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Motivated by recent experimental results for GdRu2Si2 [Khanh et al., Nat. Nanotechnol. 15, 444 (2020)], in
which a nanometric square skyrmion lattice was observed, we propose a simple analytical mean-field description
of the high-temperature part of the phase diagram of centrosymmetric tetragonal frustrated antiferromagnets
with dipolar interaction in the external magnetic field. Dipolar forces provide momentum-dependent biaxial
anisotropy in reciprocal space. It is shown that in a tetragonal lattice, in the large part of the Brillouin zone, for
mutually perpendicular modulation vectors in the ab plane this anisotropy has mutually perpendicular easy axes
and collinear middle axes, which leads to double-Q modulated spin structure stabilization. In the large part of its
stability region, the latter turns out to be a square skyrmion lattice with a topological charge of ±1 per magnetic
unit cell, which is determined by the frustrated exchange coupling and thus nanometer sized. Easy and middle
axes can be swapped in the presence of additional single-ion easy-axis anisotropy. This results in the different
phase diagram. It is argued that the latter case is relevant to GdRu2Si2.
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I. INTRODUCTION

Originally, skyrmions were proposed by Skyrme in 1962 to
describe nucleons as topologically stable field configurations
[1]. In magnetism, skyrmions emerged as metastable states in
two-dimensional ferromagnets in Ref. [2]. Crucial next steps
were made in seminal papers [3,4], which showed that sin-
gle skyrmions and skyrmion lattices (SkLs) can be stabilized
in noncentrosymmetric magnets due to the Dzyaloshinskii-
Moriya interaction (DMI) [5,6]. Finally, after experimental
observation of the SkL in MnSi in the so-called A phase
[7], magnetic skyrmions become one of the hottest topics of
contemporary physics (see, e.g., Refs. [8,9] for a review).
Importantly, this interest is stimulated by promising techno-
logical applications, one of which is the racetrack memory
[10].

The efficiency of possible nanodevices relies on magnetic
skyrmions’ nontrivial topology [2]. The topological charge of
the magnetic structure is defined as the spin direction winding
number on a unit sphere,

Q = 1

4π

∫
n · [∂xn × ∂yn]dxdy, (1)

where n = s/|s| is a unit vector along the averaged-over ther-
modynamical (and/or quantum) fluctuations’ spin direction.
For an individual skyrmion the integral over its size usually
yields Q = ±1, whereas for the SkL the natural measure is the
density of the topological charge nsk . The latter quantity is of
prime importance as, for instance, the topological contribution
to the Hall resistivity ρT ∝ nsk [11]. Note that other nontrivial
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magnetic textures are actively being studied; see Ref. [12] for
a review.

Recently, it became clear that skyrmions can be stabilized
not only in systems with DMI. Frustrated centrosymmetric
systems can also host them [13] due to anisotropic inter-
actions. This effect was indeed observed in the frustrated
triangular-lattice magnet Gd2PdSi3 [14]. Importantly, frustra-
tion is crucial in many multiferroics of spin origin [15], and
skyrmions can lead to interesting effects in such materials
[16].

Observation of the SkL in the centrosymmetric tetragonal
material GdRu2Si2 [17] has stimulated related theoretical re-
search [18,19]. In these papers the low-temperature part of the
phase diagram was considered. It was shown that, depending
on the anisotropy parameters and the external magnetic field,
various phases (including topologically nontrivial ones) could
emerge.

In the present study, we propose dipolar forces as the key
ingredient in the stabilization of nanometer-sized skyrmions
in tetragonal frustrated antiferromagnets. Previously, to the
best of our knowledge, in the context of skyrmions, mag-
netic dipolar interaction was considered only to lead to large
micrometer-sized magnetic bubbles [9,20]. Moreover, our an-
alytical mean-field (Landau) approach is surprisingly simple
in the context of topologically nontrivial spin textures.

Dipolar interaction is often small and thus negligible. How-
ever, in some materials, e.g., RbFeCl3 [21,22], MnBr2 [23],
and MnI2 [24], it was shown to be important anisotropic
coupling. From the general arguments it should be correct
for materials with magnetic ions in a spherically symmetri-
cal state with L = 0 because other anisotropic interactions
are moderated by the spin-orbit coupling [25]. Furthermore,
dipolar forces can lead to rather complicated sequences of
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(b)

FIG. 1. (a) Tetragonal structure of GdRu2Si2 relevant to the
present study; only magnetic Gd3+ ions are shown. (b) Using lat-
tice parameters a = 4.165 Å and c = 9.61 Å of Ref. [28], one can
numerically calculate the Fourier transform of the dipolar tensor
[see Eq. (7)] for |q| �= 0. Not taking into account other possible
anisotropic interactions, we found that for in-plane modulation vec-
tors q = (qx, qy, 0) the c axis is the easy, middle, and hard one in
the blue, gray, and white regions of the Brillouin zone, respectively.
(c) For vectors ±kx = (k, 0, 0) and ±ky = (0, k, 0), in a wide range
of k, easy axes are mutually perpendicular, and middle ones are
collinear, oriented along c (additional single-ion anisotropy can swap
the easy and middle axes). This property of the dipolar interaction,
which sometimes is referred to as the compass anisotropy [19,29,30],
leads to the square skyrmion lattice stabilization in a certain part of
the phase diagram.

phase transition at high temperatures [21,24] and at low tem-
peratures in magnetic field [26,27]. Note that in GdRu2Si2

the magnetic Gd3+ ions [28] are in a state with S = 7/2 and
L = 0.

