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We determined the crystal structure of Cs2LiRuCl6, which was synthesized in this work, and investigated its
magnetic properties. Cs2LiRuCl6 has a hexagonal structure composed of linear chains of face-sharing RuCl6

and LiCl6 octahedra. In two thirds of the structural chains, Ru3+ and Li+ sites are almost ordered, while in the
other chains their sites are disordered. This situation is analogous to the ground state of the antiferromagnetic
Ising model on a triangular lattice. Using electron paramagnetic resonance, we evaluated the g factors of Ru3+

with effective spin- 1
2 as gc = 2.72 and gab = 1.50 for magnetic fields H parallel and perpendicular to the c axis,

respectively. Magnetization curves for H‖c and H ⊥ c are highly anisotropic. However, these magnetization
curves approximately coincide when normalized by the g factors. It was found from the magnetization and
specific heat results that Cs2LiRuCl6 can be described as a coupled one-dimensional S = 1/2 Heisenberg-like
antiferromagnet with J/kB � 3.7 K. Three-dimensional ordering occurs at TN = 0.48 K. A magnetic phase
diagram for H‖c is also presented.
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I. INTRODUCTION

The honeycomb-lattice Kitaev model is one of the hot
topics in condensed matter physics [1,2]. The Kitaev model
is expressed by the Ising model −Jγ Sγ

i Sγ
j for three different

spin components Sγ

i (γ = x, y and z) on three different links.
It was demonstrated that this spin model can be described by
itinerant and localized Majorana fermions with very different
energy scales and that the ground state is exactly a quantum
spin liquid state [1]. Experimental studies of the Kitaev model
were stimulated by the theoretical prediction that this model
can be realized when MX6 octahedra centered by magnetic M
ions such as Ru3+ and Ir4+ with effective spin- 1

2 owing to the
strong spin-orbit coupling are linked by sharing their edges to
form a honeycomb lattice [3]. A2IrO3 (A = Li, Na and Cu)
[4–12] and α-RuCl3 [13–31], which approximately satisfy
such a structural condition, have been actively investigated
via various experimental techniques. Their ground states were
found to be not the quantum spin liquid state but ordered
states, which are considered to be caused by the presence of
the Heisenberg term [7–9,17–23,32,33].

For α-RuCl3, three-dimensional ordering occurs at
TN = 7.6 K [14–22], which is considered to be caused by
the additional Heisenberg term [34]. However, static and
dynamic properties characteristic of the system of Majo-
rana fermions, such as the two-stage temperature structure
of entropy [14–16] and the intense excitation continuum
near the � point [15,23,24], have been observed. The zigzag
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magnetic ordering [18–20] is strongly suppressed by the
external magnetic field applied parallel to the honeycomb
layer [14,18,22,26,28]. Consequently, the ordered ground
state changes into the disordered state [27,28,31], in which
the half-integer quantization of thermal Hall conductance is
observed as predicted for the Kitaev model [30].

The problem for α-RuCl3 is that the interaction parameters
are still undetermined, although various models have been
tested to fit experimental data [35]. One of the key parame-
ters is the g factor. Its accurate estimation will contribute for
determining the interaction parameters using magnetization
data, which leads to microscopic understanding of α-RuCl3.
In Ref. [14], highly anisotropic g factor was estimated from
the magnetization process in α-RuCl3 obtained using pulsed
high magnetic field, while there is a theory that the highly
anisotropic magnetic properties can be described by the off-
diagonal exchange interaction called � term [36]. To confirm
experimentally whether the g factor of Ru3+ in octahedral
environment is sensitive to uniaxial distortion of the octahe-
dron and show that the highly anisotropic g factor of Ru3+, as
observed in α-RuCl3, can be understood consistently within
the discussion in Ref. [14], we need a ruthenium compound, in
which the octahedron centered by Ru3+ is trigonally elongated
in contrast to the case of α-RuCl3 composed of the trigonally
compressed RuCl6 octahedron. This is the first motivation of
this work. As shown in Secs. III and IV, the RuCl6 octahedron
in Cs2LiRuCl6 is trigonally elongated and the anisotropy of g
factor is reverse to the case in α-RuCl3.

