
PHYSICAL REVIEW B 103, 064413 (2021)

Quasi-one-dimensional magnetism in the spin-1
2 antiferromagnet BaNa2Cu(VO4)2

Sebin J. Sebastian ,1 K. Somesh,1 M. Nandi,2 N. Ahmed,1 P. Bag,1 M. Baenitz,3 B. Koo ,3 J. Sichelschmidt ,3

A. A. Tsirlin ,4,* Y. Furukawa ,2 and R. Nath 1,†

1School of Physics, Indian Institute of Science Education and Research Thiruvananthapuram-695551, India
2Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

3Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187 Dresden, Germany
4Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany

(Received 27 November 2020; revised 12 January 2021; accepted 13 January 2021; published 8 February 2021)

We report synthesis and magnetic properties of quasi-one-dimensional spin- 1
2 Heisenberg antiferromagnetic

chain compound BaNa2Cu(VO4)2. This orthovanadate has a centrosymmetric crystal structure, C2/c, where the
magnetic Cu2+ ions form spin chains. These chains are arranged in layers, with the chain direction changing
by 62◦ between the two successive layers. Alternatively, the spin lattice can be viewed as anisotropic triangular
layers upon taking the interchain interactions into consideration. Despite this potential structural complexity,
temperature-dependent magnetic susceptibility, heat capacity, electron spin resonance intensity, and nuclear mag-
netic resonance (NMR) shift agree well with the uniform spin-1/2 Heisenberg chain model with an intrachain
coupling of J/kB � 5.6 K. The saturation field obtained from the magnetic isotherm measurement consistently
reproduces the value of J/kB. Further, the 51V NMR spin-lattice relaxation rate mimics the one-dimensional
character in the intermediate temperature range, whereas magnetic long-range order sets in below TN � 0.25 K.
The effective interchain coupling is estimated to be J⊥/kB � 0.1 K. The theoretical estimation of exchange
couplings using band-structure calculations reciprocate our experimental findings and unambiguously establish
the one-dimensional character of the compound. Finally, the spin lattice of BaNa2Cu(VO4)2 is compared with
the chemically similar but not isostructural compound BaAg2Cu(VO4)2.

DOI: 10.1103/PhysRevB.103.064413

I. INTRODUCTION

The studies of low-dimensional and frustrated spin sys-
tems have contributed substantially in understanding the
quantum phase transitions at low temperatures [1,2]. In one-
dimensional (1D) antiferromagnetic (AFM) spin-1/2 uniform
Heisenberg chains, magnetic long-range-order (LRO) is for-
bidden at zero temperature as a result of enhanced quantum
fluctuations, thereby exhibiting a gapless excitation spectrum
and power-law decay of spin-spin correlations [3]. However,
nonzero interchain interactions, inherent to real materials,
lead to the formation of magnetic LRO at finite tempera-
tures [4,5]. On the other hand, the interchain interactions often
create frustrated network between the chains that eventually
prevents the system from achieving the conventional LRO
but stabilizes different exotic states instead [2,6–8]. Further,
competing interactions as realized in a set of compounds, add
magnetic frustration in spin chains which along with quantum
fluctuations host a multitude of intriguing magnetic ground
states [9–11]. The transition-metal oxides offer nearly endless
opportunities for realizing 1D spin chains with different types
of exchange couplings and may harbor wide varieties of exotic
phases of matter.

Recently, synthesis and magnetic properties of a series of
compounds AA′M(VO4)2 (A = Ba and Sr, A′ = Na2 and Ag2,
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and M = Mn, Ni, Co, Fe, and Cu) were reported. Despite
some variations in their crystal structures, the magnetic model
of anisotropic triangular lattice has been generally used to
understand their magnetism [12–18]. BaAg2Cu(VO4)2 stands
as an exception in this series, because its crystal structure is
triclinic (space group: P1) [12], and indeed microscopic anal-
ysis via density-functional band-structure calculations [19]
combined with resonance spectroscopy [20] revealed 1D
magnetism with two dissimilar types of spin chains, one
ferromagnetic and one antiferromagnetic, coexisting in the
structure.

Here, we present the magnetic properties of
BaNa2Cu(VO4)2, another Cu2+ member of the series [21].
Its structure features four equal Cu-Cu distances of
5.507 Å as well as two slightly longer distances of 5.686 Å,
all in the ab plane. This interaction geometry is a prerequisite
of the triangular-lattice scenario previously established for
other members of the AA′M(VO4)2 series. On the other
hand, the square-planar oxygen coordination of Cu2+ and the
VO4 bridges between such CuO4 plaquette units may lead
to one preferred direction for magnetic couplings in the ab
plane (Fig. 1). Interestingly, this preferred direction changes
from a + b in one plane to a − b in the adjacent plane, thus
leading to the formation of crossed spin chains arranged
at 62◦ relative to each other. This geometry resembles the
crossed-chain magnetic model, where exotic ground states
and potential spin-liquid behavior have been proposed
theoretically [22–26].
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FIG. 1. Left panel: crystal structure of BaNa2Cu(VO4)2 showing corner-shared CuO4 plaquettes and VO4 tetrahedra forming layers of spin
chains. The coupling of Na1+ ions with the magnetic Cu2+ ions is also shown. Middle panel: crystal structure of BaNa2Cu(VO4)2 shown in a
different orientation to visualize the spin chains running along the [110] and [11̄0] directions; black spheres show the Ba atoms, the Na atoms
are omitted for clarity. Right panel: the structure of the single spin chain with the geometrical parameters ϕ and r that control the sign and
strength of superexchange through the double bridges of the VO4 tetrahedra.