Our model is based on a simple property of dipolar forces
in tetragonal magnets, which provides effective momentum-
dependent biaxial anisotropy. In our particular case, when the
modulation vector q lies in the ab plane (conventional basis
vectors a ⊥ b ⊥ c, |a| = |b| are used), in the large part of the
Brillouin zone the easy axis lies in plane, and the middle one
is along c or vice versa (see Fig. 1). This leads to the energet-
ically effective combining of elliptical spirals with mutually
perpendicular in-plane modulation vectors into the double-Q
structure.

Using the mean-field approach, we show that in the case
of two possible modulation vectors along the a and b axes
(relevant to the experimental results of Ref. [17]), a peculiar
sequence of phase transitions appears in the high-temperature
domain of the phase diagram. First, upon temperature decreas-
ing, the system undergoes a second-order phase transition
from a paramagnetic (PM) phase to a vertical double spin-
density wave state, which will be referred to as 2S [see
Fig. 2(b)]. Next, components of the order parameters along
the middle axis emerge, which manifest a continuous transi-

(a) (b)

(c) (d)

FIG. 2. Possible magnetic structures at zero external field in the
ab plane; a region of 2 × 2 cells (with size 2π/k) is shown. (a) Sinu-
soidal single-modulated spin-density wave (1S). (b) Vortical double
spin-density wave (2S). (c) Elliptical spiral (1Q). (d) Double-Q el-
liptical phase, which consists of alternating merons and antimerons
(2Q). In the first two structures spins lie in plane. External field
uniformly magnetizes them and transforms them into simple and
double-fan structures, respectively. For 1Q and 2Q spin orderings, z
components of spins are shown by rainbow colors (from red, spin-up
state, to magenta, spin-down state).

tion from 2S to the spin structure with two elliptical screw
spirals combined [2Q; see Fig. 2(d)]. Finally, there is a first-
order phase transition from the 2Q to single-Q elliptical spiral
[1Q; see Fig. 2(c)]. Importantly, at nonzero magnetic fields
along the c axis, the part of the phase diagram where the 2Q
structure is the ground state becomes topologically nontrivial,
being a square SkL with one (anti)skyrmion per magnetic unit
cell. We also show that if the single-ion easy-axis anisotropy
(which allows swapping the easy and middle axes) is taken
into consideration, the phase diagram can drastically change.
In this case the square SkL emerges only at magnetic fields
exceeding a certain finite value, and our approach qualita-
tively reproduces the experimentally observed phase diagram
of GdRu2Si2 [17].

The rest of the paper is organized as follows. In Sec. II
we introduce the spin Hamiltonian, which consists of frus-
trated exchange coupling, dipolar interaction, and the Zeeman
term. We also formulate the mean-field approach and discuss
relevant parameters. Section III is devoted to the mean-field
analysis of the high-temperature part of the temperature-
magnetic field phase diagram for the case of mutually
perpendicular easy axes. Free energies of the relevant spin
structures are derived, and the phase boundaries are deter-
mined. In Sec. IV we discuss the topological properties of
the 2Q phase and show that in a certain part of the phase
diagram it is a square SkL. Section V addresses the case of
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collinear easy axes and mutually perpendicular middle ones
and the relevance to the experimental findings of Ref. [17].
Finally, Sec. VI summarizes our results and contains a related
discussion.

II. MODEL

We consider a frustrated antiferromagnet on a tetragonal
lattice (both simple and body centered) with one magnetic ion
in a unit cell. The Hamiltonian also includes magnetodipolar
interaction, single-ion anisotropy, and the Zeeman term,

H = Hex + Hd + Hs + Hz,

Hex = −1

2

∑
i, j

Ji j (Si · S j ),

Hd = 1

2

∑
i, j

Dαβ
i j Sα

i Sβ
j ,

Hs = −Z
∑

i

(
Sz

i

)2
,

Hz = −
∑

i

(h · Si ). (2)

Here h = gμBH is the external magnetic field in energy units,
and α and β denote Cartesian coordinates. For spin compo-
nents we use a conventional global basis with the z coordinate
along the c axis and x and y along the edges of the unit cell in
the ab plane (see Fig. 1). The dipolar tensor is given by

Dαβ
i j = ω0

v0

4π

(
1

R3
i j

− 3Rα
i jR

β
i j

R5
i j

)
, (3)

where v0 is the unit cell volume. The characteristic energy of
the dipole interaction reads

ω0 = 4π
(gμB)2

v0
. (4)

This anisotropic interaction is of prime importance for mag-
netic ions with a half-filled electronic shell, e.g., Mn2+ and
Eu2+. For such ions L = 0, and dipolar forces are usually one
of the most significant anisotropic terms.