Theory predicts that in a triangular lattice, the competition
between the Kitaev and Heisenberg terms produce an exotic
helical order called a Z2 vortex crystal [37–44]. The helical
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order is different from the conventional helical order that
arises from the competition between two or more exchange
interactions of the Heisenberg type or between the exchange
interaction and the Dzyaloshinskii-Moriya interaction. Mag-
netic insulators composed of Ru3+ and Ir4+ are expected to
exhibit various ground states, and thus, new compounds are
desired.

It was reported that Rb2LiRuCl6 has the same crystal struc-
ture as that of Cs2LiGaF6, in which linear chains of alternating
GaF6 and LiF6 octahedra running along the crystallographic c
axis are arrayed as a triangular lattice in the ab plane [45,46].
In Rb2LiRuCl6, magnetic Ru3+ ions form a uniform triangular
lattice in the ab plane. Accordingly, we tried to grow single
crystals of Rb2LiRuCl6. However, we did not succeed in
obtaining good crystals of Rb2LiRuCl6. Instead, we obtained
good single crystals of Cs2LiRuCl6. In this paper, we report
the crystal structure of this compound and its low-temperature
magnetic properties.

II. EXPERIMENTAL DETAILS

To prepare Cs2LiRuCl6 single crystals, we first prepared
Cs3Ru2Cl9 crystals by the vertical Bridgman method from a
melt comprising a stoichiometric mixture of CsCl and RuCl3

sealed in an evacuated quartz tube. A mixture of Cs3Ru2Cl9,
CsCl, and LiCl in a molar ratio of 1 : 1 : 2 was vacuum sealed
in a quartz tube. The temperature at the center of the furnace
was set at 900 ◦C, and the lowering rate was 3 mm h−1. Single
crystals of about 1 cm3 were obtained. These crystals were
found to be Cs2LiRuCl6 from x-ray diffraction, as shown in
Sec. III. The crystals are easily cleaved parallel to the c axis.

The specific heat was measured at temperatures down to
0.35 K in magnetic fields of up to 9 T using a physical
property measurement system (PPMS, Quantum Design) by
a relaxation method. The magnetization was measured down
to T = 0.5 K and up to H = 7 T using a SQUID magne-
tometer (MPMS-XL, Quantum Design) equipped with a 3He
device (iHelium3, IQUANTUM). High-magnetic-field mag-
netization measurement was performed at the Institute for
Materials Research (IMR), Tohoku University. The temper-
ature of the sample was lowered to 0.4 K using liquid 3He. A
magnetic field of up to 20 T was applied with a multilayer
pulse magnet. High-magnetic-field electron spin resonance
(ESR) measurement was also conducted in the frequency
range of 110–360 GHz and the temperature range of 4.2–50 K
at IMR, Tohoku University. Gunn oscillators were used as
light sources.

III. CRYSTAL STRUCTURE

Because the crystal structure of Cs2LiRuCl6 has not been
reported to date, we performed its structural analysis at 293
and 93 K using a RIGAKU R-AXIS RAPID three-circle x-ray
diffractometer equipped with an imaging plate area detec-
tor. Monochromatic Mo-Kα radiation with a wavelength of
λ = 0.71075 Å was used as the x-ray source. Data integration
and global cell refinements were performed using data in
the range of 3.28◦ < θ < 27.52◦, and absorption correction
was performed using the ABSCOR program [47]. The to-
tal number of reflections observed was 7842, among which

TABLE I. Crystal data for Cs2LiRuCl6 at 293 K.