Here, we use magnetization, heat capacity, electron
spin resonance (ESR), and nuclear magnetic resonance
(NMR) measurements, as well as complementary band-
structure calculations to uncover magnetic interactions in
BaNa2Cu(VO4)2 and establish its microscopic magnetic
model. Our data suggest the formation of uniform AFM spin
chains with the exchange coupling J/kB � 5.6 K and the
subsequent onset of magnetic LRO below TN � 0.25 K. We
suggest that this magnetic order can be driven by residual
interchain couplings of J⊥/kB � 0.1 K that remain non-
frustrated despite the crossed-chain structural geometry. Our
results establish that the mere presence of spin chains arranged
along two different directions is insufficient to reach the inter-
esting physics of the crossed-chain model, and an additional
condition for the lateral displacement of these chains has to be
met experimentally.

II. METHODS

Polycrystalline sample of BaNa2Cu(VO4)2 was prepared
by the usual solid-state reaction method. Initially, the reactants
Na2CO3 (Aldrich, 99.995%), BaCO3 (Aldrich, 99.995%),
CuO (Aldrich, 99.999%), and V2O5 (Aldrich, 99.995%) were
mixed in proper molar ratios, thoroughly ground, and then
pressed into pellets. The pellets were sintered in an alumina
crucible at 500 ◦C for three days in air with several inter-
mediate grindings. The phase purity of the sample was con-
firmed from the powder x-ray diffraction (XRD) performed
at room temperature. For the powder XRD experiment,
a PANalytical powder diffractometer with CuKα radiation
(λavg � 1.54182 Å) was used. Le-Bail analysis of the powder
XRD pattern was performed using the FULLPROF software
package [27]. Figure 2 displays the room-temperature pow-
der XRD data along with the fit. The structural parameters
given in Ref. [21] were used as the initial parameters. The
goodness-of-fit was found to be χ2 � 3.57. The obtained
lattice parameters are a = 9.4379(1) Å, b = 5.6926(1) Å,
c = 14.0519(1) Å, and β = 92.3434(8)◦ and the unit cell
volume Vcell � 754.34 Å3, which are in close agreement with
the previous report [21].

Magnetization (M) measurements were performed as a
function of temperature (0.48 K � T � 380 K) and magnetic
field (0 � H � 14 T) using a superconducting quantum inter-
ference device (SQUID, Quantum Design) magnetometer and
a physical property measurement system (PPMS, Quantum
Design). The SQUID enabled us to measure magnetization
down to 0.48 K with a 3He attachment. High-field magneti-
zation up to 14 T were measured using PPMS. Heat capacity
(Cp) was measured as a function of T (0.4 K � T � 200 K)
on a sintered pellet using the thermal relaxation method in
PPMS. The temperature down to 0.4 K was achieved using a
3He attachment to the PPMS.

The ESR experiments were performed on the powder
sample with a standard continuous-wave spectrometer in the
temperature range 2.5 K � T � 300 K. As a function of
external magnetic field B, the resonance shows up as an ab-
sorbed power P of a transversal magnetic microwave field
(ν � 9.4 GHz, X band). In order to improve the signal-to-

FIG. 2. Powder XRD pattern of BaNa2Cu(VO4)2 measured at
T = 300 K. The circles are experimental data and the solid black
line is the Le-Bail fit. The Bragg positions are indicated by green
vertical lines and the bottom solid blue line indicates the difference
between the experimental and calculated intensities.
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noise ratio, a lock-in technique was used by modulating the
applied field, which yields the derivative of power absorption
dP/dB as a function of B. By using the resonance condition
g = hν

μBHres
, where h is the Planck’s constant, μB is the Bohr

magneton, ν is the resonance frequency, and Hres is the corre-
sponding resonance field, the g value was obtained.

The pulsed NMR measurements were performed on both
23Na (nuclear spin I = 3/2 and gyromagnetic ratio γ = 11.26
MHz/T) and 51V (I = 7/2 and γ = 11.19 MHz/T) nuclei
in the temperature range 0.044 K � T � 200 K. For mea-
surements above 2 K a 4He cryostat (Oxford Instrument)
with a field-sweep superconducting magnet was used, while
for measurements in the low-temperature range (0.044 K �
T � 2 K), a 3He/4He dilution refrigerator (Kelvinox, Oxford
Instruments) with a field sweep magnet was used. All the
NMR measurements were carried out in a radio frequency of
77 MHz. The NMR spectra were measured as a function of
temperature T by sweeping the magnetic field at a constant
radio frequency of 77 MHz. The NMR shift was calculated for
both 23Na and 51V nuclei as K (T ) = [Href − H (T )]/H (T ),
where H is the resonance field for 23Na and 51V and Href

is the resonance field of the nonmagnetic reference sample.
The spin-lattice relaxation rate 1/T1 was measured by the
conventional single saturation pulse method.