After Fourier transform (N is the total number of spins)

S j = 1√
N

∑
q

SqeiqR j , (5)

Hamiltonian (2) acquires the following form:

Hex = −1

2

∑
q

Jq(Sq · S−q), (6)

Hd = 1

2

∑
q

Dαβ
q Sα

q Sβ
−q. (7)

Hs = −Z
∑

q

Sz
qSz

−q. (8)

Hz = −
√

N (h · S0). (9)

Importantly, the first three terms here can be combined into

H0 = −
∑

q

Hαβ
q Sα

q Sβ
−q, (10)

where 0 denotes the Hamiltonian at h = 0. Tensor Hαβ
q has

three eigenvalues λ1(q) � λ2(q) � λ3(q) corresponding to
three eigenvectors v1(q), v2(q), v3(q) at each momentum.
The latter define the particular basis of the easy, middle,
and hard axes for each q. This momentum-dependent biaxial
anisotropy is due to dipolar forces.

The dipolar tensor in reciprocal space Dαβ
q can be cal-

culated numerically using a standard technique involving
rewriting it in a fast convergent form (see Ref. [31] and
references therein). Moreover, at high temperatures (close to
the transition to the paramagnetic phase) only particular q
are important, which significantly simplifies the correspond-
ing analysis [24]. Since dipolar forces are usually small in
comparison with exchange coupling, these momenta are close
to those where Jq has (local) maxima. The latter are assumed
to be incommensurate due to the frustration. Thus, at low
temperatures and small h, some sort of a spiral ordering is
the ground state of the system.

Below we shall mostly discuss the particular case where
magnetic ordering modulation vectors are oriented along the a
and b axes, with kx = (k, 0, 0) and ky = (0, k, 0). Not taking
into account the possible effect of the single-ion anisotropy,
we arrive at a crucial point for the present theory: over a wide
range of parameters of the tetragonal lattice, it can be shown
numerically that the easy axis for kx is b, the hard one is a,
and the reverse is true for ky. The middle axis is c for the
both vectors (see Fig. 1). This is exactly realized in the case of
GdRu2Si2, where k = 0.22 in reciprocal lattice units [17] (in
the notation used below k = 0.22 × 2π/a). Furthermore, this
provides a simple physical ground for anisotropic momentum-
dependent terms used in recent theoretical studies [18,19]
(compass anisotropy), which was previously attributed to the
spin-orbit coupling [29].

We point out that the frustration can lead to competition
with incommensurate structures characterized by another mo-
mentum with a close value of Jq. In the general case, the
corresponding local axis basis will not possess the feature
described above. For instance, if the modulation vector q||c,
the dipolar tensor simply makes the ab plane an easy one. It
can further complicate the phase diagram, introducing some
additional intermediate phases.

In our high-temperature calculations we shall use si for the
mean value of the corresponding spin operator Si. It can be
shown that the mean-field free energy can be expressed as
(see, e.g., Refs. [24,32] for details)

F = −
∑

q

Hαβ
q sα

qsβ
−q −

√
Nh · s0 + AT

∑
i

s2
i + BTc

∑
i

s4
i ,

(11)

provided that |si| � S; Tc = λ1(kx )/A is the temperature of
the phase transition from the paramagnetic to magnetically
ordered state at h = 0. The particular phase will be specified
below. Expansion parameters A and B are given by

A = 3

2S(S + 1)
, (12)

B = 9[(2S + 1)4 − 1]

20(2S)4(S + 1)4
. (13)

For S = 7/2 one has A ≈ 0.095 and B ≈ 0.002.
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In order to make a connection with real materials, we es-
timate the relevant parameters using the experimental data of
Ref. [17]. For the case without single-ion anisotropy (Z = 0)
using only the ordering temperature Tc(B = 0) ≈ 45 K, the
saturation field Bsat (T = 0) ≈ 10 T [33], and the numerically
calculated dipolar tensor, we get (all values are in kelvins)

λ1 ≈ 4.3, J0 ≈ 4.6,

λ1 − λ2 ≈ 0.05, λ1 − λ3 ≈ 0.20, (14)

where λi are the same for kx and ky.

III. MEAN-FIELD APPROACH FOR IN-PLANE EASY AXES

In this section, we perform mean-field analysis based on
the smallness of the order parameters at high temperatures.
For definiteness, we consider the particular case of possible
modulation vectors, and the corresponding axis sets depicted
in Fig. 1(c).

A. Spin structures at h = 0

We start with the simplest case without the external field. In
systems with tetragonal symmetry due to four energy minima
of the exchange interaction (at momenta ±kx and ±ky), along
with a conventional single-modulated sinusoidal spin-density
wave (SDW) and elliptical (helicoidal) phases, the so-called
double structures can emerge. Below we calculate the free
energy of each of the relevant spin structures, shown in Fig. 2.
Note that due to the symmetry of the system and, conse-
quently, Jq, the formation of triple structures, e.g., a triangular
SkL, in general is energetically disadvantageous and is not
considered below.