Chemical formula Cs2LiRuCl6

Space group P6322
a (Å) 12.4194(16)
c (Å) 6.0621(7)

V (Å3) 809.8(2)
Z 3

R; wR 0.0464; 0.1033

625 reflections were found to be independent and 495 re-
flections were determined to satisfy the criterion I > 2σ (I ).
Structural parameters were refined by the full-matrix least-
squares method using SHELXL−2018/8 software [48]. The
final R indices obtained for I > 2σ (I ) were R = 0.0464 and
wR = 0.1033. The crystal data are listed in Table I. The chem-
ical formula was confirmed to be Cs2LiRuCl6. The crystal
structure of Cs2LiRuCl6 is hexagonal P6322 with cell dimen-
sions of a = 12.4194(16) Å, c = 6.0621(7) Å, and Z = 3. Its
atomic coordinates, equivalent isotropic displacement param-
eters, and site occupancies are shown in Table II.

We also conducted the structural analysis at T = 93 K
and confirmed that the crystal structure is the same as that
determined at 293 K. The lattice constants at T = 93 K are
a = 12.3582(8) Å and c = 6.0321(4) Å.

The crystal structure viewed along the [1, 1, 0] and c direc-
tions is illustrated in Fig. 1. The crystal structure consists of
three kinds of chain, A, B, and C, which are composed of face-
sharing RuCl6 and LiCl6 octahedra. In chain A, RuCl6 and
LiCl6 octahedra are randomly distributed with a probability of
1/2, while in chains B and C they are arranged almost alter-
nately in order. The atomic arrangement in chain C is obtained
by shifting that in chain B by c/2, and thus, chains B and C
are equivalent. The crystal structure of Cs2LiRuCl6 is differ-
ent from the Cs2LiGaF6 structure [45], although Rb2LiRuCl6

was reported to be isostructural with Cs2LiGaF6 [46]. All
the RuCl6 octahedra in Cs2LiRuCl6 are trigonally elongated
along the c axis in contrast to the case of α-RuCl3, where
all the RuCl6 octahedra are trigonally compressed along the
c axis. This is consistent with the experimental result that in
Cs2LiRuCl6, the g factor gc for a magnetic field parallel to the

TABLE II. Fractional atomic coordinates, equivalent isotropic
displacement parameters, and site occupancy for Cs2LiRuCl6 at
293 K.

Atom x y z Ueq Occ.

Cs 0.000000 0.6666(3) 0.500000 0.0336(4) 1
Li(1) 0.000000 0.000000 0.250000 0.0189(12) 0.5
Li(2) 0.666667 0.333333 0.750000 0.035(5) 0.922(6)
Li(3) 0.666667 0.333333 0.250000 0.0167(4) 0.078(6)
Ru(1) 0.000000 0.000000 0.250000 0.0189(12) 0.5
Ru(2) 0.666667 0.333333 0.750000 0.035(5) 0.078(6)
Ru(3) 0.666667 0.333333 0.250000 0.0167(4) 0.922(6)
Cl(1) 0.1557(6) 0.000000 0.500000 0.0333(16) 1
Cl(2) 0.6658(7) 0.4885(5) 0.4816(2) 0.0268(8) 1
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FIG. 1. Crystal structure of Cs2LiRuCl6 viewed along the
(a) [1, 1, 0], and (b) c directions. Dotted blue lines denote the chem-
ical unit cell. The crystal structure consists of three kinds of chain,
A, B and C, composed of face-sharing RuCl6 and LiCl6 octahedra,
which are enclosed by black, blue, and ocher circles, respectively. In
chain A, RuCl6 and LiCl6 octahedra are randomly distributed with
a probability of 1/2, while in chains B and C they are arranged
almost alternately. The atomic arrangement in chain C is obtained
by shifting that in chain B by c/2.

c axis is greater than gab for a magnetic field parallel to the ab
plane, as shown in the next section.

