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We explore correlations of eigenstates around the many-body localization (MBL) transition in their de-
pendence on the energy difference (frequency) ω and disorder W . In addition to the genuine many-body
problem, XXZ spin chain in random field, we consider localization on random regular graphs that serves
as a toy model of the MBL transition. Both models show a very similar behavior. On the localized side of
the transition, the eigenstate correlation function β(ω) shows a power-law enhancement of correlations with
lowering ω; the corresponding exponent depends on W . The correlation between adjacent-in-energy eigenstates
exhibits a maximum at the transition point Wc, visualizing the drift of Wc with increasing system size towards
its thermodynamic-limit value. The correlation function β(ω) is related, via Fourier transformation, to the
Hilbert-space return probability. We discuss measurement of such (and related) eigenstate correlation functions
on state-of-the-art quantum computers and simulators.
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I. INTRODUCTION

The many-body localization (MBL) in disordered interact-
ing systems [1,2] is one of active directions of the modern
condensed-matter physics research (see recent reviews [3,4]).
The MBL is of fundamental importance as it can break er-
godicity and suppress low-temperature transport in a great
variety of complex systems. The prediction of the MBL
transition [1,2] has been corroborated by numerous subse-
quent analytical and computational studies (see, in particular,
Refs. [5–20]). While the MBL can be destabilized in the
thermodynamic limit (system size L → ∞, with other pa-
rameters fixed) due to long-range interactions [21–27], spatial
dimensionality d > 1 [27,28], or continuum character of the
model [29,30], the MBL transition is well defined also in
these cases but with critical disorder Wc(L) depending on the
system size. On the experimental side, the evidence of the
MBL transition was reported and the associated physics was
studied in a variety of structures. These include systems of
cold atoms and ions in optical traps [31–39], of spin defects
in a solid state [40–42,42,43], and of superconducting qubits
[44,45], as well as InO films [46–48].

The MBL can be viewed as an extension of the Anderson
localization [49] from single-particle to many-body setting.
Correspondingly, the MBL transitions are counterparts of
Anderson localization transitions between localized and de-
localized phases [50] of a quantum particle subjected to a
random potential in d > 2 dimensions (or d = 2 for some
symmetry classes). A hallmark of Anderson transitions is the
multifractality of eigenstates [50] that implies strong fluctu-

ations of eigenfunction amplitudes at criticality and around
the transition point, with a nontrivial power-law scaling of
the corresponding moments (inverse participation ratios). Fur-
thermore, the multifractality implicates a complex pattern of
enhancement of correlations between eigenstate amplitudes,
both in the coordinate and the energy spaces [50–53]. To un-
derstand the physics of the MBL, it is of central importance to
explore eigenstate correlations at and around the MBL transi-
tions. This is the main goal of this work. More specifically, we
focus on correlations between eigenstates in the Hilbert space
as a function of energy separation and disorder, the problem
that can be posed very generally, for any spatial structure of
the system. A related but different question was addressed in
Ref. [54] which considered matrix elements of local operators.

To explore the eigenstate correlations, we use two models.
First, we consider the Anderson model on random regular
graphs (RRG), which has emerged as a toy model of MBL.
Second, we study a genuine many-body problem, the XXZ
spin chain in a random field, which has become a paradigmatic
model for the MBL transition.

The RRG are finite-size graphs that have locally treelike
structure with fixed coordination number but do not have
boundary (i.e., have large-scale loops). The structure of these
graphs mimics that of Hamiltonians of interacting systems
in the many-body Hilbert space. The idea that single-particle
models on a tree (Bethe lattice) can be useful for the analysis
of many-body problems was put forward in Ref. [55] in the
context of a quasiparticle decay in a quantum dot. Later work
has demonstrated that one can think about treelike graphs
more generally as approximately modeling the Hilbert-space

2469-9950/2021/103(6)/064204(13) 064204-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8687-1381
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.064204&domain=pdf&date_stamp=2021-02-12
https://doi.org/10.1103/PhysRevB.103.064204


K. S. TIKHONOV AND A. D. MIRLIN PHYSICAL REVIEW B 103, 064204 (2021)

structure of a finite many-body system and that the appropri-
ate graphs are then not Bethe lattices but rather RRG. This
analogy between many-body Hilbert space and the RRG
lattice has led to a recent surge of interest in properties
of delocalized phase of the disordered hopping problem on
RRG [56–66]. The RRG model oversimplifies the many-
body problem by discarding matrix-element correlations in
Hilbert-space states resulting from the fact that the number of
independent parameters in the Hamiltonian is much smaller
than the number of nonzero matrix elements. One impor-
tant consequence is that, in the localized phase, the inverse
participation ratios of eigenstates in the RRG model are of
order unity [64], while in the MBL models they exhibit a
multifractal scaling with respect to the Hilbert-space volume
[9,14,25,67]. Despite this, there are remarkable analogies be-
tween the localization transitions in the RRG and true MBL
models. In particular, in both models (i) the critical point has a
localized character, (ii) there are strong finite-size effects with
a drift of the apparent transition point towards stronger disor-
der, (iii) the “correlation volume” of the Hilbert space grows
exponentially when the transition is approached, (iv) the de-
localized phase is ergodic. For the RRG model these results
have been analytically proven [64] (see also Refs. [68–70]
where a related sparse-random-matrix model was studied)
and numerically verified [58–60,63,64]. For the MBL models,
analytical arguments are of less rigorous character but still
lead to analogous conclusions, in consistency with numerical
simulations (see, in particular, the MBL papers cited above
and references therein). The connection between the Ander-
son model on RRG and the MBL transition is especially close
in models with long-range interaction (decaying as a power
law of distance) (see Ref. [25]).

In view of a close similarity between the RRG and MBL
problems, and since the RRG model is much more amenable
to the analytical treatment, it is advantageous to perform a nu-
merical study in parallel for both models whenever the MBL
observable can also be defined in the RRG problem. This is
exactly the case for the eigenstate correlations studied in this
work. Let us illustrate one of the advantages of using RRG
as a benchmark model. For the RRG model, we know exactly
the position of the thermodynamic-limit transition point Wc

(as well as values of critical exponents and various other
observables) [65]. This allows us to determine the magnitude
of finite-size effects in exact-diagonalization computation,
which turn out to be rather strong. As a result, one gets a
lower bound for finite-size effects in the MBL problem (which
can only be stronger due to additional, rare-event fluctuations
related to a smaller number of independent parameter in MBL
as comparison to RRG).

