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Magnonic crystals with complex geometry
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Magnonic crystals offer a wide playground to study the emergent properties of spin waves, and ferromagnetic
antidot lattices are leading candidates for magnonic devices due to the faster propagation of spin waves combined
with wide-frequency tunability. Despite having a broad range of studies on periodic and quasiperiodic systems,
a combination of quasiperiodic lattice with a complex basis is absent in the literature. The quasiperiodicity of
octagonal lattice, along with a complex triangular antidot basis lacking reflection symmetry provides newer and
richer spin-wave dynamics. Such complex magnonic crystal exhibits a strong eightfold anisotropy superposed
with a weak threefold anisotropy. This is in contrast to a strong fourfold anisotropy superposed with a weak
threefold anisotropy observed in a square lattice with triangular antidot basis. The spatial profiles of spin waves
revealed the presence of resonant modes with both even and odd-mode quantization number, besides a mode
conversion from extended to quantized mode with the systematic variation of the in-plane bias magnetic field ori-
entation. These are in consonance with the strong anisotropic behavior of the spin-wave modes. The strong mod-
ifications of the asymmetric potential energy landscape in these magnonic crystals lead to the stark modulation
of the rich spin-wave dynamics, thus opening avenues to reprogrammable magnonics with complex geometry.
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I. INTRODUCTION

The emergence of magnonics [1–3] has promised a
paradigm shift in the on-chip data communication and
processing for future computing devices. Subsequent devel-
opment of combination of magnonics with other systems
have unearthed greater functionalities in the form of magnon
spintronics [4], magphonics [5], and magnon polaritronics
[6], which may give rise to next-generation devices with
superior energy efficiency, speed, and miniaturization. The
magnon current generated by the collective motion of mag-
netic moments or spin waves (SWs, quanta of which are
known as magnons) does not involve the motion of charge
carriers, and therefore, have lesser dissipation as compared
to the spin-polarized current and even pure spin current. The
short-wavelength SWs with about 50-nm wavelength has been
demonstrated to propagate a distance over 60 μm with a
group velocity as high as 2.6 km/s [7] and has bright future
to generate miniaturized, faster, and more energy-efficient
technological implementations. Further evolution of hybrid
magnonics [8,9] offers the possibility of quantum transduction
and quantum entanglement using magnons.

Ferromagnetic antidot lattices (ADLs) [10,11] with non-
magnetic holes periodically grooved in a continuous fer-
romagnetic film are of profound interest in magnonics for
potential applications in designed magnon waveguides [12],
filters [13], amplifiers [14], couplers [15], multiplexers [16],
phase shifters [17], interferometers [18], transistors [19], as
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well as magnonic logic devices [20]. A flurry of investi-
gations on standing and propagating SWs in ferromagnetic
ADLs have been performed by varying a number of pa-
rameters such as antidot shape [21], lattice constant [22],
lattice symmetry [23], base material [24,25], as well as the
strength and orientation of the applied magnetic field [26].
Early experiments on Co ADLs showed the attenuation of
uniform ferromagnetic resonance (FMR) mode due to the
excitation of nonuniform SW modes [27]. Observations of
field-controlled confinement, localization, and propagation of
SWs [28], splitting of resonant modes [29], mode crossover
[30], mode hopping [30], mode softening [31], as well as
the formation of magnonic miniband [32] in ADLs, were
important developments in this area.