Density-functional (DFT) band-structure calculations were
performed in the FPLO code [28] using the structural parame-
ters from Ref. [21] and local-density approximation (LDA) for
the exchange-correlation potential [29]. Exchange parameters
of the spin Hamiltonian

H =
∑
〈i j〉

Ji jSiS j (1)

with S = 1
2 and the summation over atomic pairs 〈i j〉, were

extracted via two complementary procedures. First, band
structure obtained on the LDA level was mapped onto a
tight-binding model for the half-filled dx2−y2 orbitals of Cu2+

as the magnetic ion. Squared hopping parameters ti of this
tight-binding model are proportional to AFM contributions
to the exchange, JAFM

i = 4t2
i /Ueff , where Ueff is the effec-

tive onsite Coulomb repulsion. Alternatively, full exchange
couplings Ji comprising both FM and AFM contributions are
extracted by a mapping procedure [30] from total energies of
magnetically ordered states calculated on the DFT + U level,
with correlation effects in the Cu 3d shell modeled by the
onsite Coulomb repulsion Ud = 6 eV, Hund’s exchange Jd =
1 eV, and around-mean-field flavor of the double-counting
correction [19,31]. The k mesh with up to 150 points in the
symmetry-irreducible part of the first Brillouin zone was used.

Field-dependent magnetization and magnetic specific heat
of a uniform spin- 1

2 chain were obtained from quan-
tum Monte-Carlo simulations for L = 32 finite lattices
with periodic boundary conditions. The loop [32] and
dirloop_sse [33] algorithms of the ALPS simulation pack-
age [34] were used.

III. RESULTS AND DISCUSSION

A. Magnetization

Temperature-dependent magnetic susceptibility χ (T )(=
M/H) of the polycrystalline BaNa2Cu(VO4)2 sample mea-

FIG. 3. χ of polycrystalline BaNa2Cu(VO4)2 sample as a func-
tion of temperature in an applied field μ0H = 1 T. The solid line is
the fit using Bonner-Fisher model [Eq. (2)] for uniform Heisenberg
spin-1/2 chain. Upper inset: inverse susceptibility 1/χ vs T and
the solid line represents the CW fit, as discussed in the text. Lower
inset: the low-temperature χ (T ) measured in two different fields
μ0H = 1 T and 3 T.

sured in two different applied fields H = 1 T and 3 T is
depicted in Fig. 3. The most significant feature in the χ (T )
curve is the presence of a broad maximum at 3 K, signaling
a crossover to an AFM short-range ordered state, typical for
low-dimensional spin systems [35,36]. This broad maximum
is more pronounced in the 3 T data shown in the lower inset
of Fig. 3. No anomaly indicative of the potential LRO could
be seen down to 0.48 K.

The preliminary analysis was done by fitting the χ (T )
data using the Curie-Weiss (CW) law, χ (T ) = χ0 + C/(T +
θCW), where χ0 is the temperature-independent susceptibil-
ity, C is the Curie constant, and θCW is the characteristic
CW temperature. The fit shown in the upper inset of
Fig. 3 in the high-temperature regime (T � 16 K) yields the
following parameters: χ0 � 7.9288 × 10−5 cm3/mol, C �
0.445 cm3K/mol, and θCW � 3 K. In order to estimate the
Van-Vleck paramagnetic susceptibility (χVV), which arises
from the second-order contribution to free energy in the
presence of magnetic field, core diamagnetic susceptibil-
ity χcore of BaNa2Cu(VO4)2 was calculated to be −1.57 ×
10−4 cm3/mol by summing the core diamagnetic suscep-
tibilities of individual ions Na+, Ba2+, Cu2+, V5+, and
O2− [37,38]. Subsequently, χVV was obtained by subtracting
χcore from χ0 to be ∼2.36 × 10−4 cm3/mol, which is close to
the values reported for other cuprates [39–41] and consistent
with tetragonal crystal-field splitting at the Cu2+ site with the
square-planar oxygen coordination [42].

From the Curie constant C, the effective moment is calcu-
lated using the relation μeff = √

3kBC/NA to be �1.88 μB,
where kB is the Boltzmann constant, μB is the Bohr magne-
ton, and NA is the Avogadro’s number. For a spin- 1

2 system,
the spin-only effective moment is expected to be μeff =
g
√

S(S + 1)μB � 1.73 μB, assuming Landé g factor g = 2.
However, our experimental value of μeff � 1.88 μB corre-
sponds to a g factor of g � 2.17, which is consistent with the
ESR experiments discussed later. The positive value of θCW
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FIG. 4. Magnetization (M) vs H measured at T = 2 K. Inset:
dM/dH vs H to highlight the saturation field Hs.

suggests that the dominant exchange interactions between the
Cu2+ ions are AFM in nature.

In order to estimate the exchange coupling between the
Cu2+ ions, we decomposed χ (T ) into three components,

χ (T ) = χ0 + Cimp

T
+ χspin(T ). (2)

Here, the second term is the Curie law, which accounts for
the paramagnetic contributions from impurity spins and/or
defects, and χspin(T ) is the intrinsic spin susceptibility. This
last term can be chosen in different forms depending on the
underlying magnetic model. The best fit was achieved with the
spin-chain model, which is further supported by the specific-
heat data (Sec. III C) and ab initio calculations (Sec. III E).