As an additional motivation for this work, it is worth
pointing out that correlations between many-body eigenstates
can be measured in quantum computers and simulators. In
particular, the eigenstate correlation function β(ω) studied in
this paper (see Sec. II for precise definition) is related via
the Fourier transformation to the probability p(t ) of return
to an initial many-body state after time t . Such probabilities
can be measured in state-of-the-art engineered many-body
systems. Recent examples of experimentally implemented
systems on which related measurements were performed in-
clude one-dimensional (1D) arrays of 53 trapped ions [71]

and 51 atoms [72] as well as 1D and two-dimensional (2D)
arrays of superconducting qubits (with up to 21 qubits) [45].
Furthermore, very recently a quantum processor with 53
superconducting qubits was used to demonstrate the quantum
supremacy [73]. The key observable in this demonstration is
the fidelity defined as a correlation function of two many-body
wave functions (corresponding to the idealized and perturbed
Hamiltonians, respectively). While it is somewhat different
from the quantity we study in this work (correlation function
of two eigenfunctions of the same Hamiltonian with different
energies), Ref. [73] makes evident the importance of Hilbert-
space correlations between many-body wave functions for
quantum-information physics and quantum technologies.

The structure of the paper is as follows. Section II deals
with the eigenstate correlations across the localization tran-
sition in the RRG model. In Sec. III an analogous study is
carried out for the XXZ spin chain. Section IV contains a
summary of our findings as well as a discussion of their
implications and of prospective research directions.

II. RANDOM REGULAR GRAPHS

We study a model of noninteracting spinless quantum
particles hopping over a random regular graph (RRG) with
connectivity p = m + 1 (number of sites adjacent to any given
site) in a potential disorder

H =
∑
〈i, j〉

(c†
i c j + c†

j ci ) +
∑

i

εic
†
i ci. (1)

Here the index i = 1, . . . , N labels sites of the graph and the
sum in the first term is over the pairs of nearest-neighbor sites
of the RRG. The energies εi are independent random variables
sampled from a uniform distribution on [−W/2,W/2]. In the
definition of all correlation functions introduced below, the
averaging 〈. . .〉 goes over the random structure of the under-
lying graph and over the random potential εi.

An important statistical characteristic of a disordered sys-
tem is the correlation of different (but relatively close in
energy) eigenstates with a given energy separation ω. For-
mally, we define the corresponding correlation function as
follows:

β(ω)

= �2R−1(ω)

〈∑
k �=l

|ψk ( j)ψl ( j)|2

× δ
(

E − ω

2
− Ek

)
δ
(

E + ω

2
− El

)〉
. (2)

Here, ψk are eigenstates and Ek the corresponding en-
ergy levels, E is the energy at which the statistics is
studied, � = 1/ν(E )N is the mean level spacing, ν(E ) =
N−1〈Tr δ(E − Ĥ )〉 is the density of states, and R(ω) the level
correlation function

R(ω) = 1

ν2
〈ν(E − ω/2)ν(E + ω/2)〉. (3)

The argument j in Eq. (2) is the lattice site; since all sites are
equivalent, the right-hand side does not actually depend on
j upon ensemble averaging. In the numerical computations
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below, we average also over j. In the sequel, it will be con-
venient to present results for β(ω) multiplied by N2. For two
completely uncorrelated wave functions one has N2β(ω) = 1.

The correlation function β(ω) in the delocalized phase and
at the critical point on RRG has been studied in Ref. [64] with
the following results:

N2β(ω) ∼
{

Nξ , ω < ωξ

1
ω ln3/2 1/ω

, ω > ωξ .
(4)

In this equation, Nξ (which depends on W ) stands for the
correlation volume and ωξ ∼ 1/Nξ for the associated level
spacing. The correlation volume Nξ exhibits on RRG the
following critical behavior when the disorder W approaches
from the delocalized side the critical point Wc [65]:

ln Nξ ∼ (Wc − W )−1/2. (5)

More specifically, for the “minimal”, p = 3, RRG model and
in the center of the band (E = 0), the critical disorder is Wc =
18.17 and the scaling of ln Nξ reads as (with a subleading term
included) [65]

1/ ln Nξ = c1(Wc − W )1/2 + c2(Wc − W )3/2, (6)

where c1 = 0.0313 and c2 = 0.003 69. Equation (6) is valid
with a good accuracy in the range 12 < W < Wc.

Let us briefly comment on the physical significance of
Eq. (4). The first line of this equation describes eigenstate
correlations in the “metallic” regime. The factor Nξ in this
formula implies that the correlations get enhanced when the
system approaches the transition point. This is related to
strong spatial fluctuations (multifractality) of eigenstates near
criticality. Independence of this formula of ω demonstrates
that eigenstates separated by a sufficiently small energy ω <

ωξ exhibit essentially the same “multifractal pattern” (despite
its randomness). The second line of Eq. (4) describes critical
correlations, which is why it does not depend on Nξ . The dis-
tance to the critical point enters only via the range of validity
ω > ωξ . Exactly at critical point, W = Wc, we have ωξ = 0,
so that the second line of Eq. (4) holds in the whole range of
frequencies (limited only by the level spacing � ∼ 1/N).

The goal of this section is to extend the study of the RRG
correlation function β(ω) to the localized phase and thus
to obtain a full description of eigenstate correlations around
the localization transition on RRG. We begin by presenting
qualitative arguments concerning expected behavior of β(ω)
on the localized side of the transition. First, in the limit of very
strong disorder W → ∞, individual eigenstates are essen-
tially localized on different sites and do not overlap. We thus
expect N2β(ω) → 0 in the limit W → ∞. Combining this
with Eq. (4), we conclude that, for a small ω, the correlation
function N2β(ω) should be a nonmonotonic function of W
that shows a maximum in the vicinity of the critical point
W = Wc.

