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Viscous flow and self-diffusion in densely and loosely packed metallic melts
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The Ni self-diffusion, density, and viscosity of the densely packed liquid Ni66.7B33.3 and the more loosely
packed liquid Ge66.7Ni33.3 were measured with high accuracy using different experimental methods. The
viscosity η was obtained using the oscillating-drop method combined with electrostatic levitation and the
oscillating-cup technique in a rheometer. The Ni self-diffusion coefficient DNi was obtained from quasielastic
neutron scattering experiments. For Ni66.7B33.3, it was found that the activation energies for self-diffusion and
viscous flow, ED and Eη, respectively, are almost equal. Hence, the product of the viscosity η and self-diffusion
coefficient D is fairly constant over the entire temperature range measured, spanning almost 800 K. In contrast,
for Ge66.7Ni33.3, Dη increases with increasing temperature, indicating that the dynamics in liquid Ge66.7Ni33.3

shows better agreement with an activated process. This temperature dependence is in line with the Stokes-
Einstein relation.
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I. INDRODUCTION

One question central to the topic of liquids is whether,
and to what degree, the transport processes on macroscopic
length scales can be understood and explained by microscopic
processes. To answer this question, it is of fundamental impor-
tance to study and understand dynamical properties of liquids,
such as self-diffusion and viscosity. In general, self-diffusion
describes a single-particle diffusive transport. The viscosity,
on the other hand, describes the macroscopic transport of
momentum by the collective motion of different particles in
a liquid. In liquids, the phenomenological Stokes-Einstein
relation (SER) [1] is often used to determine the diffusion
coefficient D of the liquid from its shear viscosity η:

Dη = kBT

cπrH
, (1)

where rH is the hydrodynamic radius, T is the temperature,
and kB = 1.38 × 10−23 J/K is the Boltzmann constant. c is
a constant which has a value of 4 or 6 depending on slip
or stick boundary conditions between the diffusing particle
and the surrounding liquid [2]. If c = 4, Eq. (1) is called the
Sutherland-Einstein relation (SuER) [3].

The SER is based on a rather simple model of one meso-
scopic sphere immersed in a fluid with viscosity η but has
been widely applied to derive D from η in liquids or vice
versa [4–6]. This is particularly important where experimental
difficulties occur (e.g., buoyancy-driven convection or chemi-
cal reactivity of the liquids with the crucible material), so that
no reliable measurements for accurate diffusion or viscosity
data exist. Here, the question is whether and under which
conditions Eq. (1) still provides an applicable description of
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the relation between D and η if the size of the diffusing
particle is generally on the order of that of the surrounding
molecules/atoms of the medium. In organic liquids like ben-
zol [7,8], tetramethylsilane [7,8], and methanol [9] and also
in some metallic liquids [10,11] the SER was shown to be
applicable within a factor of 2.

Many other studies [11–23], however, show that the SER
deviates from the correlation observed between D and η. Its
failure has often been attributed to so-called dynamical het-
erogeneity and is generally observed for deeply undercooled
melts at low temperatures close to the glass transition tem-
perature. In the case of dynamical heterogeneity, either the
diffusion of the different components proceeds with different
speeds [11], or there are different regions or domains in a
liquid that exhibit different dynamics. For certain multicom-
ponent metallic glass-forming melts, for instance, dynamical
heterogeneity results in a melt viscosity that is dominated by
the slowest-moving species [11], resulting in a fractional SER
Dη ∝ T α .

Furthermore, there are also deviations from the SER
at much higher temperatures, even far above the liq-
uidus [12–16,23]. In Zr64Ni36 it has been experimentally
observed over a broad temperature range spanning more than
800 K that Dη = const [12], in contrast to the SER, where
Dη ∝ T . The observed deviation of liquid Zr64Ni36 from
the SER cannot be explained by dynamical heterogeneity,
as the diffusion coefficients of Zr and Ni were found to be
equal within the experimental error [24]. This is, on the other
hand, in line with the prediction of mode coupling theory
(MCT) [25], where collective motions of diffusing particles
are expected in densely packed melts [26]. Thus, the high
atomic packing fraction of liquid Zr64Ni36 may be suggested
as the reason for the violation of the SER, as the assumption
of uncorrelated motion of the individual diffusing particles is
no longer valid.
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The onset of cooperative motion was also related recently
to the deviation from Arrhenius-like melt dynamics in densely
packed liquids at a characteristic temperature TA [23,27–29]
correlated strongly with the glass transition temperature Tg.
This raises the question of whether the validity of the SER
is generally related to the collectivity and the temperature
dependence of the melt dynamics. Here, it appears that the
packing fraction of the liquid is a key parameter. In order
to investigate this in more depth, we performed accurate
measurements of Ni66.7B33.3 and Ge66.7Ni33.3, which have
considerably different packing fractions.