Ru3+ and Li+ ions occupy the lattice points of a triangular
lattice in the ab plane. The arrangement of both ions is analo-
gous to the ground state of an antiferromagnetic Ising model
on a triangular lattice (AFIMTL) with the nearest-neighbor
(NN) interaction, as shown in Fig. 2 [49]. Using the Ising
spin σ z = ±1, lattice points occupied by Ru3+ and Li+ are
made to correspond to σ z = + 1 and −1, respectively. If
the total energy is lowered when different ions occupy the
neighboring sites [50], the arrangement of Ru3+ and Li+ ions
can be mapped onto the AFIMTL with the NN interaction.
Figure 2 shows the ground state of the AFIMTL with finite
entropy [49]. In the ordered “+” and “−” sites, spins are fixed
to σ z = + 1 and −1, respectively, while in the “0” site, the
spin is disordered to be 〈σ z〉= 0. This is because the mean
fields acting on the “0” site cancel out. This spin state is
called a partially disordered state [51]. If the disordered site
is regarded as the site occupied by Ru3+ and Li+ ions with an
equal probability, the ordering pattern of Fig. 2 is equivalent
to the arrangement of Ru3+ and Li+ ions shown in Fig. 1(b).
Thus, it is likely that the site disorder of Ru3+ and Li+ ions in
structural chain A arises from crystallographic frustration.

0

0

00

0

00

0

FIG. 2. Ground state of an antiferromagnetic Ising model on a
triangular lattice with the nearest-neighbor interaction with finite
entropy [49]. Notations “+” and “−” denote ordered sites with
〈σ z〉 = ±1, respectively, and “0” denotes the disordered site with
〈σ z〉 = 0. Dashed lines show the magnetic unit cell.

IV. MAGNETIC PROPERTIES

Figure 3 shows the temperature dependences of the mag-
netic susceptibilities χ (T ) of Cs2LiRuCl6 measured for
magnetic fields H parallel to the c axis (H‖c) and the ab
plane (H‖ab). The absolute values of the susceptibilities are
highly anisotropic. This mainly arises from the anisotropy of
the g factor, as shown below. The susceptibility has a rounded
maximum at Tmax(χ ) � 2.2 K. This is suggestive of the low
dimensionality of the exchange network in Cs2LiRuCl6.

Figure 4 shows the total specific heat divided by the
temperature C/T and magnetic entropy Smag of Cs2LiRuCl6

as a function of logarithmic temperature measured at zero
magnetic field. With decreasing temperature, C/T exhibits
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FIG. 3. Temperature dependences of magnetic susceptibilities χ

measured for H‖c and H‖ab at H = 0.1 T. The inset shows the
enlargement of magnetic susceptibilities below 6 K.
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FIG. 4. Total specific heat divided by the temperature C/T and
magnetic entropy as a function of logarithmic temperature measured
at zero magnetic field. The vertical arrow indicates the magnetic
phase transition temperature TN = 0.48 K. The green solid line is the
lattice contribution.

a rounded maximum at Tmax(C/T ) � 1 K. With further
decreasing temperature, C/T displays a cusp anomaly at
TN = 0.48 K indicative of a magnetic phase transition. The
green solid line is the lattice contribution Clat/T estimated
by assuming Clat/T ∝ T 2. The magnetic entropy saturates to
Smag = 0.92 R ln 2 above 7 K. This indicates that Ru3+ in
Cs2LiRuCl6 is in the low-spin state with the effective spin- 1

2 .
Figure 5 shows magnetization curves M(H ) of

Cs2LiRuCl6 and their field derivatives dM/dH mea-
sured for H‖c and H‖ab at T = 0.4 K. Dashed
lines denote the Van Vleck paramagnetism. The Van
Vleck paramagnetic susceptibilities for H‖c and H‖ab
were evaluated as χ c

VV = 8.49 × 10−3 emu/mol and
χab

VV = 1.31 × 10−3 emu/mol, respectively.
A kink anomaly is observed in dM/dH for H‖c at

Hc � 0.7 T as shown in Fig. 5(a). This magnetization anomaly
is indicative of a spin-flop-like transition in the ordered state
because the temperature is lower than TN = 0.48 K.

Figure 6(a) shows the magnetization curves at T = 0.4 K
for H‖c and H‖ab corrected for the Van Vleck param-
agnetism. The magnetization curves are highly anisotropic,
which is mainly attributed to the anisotropy of the g
factor, as shown below. The saturation field and magneti-
zation are Hc

s = 4.35 T and Mc
s = 1.14 μB/Ru3+ for H‖c,

and Hab
s = 6.90 T and Mab

s = 0.62 μB/Ru3+ for H‖ab,
respectively.