1. Single-Q spin-density wave (1S)

In this case (taking, for definiteness, kx as the modulation
vector; ky evidently yields the same result)

si = sey cos kxRi. (15)

Using Eq. (11), we get

F
N

= − s2λ1

2
+ s2AT

2
+ 3s4BTc

8
. (16)

Minimization with respect to s gives (for T � Tc)

s2 = 2(λ1 − AT )

3BTc
(17)

and

F1S

N
= − (λ1 − AT )2

6BTc
. (18)

2. Double-Q spin-density wave (2S)

According to the symmetry of the system, the double-Q
spin-density wave with both order parameters along the local
easy axis becomes possible. The corresponding spin ordering
reads

si = s(ey cos kxRi + ex cos kyRi ). (19)

In real space this is the vortex structure depicted in Fig. 2(b).
Note that due to the system translational invariance and

incommensurability of the modulation vectors, the phases of
trigonometric functions are not important here and can be
taken to be arbitrary. Using Eq. (11), one gets

F
N

= −s2λ1 + s2AT + 5s4BTc

4
. (20)

Minimization with respect to s yields

s2 = 2(λ1 − AT )

5BTc
(21)

and

F2S

N
= − (λ1 − AT )2

5BTc
. (22)

The last quantity is always smaller than the free energy of
the single-Q SDW (18). As a corollary, at Tc the system
undergoes a phase transition between the paramagnetic (PM)
phase and the double-Q vortex structure. The complementary
low-temperature result at high magnetic field along the c axis
is the appearance of a double-Q phase magnetized along the
field and vortical in the perpendicular plane instead of single-
Q fan one [18].

3. Single-Q elliptical phase (1Q)

We further proceed with an elliptical structure modulated
along one direction (kx is taken for definiteness):

si = s1ey cos kxRi + s2ez sin kxRi. (23)

The chirality of this structure is not important; one can freely
vary the sign of the second term and the common phase for
sine and cosine functions.

The corresponding free energy reads

F
N

= − s2
1λ1 + s2

2λ2

2
+

(
s2

1 + s2
2

)
AT

2

+
(
3s4

1 + 2s2
1s2

2 + 3s4
2

)
BTc

8
. (24)

Nonzero s2 emerges at T < T1Q = Tc − 3(λ1 − λ2)/2A; the
spin components are given by

s2
1 = 2(λ1 − AT ) + (λ1 − λ2)

4BTc
,

s2
2 = 2(λ1 − AT ) − 3(λ1 − λ2)

4BTc
. (25)

So the free energy has the following form:

F1Q

N

= −4(λ1 − AT )2 − 4(λ1 − AT )(λ1 − λ2) + 3(λ1 − λ2)2

16BTc
.

(26)

Below we consider magnetic field along the c axis, so
similar to the 1Q phase, a conical phase with spins rotating in
the ab plane (we shall refer to it as XY) can emerge. At zero
field its free energy is given by Eq. (26) with the substitution
λ2 → λ3.
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4. Double-Q elliptical phase (2Q)

We turn to a superposition of two single-Q elliptical struc-
tures with mutually perpendicular modulation vectors kx and
ky. This structure will be referred to as 2Q. The corresponding
spin arrangement is given by

si = s1(ey cos kxRi + ex cos kyRi )

+ s2ez(sin kxRi + sin kyRi ). (27)

As before, the chiralities and phases of both components can
be arbitrary: they do not affect the free energy.

The corresponding free energy reads
F
N

= −(
s2

1λ1 + s2
2λ2

) + (
s2

1 + s2
2

)
AT

+
(
5s4

1 + 6s2
1s2

2 + 9s4
2

)
BTc

4
. (28)

This structure is possible if T < T2Q = Tc − 5(λ1 − λ2)/2A.
The order parameters are as follows:

s2
1 = 2(λ1 − AT ) + (λ1 − λ2)

6BTc
,

s2
2 = 2(λ1 − AT ) − 5(λ1 − λ2)

18BTc
, (29)

and the free energy has the form
F2Q

N

= −8(λ1 − AT )2 − 4(λ1 − AT )(λ1 − λ2) + 5(λ1 − λ2)2

36BTc
.

(30)

To conclude this section, we point out that it can be shown
that the double-XY structure has larger free energy than the
simple one and should not be considered.

B. Sequence of phase transitions at h = 0

The analytical equations presented above for the free
energy of different phases implicitly depend on the cor-
responding modulation vectors through λi’s (i = 1, 2) q
dependence. For the 2S vortical structure [see Eq. (22)] it is
evident that the modulation vector corresponds to the maximal
value of λ1(q) (such a q is referred to as kx or ky). However,
for other phases it is not completely true due to the possibility
of different behaviors of λ1(q) and λ2(q) at these points. It
can shift the structure modulation vector (which was, indeed,
observed in Ref. [17]). Nevertheless, since isotropic exchange
interaction is typically much larger than the dipolar forces,
we neglect this small effect below and do not write the q
dependence of λi.

For the phase transition treatment, we first simplify the
notation: let t = λ1 − AT (in the magnetically ordered phases
t > 0) and 	 = λ1 − λ2 > 0. Then, one should compare the
following “free energies”:

f2S = − t2

5
,

5	

2
� t > 0,

f1Q = −4t2 − 4	t + 3	2

16
, t >

3	

2
,

f2Q = −8t2 − 4	t + 5	2

36
, t >

5	

2
. (31)

The smallest one at a given t indicates the ground state of the
system.