The susceptibility of a spin- 1
2 uniform Heisenberg AFM

chain takes the form

χspin = NAμ2
Bg2

kBT

0.25 + 0.0775x + 0.0752x2

1 + 0.993x + 0.1721x2 + 0.7578x3
, (3)

with x = |J|/kBT [35]. This is simply a high-temperature
series expansion (HTSE) valid in the regime kBT/J � 0.5.
The solid line in Fig. 3 represents the best fit of the
χ (T ) data above 4 K by Eq. (2). The following param-
eters were obtained: χ0 � 1.44 × 10−4 cm3/mol, Cimp �
0.0258 cm3K/mol, g � 2.13, and the dominant intrachain
AFM exchange coupling J/kB � 5.6 K. From the value
of Cimp, the sample was found to contain ∼6% spin- 1

2
impurities/defects. At temperatures below 1 K, this impurity
contribution becomes dominant and causes the reduction in
the susceptibility with the applied field, even though χspin(T )
should increase when the field is applied [43].

The magnetic isotherm at T = 2 K up to 14 T is shown in
Fig. 4. M increases almost linearly with H but with a small
curvature. It develops a tendency of saturation above 9 T.
A more accurate value of the saturation field Hs � 9 T was
found by drawing tangential at the curvature (see Fig. 4). The
field derivative of the M vs H plot also implies Hs � 9 T (see
the inset of Fig. 4). For a spin-1/2 Heisenberg AFM chain,
the saturation field is directly proportional to the intrachain
exchange coupling as Hs = 2J1D(kB/gμB) [44]. Using the
value of J/kB � 5.6 K, the saturation field is calculated to be

FIG. 5. (a) Integrated ESR intensity vs temperature and the solid
line represents the fit as described in the text. Inset: ESR spec-
trum at room temperature measured at a microwave frequency of
9.4 GHz together with the powder-averaged Lorentzian fit (solid
line). (b) Temperature variation of the g values (both perpendic-
ular and parallel components) obtained from the Lorentzian fit.
(c) Temperature-dependent ESR linewidth 
H (both perpendicular
and parallel components).

Hs � 8.34 T, which matches well with the experimental value,
confirming the dominant 1D character of the compound.

B. ESR

ESR experiment was performed on the powder sample and
the results are shown in Fig. 5. The inset of Fig. 5(a) depicts
a typical ESR powder spectrum at 300 K. The uniaxial g
factor anisotropy was obtained by fitting the spectra using the
powder-averaged Lorentzian line. The fit of the spectrum at
room temperature yields the anisotropic g-tensor components
g‖ = 2.33(3) and g⊥ = 2.10(2). From these values, the average
g value was calculated as g = [(g‖ + 2g⊥)/3] = 2.17(3) [45].
This value is slightly larger (
g/g � 0.085) compared to
the free electron value (g = 2), typical for Cu2+ based ox-
ides [46,47]. The integrated ESR intensity (IESR) obtained
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from the above fit is plotted as a function of temperature in
Fig. 5(a). It shows similitude with the χ (T ) behavior, which
traces a broad maximum at around T max

ESR � 3.7 K. Indeed, the
IESR vs χ plot with temperature as an implicit parameter fol-
lows a straight line down to ∼5 K (not shown). The variation
of g with respect to temperature is shown in Fig. 5(b). Both
the components of g were found to be almost temperature in-
dependent at high temperatures (T � 20 K). However, below
20 K a weak deviation from the room-temperature values is
observed.

In order to estimate the exchange coupling, IESR(T ) was
fitted by

IESR(T ) = A + Bχspin(T ). (4)

Here, A and B are arbitrary constants, and χspin is given by
Eq. (3). Our fit (see Fig. 5) in the high-temperature regime
(T � 5 K) produced J/kB � 5.55 K . This value of J/kB is
close to the one obtained from the χ (T ) analysis. During the
fit, the value of g was kept constant to 2.17, as obtained above.
We have also fitted the 1/IESR data in the high-temperature
regime (T � 10 K) using the relation IESR = M + N/(T +
θCW) where M and N are arbitrary constants. As shown in the
lower inset of Fig. 5(a), the fit returns θCW � 3.9 K, which is
in good agreement with the value obtained from the χ−1(T )
analysis.

The temperature-dependent ESR linewidth, or equivalently
the half width at half maximum of the ESR absorption
signal, is presented in Fig. 5(c). Both the parallel (
H‖)
and perpendicular (
H⊥) components of the ESR line
width follow the general trend, commonly observed in most
of the low-dimensional spin systems [48,49]. The rapid
increase/divergence below ∼25 K indicates the growth of
strong spin correlations at low temperatures as the system
approaches the magnetic LRO state.

C. Heat capacity

Temperature-dependent heat capacity Cp of the polycrys-
talline sample is shown in the upper panel of Fig. 6. In
magnetic insulators, the two major contributions to Cp are
from phonon and magnetic parts. At high temperatures, Cp(T )
is dominated by the phonon part, while at low temperatures it
is dominated by the magnetic part. Our experimental Cp data
exhibit a pronounced broad maximum at T � 2.5 K indicative
of the low-dimensional short-range order and also reflects the
dominant magnetic contribution at low temperatures. In order
to estimate the magnetic contribution to the heat capacity
Cmag, we proceed as follows. First we approximate the lat-
tice contribution Cph by fitting the high-temperature data by
a linear combination of one Debye and two Einstein terms
(Debye-Einstein model) as [50,51]

Cph(T ) = fD CD(θD, T ) +
2∑

i=1

gi CEi (θEi , T ). (5)

The first term in Eq. (5) is the Debye term,

CD(θD, T ) = 9nR
( T

θD

)3 ∫ θD
T

0

x4ex

(ex − 1)2
dx. (6)

Here, x = h̄ω
kBT , ω is the vibration frequency, R is the universal

gas constant, and θD is the characteristic Debye temperature.