Quasiperiodicity is an important problem in solid-state
physics because quasiperiodic crystals possess long-range or-
dering without any periodicity, complex form of frustration
leading to glassy behavior, their diffraction patterns exhibit
symmetry that is forbidden by crystallographic restrictions,
and they show exotic rotational symmetry [33]. Artificial
quasicrystals have been extensively studied in photonics [34]
and phononics [35] for a long time. Recently, magnonic qua-
sicrystals (MQCs) [36] have become a burgeoning research
topic due to various interesting properties like branching fea-
tures in the band structure [37], appearance of passband [38],
allowed bulk band in place of band gaps [39], etc. Con-
cepts of self-generation of dissipative solitons in MQC active
ring resonators have been reported [40]. Bhat and Grundler
showed the MQCs comprising Ni80Fe20 interconnected nano-
bars arranged in Penrose P2, P3, and Ammann tiling exhibit
distinct sets of FMR modes with eight and tenfold rotational
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FIG. 1. SEM of the antidot lattices with (a) square and (b) octagonal symmetry. The edge length (d) of the triangular antidots is 200 nm and
the lattice constant (a) is 400 nm for both lattices. The length-scale bars are shown in the images. (c) Schematic of the TR-MOKE microscope
showing the pump and probe beams and the geometry of the measurement. Typical time-resolved Kerr rotation data for the (d) square and (e)
octagonal lattice with a = 400 nm at H = 1 kOe and ϕ = 0◦.

symmetries with varying in-plane magnetic field orientations
[41]. Experimental observation of emergent magnon motifs
and Conway wormlike nanochannels in MQCs created via
nanoholes arranged in Penrose P2 and P3 tiling have been
reported [42]. Construction of numerous types of MQCs with
Fibonacci sequences [43], and different variants of Penrose
tiling, oblique tiling, Kite and Dart tiling [44], and Ammann-
Beenker tiling [45,46] may offer unprecedented tunability of
the SW dynamics and magnonic band structure due to the lack
of translational symmetry.

MQCs in the form of octagonal lattice of ferromagnetic
nanodots [47,48] and antidots [49] with broken translational
symmetry have been featured in few earlier works. The whole
space of an octagonal lattice cannot be covered with only
one kind of tile. Instead, rhombic tiles along with octagonal
tiles are required to cover the whole space. Choudhury et al.
observed an eightfold rotational symmetry in octagonal lat-
tice of circular-shaped Ni80Fe20 antidots [49]. Introduction of
complex basis to such MQCs may result in richer and more
complex SW dynamics. However, a combination of MQC
with a complex basis is absent in the literature. Along with the
aperiodicity of octagonal lattice we have added an asymmetric
basis of triangular-shaped antidots with lack of reflection or
mirror symmetry. Such complex network of antidots may be
considered as an interesting testbed for providing new phe-
nomena and stern challenges.

We report the investigation of the high-frequency SW dy-
namics of two-dimensional arrays of asymmetric triangular-
shaped Ni80Fe20 antidots arranged in octagonal lattices with
varying lattice constant. We have further compared the re-
sults with the most primitive Bravais lattice having square

symmetry. A strong eightfold anisotropy superposed with a
weak threefold anisotropy in the SW frequency is observed
for the octagonal lattice, whereas a strong fourfold anisotropy
superposed with a weak threefold anisotropy is observed for
the square lattice. The micromagnetic simulations revealed a
mode conversion from extended to quantized standing-wave
pattern and vice versa with the variation of the orientation of
the in-plane bias magnetic field. The strong modifications of
the asymmetric demagnetizing regions as well as the internal-
field profiles around the triangular antidots can explain the
observed variation of the SW dynamics in such complex anti-
dot lattice.

II. EXPERIMENTAL AND SIMULATION DETAILS

A. Sample fabrication

Triangular-shaped antidots were patterned on a 20-nm-
thick Ni80Fe20 (Permalloy, Py hereafter) film by using a
combination of electron-beam lithography (EBL), electron-
beam evaporation (EBE), and ion milling [23]. The antidots
with a fixed edge length (d) of 200 nm and variable lattice
constants (a) of 400, 500, 600, and 700 nm are arranged in
square and octagonal symmetries with total array dimensions
of 25 × 25 μm2, as shown in the scanning electron micro-
graphs (SEMs) of Figs. 1(a) and 1(b). Both the edge lengths
and the lattice constants of these antidots suffer from ±5%
deviations. At first a continuous Py film of 20-nm thickness
was deposited on self-oxidized silicon (Si) [100] substrate by
EBE at a base pressure of ∼2 × 10−8 Torr. On top of the Py
film, a 5-nm-thick protective layer of Al2O3 was deposited
to protect the samples from external contamination of the
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environment, degradation with time, and also from direct
exposure to the femtosecond laser. A bilayer MMA/PMMA
(methyl methacrylate/polymethyl methacrylate) was used for
EBL to prepare the resist pattern on the continuous Py film.
Finally, argon ion milling was carried out for 6 min at a base
pressure of ∼1 × 10−4 Torr and beam current of ∼60 mA to
etch out the Py film from everywhere except the unexposed
resist pattern to create the triangular-shaped antidots.