Figure 6(b) shows the magnetization curves for H‖c and
H‖ab normalized by the g factors gc = 2.72 and gab = 1.50,
which were obtained by the present ESR measurement. The
normalized values of the saturation magnetization (2/g)Ms for
H‖c and H‖ab are in good agreement, although the normal-
ized saturation fields (g/2)Hs are different. The difference in
normalized saturation field can be attributed to the anisotropy
of the exchange interaction.

The bend anomaly of magnetization at saturation is rea-
sonably sharp in Cs2LiRuCl6, thus, the saturation field is well
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FIG. 5. Magnetic field dependence of the raw magnetization M
(left) and its field derivative dM/dH (right) measured at T = 0.4 K
for (a) H‖c and (b) H‖ab. Dashed lines denote the Van Vleck
paramagnetism.

defined. This is in contrast to the case of α-RuCl3, where it is
difficult to define the saturation of magnetization owing to the
large Kitaev term, which does not commute with the total spin
[14,18].

The saturation magnetization normalized by the g factor
is (2/g)Ms = 0.84, which is smaller than unity. As shown in
Sec. III, RuCl6 and LiCl6 octahedra are randomly arranged
on average in chain A. When two RuCl6 octahedra are adja-
cent, sharing their face similarly to Ru2Cl9 double octahedra,
the exchange interaction should be strongly antiferromagnetic
and its magnitude is estimated to be J/kB � 700–900 K from
the exchange constant in Cs3Ru2Cl9. This compound is com-
posed of face-sharing Ru2Cl9 double octahedra, which form a
magnetic dimer [53]. The exchange constant in the dimer is as
large as J/kB � 700–900 K. Therefore, the contribution of two
adjacent RuCl6 octahedra to magnetization is considered to be
negligible. If half of the RuCl6 octahedra are adjacent, sharing
their face, and the other half form a − RuCl6 − LiCl6 − chain,
then the normalized saturation magnetization is evaluated to
be (2/g)Ms = 0.83, which is close to the experimental value
of (2/g)Ms = 0.84.
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FIG. 6. (a) Magnetization curves at T = 0.4 K for H‖c and
H‖ab corrected for the Van Vleck paramagnetism. (b) Magnetization
curves at T = 0.4 K for H‖c and H‖ab normalized by the g factors
gc = 2.72 and gab = 1.50. The dashed line is the magnetization curve
for the spin- 1

2 antiferromagnetic Heisenberg chain calculated with
J/kB = 3.7 K [52].

Figures 7(a) and 7(b) show ESR spectra measured at
ν = 270 GHz and at various temperatures for H‖c and H‖ab.
For H‖ab, a single electron paramagnetic resonance (EPR)
peak is observed near H = 15 T at all temperatures, while
for H‖c, a new resonance peak appears on the high-field side
below 40 K. Because the resonance field is higher than the
saturation field, the new resonance mode is an ESR mode in
the forced ferromagnetic state. At present, the origin of the
new resonance mode is unclear because the spin structure in
the ordered state has not been solved.

We obtained the g factor from the EPR line measured at
T = 50 K. Figure 7(c) shows the frequency-field diagram of
the EPR lines for H‖c and H‖ab measured at T = 50 K. We
can see that the resonance fields are exactly proportional to
the frequency. From the slopes of the EPR lines, the g factors

for H‖c and H‖ab are obtained as gc = 2.72 and gab = 1.50,
respectively. The condition of gc > gab in Cs2LiRuCl6 is con-
sistent with the trigonally elongated RuCl6 octahedron, as
shown below.