Second, for a given W > Wc, two localized states will be
typically located in remote regions of the system and overlap
very weakly in view of the exponential decay of the local-
ized wave functions. However, there is a certain probability
that two such states turn out to be in resonance, which then
strongly enhances the overlap. The probability of a resonance
is enhanced for small energy separation ω, so that N2β(ω)
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FIG. 1. Eigenstate correlation function β(ω) for RRG with disor-
der strengths W = 10, 12, 14, 18, 24, 30, 42 (from cyan to magenta).
The first three values are on the delocalized side of the transition,
W = 18 is essentially the critical point, and the three largest values
are on the localized side. The system size is N = 32768.

is expected to decay with ω in the localized phase. For the
single-particle problem in d dimensions, this decay was stud-
ied in Ref. [53], with the result

N2β(ω) ∼ ξ d−d2 lnd−1(δξ /ω), ω < δξ (7)

where ξ is the localization length, δξ ∼ ξ−d the level spacing
in the localization volume, and d2 the multifractal exponent. It
was pointed out in Ref. [53] that the logarithmic enhancement
of correlations with lowering ω in Ref. (7) is closely related
to the Mott’s behavior law for the ac conductivity.

What kind of behavior of N2β(ω) can one expect on this
basis in the localized phase on RRG? The RRG model can
be in a certain sense viewed as a d → ∞ limit of the d-
dimensional Anderson model; this limit is, however, highly
singular [64]. Equation (7) suggests that the enhancement of
correlations for small ω on RRG should be faster than a power
of ln ω. It is even more difficult to guess what the dependence
on disorder [encoded in the localization length ξ and the
corresponding spacing δξ in Eq. (7)] transforms into when the
RRG model is considered. As we show below, the eigenstate
correlation function N2β(ω) has a power-law dependence on
ω in the localized phase of the RRG model, with an exponent
that is a function of disorder. We will also see that such a
behavior holds also for a genuine MBL problem.

We have computed β(ω) numerically by exact diagonaliza-
tion of the RRG model with the connectivity p = 3, focusing
on the vicinity of the band center E = 0. We consider system
sizes N in the range from 212 to 216. For each realization of
disorder, we average over N/32 states near the band center. In
addition, we average over disorder realizations; their number
ranges from 50 000 for smaller systems to 50 for the largest
systems.

In Fig. 1 we show the results of exact-diagonalization study
for N = 32 768 and several disorder values ranging from the
delocalized phase (W = 10, 12, 14) through the critical point
(W = 18) to the localized phase W = 24, 30, 42. (Note that
the difference between W = 18 and the exact critical value
Wc = 18.17 is immaterial for system sizes amenable for ex-
act diagonalization.) In the delocalized phase, W = 10, 12,
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FIG. 2. Eigenstate correlations in the localized phase on RRG. The system size is N = 32 768. Left: β(ω) for disorders W = 18 (essentially
the critical point), 24, 30, and 42 (from cyan to magenta). The straight lines on the log-log scale imply a power-law dependence of β(ω) on ω in
the localized phase, with a disorder-dependent exponent μ(W ). Dots show results from the population dynamics for W = 24 (see Supplemental
Material [74] for details); they have the same (blue) color as the corresponding line of exact-diagonalization data. Right: Exponent μ(W )
characterizing the frequency scaling of β(ω) [see Eq. (8)].

and 14, the behavior (4) is clearly observed: the power-law
(1/ω) behavior at high frequencies and a saturation at lower
frequencies. The saturation frequency ωξ becomes smaller
when the disorder increases, i.e., the system approaches the
critical point. At criticality W = 18, the power-law (approxi-
mately 1/ω) behavior is indeed observed in the whole range
of frequencies. Remarkably, the power-law behavior of β(ω)
survives in the localized phase W = 24, 30, and 42, where it
is characterized by a disorder-dependent exponent μ(W ). The
numerical results thus unambiguously suggest the power-law
scaling of eigenstate correlations in the localized phase:

N2β(ω) ∼ ω−μ(W ). (8)

At criticality, μ(W = Wc) = 1, while in the localized phase
W > Wc, the exponent μ(W ) is less than unity and gradually
decreases towards zero as W grows. In Fig. 2, we highlight
the correlation function β(ω) in the localized phase. The right
panel shows the numerically determined exponent μ(W ) ob-
tained from the data presented in the left panel.

It is worth emphasizing that the exponent μ(W ) is, strictly
speaking, defined in the limit of large system size N and low
frequency ω. For finite N there are corrections to an apparent
position of the critical point (that are discussed in more detail
below), which also influence the numerically determined val-
ues of μ(W ). Also, there might be in principle a subleading
(e.g., logarithmic) factor in ω dependence in Eq. (8). We
know that such a logarithmic factor does exist at criticality
[see second line of Eq. (4)]. Its emergence at criticality has a
clear physical reason, as it provides convergence of the time-
dependent correction to return probability (see Ref. [64]). On
the localized side, such a convergence is already guaranteed
by the power-law dependence (8) with μ(W ) < 1, so that we
do not have any arguments in favor of such a factor. Also,
the corresponding lines in the left panel of Fig. 2 are rather
straight (up to fluctuations), without any clear indication of
such a factor. When fitting the numerical data to extract the
exponent μ, we thus assume a pure power-law dependence
(8), without any subleading prefactors.

We turn now to the analytical approach to eigenstate corre-
lations. In Ref. [64], we have shown how various observables
characterizing the RRG model can be expressed in terms of a

solution of a saddle-point equation for the effective action of
the problem. This equation is equivalent to a self-consistency
equation for the distribution of local Green functions on an
infinite Bethe lattice (BL). This is a nonlinear integral equa-
tion, and a full analysis of its solution is by no means an easy
task. In the localized phase, the solution is singular in the
low-frequency limit. Leading contribution to the correlation
function that is needed for our purposes determines proper-
ties of individual eigenstates (e.g., the participation ratio). To
obtain the correlation function of different eigenstates, one
needs a subleading term (see Ref. [64]), which makes the
analysis much more difficult. We first discuss the numerical
solution of the self-consistency equation; below we discuss
an analytical solution in the limit of strong disorder W . To
solve numerically this equation, one can use the population-
dynamics approach (see also Refs. [60,75]). In particular, we
calculated in this way in Ref. [64] the correlation function
β(ω) as well its Fourier transform, the return probability p(t ),
in the delocalized phase and demonstrated perfect agreement
with exact-diagonalization results. Here we demonstrate that
the population-dynamics approach to the solution of the self-
consistency equation can also be used for computing β(ω) on
the localized side, even though it turns out to require much
more efforts.

