2 φ′ −p3 q1 + 2λE Ms sin2 φ′ −p1

⎞
⎟⎟⎠

⎛
⎜⎝

δm+,φ′

δm+,z′

δm−,φ′

δm−,z′

⎞
⎟⎠, (C3)

in which p1 = M
0
s (cos α sin φ′ − κ0 cos β cos φ′) cos η, p2 = −M

0
s cos2 η, p3 = M

0
s (κ0 cos α sin φ′ − cos β cos φ′) cos η,

p4 = −M
0
s κ0 cos2 η, q1 = [(p1 − p3)2(p4 + p2) − (p1 + p3)2(p4 − p2)]/[2(p2

4 − p2
2)], and q2 = [−(p1 − p3)2(p4 +

p2) − (p1 + p3)2(p4 − p2)]/[2(p2
4 − p2

2)]. In addition, cos α, cos β and cos η are the three cosines of ez in the
new x′y′z′ coordinate system: cos α = (cos θA − cos θB)/(2 cos φ′), cos β = (cos θA + cos θB)/(2 sin φ′), and cos η =√

sin2 θA sin2 θB − (cos θA cos θB + cos 2φ′)2/ sin 2φ′. At last, φ′ is the angle between meq
A and ex′ which satisfies

cos 2φ′ = − cos θA cos θB + [(MA
s sin θA)2 + (MB

s sin θB)2 − (H cos ψ/λE )2]/(2MA
s MB

s ). The corresponding secular equation
then provide the FMR spectra of this SAF. In the most general case where κ0 �= 0, κ �= 0 and ψ > 0, the secular equation can
hardly be solved analytically. However, based on the above results numerical calculation can always be performed once we have
knowledge on MA(B),0

s , dA(B), λE , and ψ . When the out-of-plane components of external dc fields are absent, the unified theory
presented above then falls back to the one provided in the main text.
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