B. Time-resolved magneto-optical Kerr effect measurement

The ultrafast magnetization dynamics of the samples was
measured by a custom-built time-resolved magneto-optical
Kerr effect (TR-MOKE) microscope based upon a two-
color collinear pump-probe setup [50]. A small part of the
fundamental laser output (λ = 800 nm, fluence = 2 mJ/cm2,
pulse width ∼80 fs, spot size ∼800 nm) generated from a
mode-locked Ti-sapphire laser (Tsunami, Spectra Physics)
was exploited to probe the magnetization dynamics of the
sample. Another part of this fundamental laser output was
frequency doubled (λ = 400 nm, fluence = 20 mJ/cm2, pulse
width ∼100 fs, spot size ∼1 μm) and was used as the pump
beam to excite the magnetization dynamics of the sample. The
probe beam was time delayed with respect to the pump beam
and both of them fall upon the sample collinearly through a
single microscope objective (MO) with numerical aperture of
0.65. The back-reflected beams from the sample were col-
lected by the same MO. The probe beam was steered to an
optical bridge detector (OBD) after filtering out the pump
beam using a spectral filter. The OBD measures the transient
reflectivity and Kerr rotation by two separate lock-in ampli-
fiers in phase-sensitive manner ensuring no breakthrough of
one into another. The pump beam was modulated at 2-kHz
frequency by a mechanical chopper, the frequency output of
which was used as reference frequency to the lock-in am-
plifiers. The sample was scanned by an x-y-z piezoelectric
scanning stage to position the pump and probe beams at the
desired location of the ADLs. This gives high stability to
the sample in the presence of feedback loops. An external
magnetic field was applied at a small angle (∼10◦) from the
sample plane, the in-plane component of which is defined
as the bias magnetic field H. We varied the azimuthal angle
(ϕ) of H between 0◦ and 180◦ during the measurement. The
measurement geometry is schematically depicted in Fig. 1(c).

C. Micromagnetic simulations

The experimental data have been reproduced by finite-
difference method (FDM) based micromagnetic simula-
tions using the Object Oriented Micromagnetic Framework
(OOMMF) software [51], considering arrays of 7 × 7 antidots
for each sample to take care of the long-range magnetostatic
interaction. To validate these simulation results we have also
performed test simulations on the square and octagonal lat-
tice after application of two-dimensional periodic boundary
condition (2D-PBC). The test simulation results for a particu-
lar lattice constant (a = 400 nm) with 2D-PBC are presented
in Fig. S1 of the Supplemental Material [52]. The simula-
tions with and without application of 2D-PBC show nearly
identical results. Each sample was discretized into rectangu-

lar prismlike cells with dimensions of 4 × 4 × 20 nm3, with
the lateral cell size kept well below the exchange length
of Py (≈5.2 nm) to include the exchange interaction ef-
fect. The shapes of the triangular antidots with the actual
edge roughness were derived from the SEM images. The
magnetic parameters used in the simulations were exchange
stiffness constant A = 1.3 × 10−6 erg/cm, saturation magne-
tization Ms = 860 emu/cm3, damping coefficient α = 0.008,
gyromagnetic ratio γ = 17.6 MHz/Oe, and the magnetocrys-
talline anisotropy constant K = 0. Here, Ms, γ , and K were
extracted from the Kittel fit of the bias-field dependent pre-
cession frequency of a 20-nm-thick Py blanket film deposited
under the same condition as the ADLs, while A was obtained
from the literature [53]. The dynamic simulations were carried
out by first obtaining a static magnetic configuration under a
bias magnetic field in the experimental geometry and subse-
quently applying a pulsed magnetic field with peak magnitude
of 30 Oe, rise/fall time of 10 ps, and pulse duration of 20 ps
over the whole array. For understanding the spatial nature of
the observed SW modes, we further calculated the power and
phase maps of these SW modes using a homebuilt MATLAB-
based code named “DOTMAG” [54].