Determining β(ω) in this way amounts to evaluation of the
correlation function of local densities of states ρ(ε; j) on an
infinite Bethe lattice

K (ω) = 〈ρ(E + ω/2; j)ρ(E − ω/2; j)〉BL

〈ν(E )〉2 , (9)

where

ρ(ε; j) = − 1

π
Im GR( j, j, ε), (10)

and GR( j, j, ε) is the retarded Green function at energy
ε with equal spatial arguments j. Calculation of β(ω) by
population-dynamics approach (see Supplemental Material
[74] for more details) requires introducing a finite imagi-
nary part of frequency ω → ω + iη, evaluation of K (ω) for a
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complex frequency and then considering the limit of η → +0,

N2β(ω) = lim
η→+0

K (ω). (11)

This is rather nontrivial in the localized phase, as taking the
limit requires considering very small values of η. In Fig. S1 of
the Supplemental Material [74], we show the η dependence
of K (ω) for W = 24 and two values of ω as obtained by
population dynamics. It is seen that K (ω) does have a finite
limit at η → 0 but the saturation of η dependence takes place
at very small η. The resulting values of N2β(ω) are shown by
dots in the left panel of Fig. 2 and are in good agreement with
results of the exact diagonalization.

In order to shed light on the physical origin of the power-
law scaling of the correlation function β(ω) in the localized
phase on RRG, we perform its analysis by assuming a limit of
strong disorder W . In this limit, almost every single-particle
state is localized within a small localization length ζ around
a certain lattice site (localization center). Typically, two lo-
calized states are located a distance of order of system size
L = ln N/ ln m apart and have an exponentially small overlap
∝e−L/ζ . However, there are rare resonant events: two states
located far apart may form a resonant pair and strongly hy-
bridize, so that the resulting states will have amplitudes of
order unity at both localization centers. Such a resonant pair
will thus realize the strongest possible overlap and therefore
give a maximal possible contribution to the correlation func-
tion β(ω). Even though such resonance events are rare, they
determine the average value β(ω) in the case of d-dimensional
system with d > 1 (see Ref. [53]). Specifically, the factor
lnd−1(δξ /ω) in Eq. (7) represents resonant enhancement of
eigenstate correlations. Clearly, its role increases with increas-
ing d . More generally, it is known that the role of resonances
is particularly important in the RRG and MBL models, in
view of the effectively infinite-dimensional character of the
corresponding Hilbert space. It is thus natural to expect that
the power-law scaling of β(ω) on RRG can be understood in
the framework of the resonance mechanism. This turns out to
be indeed the case.

To shed light on the origin of the power-law scaling, it
is instructive to make the following simplistic estimate. It is
known that, upon averaging, localized eigenstates on a treelike
graph decay in the following way [64,66,76,77]:

〈|ψ2(r)|〉 ∼ m−r exp{−r/ζ (W )}, (12)

where r is the distance from the “localization center” of
the state and ζ (W ) is the localization length that diverges
at the transition point as ζ (W ) ∼ (W − Wc)−1 and dimin-
ishes slowly at strong disorder ζ (W ) ∼ 1/ ln(W/Wc). While
Eq. (12) yields the average, let us assume that all eigenstates
decay in this way; this will be sufficient to understand the W -
dependent power law in eigenstate correlations. Consider two
such eigenstates separated by a distance R. The correspond-
ing overlap matrix element is then M ∼ m−R exp{−R/ζ (W )}.
The optimal condition of the Mott-type resonance for two
eigenstates with the energy difference ω is M ∼ ω. Under this
condition, two considered eigenstates (let us call them ψk and
ψl ) get strongly hybridized, so that∑

j

|ψk ( j)ψl ( j)|2 ∼ 1. (13)

Expressing the distance between the eigenstate centers
through the frequency, we find

R(ω) 	 ln(1/ω)

ln m + ζ−1(W )
. (14)

The total number of states whose centers are separated by
distance R from that of the state ψk is

NR(ω) ∼ mR(ω) ∼ ω−μ(W ), (15)

where

μ(W ) = ζ (W ) ln m

ζ (W ) ln m + 1
. (16)

The formation of the resonance requires that one of these
states is separated by an energy difference ∼ω from the state
ψk . Thus, the probability pω of the resonance in the frequency
interval [ω, 2ω] involving the given state ψk is equal to a ratio
of the frequency ω to the level spacing ∼N−1

R(ω):

pω ∼ ωNR(ω) ∼ ω1−μ(W ). (17)

Using the definition (2), we get

N2ωβ(ω) ∼ N2
∫ 2ω

ω

dω′β(ω′)

=
∑

l : ω<|Ek−El |<2ω

〈∑
j

|ψk ( j)ψl ( j)|2
〉

∼ ω1−μ(W ). (18)

In the second line of Eq. (18) the state k is fixed; the summa-
tion goes over states l with the energy difference in the [ω, 2ω]
interval. In the last line, we used Eq. (17) for the probability
of a resonance in this interval and Eq. (13) for the resonant
overlap. Comparing the starting and the final expressions in
Eq. (18), we finally come to the result (8) for the scaling of
N2β(ω) with frequency ω, where the exponent μ(ω) is given
by Eq. (16).

Inspecting Eq. (16) for the exponent μ(W ), we find the fol-
lowing asymptotic behavior. When the disorder W approaches
the critical point (from the localized side), Eq. (16) yields

μ(W ) → 1, W → Wc + 0. (19)

This matches the critical scaling β(ω) ∝ 1/ω (up to a loga-
rithmic correction) [see second line of Eq. (4)]. In the opposite
limit of large W , we get, by using the asymptotic behavior of
the localization length,

μ(W ) ∼ 1

ln(W/Wc)
, W � Wc. (20)

Thus, μ(W ) decays to zero at W → ∞ but this decay is loga-
rithmically slow. These results are in good agreement with the
numerical observations presented above.

As we have already mentioned, Eq. (12) describes the
average decay of a wave function. At the same time, wave
functions fluctuate strongly; in particular, decay of the typical
wave-function amplitude is described by a different localiza-
tion length [66]. In the Supplemental Material [74] we present
a more accurate version of the above resonance-counting
analysis, which takes into account strong fluctuations of
eigenstates around the average (12). It confirms the power-law
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FIG. 3. Correlation of adjacent wave functions on RRG. System sizes are N = 4096, 8192, 16 384, 32 768, 65 536 (from cyan to magenta).
Left: Correlation function βnn(W ). Dashed line is the expected asymptotic behavior of N2βnn on the delocalized side [see Eqs. (24) and (6)].
Vertical dotted line marks the critical point of the localization transition Wc = 18.17. Right: Exponent μnn characterizing the N scaling of
adjacent-state correlations [see Eq. (27)]. Dashed line shows theoretically expected N → ∞ behavior [see Eq. (22)] for the delocalized phase
and Eq. (24) for the localized phase (this part of the dashed line is schematic.)

scaling (8) and yields qualitatively the same results for the
behavior of the exponent μ(W ).