Naturally, at t 	 	 the 1Q phase (single-Q elliptical spi-
ral) is the ground state. A possible first-order phase transition
between 2S and 1Q can be determined from the equation

t2

5
= 4t2 − 4	t + 3	2

16
. (32)

Corresponding solutions read

t = 5 ± √
10

2
	 ≈ 0.9	, 4.1	. (33)

Evidently, they are nonphysical: the one with the plus sign
is larger than t2Q = 2.5	, at which the 2Q structure emerges
and substitutes for 2S. The other one with a minus is smaller
than t1Q = 1.5	, which is the boundary for 1Q (meta)stability.
Thus, if one neglects the possibility of different values of k for
1Q and 2Q, the following scenario of phase transitions upon
temperature variation takes place: PM ↔ 2S ↔ 2Q ↔ 1Q.
The first two are second-order phase transitions. The third one
is of the first order; the corresponding “temperature” is given
by

tS = 5 + 3
√

2

2
	 ≈ 4.6	. (34)

C. Nonzero magnetic field and phase diagram

For definiteness we consider magnetic field only along
the tetragonal c axis. It results in a finite homogeneous spin
component along it. We assume that the system is far from
the ferromagnetic transition critical point near Tc, 	 � ATc −
λ0. Here for the ellipsoidal shape of the sample λ0 = (J0 −
ω0Nzz )/2, with Nzz being the corresponding demagnetization
tensor component [34]. So the spin ordering of each phase
acquires the correction δsi = mez, which can be determined
using the Curie-Weiss law:

m = χ (T )h = h

2(AT − λ0)
, (35)

provided that the high-temperature mean-field expansion (11)
is correct (T close to Tc). Note that χ (t ) is almost constant in
this region and can be substituted by χ ≡ χ (Tc).

We further proceed with the influence of magnetic field
on different spin structures. All the relevant spin orderings
(19), (23), and (27) now have the additional term mez. For
the free energies of various phases presented above it means
the appearance of new (proportional to the squared order pa-
rameters and squared magnetization) terms originating from
the BTc

∑
i s4

i part of the free energy (11). In the expres-
sions for the order parameters derived above and related free
energies the following renormalizations should be done: (i)
one should make the effective “temperature” change t → t ′ =
t − 2BTc(χh)2 for 2S, and (ii) for 1Q and 2Q along with t →
t ′ one should also substitute 	 with 	′ = 	 + 4BTc(χh)2.
Importantly, t ′ and 	′ should be directly plugged into free
energies (31). The additional contribution from the magnetic
field is identical for all the phases, being equal to −χh2/2, so
it can be omitted.

However, one should bear in mind that for conical XY
ordering at h = 0 there is no z component of the order param-
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eter, and its interaction with magnetic field leads to a different
with 1Q effect. The XY structure is similar to that of 1Q, but
modulated spin components are in the ab plane:

si = s1ey cos kxRi + s2ex sin kxRi + mez. (36)

Note that the spin component ∝ s2 is along the hard axis. Let
	′′ = λ1 − λ3 > 	. So the XY free energy at h = 0 reads

fXY = −4t2 − 4	′′t + 3	′′2

16
, t >

3	′′

2
. (37)

In magnetic field one should change the “temperature” t → t ′
like for the other phases. However, 	′′ stays intact. This, along
with other effects, leads to the spiral plane flop (transition
1Q ↔ XY, which is well known for frustrated antiferromag-
nets with dipolar interaction; see Ref. [35]) at certain hSF for
which 	′ = 	′′. One obtains

hSF =
√

	′′ − 	

4BTcχ2
, (38)

which is almost constant upon temperature variation.
Using the simple relations presented above, we can derive

analytical expressions for the phase boundaries. First, the
boundary between PM (or the field-induced ferromagneticlike
collinear state) and 2S is given by

tc(h) = 2BTcχ
2h2. (39)

Next, the second-order phase transition curve between 2S
and 2Q is as follows:

t2Q(h) = 5	

2
+ 12BTcχ

2h2. (40)

At h < hSF there is also a boundary between the 1Q and 2Q
phases,

tS (h) = 4.6	 + 20.4BTcχ
2h2. (41)

Phase boundaries which include XY [see also Eq. (38)] are
as follows. (i) With the 2S phase the phase boundary reads

tXY −2S (h) = 4.1	′′ + 2BTcχ
2h2. (42)

(ii) With the 2Q phase the expression is rather cumbersome:

tXY −2Q(h) = 2BTcχ
2h2

+ 9	′′ − 4	′ + 3
√

4(	′′ − 	′)2 + 2	′′2

2
.

(43)

We would like to point out that exact numerical minimization
of the free energy (11) in the magnetic field does not change
the phase boundaries presented above significantly.