III. RESULTS AND DISCUSSION

Figures 1(d) and 1(e) show the representative time-
resolved Kerr rotation traces of the square and octagonal
lattice, respectively, with d = 200 nm and a = 400 nm with
in-plane bias magnetic field H = 1.0 kOe at ϕ = 0◦. The
curves reveal three important temporal regimes. Regime I
corresponds to the ultrafast demagnetization (τM) due to the
incoherent interaction after the pump pulse excites the elec-
trons and the spin subsystems [55]. In regimes II and III, a fast
relaxation (s1) followed by a slow relaxation (s2) occur due to
the relaxation of electron and spin energies to the lattice (s1),
followed by the relaxation of lattice energy to the substrate
and the surroundings (s2) [56,57]. The damped precessional
oscillation is superimposed on the slow relaxation process.
We have further performed high-resolution time-resolved Kerr
rotation measurements for about 3 ps from the zero delay with
25-fs temporal resolution and fitted the data with the phe-
nomenological three-temperature model [58]. This accounts
for the energy redistribution among electron, spin, and the
lattice subsystems after the absorption of the laser by the elec-
tronic system, leading to an increase in the spin temperature,
causing a loss of magnetization. The expression is

−�M

M
=

{[
A1

(1 + t/τ0)1/2 − A2τE − A1τM

τE − τM
e−(t/τM )

− τE (A1 − A2)

τE − τM
e−(t/τE )

]
H (t ) + A3δ(t )

}
⊗ G(t ).

Here, A1 represents the amplitude of magnetization after
equilibrium between electron, spin, and lattice is restored, A2

is proportional to the maximum rise in the electronic temper-
ature and A3 represents the state filling effects. H (t ) is the
Heaviside step function, δ(t ) is the Dirac delta function, and
G(t ) is a Gaussian function which corresponds to the laser
pulse. From the fit we have obtained τM = 209 ± 4 fs and

064402-3



DE, DUTTA, MONDAL, BARMAN, OTANI, AND BARMAN PHYSICAL REVIEW B 103, 064402 (2021)

FIG. 2. The FFT power spectra of the experimental background
subtracted time-resolved Kerr rotation data (left panel) along with the
simulated spectra (right panel) obtained for (a) the square and (b) the
octagonal lattice at H = 1.0 kOe and ϕ = 0◦. The lattice constants
are mentioned at the right-hand side of each panel. The gray shade
indicates the maximum width of the SW band for a = 400 nm.

226 ± 6 fs, and s1 = 962 ± 10 fs and 955 ± 9 fs for the square
and octagonal lattices with a = 400 nm, respectively.

A. Variation of spin-wave dynamics with lattice constant

Figure 2(a) shows the fast Fourier transformed (FFT)
power spectra of background-subtracted experimental time-
resolved Kerr rotation data for the ADLs arranged in square
symmetry with varying a, taken at H = 1.0 kOe and ϕ = 0◦.
The square lattice with a = 400 nm shows a rich band of
three SW modes, namely *, �, and # with frequencies rang-
ing from 7.8 to 13.4 GHz. Out of these three modes, the
lowest-frequency mode has relatively higher power. With the
increase of a to 500 nm, we observe a frequency upshift of
the modes * and � and a frequency downshift of the mode
#. As a consequence, the width of the SW band reduces. The
power of the intermediate frequency mode � also decreases
with the increase of a. For a = 600 nm, the mode � disap-
pears, leaving only two modes. With further increase of a
to 700 nm, the frequency gap between the modes * and #
decreases further and the width of the SW band is reduced
further to be around 9.5 and 11.1 GHz. Figure 2(b) shows the
simulated SW spectra for the square lattice in good agreement
with the experimental SW spectra except for the peak width,
the relative mode intensities, and peak frequencies. The slight
disagreements between the experimental and simulated modes
can be attributed to the difficulty in precise accounting for the
detailed roughness and edge deformation of the real samples
in the FDM-based micromagnetic simulations, which may
give rise to complex demagnetizing regions at the edges and
rounded corners of the triangular antidots. The disagreement
may also arise due to the limitation in total time window
to ∼2 ns taken during the experiment, while the simulated
spectra are obtained for 4 ns.