FIG. 6. Upper panel: Heat capacity (Cp) vs T in zero applied
field. The solid line denotes the phonon contribution to the heat
capacity Cph using the Debye-Einstein fit. The blue solid spheres
indicate the magnetic contribution to the heat capacity Cmag. Inset:
Cp vs T in the whole measured temperature range along with the
Debye-Einstein fit. Lower panel: The left y axis shows Cmag/T and
the right y axis shows the magnetic entropy Smag vs T . Inset: Cmag/R
vs T .

The second term in Eq. (5) is a combination of the Einstein
terms that are usually responsible for flat optical modes in the
phonon spectrum,

CE(θE, T ) = 3nR

(
θE

T

)2 e θE/T

(e θE/T − 1)2 . (7)

Here, θE is the characteristic Einstein temperature. The co-
efficients fD, g1, and g2 are the weight factors, which take
into account the number of atoms per formula unit (n) and are
conditioned such that at high temperatures the Dulong-Petit
value of 3nR is satisfied. The Cp(T ) data above ∼15 K were
fitted by Eq. (5) and the obtained parameters are fD � 0.34,
g1 � 0.35, and g2 � 0.31, θD � 214 K, θE1 � 356 K, and
θE2 � 897 K. Further Einstein terms beyond θE2 rendered
the fit unstable. The fit itself is phenomenological in nature,
although one may tentatively associate θD with low-energy
vibrations of heavier atoms (Ba, Cu, and V) that constitute
28.5%, about 1

3 of the atomic species in BaNa2Cu(VO4)2. The
lower Einstein temperature θE1 may correspond to Na atoms
and two apical oxygens of the VO4 tetrahedra (altogether six
atoms per formula unit), whereas θE2 reflects higher-energy
vibrations of the remaining four oxygens that are bound to V
and Cu at the same time.

The high-T fit was extrapolated down to low temperatures
and Cmag(T ) was estimated by subtracting Cph(T ) from Cp(T )
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[see Fig. 6 (upper panel)]. Cmag(T )/T was plotted as a func-
tion of temperature in the lower panel of Fig. 6. The broad
maximum corresponding to the short-range order is apparent
at T � 1.52 K. At low temperatures, Cmag(T )/T shows a rapid
increase, which could be related to the onset of magnetic
LRO below 0.4 K. The magnetic entropy was calculated as
Smag(T ) = ∫ T

2 K
Cmag(T ′ )

T ′ dT ′, which yields Smag�5.83 J/mol K
at 20 K (see the lower panel of Fig. 6). This value is close
to the expected magnetic entropy for spin- 1

2 : Smag = R ln 2 =
5.76 J/mol K.

In the inset of the lower panel of Fig. 6, Cmag/R is plotted
against T . The peak of Cmag/R can be used to discriminate
between different microscopic scenarios. Its height depends
on the nature of the underlying spin lattice [52]. Our ex-
perimental peak value of Cmag/R � 0.323 fits well to the
aforementioned 1D scenario, suggesting that VO4 bridges
choose the direction of spin chains. Alternatively, four shortest
Cu-Cu contacts of 5.507 Å could cause interactions of equal
strength and form a 2D square-lattice interaction topology that
should manifest itself by a much higher peak with Cmag/R �
0.47. On the other hand, the triangular-lattice scenario would
reduce the peak value to Cmag/R � 0.22, lower than seen
experimentally. We thus conclude that our specific-heat data
favor the spin-chain scenario for BaNa2Cu(VO4)2.

D. 23Na and 51V NMR

NMR is a potent tool to study the static and dynamic
properties of spin systems. In BaNa2Cu(VO4)2, the 23Na and
51V nuclei are hyperfine coupled to the magnetic Cu2+ ions
along the spin chains. Therefore, the low-lying excitations
of Cu2+ spins can be probed by means of 23Na and 51V
NMR measurements. The quadrupole nuclei 23Na (I = 3/2)
and 51V (I = 7/2) are in a noncubic symmetry that may
produce an asymmetric charge distribution and hence electric
field gradient (EFG). Therefore, the fourfold and eightfold
degeneracies of the I = 3/2 and I = 7/2 spins, respectively,
are lifted partially due to the interaction between the nuclear
quadrupole moment (Q) and the surrounding EFG. In this
case, the nuclear spin Hamiltonian is a sum of the Zeeman
and quadrupolar interaction terms [53,54],

H = −γ h̄ÎH (1 + K ) + hνQ

6

[(
3Î2

z − Î2
) + η

(
Î2
x − Î2

y

)]
. (8)

Here, the nuclear quadrupole resonance (NQR) frequency is
defined as νQ = 3e2qQ

2I (2I−1)h , e is the electron charge, h̄ (= h/2π )
is the Planck’s constant, H is the applied field along ẑ, K is
the magnetic shift due to hyperfine field at the nuclear site,
Vαβ are the components of the EFG tensor, eq = Vzz is the
largest eigenvalue or principal component of the EFG, and
η = |Vxx − Vyy|/Vzz is the EFG asymmetry (here, the principal
axes of EFG are chosen such that |Vzz| � |Vyy| � |Vxx|). Ex-
perimentally, the transitions can be observed at the frequency
νz = νQ

√
1 + η2/3.