It is useful to introduce a correlator that is closely related to
β(ω), a correlation function of adjacent-in-energy eigenstates:

βnn = �

〈∑
k

δ(Ek − E )|ψk ( j)ψk+1( j)|2
〉
. (21)

Here, the subscript “nn” stands for “nearest neighbor” (in
energy space). Clearly, βnn 	 β(ω ∼ �), where � is the level
spacing. Thus, in the delocalized phase and in the large-N
limit (the condition is N � Nξ ) we have

N2βnn = Nξ /3. (22)

The numerical coefficient in this formula depends, of course,
on precise definition of the correlation volume Nξ . The value 1

3
in Eq. (22) holds if this normalization is fixed by the condition
that the average inverse participation ratio of an eigenstate,

P2 =
〈∑

j

|ψk ( j)|4
〉
, (23)

is P2 	 Nξ /N at N � Nξ [64]. In the localized phase, we have,
according to Eq. (8),

N2βnn ∼ Nμ(W ). (24)

In the left panel of Fig. 3, we show results of numerical
simulations for the correlator N2βnn for several system sizes.
For W < Wc, the lines clearly approach a limiting (N → ∞)
curve, in agreement with Eq. (22). According to Eq. (22), this
limiting curve is determined by the disorder dependence of
the correlation volume Nξ (W ). Indeed, we observe a perfect
agreement with the asymptotic behavior of Nξ (W ) given by
Eq. (6) (shown by dashed line). For any given N , the curve
N2βnn(W ) deviates from the limiting curve upon increasing
W since the condition N � Nξ ceases to be satisfied, shows
a maximum at certain size-dependent disorder Wpeak(N ), and
then decays. The nonmonotonic behavior of N2βnn(W ) is
a general feature of a system that undergoes a localization
transition (see qualitative discussion above). The position of
the maximum Wpeak(N ) can be viewed as a size-dependent

apparent critical point which drifts to larger W with growing
system size. In the limit of N → ∞ the drift stops at the
limiting value Wpeak(N → ∞) = Wc 	 18.17.

In Table I, we list the numerically obtained values of
Wpeak(N ) for several system sizes N . The drift towards Wc is
evident but it is rather slow. Looking at these slowly drifting
values, one could naively think that they are close to the
actual value of Wc. This is not true, however: these values are
still rather far from the true critical point. (One indication of
this is absence of a clear trend to saturation.) For the RRG
model, we have a luxury of knowing the true critical point
with a high precision Wc = 18.17, which is obtained by a very
different approach: investigation of stability of the solution
of the saddle-point equation corresponding to the localized
phase [65]. Therefore, the RRG model, as a toy model of
MBL, is very useful for benchmarking exact-diagonalization
studies of MBL problems. We see from Table I that if only
exact-diagonalization data would be available, it would be
very hard to determine the position of the N → ∞ critical
point with a reasonable accuracy. An even more difficult
task for the exact-diagonalization numerics is to find the true
(asymptotic) value of the critical exponent ν of the correlation
length ξ = ln Nξ / ln m. Asymptotically, the drift of the peak
can be characterized by the critical exponent via the scaling
relation

ln ln N = −ν ln [Wc − Wpeak(N )]. (25)

TABLE I. Position Wpeak (N ) of the maximum of N2βnn(W )
curves that can be viewed as an N-dependent apparent critical point.
Upon increasing N , it shows a slow drift towards the limiting (N →
∞) value Wc = 18.17. The lower line of the table shows the “flowing
(N-dependent) critical exponent” extracted from Wpeak (N ) according
to Eq. (26). It evolves to the asymptotic (N → ∞) value ν = 1

2 .

log2 N 12 13 14 15 16 ∞
Wpeak (N ) 13.70 13.78 13.89 14.06 14.28 18.17
ν(N ) 4.31 3.52 2.22 1.42 0.96 1/2
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While this equation is valid in the limit of N → ∞, it is
convenient to introduce an apparent finite-size exponent via

1

ν(N )
= −∂ ln [Wc − Wpeak(N )]

∂ ln ln N
. (26)

The last line of Table I presents values of ν(N ) obtained
by numerical differentiation according to Eq. (26). We see
a strong variation of ν(N ) towards the true asymptotic value
ν = 1

2 [65] [see Eq. (5)]. The fact that the “flowing exponent”
ν(N ) approaches its asymptotic value 1

2 from above, and that
values of N much larger than those amenable to exact diag-
onalization are needed to obtain numerically 1

2 with a good
accuracy, was demonstrated in detail in Ref. [65]. Our findings
are in full agreement with these previous results. It should be
stressed that when calculating ν(N ) in Table I, we used the
high-precision value of the critical disorder Wc = 18.17. For
the MBL problems, Wc is found from numerical simulations
with a much lower precision (see the discussion above), which
further increases uncertainty of numerical determination of
the critical exponent ν.

To characterize the evolution of βnn with the system size,
we define a disorder- and size-dependent exponent:

μnn(W, N ) = ∂ ln (N2βnn)

∂ ln N
. (27)

On the delocalized side, N2βnn is independent on N at large N ,
which implies that μnn(W < Wc, N ) → 0 at N � Nξ (W ). At
the critical point, W = Wc, we have μnn(Wc) → 1 at N → ∞.
On the localized side, Eq. (24) yields μnn(W > Wc, N ) →
μ(W ) in the large-N limit. In the right panel of Fig. 3, we show
numerical results for μnn(W, N ). As expected, for W < Wc the
μnn(N ) curves gradually drift downward, towards zero, with
increasing N . Closer to Wc, this drift is in fact nonmonotonic
(first upward, then downward) (see Ref. [58] for a discus-
sion of the physical origin of such behavior on RRG). For
15 � W < Wc we observe only upward drift; one needs much
larger N to see that it will be eventually superseded by a down-
ward drift with the ultimate large-N limit μnn(W ) → 0. On
the localized side W > Wc, we find a nearly N-independent
μnn(W, N ), in consistency with the expected limiting behavior
μnn(W > Wc, N ) → μ(W ) and in agreement with numerical
data for μ(W ) (which are, of course, also subjected to finite-
size corrections) in the right panel of Fig. 2.