Figures 2(c) and 2(d) show the experimental and simulated
SW spectra, respectively, for the ADLs arranged in octagonal
symmetry with varying a, taken at H = 1.0 kOe and ϕ = 0◦.
Three clear SW modes, namely *, �, and #, are observed
for the densest sample with a = 400 nm. Out of these, the
intermediate frequency mode � has the highest power. With

FIG. 3. Variation of SW mode frequencies of (a) the square and
(b) the octagonal lattice with lattice constant (a). The solid symbols
correspond to the experimental SW mode frequencies and the dashed
lines represent the simulated frequencies.

the increase in a (500 nm), the highest-frequency mode # un-
dergoes a frequency downshift and merges with the � mode at
a = 600 nm. The mode * also undergoes a frequency upshift
with the increase in a. With further increase in a, the mode
* merges with the mode �, leaving only a single mode at
a = 700 nm.

Figure 3 shows the variation of the SW mode frequencies
for the square and the octagonal lattice as a function of a.
Figure 3(a) reveals that with the increase in a, the intermediate
frequency mode � of the square lattice disappears and the
frequency gap between the modes * and # decreases, leading
to an overall reduction of the width of the SW band. On the
contrary, for the octagonal lattice [Fig. 3(b)], we observe a
merger of both * and # modes with the intermediate frequency
mode � with the increase of a.

B. Micromagnetic analysis of the spin-wave mode profiles

Figure 4 shows the power and phase profiles of the SW
modes for the ADLs arranged in the square and the octago-
nal symmetry with varying a, calculated at H = 1.0 kOe and
ϕ = 0◦. We observe different types of extended and quantized
standing SW modes for both the lattices due to the forma-
tion of confining potentials by the asymmetric demagnetizing
regions around the triangular antidots. Different quantization
numbers either in the backward-volume (BV) geometry or in
the Damon-Eshbach (DE) geometry are assigned to the SW
modes depending upon the number of antinodes.

Figures 4(a) and 4(b) show the power and phase profiles,
respectively, for the SW modes of the square lattice. In order
to maintain the uniformity in describing the nature of the
observed standing SW modes, we have assigned quantization
number n for the modes forming standing waves in the region
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FIG. 4. Simulated power and phase maps of different SW modes obtained at H = 1.0 kOe applied at ϕ = 0◦, for the ADLs. The color bars
are shown inside the figure. (a) Power and (b) phase profiles for the square lattice and (c) power and (d) phase profiles for the octagonal lattice
with varying a.

between the two consecutive antidots along the y direction.
It is evident that the mode * for the square lattice with
a = 400 nm has an extended nature between the neighboring
antidot rows along the x direction, i.e., in the DE geometry.
The mode � also extends through the channel while forming
a standing-wave pattern with n = 3 between two consecutive
antidot rows. For these two modes negligible power outside
the channels is observed. The mode # forms a criss-cross-like
pattern with an even quantization number (n = 4).

It is worth mentioning that inside the channels between the
neighboring antidot rows in the x direction, the potential is not
symmetric due to the occurrence of base of a triangle on one
side and vertex of another triangle on the other side. Gener-
ally, in a symmetric potential, odd modes (with odd number
of nodal planes) are observed, whereas asymmetric potential
can accommodate even modes too [59]. For a = 500 nm, the
mode * has an extended nature in the DE geometry along
the channels between the neighboring antidot rows along the
x direction with a mixed BV nature with n = 2. The mode
� has n = 5, whereas the mode # is again a criss-cross-like
mode with n = 6. The mode * has a similar mixed DE-BV
nature along the channels with n = 2 and 3 for both a = 600
and 700 nm, respectively. On the other hand, mode # shows
criss-cross-like nature with n = 7 and 3 for a = 600 and
700 nm, respectively. It is to be noted that power of mode #
is located both in the channels and the space between the two
consecutive antidots along the x direction. Notably the spatial
uniformity of the power of mode # increases with the increase
in a, while the phase profile indicates a gradual conversion
from a more quantized mode to a more uniform mode with

the increase in a. This may explain the gradual decrease in
the frequency of mode #, which eventually approaches that of
mode *.