II. EXPERIMENTAL DETAILS

Packing fractions of Ni66.7B33.3 and Ge66.7Ni33.3 were cal-
culated from the macroscopic density, which was measured
with the containerless investigation technique of electro-
static levitation (ESL) [30,31]. The investigated sample was
levitated in an electrostatic field under high vacuum (<
10−7 mbar). Contactless heating and melting of the sam-
ple were achieved by two 25-W diode lasers (810 nm).
The sample temperature was measured without contact by a
single-color pyrometer with a wavelength of 1450 to 1800 nm,
enabling temperature measurements between 300 ◦C and
2000 ◦C. Assuming that the emissivity is constant over the
entire investigated temperature range, a correction of temper-
ature was calculated from the liquidus temperature TDSC,liq,
which was measured using a differential scanning experi-
ment (DSC) with a heating/cooling rate of 10 K/min. We
calculated the corrected temperature Tcorr as follows: Tcorr =
(T −1

pyro + T −1
DSC,liq − T −1

pyro,liq)−1. Here, Tpyro and Tpyro,liq are the
sample temperature and the liquidus temperature observed on
the pyrometer, respectively.

To determine the density, the levitated sample is illu-
minated from one side, and its shadow is recorded by
a high-resolution camera with a frame rate of 250 Hz.
An image-processing algorithm calculates the temperature-
dependent sample volume from the edge curve of the sample
profile under the assumption that, on average, the sample is
symmetric with respect to its vertical axis. The duration of
one density measurement was around 20 s. With knowledge
of the sample mass (50 mg for Ni66.7B33.3 and 25 mg for
Ge66.7Ni33.3), the temperature-dependent density could be de-
termined with an overall uncertainty of �ρ

ρ
< 1.7%.

Conventional techniques used for measuring the viscosity
of liquids are container based, which are well suited to chem-
ically inert liquids [30]. However, due to the high melting
temperatures and the chemical reactivities of metallic melts,
the measured data become unreliable when reactions occur
between the melt and the container [30]. The nature and extent
of the sample-container reaction depend on the temperature
and the combination of the sample/crucible materials used for
the measurement [32].

Containerless investigation techniques, such as levitation,
circumvent this problem. ESL [30,31] in combination with
the oscillating-drop method (ODM) [30,33] is one contain-
erless technique used to measure the viscosity of levitated
liquid droplets. With this method, accurate viscosity data can
be obtained as long as a single oscillation mode dominates
the viscous damping on an excited droplet [33]. Heintzmann

FIG. 1. Change in the vertical radius rz(t ) normalized to the
radius of the damped, spherical sample r0 versus time t at 1458 K
(black symbols). The red solid line is a fit of the data according to a
damped sinus oscillation [12].

et al. [33] showed for Zr64Ni36 that this is the case for data in
the viscosity range of 10 to 250 mPa s using sample masses
below 100 mg [33], where the measurement results show no
dependence on the sample mass. In this work, the experi-
mental setup for the viscosity measurements was the same
as that used in the density measurements explained earlier.
For measuring the viscosity of the levitated liquid sample,
an additional sinusoidal voltage with a frequency between
185 and 255 Hz and an amplitude of 1 V to 3 kV was
superimposed on the vertical levitation voltage, inducing an
oscillation of the sample surface. After stopping the induced
excitation, the sample oscillated freely, and the damping of
its surface oscillation was recorded by a high-speed camera.
The typical decay time is smaller than 0.5 s. Sample mass loss
due to evaporation is negligible, as evidenced by weighing the
sample mass before and after experimentation.

Figure 1 shows the damped oscillation of a Ni66.7B33.3

sample with a mass of 30 mg at 1458 K. Fitting the damped
surface oscillation data provides the damping time τ , which
is used to calculate the viscosity of the sample according to
Lamb’s law [34] as

η = ρr2
0

5τ
, (2)

with ρ being the density of the sample and r0 being the sample
radius. Equation (2) is valid for the second oscillation mode.
No additional modes were observed, which was verified by
scrutinizing the Fourier transformed oscillation spectra, which
showed just one single peak at the eigenfrequency of the sam-
ple. Thus, the damping of the liquid sample can be attributed
solely to internal friction and hence the melt viscosity.