Before considering the phase diagram for a particular pa-
rameter set, let us have a closer look at Eq. (43) at h = hSF .
In fact, it is determining the position of the triple point where
1Q, 2Q, and XY are in equilibrium. Using Eqs. (43) and (38),
we get

ttr ≈ (	′′ − 	)/2 + 4.6	′′. (44)

The difference between λi values is usually of the order of
0.1 K [see Eq. (14)], which provides the estimation ttr ∼ 1 K,
and (using A ∼ 0.1) Tc − Ttr ∼ 10 K in standard units. In

h
(K

)

34 36 38 40 42 44 46
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4

6

8

10

2S
1Q
XY
2Q SkL
2Q trivial

T (K)

FIG. 3. High-temperature part of the phase diagram for a cen-
trosymmetric tetragonal frustrated antiferromagnet with two possible
mutually perpendicular modulation vectors and dipolar interaction
(see Fig. 1). The parameters in (14) were used. Depending on mag-
netic field and temperature, the 2Q phase can be either topologically
trivial or not (see text). The conical XY phase emerges beyond
the theory applicability region and is shown only for illustration
purposes.

real systems in that region of the phase diagram |si| ∼ S,
and Landau expansion breaks down, thus making predictions
involving the conical XY phase unreliable.

Let us proceed with the particular example of the phase
diagram for the set of parameters (14). In this case λ0 ≈ 2.3 K,
which justifies the approximation of constant susceptibility
in the relevant part of the phase diagram, which we draw
in Fig. 3. Near the triple point (ttr ≈ 1.06 K), where XY
can come into play, using Eqs. (25), one has s1 ≈ 2.5 and
s2 ≈ 2.4, which means that our approach essentially fails at
such temperatures. This raises an important question, whether
the XY conical phase, which, as seen in Fig. 3, can terminate
the 2Q phase region, emerges at low temperatures in reality or
not.

IV. TOPOLOGICAL PROPERTIES OF THE 2Q PHASE

Using Eq. (1), it is easy to show that 2S, 1Q, and XY are,
as always, topologically trivial; nsk = 0.

Let us turn to the 2Q structure. First of all, using Eq. (27),
we rewrite the spin ordering in magnetic field in the following
form:

s(x, y) =
⎛
⎝ s1 sin ky

−s1 sin kx
s2[cos kx + cos ky] + m

⎞
⎠. (45)

The magnetic unit cell is a square with the size (2π/k) ×
(2π/k). Note that for illustration purposes we take the par-
ticular structure with s1, s2, m > 0. Its counterparts with other
relative phases and chiralities for two elliptical components
can be analyzed in a similar way. These variations can be
accompanied by a change in signs of the corresponding
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topological charges (e.g., skyrmions can be substituted by
antiskyrmions).

At zero field magnetic ordering has an important anti-
symmetry property: s(x, y) = −s(x ± π/k, y ± π/k). This is
equivalent to 〈nsk〉 = 0 (〈· · · 〉 is averaged over the mag-
netic unit cell quantity). However, the magnetic ordering is
somewhat nontrivial, and the structure consists of core-down
merons with Q = −1/2 and core-up antimerons with Q =
+1/2 (see Fig. 1 of Ref. [36] for the details) alternating in
a square lattice, as shown in Fig. 2(d).

Nonzero h breaks the above-mentioned antisymmetry, and
the magnetic ordering becomes topologically nontrivial with
Q = −1 per magnetic unit cell. At small h, which results
in m � s1, s2, the latter can be understood as follows. One
can neglect m in the spin ordering (45) almost everywhere
except for a small neighborhood (its radius is ∼√

m/s2 � 1)
of points with coordinates (π/k, 0), (0, π/k), and equivalent
to them. In these regions core-up merons with Q = −1/2
emerge at h > 0 [see Fig. 4(a)]. One has four halves of such
merons in the magnetic unit cell; thus, nsk = −1. At moder-
ate h, for which m ∼ s1, s2, the boundary between core-up
merons and core-up antimerons is no longer pronounced,
and the whole magnetic structure can be considered a square
skyrmion lattice [see Fig. 4(b)]. Under a further magnetic
field increase (when the condition m < 2s2 is violated) the
magnetic structure becomes topologically trivial since all spin
z components are positive.

We proceed with the phase diagram established in the
previous section. Evidently, the whole region of the2Q phase
stability cannot be topologically nontrivial because s2 � 1
near its boundary with 2S. At given h, in order to have a
skyrmion lattice, the condition 4s2

2 > m2 = χ2h2 should be
fulfilled, where

s2
2 = 2t ′ − 5	′

18BTc
. (46)

Using these formulas, one can define the boundary for the SkL
region inside the 2Q one as [see Eq. (40)]

tSkL(h) = t2Q(h) + δt (h), δt (h) = 9
4 BTcχ

2h2. (47)

Importantly, it is smaller than tS (h) [see Eq. (41)]. Figure 3
illustrates these statements.

V. MEAN-FIELD APPROACH FOR COLLINEAR
OUT-OF-PLANE EASY AXES

The consideration above relies on small single-ion
anisotropy, which cannot alter the axis hierarchy established
by dipolar interaction [see Fig. 1(c)]. However, this case yields
a substantially different phase diagram (see Fig. 3), in com-
parison with the experimentally observed one in Ref. [17].
Here we consider significant single-ion anisotropy, which
makes the c axis the easy one for both modulation vectors kx

and ky. Mathematically, in comparison with the pure dipolar
case (Z = 0) the eigenvalues change as follows: λ1 → λ1 −
Z, λ2 → λ2 + Z, λ3 → λ3 − Z . So for Z > (λ1 − λ2)/2 the
hard axes stay intact; however, the easy and middle ones are
swapped.