III. SPIN CHAIN

In this section, we apply a similar methodology to study the
model of the S = 1

2 Heisenberg chain in a random magnetic
field, governed by the Hamiltonian

H =
∑

i∈[1,L]

Si · Si+1 − hiS
z
i , (28)

with hi drawn from a uniform distribution [−W,W ] and with
periodic boundary conditions SL+1 ≡ S1. (Note that the total
magnetization Sz = ∑

i Sz
i is conserved.) This model has be-

come one of paradigmatic models for the investigation of the
MBL physics [5,78]. Numerically, systems of sizes up to L =
22 [9] and L = 24 [67] were investigated via exact diagonal-
ization, which yielded estimates Wc = 3.7–3.8 for the critical

disorder in the middle of the many-body spectrum. However,
it has been understood that an accurate determination of the
critical point from exact diagonalization data is complicated
due to a rather slow convergence towards thermodynamic
limit (see Ref. [79] for a recent discussion). The experience
with RRG teaches us that the actual (thermodynamic-limit)
critical disorder is considerably larger, due to finite-size ef-
fects, than the value suggested by the exact diagonalization.
Indeed, for RRG the exact diagonalization would suggest
Wc ≈ 15, while the actual value is Wc = 18.17, i.e., about
20% higher. In genuine interacting MBL models (like the
spin-chain model considered in this section), the finite-size
effects are expected to be still stronger due to effects of rare
spatial regions. This has been supported by an analysis based
on the time-dependent variational principle with matrix prod-
uct states which was used to study the dynamics (relaxation
of spin imbalance) in Ref. [16] in much larger systems, up
to L = 100. This study has demonstrated a strong drift of
apparent (size-dependent) Wc with system size L, suggesting
the critical value Wc ≈ 5–5.5 for the thermodynamic-limit
transition between the ergodic and MBL phases.

For the spin-chain model (28), we study below the
same correlation functions as for the RRG model: the
finite-frequency correlation function β(ω) [Eq. (2)] and the
correlation function of closest-in-energy wave functions βnn

[Eq. (21)]. Let us emphasize that these quantities now charac-
terize exact many-body eigenstates ψk ( j). Here, the index k
labels eigenstates and the argument j runs over basis states of
the Hilbert space which are eigenstates of Sz

i for all i (and thus
are eigenstates of the Hamiltonian in the extreme-localization
limit W = ∞).

Before presenting our results for the frequency-dependent
wave-function correlations, we briefly recall the existing
knowledge about the average inverse participation ratio which
characterizes statistical properties of an individual many-body
eigenstate [Eq. (23)]. In the delocalized phase, it was found
[67] that eigenfunctions in the model of Eq. (28) are ergodic
in the sense that

P2 ∝ 1/N. (29)

Here, N is the volume of the many-body space, i.e., the di-
mensionality of the subspace of the full Hilbert space that is
allowed by conservation laws. In the model of Eq. (28) and
in the zero magnetization sector Sz = 0, which we consider
below (we limit ourselves to even L only), one has

N = L!

[(L/2)!]2
	 2L

√
2

πL
. (30)

This ergodic behavior of the inverse participation ratio in the
spin-chain model is fully analogous to that in the delocalized
phase of the RRG model (see Sec. I). At the same time, on
the localized side of the transition, there is some difference
in the scaling of the inverse participation ratio in the RRG
model and in the genuine many-body problem (like a spin
chain). While P2 ∼ 1 in the localized phase on RRG, one finds
a fractal scaling

P2 ∼ N−τ (W ) (31)
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in the MBL phase of spin-chain models [14,25,67,80], with
a disorder-dependent exponent τ (W ). It was shown [25] that
in the strong disorder regime (large W ), the exponent τ (W )
scales as

τ (W ) ∝ 1/W (32)

with disorder. Further, at criticality one also finds the fractal
scaling (31), with the exponent τ (Wc) that is equal to the
limiting value of τ (W ) at W → Wc + 0. (This is another man-
ifestation of the fact that the critical point in the MBL problem
has properties of the localized phase.) The nontrivial scaling
in Eq. (31) originates from a finite density (in real space) of
local resonances that are not able to establish a global delo-
calization but lead to an exponential increase of the support of
the many-body wave function in the spin configuration basis
of the Hamiltonian (28). A detailed analysis of the model
(28) revealed [67] that the scaling (32) is valid with a good
accuracy up to the critical point and yielded τ (Wc) ≈ 0.2.

Let us now estimate the contribution ot Mott-type reso-
nances to the correlation function β(ω) in the MBL phase
of the spin chain. Consider a given basis state | j〉, i.e., an
eigenstate of all Sz

i . For strong disorder (deeply in the MBL
phase), | j〉 is close to an exact eigenstate ψk . More precisely,
there exists a small density ∼1/W of lowest-order resonant
processes (flips of pairs sr, sr+1 of adjacent spins) which
“dress” the state | j〉, leading to fractality of the inverse par-
ticipation ratio discussed above. To estimate the number of
higher-order resonant processes, we consider nth order of the
perturbation theory in interaction. It is important that involved
spins should form a connected cluster (of maximal length 2n)
in order to guarantee that this tentative resonant process does
not decouple into independent pieces. This is clear already
in case of n = 2: consider a process involving spin flips in
two remote pairs s1, s2 and sr, sr+1 such that r > 3. This
process is not a resonant one, even if the energies of initial
and final states are arbitrarily close. In the perturbation theory,
inability of such a process to create a resonance happens
due to cancellation between two amplitudes, corresponding to
flipping the disconnected pairs 1,2 and r, r + 1 in two distinct
orders (see Ref. [14] and references therein). As a result, the
number of processes that can actually lead to resonance in
the nth order of perturbation theory scales as Nn;L ∼ Lρ(n)
with ρ(n) independent on the system length L. In other words,
ρ(n) is the spatial density of nth-order processes which may
potentially lead to resonances. Crucially, ρ(n) ∼ mn grows
exponentially with n, in analogy with the RRG problem [14],
and m is independent on n. In a conventional spin chain, we
thus have the branching factor m = O(1). (One can have a
parametrically large m in a chain of coupled “spin quantum
dots” with large number of spins per dot [14].)