Additional measurements were carried out using the
container-based oscillating-cup method (OCM) in a high-
temperature oscillating-cup rheometer. OCM allows viscosity
measurements of Ni66.7B33.3 in a higher temperature range
without the deleterious effects resulting from evaporation of
sample material occurring in ultrahigh-vacuum levitation ex-
periments, which can lead not only to an instability of the
levitating sample but also to non-negligible compositional
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changes in the liquid alloy. The high-temperature oscillating-
cup rheometer, which was used to measure the viscosity
of Ni66.7B33.3 and Ge66.7Ni33.3, is described in detail else-
where [35]. During the experiment, the investigated sample
inside the cylindrical Al2O3 crucible (Ø = 17 mm) is placed
in the center of a high-temperature vacuum furnace composed
of graphite. The sample is heated under an argon atmosphere
of p = 400 mbar. The sample temperature is measured by a
pyrometer (2.0 � λ � 2.7 μm). The liquid sample is excited
into torsional oscillation by an electrical motor. The damping,
which is caused by the internal friction of the oscillating sam-
ple, is then determined by a position-sensitive detector, and
the viscosity of the liquid sample is calculated by using the
Roscoe equation [36,37]. The sample mass of the measured
Ni66.7B33.3 sample was 55.0 g, and that of Ge66.7Ni33.3 was
27.6 g. Postmortem inspection of both samples showed no
reaction with the Al2O3 crucible.

Quasielastic neutron scattering (QENS) probes the dynam-
ics on atomic length and picosecond timescales, which results
in accurate data, unaffected by convective flow. The Ni self-
diffusion coefficients DNi on an absolute scale are obtained
from the incoherent scattering of the Ni atoms present in
the liquid samples [38,39]. To this end, QENS experiments
were carried out at the neutron time-of-flight spectrometer
TOFTOF [40] at the research neutron source Heinz Maier-
Leibnitz (FRM II) of the Technische Universität München.
To prepare the Ni66.7B33.3 sample for the QENS experi-
ments, natB was substituted with the stable isotope 11B due
to its significantly smaller neutron absorption cross section
(σabs = 0.0055 barn [41]) compared to that of natB (σabs =
767.0 barns [41]). The incident neutron wavelength of 7 Å
provides an accessible range of momentum transfer q between
0.2 and 1.6 Å−1 at zero energy transfer. In this q range, the
signal is dominated by incoherent scattering of Ni for both
investigated alloys. With a chopper speed of 6000 rpm the
instrumental energy resolution result is � 70 μeV at the full
width at half maximum. Using the ESL device, the roughly
spherical and electrically charged Ni66.7B33.3 sample with a
mass of 470 mg was levitated and processed in a high-vacuum
atmosphere (< 10−7 mbar). Self-diffusion coefficients DNi

were determined between 1264 and 1495 K for 60 min at
each measurement temperature. Due to the containerless pro-
cessing environment, heterogeneous nucleation resulting from
sample-crucible contact was avoided, and undercoolings of up
to 140 K were achieved.

Like for the viscosity measurement, to avoid a loss of
sample stability in the ESL, DNi of Ni66.7B33.3 and Ge66.7Ni33.3

were obtained in the highest temperature range using a high-
temperature Nb electrical resistance furnace (HTF). In these
experiments, the sample was placed in a cylindrical 0.5-mm
thin-walled Al2O3 container. The liquid Ni66.7B33.3 sample
had a mass of 5 g, a diameter of 5 mm, and a height of
about 30 mm. Measurements on Ni66.7B33.3 were performed
at temperatures between 1413 and 1823 K for anywhere be-
tween 60 and 120 min at each temperature. The cylindrical
Ge66.7Ni33.3 sample with a mass of 3.5 g, a diameter of 5 mm,
and a height of roughly 30 mm was measured at temper-
atures between 1123 and 1393 K, with each measurement
lasting 90 min. Both alloys showed no reaction with the
crucible. To analyze the experimental data the FRIDA [42]

FIG. 2. Dynamic structure factor S(q, ω) of liquid Ni66.7B33.3 at
1593 K and q values of 0.5 and 1.1 Å−1. Solid lines are fits with a
Lorentzian function convoluted with the energy resolution function.
Inset: Inverse relaxation time 1/τ versus q2. The diffusion coefficient
is then derived according to the slope D = 1/τq2.

software was used. The measured time-of-flight spectra were
normalized to a vanadium standard and corrected for detec-
tor efficiency, self-absorption, and container scattering before
final interpolation to constant wave numbers q. Figure 2
shows the resulting spectra of the dynamic structure factor
S(q, ω) of liquid Ni66.7B33.3 at 1593 K. Solid lines are fits of
a Lorentzian function convoluted with the energy resolution
function.