FIG. 4. Sketch of the 2Q spin ordering in applied magnetic field;
part of the ab plane with a size of 2 × 2 magnetic unit cells is shown.
(a) At small magnetic fields in comparison with the zero-field case
[see Fig. 2(d)], additional small core-up merons emerge, providing
topological charge Q = −1 per unit cell. (b) At larger fields, the
boundary between core-up merons and antimerons vanishes, and the
magnetic ordering represents a square skyrmion lattice.

We continue to use λ1 � λ2 � λ3 in the mean-field analy-
sis below, bearing in mind that the easy direction is now along
the c axis.

A. Spin structures

Here we briefly discuss relevant spin structures at both h =
0 and h �= 0.

1. Single-Q spin-density wave (1S)

The spin ordering of 1S reads

si = sez cos kxRi, (48)
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where

s2 = 2(λ1 − AT )

3BTc
= 2t

3BTc
. (49)

The corresponding free energy is given by (see Sec. III B)

f1S = − t2

6
, 3	/2 � t > 0. (50)

At larger t > 3	/2, it transforms into the 1Q structure (see
below).

In the external magnetic field one should make the substi-
tution t → t ′ = t − 6BTc(χh)2.

2. Double-Q spin-density wave (2S)

In comparison with Sec. III, here the vortical structure
involves two middle axes. This immediately affects the phase
diagram, as shown below. The 2S spin structure reads

si = s(ex cos kyRi + ey cos kxRi ), (51)

where

s2 = 2(λ2 − AT )

5BTc
= 2(t − 	)

5BTc
. (52)

The free energy is given by

f2S = − (t − 	)2

5
, t > 	. (53)

So in the considered case there is always a range of parameters
for which 1S is preferable in comparison with 2S, which
should be contrasted with the results of Sec. III.

In the magnetic field, one should make the change t →
t ′ = t − 2BTc(χh)2.

3. Single-Q elliptical phase (1Q)

In this case spin ordering reads

si = s1ez cos kxRi + s2ey cos kxRi, (54)

where

s2
1 = 2(λ1 − AT ) + (λ1 − λ2)

4BTc
= 2t + 	

4BTc
, (55)

s2
2 = 2(λ1 − AT ) − 3(λ1 − λ2)

4BTc
= 2t − 3	

4BTc
.

The corresponding free energy is as follows:

f1Q = −4t2 − 4	t + 3	2

16
, t > 3	/2 ∧ t > −	/2. (56)

The last inequality becomes important in magnetic field,
where one should use t ′ = t − 6BTc(χh)2 and 	′ = 	 −
4BTc(χh)2.

For the XY phase with spins rotating in the ab plane, one
has

fXY = −4(t − 	)2 − 4(t − 	)(	′′ − 	) + 3(	′′ − 	)2

16
,

t >
3	′′ − 	

2
. (57)

The substitution t → t ′ = t − 2BTc(χh)2 should be done in
the external field, whereas 	′′ and 	 stay intact.

4. Double-Q elliptical phase (2Q)

Spin ordering in the double-Q phase is given by

si = s1ez(cos kxRi + cos kyRi )

+ s2(ey sin kxRi + ex sin kyRi ). (58)

The order parameters are as follows:

s2
1 = 2(λ2 − AT ) − 5(λ2 − λ1)

18BTc
= 2t + 3	

18BTc
,

s2
2 = 2(λ2 − AT ) + (λ2 − λ1)

6BTc
= 2t − 3	

6BTc
. (59)

The free energy has the form

f2Q = −8t2 − 12	t + 9	2

36
, t > 3	/2 ∧ t > −3	/2.

(60)

As for the 1Q phase, one should use t ′ = t − 6BTc(χh)2 and
	′ = 	 − 4BTc(χh)2 in the external magnetic field.

Finally, we note that at t ′ = −3	′/2 (which can be correct
only in the magnetic field) the 2Q structure continuously
transforms into the 2S one.

B. Phase transitions

In the absence of the external field, the sequence of phase
transitions is somewhat trivial in comparison with the one
described in Sec. III B. At t � 3	/2, 1S has lower free energy
than 2S. In the complementary domain t > 3	/2 the 1Q
structure’s free energy is always lower than f2Q, which, in
turn, is lower than f2S . So upon temperature variation at h = 0
one has the PM ↔ 1S ↔ 1Q sequence of continuous phase
transitions at t = 0 and t = 3	/2, respectively.

In the external magnetic field, the following is an important
observation: at t0 = 3	/2 and h0, for which BTc(χh0)2 =
	/4, order parameters of all relevant phases are zero
(see the previous section). The phases PM (equivalently,
field-polarized phase), 1S, 2S, 1Q, and 2Q are in perfect
equilibrium at this polycritical point; slightly varying t and
h, one can continuously get into each phase.