The density ρ(n) was considered in the context of ac
conductivity in Ref. [81], where it was denoted es(γ )n and
s(γ ) was termed “configuration entropy per flipped spin of
the possibly resonant clusters.” The argument γ was intro-
duced to emphasize that s is actually a fluctuating quantity.
Our effective branching number m thus corresponds to es of
Ref. [81]; the fluctuations of m are discarded in our simplified
argument.

The number of “potentially resonant” processes for a given
initial state scales therefore as

Nn;L ∼ Lmn, (33)

with m of order unity, which is the same behavior as on RRG,
up to an overall factor L. This behavior is responsible for the
MBL transition in a spin chain taking place at a disorder Wc

of order unity (i.e., independent on L). We can now repeat,
with minor modifications, the simplified analysis performed
for RRG in Sec. II, which yields [cf. Eq. (18)]

N2ωβ(ω) ∼
∑

l : ω<|Ek−El |<2ω

〈∑
j

|ψk ( j)ψl ( j)|2
〉

∼ (N�) pωPres, (34)

where � is the many-body level spacing, pω is the number of
resonances (for a given state k) in the band [ω, 2ω], and Pres is
the resonant overlap

Pres =
∑

j

|ψk ( j)|2|ψl ( j)|2.

Let us estimate three factors N�, pω, and Pres in Eq. (34):
(i) The typical energy of an eigenstate of all Sz

i of L spins
is ∼√

L, hence, N� ∼ √
L.

(ii) The average number of processes that represent po-
tential resonances in the band [ω, 2ω] can be estimated, in
analogy with Eq. (17), as

pω ∼ ωNR(ω);L ∼ ωLmR(ω) = Lω1−μ(W ) (35)

with R(ω) as in Eq. (14) and μ(W ) as in Eq. (16).
(iii) The resonant overlap scales in the same way as the

inverse participation ratio (31), i.e.,

Pres ∼ N−τ (W ). (36)

In this respect, the spin-chain problem differs from the RRG
model, for which Pres ∼ 1 [see Eq. (13)].

Combining the above estimates and using L ≈ log2 N , we
finally get

N2β(ω) ∼ ω−μ(W ) (log2 N )3/2

Nτ (W )
. (37)

This derivation should be viewed as substantially oversim-
plified since fluctuations were not fully taken into account.
Nevertheless, this treatment is sufficient to understand the
emergence of power-law dynamical scaling (revealed by nu-
merical results below) with continuously varying exponent in
the MBL phase.

The result (37) is largely the same as Eq. (8) for RRG; the
most important factor is the power-law frequency dependence
ω−μ(W ). The only difference is in the additional N-dependent
factor. We note, however, that the exponent τ (W ) is parametri-
cally small (∼1/W ) in the MBL phase, remaining numerically
quite small at the critical point. Also, for realistic N , the
factor Nτ (W ) in the denominator is essentially compensated
by the logarithmic factor in the numerator. So, in practice, the
difference between the results for RRG and for the spin chain
is relatively minor.

We now present the numerical results for the dynami-
cal eigenstate correlations in the spin-chain model (28). To
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FIG. 4. Eigenstate correlation function β(ω) for spin chain of
length L = 16. The disorder strengths are W = 1.5, 1.7, 2, 3, 4, 6, 10
(from cyan to magenta). The first three values are deeply in the
ergodic phase. The next two values are also on the delocalized side of
the transition but correspond to the critical regime for relatively small
systems available for exact diagonalization. The largest two values
are on the localized side of the transition. This figure is a spin-chain
counterpart of Fig. 2 for the RRG model.

evaluate the correlation function β(ω) we computed, via exact
diagonalization, eigenstates of Eq. (28) in the Sz

i basis. We
studied systems of sizes L in the range 12–18 and averaged
over 5 × 105 (for smallest systems) to 5 × 102 (for largest
systems) realizations of disorder. For each disorder realiza-
tion, we determined the middle of the band E by the condition
(E − Emin)/(Emax − Emin) = 0.5, where Emin and Emax are the
lowest and the largest eigenstate energy, and considered 1

32
fraction of all states around the middle of the band. The
correlation function β(ω) for various strengths of disorder,
from delocalized to the MBL phase, is shown in Fig. 4, which
is a direct spin-chain counterpart of Fig. 2 for the RRG model.
The observed behavior is fully analogous to that found in
Fig. 2. For sufficiently weak disorder, W = 1.5, 1.7, 2, we see
a power-law critical behavior at higher frequencies with a sat-
uration at low frequencies. As we show below, the saturation
value confirms the ergodicity of the delocalized phase. For
the intermediate disorder values W = 3 and 4, the tendency

towards saturation is also achieved, but we are still far from
reaching the full saturation. This is an indication of the fact
that these two values are also on the delocalized side of the
MBL transition (in the thermodynamic limit) but the system
sizes are too small to observe ergodicity. In other words, these
values correspond to the critical regime for system sizes that
can be studied via exact diagonalization. For strong disorder,
W = 6 and 10, the data exhibit a power-law behavior in the
full range of frequencies, which is a hallmark of the MBL
phase.

In Fig. 5 we show the results for strong disorder, from W =
5 (approximately the critical point) until W = 10 (deeply in
the MBL phase) (cf. the analogous Fig. 2 for the RRG model).
In the left panel, we see once more that β(ω) in the MBL
phase shows a power-law frequency scaling β(ω) ∝ ω−μ(W ),
with the disorder-dependent exponent (slope on the log-log
scale). In the right panel, the corresponding exponent μ(W ) is
plotted as a function of disorder. This figure is again similar
to the right panel of Fig. 2 although numerical values of the
exponent μ(W ) are somewhat smaller than in the RRG model.

A related quantity, the adjacent-state correlation function
βnn defined by Eq. (21), is shown in Fig. 6. The results are very
similar to their RRG analog, Fig. 3. The left panel of Fig. 6
displays the correlation function βnn(W ) in a broad range of
disorder strengths for several values of the system size L. Like
in the case of RRG, W < Wc, the curves gradually approach,
with increasing L, a limiting curve, thus demonstrating er-
godicity of the delocalized phase. For system sizes available
for exact diagonalization the ergodic (large-L) behavior is
reached for W � 2. In full analogy with the RRG model, the
βnn(W ) curves exhibit a maximum near W ≈ 3 that serves as
a finite-size estimate for the critical point and slowly drifts
towards the actual (L → ∞) value of Wc.