III. RESULTS AND DISCUSSION

The top panel of Fig. 3 shows the density of Ni66.7B33.3 and
Ge66.7Ni33.3 compared to the data of Zr64Ni36 [12].

Using the sample density ρ and the covalent radii ri [43]
of element i, the effective volume packing fraction φ was
calculated using φ = (4π/3

∑
i cir3

i )/[(M/ρ)/NA]. Here, ci

represents the respective concentration of element i in the
alloy. M is the molar mass of the alloy, and NA = 6.022 ×
1023 mol−1is Avogadro’s constant. The results are shown in
the bottom panel of Fig. 3. Ni66.7B33.3 is similar to Zr64Ni36

(0.55 ± 0.002 at Tliq [12]), a dense-packed system with a
packing fraction of 0.52 at its liquidus temperature Tliq =
1398 K [44]. Ge66.7Ni33.3 has a lower packing fraction, which
is in line with the microscopic structure of the melts [45,46].
At the liquidus temperature Tliq = 1035 K [44] the packing
fraction of Ge66.7Ni33.3 φ = 0.43 (see Fig. 3).

The top panel of Fig. 4 shows the temperature-dependent
melt viscosity of Ni66.7B33.3, which increases with decreasing
temperature. The viscosity of Ni66.7B33.3 was obtained in a
temperature range of some 325 K, from ∼1250 to ∼1575 K,
and a viscosity range of 8 to 30 mPa s using the ODM
in combination with ESL. The results are shown in the top
panel of Fig. 4 by red squares. Solid red squares show data
obtained using a sample mass of 30 mg; open red squares
represent data for a 50-mg sample. Measurements for two
different sample masses were carried out in order to exclude
possible systematic errors due to nonlinear droplet oscillations
on the resulting viscosities [12,33,47]. In this work, no sample
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FIG. 3. Top: Density of Ni66.7B33.3 (red squares), Ge66.7Ni33.3

(purple triangles), and Zr64Ni36 [12] (blue diamonds) in depen-
dency of temperature measured by using ESL. Bottom: Packing
fraction of Ni66.7B33.3 (red squares), Ge66.7Ni33.3 (purple triangles),
and Zr64Ni36 [12] (blue diamonds). The solid lines are linear fits.

mass dependence of the derived viscosity (between 30 and
50 mg) via ODM combined with ESL (see Fig. 4, top panel)
is found. Data obtained using the rheometer are shown in
the top panel of Fig. 4 by blue diamonds. Here, the data
cover a temperature range of some 550 K, from ∼1450 to
∼2000 K, and a viscosity range from 4 to 13 mPa s. The
results obtained by the two methods agree within the measure-
ment uncertainties. This supports the conclusion that during
the rheometer experiment no reaction between the sample and
crucible took place and further that we measured accurate
data by using this method since we know that ESL delivers
accurate viscosity data of the best quality. By combining the
results of both methods (ESL and rheometer), it was possible
to measure accurate viscosity data over a wide temperature
range of more than 700 K. The temperature-dependent self-
diffusion coefficients of Ni66.7B33.3 are depicted in the bottom
panel of Fig. 4, showing the expected increase in DNi with
increasing temperature. The results obtained using the two
different sample environments, ESL and HTF, agree within
the measurement uncertainties. By combining measurements
in both sample environments, accurate self-diffusion coeffi-
cients DNi of Ni66.7B33.3 over a broad temperature range of
some 500 K, between 1280 and 1780 K, were obtained.

FIG. 4. Top: Viscosity of Ni66.7B33.3 versus temperature. Blue
diamonds represent η measured with the OCM in the rheometer. The
red squares correspond to data measured for different sample masses
using the ODM in combination with ESL. Solid red squares show
data obtained using a sample mass of 30 mg; open red squares repre-
sent data for a 50-mg sample. Bottom: Ni self-diffusion coefficient of
Ni66.7B33.3 versus temperature. Red squares show data obtained using
ESL; blue diamonds show data using the Nb electrical resistance
furnace.