We next discuss the g factor of Ru3+ in trigonal crystalline
field following Ref. [14]. In the low-spin state of Ru3+, all five
electrons in the 4d orbitals occupy the dε orbital. The orbital
state is triply degenerate. The orbital degeneracy can be lifted
by the spin-orbit coupling and the trigonal crystalline field,
which are written using the orbital angular momentum l with
l = 1 as

H′ = λ′(l · S) + δ{(lz )2 − 2/3}, (1)

where λ′ = kλ and the second term represents the energy of
the trigonal crystalline field. λ is the coupling constant of the
spin-orbit coupling and k (0 < k � 1) is the reduction factor,
which expresses the reduction of the matrix elements of the
angular momentum owing to the mixing of the p orbital of
the surrounding Cl− with the 4d orbitals of Ru3+. When the
RuCl6 octahedron is trigonally compressed, δ > 0, and when
it is elongated, δ < 0.

The orbital triplet splits into three Kramers doublets. When
the temperature T is much lower than λ′ � 1000 cm−1 [54],
i.e., T < 100 K, the magnetic property is determined by the
lowest Kramers doublet. Its eigenvalue is expressed as

E0

λ′ = − δ

6λ′ − 1

4
− 1

2

√(
δ

λ′

)2

− δ

λ′ + 9

4
. (2)

The eigenstates of the lowest Kramers doublet are expressed
as

ψ± = c1| ± 1,∓1/2〉 + c2|0,±1/2〉, (3)

where |ml , mS〉 denotes the state with lz = ml and Sz = mS .
Coefficients c1 and c2 are given by

c1 = 1√
2

√
1 − A√

A2+1
, c2 = − 1√

2

√
1 + A√

A2+1
(4)

with

A = 2(δ/λ′) − 1

2
√

2
. (5)

The lowest Kramers doublet splits into two Zeeman levels
when subjected to a magnetic field. The splitting of the Zee-
man levels is proportional to the g factor, which is expressed
as

g‖ = 2
∣∣{(k + 1)c2

1 − c2
2

}∣∣ (6)

for a magnetic field parallel to the trigonal axis and

g⊥ = 2
(
c2

2 −
√

2kc1c2
)

(7)

for a magnetic field perpendicular to the trigonal axis. Figure 8
shows these g factors as a function of δ/λ′.

When a RuCl6 octahedron is trigonally elongated, g‖ > g⊥,
and when it is compressed, g‖ < g⊥. In Cs2LiRuCl6, the g
factors obtained for magnetic fields parallel and perpendicular
to the crystallographic hexagonal axis were gc = 2.72 and
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FIG. 7. ESR spectra measured at ν = 270 GHz and at various temperatures for (a) H‖c and (b) H‖ab. Small sharp lines labeled DPPH
denote g = 2. Resonance signals labeled EPR denote the electron paramagnetic resonance measured at T = 50 K. (c) Frequency-field diagram
of the EPR lines at T = 50 K for H‖c and H‖ab. From the slopes of these lines, the g factors for H‖c and H‖ab are determined to be gc = 2.72
and gab = 1.50, respectively.
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FIG. 8. (a) g factors as a function of δ/λ′ calculated for three
reduction factors, k = 1.0, 0.9, and 0.8, where g‖ and g⊥ are g factors
for magnetic fields parallel and perpendicular to the trigonal axis of
a RuCl6 octahedron, respectively. (b) Enlargement of the g factors
between δ/λ′ = − 1 and 0. The two horizontal lines are experimental
g factors determined by the present ESR measurement. Open circles
represent a set of g factors suitable for Cs2LiRuCl6.

gab = 1.50, respectively. These g factors are consistent with
the elongated RuCl6 octahedron determined by the present
x-ray diffraction experiment. Figure 8(b) shows the behavior
of the g factors in the range of −1� δ/λ′ � 0. There is one
set of parameters, (δ/λ′, k) = (−0.54, 0.96), that satisfies the
g factors observed in Cs2LiRuCl6. The fact that the large
anisotropic g factor with gc > gab can be described in terms of
the trigonally elongated octahedron gives an insight into the
highly anisotropic magnetic susceptibility χ and saturation
magnetization Ms in the honeycomb-lattice quantum magnet
α-RuCl3, where the RuCl6 octahedron is trigonally com-
pressed. We infer that the conditions χab � χ c and Mab

s � Mc
s

observed in α-RuCl3 are due to the condition of gab � gc

owing to the trigonally compressed octahedron [14].
For α-RuCl3, there are two sets of parameters,