The power and phase profiles of the SW modes for the
octagonal lattice are presented in Figs. 4(c) and 4(d). In this
case, depending upon the confinement region of the SWs, two
different quantization numbers, m and n, are assigned. The
quantization of SWs along the y direction inside the octagonal
unit defined by the black octagonal box is represented by m,
while the quantization of the SWs along the y direction inside
the rhombic unit between two such consecutive octagonal
units defined by the black rhombic box is represented by n.
The modes are generally localized but some modes extend
through the available channels in between the neighboring
antidots. The mode numbers (m, n) for the mode * are (5, 3),
(6, 3) and (7, 4) for a = 400, 500, and 600 nm, respectively.
Due to the asymmetric potential and the complex lattice ge-
ometry, the width of this mode is modulated along the channel
in the x direction. The mode � has (m, n) of (11, 5), (11,
5), (9, 6), and (7, 4) for a = 400, 500, 600, and 700 nm,
respectively. The mode # has (m, n) of (19, 7) and (15, 3) for
a = 400 and 500 nm, respectively. Both the � and # modes
form complex criss-cross pattern both within the octagonal
and rhombic units. With the increase in a, the quantization
number of mode # decreases inside the octagonal unit, while
it transforms from highly quantized to nearly uniform mode in
the rhombic unit. This may explain the decrease in frequency
of this mode with the increase in a. The phase profiles of the
� mode also become more uniform with the increase in a. The
spatial power profiles of these two modes also become more
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FIG. 5. Variation of SW frequencies with the azimuthal angle (ϕ) of H varying from 0◦ to 180◦ for (a) the square and (b) the octagonal
lattice symmetry with a = 400 nm at H = 1.0 kOe. The solid symbols represent the experimental data points and the hollow symbols represent
the simulated data points. The solid lines describe the sinusoidal fits for the observed anisotropic SW modes. Simulated power profiles of the
SW modes for (c) the square and (d) the octagonal lattice symmetry with a = 400 nm at some specific values of ϕ. The color bar is shown
inside the figure.

uniform. Consequently, their frequencies decrease and seem
to approach that of mode *.

For the ADL with square symmetry, the lowest-frequency
mode *, having an extended nature through the nanochan-
nels, possesses the highest power. This is attributed to the
fact that SW extension through the nanochannels within the
neighboring antidot rows occurs most naturally for the square
lattice. On the contrary, SW localization within the octagonal
and rhombic units occurs most naturally for the octagonal
lattice due to the scarcity of nanochannels allowing the SW
propagation. Consequently, the intermediate frequency mode
� having more localized nature appears with highest power
as opposed to the lower or higher-frequency modes.

C. Anisotropic variation of the spin-wave modes

To investigate the SW anisotropy in these samples, we
have measured the SW dynamics of the square and octagonal
lattices (a = 400 nm), by varying the azimuthal angle (ϕ) of
the bias magnetic field at a fixed strength of H = 1.0 kOe. The
bias magnetic field (H) dependence of the SW frequencies
at ϕ = 0◦ and the experimental and simulated FFT power
spectra at different values of ϕ for these samples are pre-
sented in Figs. S2 and S3, respectively, of the Supplemental
Material [52]. The angular dispersions of the precessional
frequencies of different SW modes as a function of ϕ varying
from 0◦ to 180◦ for the square lattice are shown in Fig. 5(a).
The solid symbols represent the experimental frequencies, the