Figure 5 displays the viscosity and diffusion data
of Ni66.7B33.3 and Ge66.7Ni33.3, compared with those of
Zr64Ni36 [12]. The viscosity of Ge66.7Ni33.3 is, in contrast to
the viscosity of Ni66.7B33.3 and Zr64Ni36 [12], 4 times smaller
at the same temperature, whereas Ni66.7B33.3 and Zr64Ni36

show similar viscosities at the same temperature. A similar
qualitative trend is observed for the Ni self-diffusion coef-
ficient (top panel), where the Ni self-diffusion coefficient of
Ge66.7Ni33.3 is more than 3 times faster than that of Ni66.7B33.3

and Zr64Ni36 [12] at the same temperature.
Temperature-dependent dynamics over a large temperature

range are known to deviate from Arrhenius-like behavior. This
was already observed for Zr64Ni36 [12,31]. In Fig. 5, we fitted
the data (blue diamonds) with the power law [48] of MCT
(blue solid lines), which is

η(T ) = η0

(T − Tc

Tc

)γ

. (3)
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FIG. 5. Top: Ni self-diffusion coefficients of Ni66.7B33.3 (red
squares) and Ge66.7Ni33.3 (purple triangles) as a function of tempera-
ture in comparison with the Ni self-diffusion coefficient of Zr64Ni36

(blue diamonds) [12]. Bottom: Viscosity of Ni66.7B33.3 (red squares),
Ge66.7Ni33.3 (purple triangles), and Zr64Ni36 [12] (blue diamonds).
The blue and red solid lines are corresponding fits of the power law;
the purple solid line and the red dashed line are fits of Arrhenius’s
law.

Here, η0 describes a scaling factor, and Tc and γ are the
critical temperature and the critical exponent of MCT, which
are material-dependent parameters [25]. The red solid lines in
Fig. 5 correspond to a power-law fit of the data of Ni66.7B33.3

(red squares). The resulting fit parameters are η0 = (2.8 ±
0.1) mPa s, Tc = (1094.3 ± 26.9) K, and γ = (−1.3 ± 0.1),
and for the Ni self-diffusion they are D0 = (4.6 ± 1.1) ×
10−8 m2s−1, Tc = (991.6 ± 79.3) K, and γ = (1.6 ± 0.2).
Red dashed lines correspond to an Arrhenius fit of the data
for Ni66.7B33.3; purple solid lines correspond to an Arrhenius
fit of the data for Ge66.7Ni33.3.

To check the relation between the viscosity and the Ni
self-diffusion in the obtained alloys, the measured viscosity is
multiplied by the fit of DNi. Figure 6 shows Dη as a function
of temperature for Ni66.7B33.3 and Ge66.7Ni33.3, as well as for
Zr64Ni36 for purposes of comparison [12].

The experimental data for Ge66.7Ni33.3 show a temperature-
dependent behavior with the same trend as that predicted by
the SER, with the measured data Dη increasing with increas-
ing temperature (see Fig. 6). Due to the low atomic packing
fraction of liquid Ge66.7Ni33.3, the assumption of uncorrelated
motion of one individual diffusing particle is nearly fulfilled,
which leads to the same temperature-dependent behavior as
predicted by the SER.

For Ni66.7B33.3 the product is (1.7 ± 0.18) × 10−11 J/m
and constant over the entire measured temperature range,
showing the same behavior as Zr64Ni36, with an absolute value
in agreement within the standard measurement error [12]. For
comparison, the SER is also shown in Fig. 6 as a dashed line
with different values of c depending on slip (c = 4) or stick

FIG. 6. DNiη as a function of temperature. Red squares show the
data for Ni66.7B33.3, and purple triangles show data for Ge66.7Ni33.3.
In comparison DNiη of Zr64Ni36 is shown by blue diamonds [12]. The
SER is shown as a dashed line with different values of c [see Eq. (1)],
where the covalent radius of Ni is chosen as the hydrodynamic radius
rNi = rH = 1.15 Å [43]. Solid lines are guides to the eye.

(c = 6) boundary conditions between the diffusing particle
and the surrounding liquid [2] [see Eq. (1)]. The covalent
radius of Ni is, in both cases (c = 4 or 6), chosen to be
hydrodynamic radius rNi = rH = 1.15 Å [43].