(δ/λ′, k) = (0.77, 0.95) and (1.18, 0.83), that satisfy
the observed g factors of Ru3+ [14]. Within the experimental
data shown in Ref. [14], it was difficult to evaluate which set
of parameters is realized for α-RuCl3. The reduction factor k
will be almost the same in α-RuCl3 and Cs2LiRuCl6, because
the ligand Cl− is common to both systems. Thus, we infer
that a set of parameter (δ/λ′, k) = (0.77, 0.95) is realized in
α-RuCl3, because the reduction factor k is close to k = 0.96
observed in Cs2LiRuCl6.

The magnetization curves of Cs2LiRuCl6 shown in
Fig. 6(b) are convex functions of the magnetic field up
to the saturation and similar to the magnetization curve
for the spin- 1

2 Heisenberg antiferromagnetic chain calcu-
lated with J/kB = 3.7 K [52]. The temperatures that give
the maximum magnetic susceptibility T HAFC

max (χ ) and the
maximum specific heat divided by temperature T HAFC

max (C/T )
for the spin- 1

2 Heisenberg antiferromagnetic chain are
given by T HAFC

max (χ ) = 0.64J/kB and T HAFC
max (C/T ) = 0.31J/kB,

respectively [55]. In Cs2LiRuCl6, T exp
max(χ ) � 2.2 K and

T exp
max(C/T ) � 1.0 K. The value of T exp

max(χ )/T exp
max(C/T ) is

close to that of T HAFC
max (χ )/T HAFC

max (C/T ). From T exp
max(χ )

and T exp
max(C/T ), the exchange constant is estimated to be

J/kB � 3.4 K, which agrees approximately with the exchange
constant of J/kB = 3.7 K estimated from the average of the
saturation fields. The ordering temperature TN = 0.48 K is
much lower than J/kB � 3.4–3.7 K. From these results, we

064419-6



COUPLED SPIN- 1
2 ANTIFERROMAGNETIC … PHYSICAL REVIEW B 103, 064419 (2021)

B C

Li+

Cl −
Ru3+

FIG. 9. Exchange interaction J in structural chains B and C, and
interchain exchange interaction J ′ between these chains.

infer that Cs2LiRuCl6 can be approximately described as a
coupled spin- 1

2 Heisenberg-like antiferromagnetic chain.
It is natural to assume that the structural chains

− RuCl6 − LiCl6 − in chains B and C are magnetic chains
and that the path − Ru − Cl − Cl − Ru − is the dominant
path of the antiferromagnetic superexchange interaction J ,
as shown in Fig. 9. The interchain exchange interaction J ′
between structural chains B and C will be antiferromagnetic
because the superexchange path is very similar to that in the
hexagonal ABX3 antiferromagnets [56]. As seen from Fig. 9,
the intrachain and interchain exchange interactions cause spin
frustration, which generally leads to an incommensurate spin
structure in the ordered state. Because magnetic Ru3+ ions
are randomly distributed in structural chain A, it is difficult to
construct its magnetic model.

The relation between the interchain exchange constant J⊥
and the ordering temperature TN for a model, in which S = 1/2
antiferromagnetic Heisenberg chains with a exchange con-
stant of J are arrayed on a square lattice, were investigated
theoretically [57,58]. According to Ref. [57], the magnitude
of J⊥ is expressed as

|J⊥| = TN

4 × 0.32
√

ln(5.8J/TN)
. (8)

This equation is not directly applicable to Cs2LiRuCl6, be-
cause there is the frustration for the intrachain and interchain
exchange interactions as shown in Fig. 9. In general, magnetic
ordering temperature in the presence of frustration decreases
as compared with the unfrustrated case. Therefore, Eq. (8) will
give a lower limit of the interchain exchange constant. Using
Eq. (8) with J/kB = 3.7 K, we estimate the interchain interac-
tion as J ′/kB � 0.13 K. Here, we used a relation J ′ = (2/3)J⊥ ,
because the coordination number for the interchain interaction
is six.