hollow symbols represent the simulated frequencies, while
the solid lines correspond to the theoretical fits using har-
monic functions with different rotational symmetries. It is
clear that while the * and � modes appear for almost all
values of ϕ, the # mode shows a discontinuous angular dis-
persion appearing only for 0◦ � ϕ � 25◦ and 55◦ � ϕ � 90◦
and disappearing in between. The modes *, �, and # ex-
hibit a stronger fourfold anisotropy superposed with a weaker
threefold anisotropy, while the rotational anisotropy of the
highest-frequency mode (#) is in opposite phase with the
other two modes. A combination of triangular-shaped anti-
dots arranged on square lattice symmetry gives rise to the
observed three- and fourfold rotational anisotropy in the SW
frequencies of these modes. The anisotropic behavior of the
frequency of mode * of the octagonal lattice is shown in
Fig. 5(b). The mode * possesses a superposition of strong
eightfold and weak threefold anisotropies. The other modes
do not exhibit any specific anisotropic behavior. The eightfold
rotational anisotropy arises from the octagonal lattice symme-
try, whereas the weak threefold anisotropy arises due to the
triangular shape of the antidots. The eightfold symmetry is
a signature of the quasiperiodicity of the octagonal lattice as
reported before [49].

The power profiles of the SW modes for the square and
octagonal lattice are shown in Figs. 5(c) and 5(d), respec-
tively. The mode * for both the lattices undergoes significant
modification with the variation of ϕ. This mode for the
square lattice, having an extended nature at ϕ = 0◦, converts
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FIG. 6. Magnetization maps for the square lattice with (a) a =
400 nm and (b) a = 700 nm. Contour plots of the simulated internal-
field distributions for the square lattice with (c) a = 400 nm and (d)
a = 700 nm. The corresponding color maps and the schematic of H
are shown at the bottom of the figure. (e) Line scans of the simulated
internal field (Bin) of the two lattices taken along the dotted lines as
shown in (c) and (d). The values of a are mentioned in the figure. (f)
The variation of Bin with a.

into quasiextended and localized modes for the intermediate
angle before converting back to a flipped extended mode for
ϕ = 90◦. This behavior is repeated periodically in consonance
with the observed fourfold rotational anisotropy of this mode.
For the octagonal lattice, the mode * also exhibits SW mode
conversion between extended and quasiextended modes hav-
ing extended nature at 0◦, 45◦, and 90◦. This behavior is
again repeated periodically in consonance with the observed
eightfold rotational anisotropy of this mode.

The mode � shows extended nature for ϕ = 0◦ and 90◦,
while being purely localized at 45◦ in the square lattice. How-
ever, this mode shows a peculiar behavior in the octagonal
lattice, being extended at 45◦ and 90◦, while being localized

at 0◦. Apparently, this is due to the lack of channel formation
due to the demagnetizing field around the triangular holes
at 0◦. The criss-cross-like mode # also shows a mode con-
version between extended (0◦ and 90◦) and localized modes
(intermediate angles) in square lattice but no apparent mode
conversion is observed in the octagonal lattice for this mode.
For both square and octagonal symmetries, a new mode ◦ ap-
pears in the lower-frequency regime at some specific values of
ϕ, with its power primarily concentrated at the sharp corners
of the triangular antidots. This mode appears mainly due to
the asymmetric demagnetizing regions around the triangular
antidots and does not show any specific anisotropic behavior.
The appearance of such lower-frequency edge-localized mode
in triangular antidots has been reported earlier [60].

D. Magnetostatic field distribution

In order to gain more insights into the variation of the
SW modes with varying a in these ADLs with square and
octagonal symmetry, we have calculated the magnetization
maps and the magnetostatic field distributions of these lattices
using the LLG micromagnetics simulator [61]. The magneti-
zation maps (domain plot) around the triangular antidots for
the square lattice with different a, at H = 1.0 kOe are shown
in Figs. 6(a) and 6(b), whereas the contour plots of simulated
internal field distributions are shown in Figs. 6(c) and 6(d).
The internal-field lines around the antidots clearly indicate an
asymmetric potential across the channel of extension of the
SWs. The demagnetizing regions, as well as the density of
field lines around the antidots reduce with the increase in a.
The internal field strengths (Bin) are obtained by taking line
scans along the dashed lines in the y direction as shown in
Figs. 6(c) and 6(d). Figure 6(e) shows the variation of Bin with
distance for a = 400 and 700 nm. It is evident from Fig. 6(f)
that Bin increases significantly from ∼9.6 to ∼10.7 kOe with
the increase in a within the channels of SW extension due
to the systematic decrease in the overlapping between the
demagnetizing fields around the antidots. The increase in Bin