In the case of Ni66.7B33.3 and Zr64Ni36 [12] the exper-
imental data are underestimated by more than a factor of
2 when compared to the SER if c = 6. Even by using the
SuER (c = 4), the experimental data can be reproduced only
in the region of ∼1750 K. Above 1750 K the D values for
Ni66.7B33.3 are extrapolated and hence subject to a major un-
certainty. The absolute values of the experimental data cannot
be reproduced over the entire measured temperature range
of some 800 K, the temperature dependence of the experi-
mental data, where Dη = const, is significantly different from
the SER/SuER model prediction (Dη ∝ kBT ; see Fig. 6).
The value of the product Dη is better predicted, particularly
near the liquidus temperature, if, e.g., the Goldschmidt radius
(1.25 Å [44]) is used instead of the covalent radius. How-
ever, the deviation of the temperature-dependent Dη over the
measured temperature range is even larger. Describing the
experimental data with the SER/SuER is possible only when
assuming a temperature-dependent hydrodynamic radius of
Ni, instead of a static, covalent radius. In order to obtain an
accurate description of the experimental data using the SER,
this temperature-dependent radius would have to double in
value in the investigated temperature range—a scenario that
is physically unrealistic. The observation that Dη ≈ const,
in agreement with the prediction of the MCT, has been at-
tributed to a highly collective nature of the atomic motion in
glass-forming liquids [12,15,26]. This appears to be the case
for Zr64Ni36 and Ni66.7B33.3, even at temperatures well above
the critical temperature of MCT, where a dominant structural
relaxation timescale governs both the self-diffusion and the
melt viscosity [49]. Furthermore, molecular dynamics simu-
lations of Zr-Cu by Han and Schober [15] have demonstrated

064206-5



NELL, YANG, EVENSON, AND MEYER PHYSICAL REVIEW B 103, 064206 (2021)

that Dη ≈ const up to a temperature of 200 K above the
liquidus.

The onset of collective dynamics has been also associated
with deviations of the experimental data from Arrhenius-like
behavior at a temperature TA [23,27–29]. For Zr64Ni36 and
Ni66.7B33.3 in the studied temperature range, this occurs at
1300 K [31] and 1350 K (see Fig. 5, red dashed and solid
lines), respectively. However, for both alloys, above and below
this temperature, the relation Dη ≈ const is observed. Taking
this to be an indicator of highly correlated atomic motion, we
find that collective dynamics is present over the entire temper-
ature range of approximately 500 K. That would mean that,
even in the temperature range above TA the melt dynamics
would still exhibit a highly cooperative nature, which is in
agreement with the observation of a vanishing isotope effect
in the PdNiCuP liquid, extending from the undercooled melt
to well above the liquidus temperature [50] .

On the other hand, at even higher temperatures, a fur-
ther question remains as to whether the collectivity of the
dynamics would decrease to such an extent that we would
observe purely single-particle motion. This has been found,
for example, in simulations of Zr-Cu alloys where, well above
the liquidus temperature, the diffusion coefficient was able
to be described by the SER as the loosely packed state is
approached at high temperatures [15]. We compare here the
Ni66.7B33.3 and Ge66.7Ni33.3 melts at temperatures where both
Ni self-diffusion coefficients equal 3 × 10−9 m2 s−1. This
temperature corresponds to 1740 K for Ni66.7B33.3 and 1100 K
for Ge66.7Ni33.3. For Ni66.7B33.3 this temperature still belongs
to the regime where we observe Dη ≈ const.

Therefore, it seems that, as long as the presence of col-
lective dynamics is concerned, the packing fraction is the

more important factor, as Ni66.7B33.3 at 1740 K still exhibits a
considerably higher packing than Ge66.7Ni33.3 (for Ni66.7B33.3

φ ≈ 0.5; for Ge66.7Ni33.3 φ ≈ 0.43), rather than the absolute
scale of the melt dynamics.

IV. CONCLUSION

Through the techniques of ESL, high-temperature rheome-
try, and QENS, we were able to obtain accurate experimental
data for density, viscosity, and self-diffusion of Ni66.7B33.3

and Ge66.7Ni33.3 melts. The measurements enabled investi-
gation of the relationship between viscous flow and atomic
self-diffusion in both densely and loosely packed metallic
melts. The loosely packed Ge66.7Ni33.3 liquid alloy (φ < 0.5)
shows the temperature-dependent trend predicted by the SER.
In contrast, the densely packed liquid alloy Ni66.7B33.3 shows
Dη = const, in contradiction to the SER (Dη ∝ T ) but in line
with a similar densely packed alloy, Zr64Ni36 [12]. In the
case of Ge66.7Ni33.3, we attribute this behavior to the lower
packing fraction of the liquid alloy, whereas, for Ni66.7B33.3,
the relatively high packing fraction necessitates the collective
movement of multiple atomic particles diffusing through the
liquid, thus leading to the observed breakdown in the SER.
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