The principal axes {x, y, z} of the EFG tensor are defined by
the local symmetry of the crystal structure. Consequently, the
corresponding resonance frequency to any nuclear transition
will have strong dependence on the direction of the applied
field with respect to the crystallographic axes. For a site with
axial symmetry (η = 0), there will be 2I − 1 quadrupolar

FIG. 7. Field-sweep NMR spectra of the polycrystalline
BaNa2Cu(VO4)2 sample, measured at 77 MHz as a function of
temperature. The spectral lines corresponding to 23Na and 51V nuclei
for T = 80 K are marked by arrows. The solid line is the simulated
spectrum.

resonances at frequencies nνQ, where n = 1,....2I − 1. When
η > 0, the resonances are not equally spaced. The EFG is fully
characterized by the parameters νz, η, and ẑ, where ẑ is the unit
vector in the direction of the principal axis of the EFG with the
largest eigenvalue. When the Zeeman term dominates over the
quadrupole term, first-order perturbation theory is enough for
describing the system. In such a scenario, for a quadrupole
nucleus, equally spaced satellite peaks should appear on either
side of the central peak separated by νQ [55].

The NMR spectra as a function of temperature measured
by sweeping the magnetic field at 77 MHz are presented in
Fig. 7. Since 23Na and 51V nuclei have nearly the same γ

values, one expects their spectral lines to appear very close
to each other. Further, 23Na and 51V are quadrupolar nu-
clei with nuclear spins I = 3/2 and 7/2, respectively, and
the transitions with 
m = ±1 are expected between the en-
ergy levels. Therefore, one would anticipate three NMR lines
for 23Na: one central line corresponding to Iz = +1/2 ←→
−1/2 and two equally spaced satellite lines corresponding
to Iz = ±3/2 ←→ ±1/2 and seven NMR lines for 51V: the
central line being Iz = +1/2 ←→ −1/2 and the satellite
lines Iz = ±1/2 ←→ ±3/2 ←→ ±5/2 ←→ ±7/2. Indeed,
at high temperatures, we observed two sharp and prominent
peaks at the resonance field position and two satellite peaks
on either side of those. The central peak towards the low-field
side is identified to be the signal coming from the 23Na nuclei,
while the one towards the high-field side appears to be the
51V peak. In addition to the central peaks, two satellite peaks
correspond to the 23Na line. At high temperatures, the NMR
spectra are found to be narrow and one can distinguish the
23Na and 51V signals. As the temperature is lowered, the line
broadens asymmetrically and the central lines shift weakly
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FIG. 8. Upper panel: NMR spectra at T = 125 K showing the
23Na and 51V central lines, with the downward arrows pointing to
the 23Na satellites. The solid line is the simulation of the spectra
assuming the superposition of the 23Na and 51V signals. Lower panel:
temperature-dependent NMR shift K as a function of temperature for
23Na and 51V, measured at 77 MHz. Solid line is the fit using Eq. (9).
Inset: NMR shift vs χ measured at 3 T. Solid lines are the linear fits.

with temperature. No abrupt line broadening was noticed
down to 44 mK, which may signal the absence of magnetic
LRO [56]. The spectra were fitted assuming the superposition
of 23Na and 51V signals. The spectral fit at T = 125 K is pre-
sented in the upper panel of Fig. 8, where 23Na and 51V lines
and their satellites are marked by arrows. The obtained fitting
parameters are K � 0.0345% (isotropic shift), η = 0 (asym-
metry parameter), and νQ � 0.92 MHz (NQR frequency) for
23Na and K � 0.627%, η = 0, and νQ � 0.234 MHz for 51V.
The quadrupole frequency is found to be almost constant with
temperature down to 1.5 K, which essentially excludes the
possibility of any structural distortion in the studied com-
pound.

The NMR shift K (T ) for both 23Na and 51V lines obtained
from the spectral fits is plotted in the lower panel of Fig. 8. The
temperature-dependent 23Na shift [23K (T )] is found to have a
broad maximum at around 3 K, similar to the χ (T ) data. As
K (T ) in an intrinsic measure of the spin susceptibility χspin,
one can write the linear relation

K (T ) = K0 + Ahf

NAμB
χspin, (9)

FIG. 9. 1/T1 as a function of temperature measured on the 51V
nuclei down to 0.044 K. Inset: 1/T1 above 2 K is shown in order to
highlight the features around 10 K.

where K0 is the temperature-independent chemical shift and
the proportionality constant Ahf is the hyperfine coupling be-
tween the probed nuclei and the electron spins.