FIG. 7. Magnetization maps for the octagonal lattice with (a) a = 400 nm and (b) a = 700 nm. Contour plots of the simulated internal-field
distributions for the octagonal lattice with (c) a = 400 nm and (d) a = 700 nm. The corresponding color maps and the schematic of H are shown
at the bottom of the figure. Line scans of the simulated internal field (Bin) for (e) a = 400 nm and (f) a = 700 nm taken along the black dotted
lines as shown in (c) and (d). (g) The variation of Bin with a, at three different regions as shown by black boxes in (d).
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with a is responsible for the similar increase in the frequencies
of modes * and � with a as observed in Fig. 3(a).

We have further investigated the magnetization maps
[Figs. 7(a) and 7(b)] and the contour plots of simulated
internal-field distributions [Figs. 7(c) and 7(d)] for the oc-
tagonal lattice for different values of a, at H = 1.0 kOe. We
have calculated the Bin by taking line scans in different region
of the lattice as shown in Figs. 7(c) and 7(d). It is evident
from Fig. 7(e) that for the densest octagonal lattice with a =
400 nm, Bin is significantly lower (∼9.3 kOe) in region 1 as
compared to the regions 2 (∼10.5 kOe) and 3 (∼10.3 kOe).
This prominent modification in Bin arises from the overlap-
ping of complex demagnetizing field in this dense lattice
having different magnetic environment in different regions
stemming from its octagonal symmetry as well as triangular
holes. However, due to the decrease in the overall effective
demagnetizing fields, Bin increases with a, and becomes iden-
tical in all three regions [Fig. 7(f)] at a = 700 nm, leading
towards the merging of the three modes *, �, and # to a
single mode for a = 700 nm. The variations of Bin with a in
all three regions of the octagonal lattice are shown in Fig. 7(g).
The sharp increase in Bin with a in region 1 (channel) is
responsible for the increase in frequency of the mode * with a.
On the contrary, Bin increases very gently with a inside region
2 (rhombic unit) and remains nearly constant inside region 3
(octagonal unit). This might be responsible for the negligible
variation of the frequency of mode � with a.

IV. SUMMARY

In summary, we have studied antidot magnonic crystals
with complex geometry in the form of octagonal lattice
with a triangular-shaped basis lacking reflection symmetry

and compared its SW dynamics with that of a square lat-
tice. Rich multimodal SW spectra are obtained for the most
densely packed lattice, whereas the number of SW modes
reduces systematically with the increase in lattice constant
approaching towards a nearly thin-film-like behavior due to
the reduction of the demagnetizing field around the antidots
in both lattice symmetries. A combination of the triangular-
shaped antidots arranged in octagonal symmetry exhibits a
strong eightfold anisotropy superposed with a weak threefold
anisotropy, whereas a strong fourfold anisotropy superposed
with a weak threefold anisotropy is observed in the square
lattice. The experimental observations have been reproduced
by micromagnetic simulations and the spatial profiles of the
anisotropic SW modes unveiled mode conversion between
extended, quasiextended, and quantized standing SW modes
with the variation of in-plane bias magnetic field orientation,
along with the appearance of some localized edge modes
at some specific bias magnetic field orientation due to the
presence of the sharp triangular corners of the antidots. The in-
ternal fields including the demagnetization field distributions
interpret the origin of the observed SW modes. Our findings
offer opportunities in magnonic crystals with complex ge-
ometry that are expected to provide exotic SW propagation
properties to pave the way for the advancement of repro-
grammable magnonics.
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