Now we can derive the phase boundaries at small t . First,
there is a boundary between PM and 1S at

t (1)
c (h) = 6BTcχ

2h2, h � h0. (61)

At larger fields h > h0 the 1S phase does not exist, and the PM
phase has the boundary with the 2S one:

t (2)
c (h) = 	 + 2BTcχ

2h2, h > h0. (62)

Next, fixing h < h0 and increasing t , one will have a contin-
uous phase transition from 1S to 1Q. It is governed by the
equation t ′ = 3	′/2, which for these phases is invariant as a
function of h and yields the vertical line

t1Q(h) = 3	

2
, h � h0. (63)

For t > t0 there is a first-order transition from 1Q to 2Q
at t ′ = −3(1 + √

2)	′/2 ≈ −3.6	′ upon h increasing, or,
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FIG. 5. Analytically obtained phase diagram for parameter set
(69). In comparison with Fig. 3, the easy axes for both modulation
vectors are along c due to the single-ion anisotropy, which leads to
crucial differences. In this case the square SkL (red region) emerges
only at finite external magnetic field and not very close to the or-
dering temperature Tc. The conical XY phase appears at T � 30 K,
where the mean-field approach is inapplicable. This phase diagram
captures important features of the experimentally observed one for
GdRu2Si2 [17].

equivalently,

tS (h) = −3.6	 + 20.4BTcχ
2h2, h > h0. (64)

Then, when t ′ = −3	′/2 there is a second-order transition
between the 2Q and 2S phases, which yields

t2Q(h) = −3	/2 + 12BTcχ
2h2, h > h0. (65)

The XY phase can emerge in the magnetic field via the
spiral plane flop transition from the 1Q one. It can be shown
that the corresponding field is [see Eq. (38)]

hSF =
√

	′′

4BTcχ2
> h0. (66)

As in Sec. III one can estimate the triple-point temperature;
the counterpart of Eq. (44) reads

ttr ≈ 5.1	′′ − 3.6	, (67)

which also typically lies out of the theory applicability range
(see the discussion in Sec. III C).

For nontrivial lattice topology in the 2Q phase (see
Sec. IV), the condition 4s2

1 > m2 = χ2h2 should hold. We
arrive at the same result [Eq. (47)] as in Sec. IV using Eq. (59),
but with different t2Q(h) given by Eq. (65). Importantly, in the
present case the condition

tSkL (h) = t2Q(h) + 9BTcχ
2h2/4 < tS (h) (68)

provides an additional restriction of the topologically non-
trivial part of the phase diagram, which approximately reads

BTcχ
2h2 > 	/2.9. So the square SkL part of the phase dia-

gram starts at a certain t > t0 (see Fig 5).

C. Qualitative description of the GdRu2Si2 phase diagram

Here we utilize the parameters of the exchange interaction
and the dipolar tensor from (14). However, we add single-ion
easy-axis anisotropy with Z = 0.15 K. This yields (all values
are in kelvins).

λ1 ≈ 4.3, λ0 ≈ 2.3,

λ1 − λ2 ≈ 0.25, λ1 − λ3 ≈ 0.45, (69)

where the easy axis is the c one due to the additional
anisotropy.

The phase diagram obtained is shown in Fig. 5. First, we
note that in this case the XY phase emerges only at T � 30 K,
where our approach is inapplicable. Next, the topologically
nontrivial square skyrmion lattice is a narrow red wedge in
Fig. 5 (but starting at temperatures for which the developed
approach should work at least qualitatively). This should be
contrasted with the large SkL domain for in-plane easy axes
(see Fig. 3). Finally, we point out that the phase diagram
(Fig. 5) has important similarities with the one in Ref. [17].
For instance, its topologically nontrivial narrow part starts at
finite magnetic field and at a certain temperature not very
close to Tc. Thus, we suggest that additional experiments
determining the phase boundaries in GdRu2Si2 are in order.

VI. DISCUSSION AND CONCLUSION

To conclude, we showed that magnetic dipolar interaction
can stabilize a square skyrmion lattice in centrosymmetric
tetragonal frustrated antiferromagnets. The size of the cor-
responding magnetic unit cell is of the order of several
nanometers.

We found that the hierarchy of the axes is crucial for the
magnetic-field-temperature phase diagram and provided an
analytical mean-field consideration of the two possible cases
in the high-temperature domain. If the easy axes for both
modulation vectors are collinear, the phase diagram resembles
the recently observed one for GdRu2Si2 [17]. However, there
are important analytical predictions which can be checked
experimentally: the square SkL region is only part of the
double-Q elliptical phase, which at larger fields continuously
transforms into the double-Q vortical structure. Near the latter
phase transition the spin component along the external field is
always positive, and the structure is topologically trivial.

Importantly, the conical phase emerges in a certain part of
the phase diagram in our analysis. However, using parameters
relevant to GdRu2Si2, we show that our approach fails in
that region. Nevertheless, in general, the conical phase can be
pronounced in the phase diagram. So further studies devoted
to low-temperatures are important. For example, in Ref. [27]
it was shown that, depending on the parameters, the conical
phase can or cannot appear in frustrated antiferromagnets with
only single-Q modulated structures possible. Moreover, at low
temperatures skyrmion textures contain lots of non-negligible
additional harmonics. The construction of the corresponding
lattice and its energy calculation, usually a hard problem it-
self [37], in the present model with dipolar forces becomes
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very challenging even numerically due to their long-range
character. Finally, we note that the symmetry-allowed com-
pass anisotropy terms can be easily included in the present
theory, which could be important in the experimental data
description.
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