From Eq. (9), Ahf can be calculated by taking the slope
of the linear K vs χ plot (inset of Fig. 8) with temperature
as an implicit parameter. In the case of 23Na, the data for
T � 5 K were fitted well by a linear function, and the slope
of the fit yields 23Ahf � 0.021 T/μB. Similarly, for 51V the
linearity is found over a large temperature range down to 10 K,
and the linear fit returns 51Ahf � −0.016 T/μB. To estimate
the exchange coupling, 23K (T ) above 2.5 K was fitted by
Eq. (9) taking χspin for the 1D S = 1/2 Heisenberg chain
[Eq. (3)]. The fit returns J/kB � 4.22 K and 23Ahf � 0.0194
T/μB. The value of g was fixed to g = 2.17 during the fitting
procedure. This value of J/kB is close to the one obtained
from the χ (T ) analysis, whereas 23Ahf is also in good agree-
ment with the value obtained from the K vs χ analysis. An
anomaly at ∼0.3 K in 23K (T ) could be due to a magnetic
transition. To study the spin dynamics, spin-lattice relaxation
rate (1/T1) was measured by irradiating the central position
of the 51V spectra corresponding to the 1/2 ←→ −1/2 tran-
sition, choosing an appropriate pulse width. The recovery of
the longitudinal magnetization was fitted by the following
exponential function relevant for a quadrupole (I = 7/2) nu-
clei [57,58]

1 − M(t )

M(∞)
= 0.0119 × e(−t/T1 ) + 0.068 × e(−6t/T1 )

+ 0.21 × e(−15t/T1 ) + 0.71 × e(−28t/T1 ).

(10)

Here, M(t ) and M(∞) are the nuclear magnetizations at a time
t and t −→ ∞, respectively, after the saturation pulse. Tem-
perature dependence of 51V 1/T1 obtained from the above fit
is shown in Fig. 9. Our measurements were carried out down
to 0.04 K. At high temperatures, 1/T1 is almost temperature
independent as expected in the paramagnetic regime [59]. At
low temperatures, it exhibits a sharp peak at T � 0.25 K due
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to slowing down of the fluctuating moments and is a direct ev-
idence of the onset of magnetic LRO. In order to highlight the
behavior in the intermediate temperature range, 1/T1 above
2 K is magnified in the inset of Fig. 9. As the temperature is
lowered, 1/T1 decreases linearly below about 25 K, remains
almost temperature independent for 4 K � T � 10 K, and
then starts increasing for T � 4 K. This increase below 4 K
can be attributed to the growth of AFM correlations as the
system approaches the magnetic LRO state.

Further, 1/T1T is directly proportional to the imaginary
part of the dynamic susceptibility χM (�q, ω0) at the nuclear
Larmor frequency ω0, which is q dependent [59]. In low-
dimensional spin systems, temperature-dependent 1/T1 often
reflects dominant contributions from different q values in
different temperature regimes. For instance, for spin-1/2
Heisenberg AFM spin chains, it is theoretically predicted
that with the dominant staggered contribution (q = ±π/a)
the spin-lattice relaxation rate behaves as 1/T1 ∼ T 0,
while the dominant contribution of the uniform component
(q = 0) results in 1/T1 ∼ T [60,61]. The dominant contri-
butions of q = ±π/a and q = 0 are typically observed in
the low-temperature (T < J) and high-temperature (T ∼ J)
regimes, respectively [40,62]. Thus, our experimentally ob-
served constant and linear behaviors of 1/T1 with temperature
over 4 K � T � 10 K and 10 K � T � 25 K, respectively
(inset of Fig. 9), are compatible with the 1D physics.

In real spin-chain systems, the nonvanishing interchain
couplings often lead to the onset of magnetic LRO at very
low temperatures. The interchain coupling can be calculated
using the expression proposed by Schulz [5]

|J⊥|
kB

� TN

1.28
√

ln(5.8J/(kBTN ))
, (11)

where J⊥ is an effective interchain coupling. Taking TN �
0.25 K and J/kB � 5.6 K, we arrive at the possible value
of J⊥/kB � 0.1 K, which is indeed consistent with the value
estimated from the band-structure calculations, as discussed
in the following.

E. Microscopic magnetic model

LDA band structure of BaNa2Cu(VO4)2 (Fig. 10) features
Cu 3d states below the Fermi level and V 3d states above 2 eV,
confirming the nonmagnetic state of vanadium. The overall
energy spectrum is metallic, as typical for a transition-metal
compound when correlation effects in the 3d shell were not
taken into account. Nevertheless, this band structure gives an
overview of possible exchange interactions, as the hopping
parameters ti are proportional to the LDA bandwidth, whereas
JAFM

i = 4t2
i /Ueff . The Fermi level is crossed by two narrow

bands formed by the half-filled dx2−y2 orbitals of Cu2+. The
width of these bands is less than 0.2 eV, one of the smallest
in cuprates, and indicates very weak exchange couplings in
BaNa2Cu(VO4)2.

DFT results for the exchange couplings are summarized in
Table I. Only one sizable coupling, J/kB � 6.8 K, is found. It
corresponds to spin chains running along [110] in one layer
and along [11̄0] in the adjacent layer, the direction being cho-
sen by the position of the double VO4 bridges that connect the
CuO4 plaquette units (Fig. 1). Such a coupling mechanism is

FIG. 10. LDA density of states for BaNa2Cu(VO4)2. Note the
very narrow Cu dx2−y2 band around 0 eV (Fermi level) that indi-
cates small electron hoppings and correspondingly weak exchange
couplings.

fairly common among the Cu2+ compounds and can give rise
to both FM and AFM superexchange depending on the orien-
tation of the VO4 tetrahedra relative to the CuO4 planes [19].
Larger rotations of the tetrahedra favor FM couplings.