To determine the magnetic phase diagram, we measured
the specific heat in magnetic fields. Figure 10 shows the
temperature dependence of total specific heat divided by tem-
perature C/T measured at various magnetic fields for H‖c.
With increasing magnetic field H , the transition temperature
TN(H ) increases, and the λ-like anomaly of the specific heat
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FIG. 10. Total specific heat divided by temperature C/T as a
function of temperature measured at various magnetic fields for
H‖c. Vertical arrows indicate magnetic phase transition temperatures
TN(H ).

is enhanced. TN(H ) reaches a maximum at H � 3 T then
decreases. The transition points for H‖c are summarized in
Fig. 11. The antiferromagnetic (AF) phase markedly protrudes
into the paramagnetic (Para) phase. In the low-field region,
TN(H ) increases rapidly with increasing magnetic field. We
infer that this behavior arises from the suppression of the spin
fluctuation by the magnetic field. When magnetic anisotropy
is negligible, spin fluctuation is isotropic at zero magnetic

5

4

3

2

1

0

H
 [T

]

1.21.00.80.60.40.20.0

T [K]

AF Para

Cs2LiRuCl6
 ( H // c )

FIG. 11. Magnetic field vs temperature phase diagram of
Cs2LiRuCl6 for H‖c. Open circles and the square are transition
points determined from the temperature dependence of C/T and the
saturation field at T = 0.4 K, respectively. The dotted line is a guide
to the eye.
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field, while at high magnetic field, spin fluctuation is re-
stricted in a plane perpendicular to the magnetic field. The
crossover of the spin dimensionality from the Heisenberg to
XY type leads to the increase in TN [59–61]. This behavior
is characteristic of the quasi-one-dimensional Heisenberg-like
antiferromagnets as observed in CuCl2 · 2NC5H5 with spin- 1

2
[59,60], CsNiCl3 with spin-1 [62,63], and (CH3)4NMnCl3

with spin- 5
2 [59,61].

V. CONCLUSION

We have presented the results of structural analysis and
magnetic measurements on Cs2LiRuCl6. The crystal structure
is hexagonal P6322. The structure consists of three kinds of
chemical chain, A, B, and C, composed of face-sharing RuCl6

and LiCl6 octahedra, as shown in Fig. 1. In chains B and C,
RuCl6 and LiCl6 octahedra are arranged almost alternately,
while in chain A, these octahedra are randomly arranged.
The ordering of Ru3+ and Li+ in chains B and C, and their
disordering in chain A, can be mapped on the partially dis-
ordered ground state in the antiferromagnetic Ising model on
the triangular lattice by making the lattice points occupied by
Ru3+ and Li+ correspond to the Ising spins σ z = + 1 and −1,
respectively.

The magnetic susceptibility and magnetization process
in Cs2LiRuCl6 were found to be highly anisotropic, which
is mainly owing to the anisotropy of the g factor. The g
factors for magnetic fields parallel to the c axis and ab plane

were determined by the electron paramagnetic resonance
as gc = 2.72 and gab = 1.50, respectively. The condition
gc > gab can be attributed to the trigonally elongated RuCl6

octahedron in Cs2LiRuCl6. This gives an insight into the
anisotropic magnetic properties observed in α-RuCl3, which
is a candidate material following the Kitaev model. The
magnetization curves in Cs2LiRuCl6 for H‖c and H‖ab
exhibit a reasonably sharp saturation anomaly and roughly
coincide when normalized by the g factor. This indicates that
the magnetic anisotropy and the Kitaev term are relatively
small as compared with the dominant Heisenberg term J .
From the magnetic and thermodynamic properties, it was
found that Cs2LiRuCl6 can be described as a coupled spin- 1

2
Heisenberg-like antiferromagnetic chain. We determined the
magnetic phase diagram for H‖c as shown in Fig. 11. In the
low-field region, the ordering temperature TN(H ) increases
rapidly with increasing magnetic field. The suppression of the
spin fluctuation by the magnetic field is considered to be the
origin of this behavior.
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