In BaNa2Cu(VO4)2, we find ϕ = 99.0◦, which is simi-
lar to ϕ(2) = 102.2◦ for the AFM coupling J (2)

a /kB = 9.5 K
in BaAg2Cu(VO4)2 and very different from ϕ(1) = 123.7◦
for the FM coupling J (1)

a /kB = −19 K in the same com-
pound [19]. Here, ϕ is the angle between the face of the
VO4 tetrahedron and the plane connecting the adjacent CuO4

plaquettes, as shown in Fig. 1. Compared to BaAg2Cu(VO4)2,
the AFM coupling weakens from 9.5 K to ∼6 K, likely be-
cause of the longer Cu-Cu distance (5.507 Å vs. 5.448 Å) and
the increased lateral displacement r of the CuO4 plaquettes
(0.895 Å vs 0.860 Å).

All couplings beyond the aforementioned spin chains ap-
pear to be very weak, below 0.2 K, and unfeasible for the
DFT + U mapping analysis. Their relative strengths can be
assessed from the hopping parameters that suggest the domi-
nant interchain couplings Jab in the ab plane (along [11̄0] for
the spin chains along [110] and vice versa) and Jc along the
c direction. The in-plane coupling J ′

ab is negligible. The two
stronger interchain couplings, Jab and Jc, form a nonfrustrated
3D network. From 4t2

i /Ueff with Ueff = 5 eV [41,63], one
expects the coupling strength of 0.2 K or lower, in agreement
with the DFT + U results. Altogether, our modeling results
establish weak and nonfrustrated interchain couplings in
BaNa2Cu(VO4)2, with J⊥/J � 0.02. The average interchain

TABLE I. Exchange parameters of BaNa2Cu(VO4)2 obtained
from DFT calculations: Cu-Cu distances d (in Å), electron hoppings
ti (in meV), AFM contributions to the exchange JAFM

i = 4t2
i /Ueff (in

K), and total exchange couplings Ji (in K) from the DFT+U mapping
procedure.

dCu-Cu ti JAFM
i /kB Ji/kB

J 5.507 −40 14.9 6.8
Jab 5.507 −5 0.2 <0.2
J ′

ab 5.686 −1 0.01 <0.2
Jc 7.024 3 0.08 <0.2
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FIG. 11. Magnetization normalized to the saturation value (main
figure) and magnetic specific heat (inset) of BaNa2Cu(VO4)2. Pre-
dictions of the spin-chain model with J/kB = 5.5 K and g = 2.17
are shown with lines. In magnetization curves, an additional 5%
paramagnetic contribution described by the Brillouin function was
included in order to reproduce the weak bend in low magnetic fields.

coupling of J⊥/kB � 0.1 K leads to kBTN/J � 0.22 [4] in
good agreement with 0.25 K found experimentally. Therefore,
we argue that long-range magnetic order in BaNa2Cu(VO4)2

should be driven by weak interchain couplings, and the Néel
temperature TN/J is determined by the J⊥/J ratio.

Above TN, a purely one-dimensional description should
hold. Indeed, we were able to fit magnetization curves down
to 0.49 K using the spin-chain model with J/kB = 5.5 K
and g = 2.17 in excellent agreement with 5.6 K from the
fit to the magnetic susceptibility and g = 2.17(3) from the
ESR experiment (Fig. 11). This confirms that the interchain
couplings are very weak and play only a marginal role even
at T < J . Magnetic specific heat is also well described by the
spin-chain model showing small deviations below 1 K only.
These deviations correspond to the upturn in Cmag/T upon
approaching TN (Fig. 6).

IV. CONCLUSIONS

We have shown that BaNa2Cu(VO4)2 strongly deviates
from all of its structural siblings in terms of the magnetic

behavior. The majority of these compounds are triangu-
lar magnets, while the only Cu2+ member studied to date,
BaAg2Cu(VO4)2, revealed a very unusual coexistence of
different spin chains, one ferromagnetic and one antiferro-
magnetic [19,20]. Our present results for BaNa2Cu(VO4)2

corroborate nontrivial magnetostructural correlations in Cu2+

vanadates, where the sign of a magnetic coupling strongly de-
pends on the spatial orientation of the VO4 tetrahedra relative
to the spin chains and CuO4 plaquette units.

The disparity of spin chains is absent in BaNa2Cu(VO4)2,
but now the chains adopt two different directions and form
an unusual crossed pattern. Interestingly, this crossed pattern
does not cause any magnetic frustration, because the Cu2+

ion of one chain sits exactly on top of the Cu2+ ion of the
adjacent chain (Fig. 1). Then, each magnetic site has only
one coupling to a spin chain of another direction, and not two
couplings, as expected theoretically [22]. This fact highlights
the importance of lateral displacements between the Cu2+

ions of the crossed chains to induce the frustration. Such
displacements do not occur in BaNa2Cu(VO4)2, but they may
potentially appear in sister compounds, because even the sub-
stitution of Na+ by Ag+ causes significant structural changes,
although the two ions are very similar in size. Alternatively,
one may consider structure types with a weaker spatial sepa-
ration between the crossed chains that, in turn, allows several
nonequivalent interactions to form a frustrated topology even
in the absence of lateral displacements [64–66].
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