The right panel shows the flowing exponent μnn defined by
Eq. (27). In general, the curves are rather similar to those for
RRG in the right panel of Fig. 3. However, it is worth noticing
a difference in the maximum value of μnn for the largest
system size. While for the RRG model this maximum value is
equal to unity with a good accuracy, in the spin-chain case the
maximum value is approximately 0.75. One reason for this is
finite-size effects which are considerably stronger for the spin
chain than for RRG. In fact, there is also a deeper reason for

5 6 7 8 9 10

W

0.2

0.3

0.4

0.5

μ
(W

)

10−5 10−4 10−3 10−2

ω

101

102

N
2
β

(ω
)

FIG. 5. Dynamical eigenstate correlations for the spin chain of length L = 16. Left: Correlation function β(ω) for disorders W = 5, 6, 7, 10
(from cyan to magenta). Right: Exponent μ(W ) characterizing the power-law frequency scaling β(ω) ∝ ω−μ(W ). This figure is a spin-chain
counterpart of Fig. 2 for the RRG model.
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FIG. 6. Correlation of adjacent wave functions for spin chain. System sizes are n = 12, 14, 16, 18 (from cyan to magenta). Left: Correlation
function βnn(W ). Vertical dashed line marks an approximate value of the critical point of the MBL transition Wc 	 5, as obtained from the
quantum dynamics in large chains [16]. Right: Exponent μnn characterizing the N scaling of adjacent-state correlations [see Eq. (27)]. Dashed
line shows theoretically expected N → ∞ behavior [see Eq. (22) for the delocalized phase and Eq. (24) for the localized phase (this part of
the dashed line is schematic)]. This figure is a spin-chain counterpart of Fig. 3 for the RRG model.

this difference, which should remain also in the limit N → ∞.
Indeed, let us consider a system at criticality (W = Wc) in the
large-N limit. Recall that the inverse participation ratio P2 at
the critical point shows “fractal” scaling (31). The overlap
of two adjacent states at criticality is expected to follow the
same power-law scaling Nβnn ∼ N−τ (Wc ) [cf. Eq. (36)], which
implies (at N → ∞)

μnn(Wc) = 1 − τ (Wc), (38)

yielding μnn(Wc) ≈ 0.8. The same result is obtained from
Eq. (37) if one extends it from the MBL phase to the crit-
ical point and sets μ(Wc) = 1 (as on RRG). More generally,
Eq. (37) suggests a relation between the exponents in the MBL
phase,

μnn(W ) = μ(W ) − τ (W ). (39)

At large W the exponent τ (W ) is small (∼1/W ), so that
τ (W ) � μ(W ) and thus

μnn(W ) ≈ μ(W ). (40)

This remains valid with reasonable accuracy up to the critical
point since τ (Wc) is quite small. It is also worth noting that
logarithmic corrections to scaling, like the logarithmic factor
in Eq. (37), and further strong finite-size effects substantially
influence numerical values of exponents characterizing the
MBL phase as obtained by means of exact diagonalization.

The expected extrapolation of μnn(W ) to the thermody-
namic limit L → ∞ is shown by a dashed line in the right
panel of the Fig. 6. Similarly to the βnn peak, the position of
the peak in μnn provides a finite-size estimate for the position
of the transition and drifts, with increasing L, towards Wc (see
Table II). The drift is approximately linear with number of
spins L; these system sizes are clearly too small to allow for a
reliable estimate of the thermodynamic-limit critical disorder
Wc. As in the RRG model, a considerable part of the delocal-
ized phase gives rise to a broad critical regime 2.5 � W � 5
for system sizes available for exact diagonalization.

IV. SUMMARY

In this paper, we have studied dynamical eigenstate cor-
relations across the MBL transition. This was done for two
models: (i) the RRG model that serves as a toy model of
the MBL transition and (ii) a spin chain representing a gen-
uine many-body problem. The results for both models were
found to be very similar. The main observables that we have
considered are the frequency-dependent eigenstate correlation
function β(ω) and the adjacent-state correlation function βnn.
For both of them, we explored dependencies on disorder W
and on the system size. We have introduced the exponent
μ(W ) controlling the scaling of β(ω) with frequency ω and
the running exponent μnn(W, N ) characterizing the scaling
of N2βnn with N . Our key findings are briefly summarized
below.

(i) For W < Wc our results confirm the ergodicity of the
delocalized phase. In particular, the correlation function Nβnn

shows at large N the ergodic 1/N scaling, in analogy with
the inverse participation ratio P2. Equivalently, the exponent
μnn(W, N ) tends to zero at N → ∞.

(ii) Dynamical eigenstate correlations in the localized
phase W > Wc are characterized, in the large-N limit, by
fractal scaling, N2β(ω) ∼ ω−μ(W ) and N2βnn ∼ Nμnn (W ), with
disorder-dependent exponents μ(W ) and μnn(W ). The source
of the power-law enhancement of correlations with lowering
ω is Mott-type resonances between distant localized states.
For finite N (as in the exact-diagonalization numerics), the ex-
ponents are subjected to finite-size corrections. Our analytical
arguments (for N → ∞) suggest that for RRG model μ(W ) =
μnn(W ), while for the spin-chain problem there is a small

TABLE II. Position Wpeak (L) of the maximum of μnn(W ) curves
that can be viewed as an L-dependent apparent critical point. Upon
increasing L, it shows a slow drift towards the limiting (L → ∞)
value.

L 12 14 16 18

Wpeak (L) 2.66 2.84 3.01 3.11
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difference between these exponents due to fractal scal-
ing of the inverse participation ratio in the MBL phase.
Since the critical point has a localized character, the value
μ(Wc) is equal to the limit of μ(W ) at W → Wc + 0, and
similarly for μnn(Wc). On RRG we find (again on the ba-
sis of analytical arguments that assume the large-N limit)
μnn(Wc) = μ(Wc) = 1, while for the spin chain μ(Wc) = 1
and μnn(Wc) = 1 − τ (Wc) ≈ 0.8, where τ (W ) is the exponent
characterizing the fractality of the inverse participation ratio in
the localized phase. With increasing disorder, the exponents
μ(W ) and μnn(W ) decay rather slowly, μ(W ) ≈ μnn(W ) ∼
1/[ln(W/Wc)].

(iii) The correlation function βnn and the corresponding
exponent μnn exhibit, as functions of disorder W , a maximum
that serves as an indication of the MBL transition. With in-
creasing N , the positions of this maxima drift towards Wc. This
drifts is, however, rather slow, so that the position of the max-
imum remains quite far from the actual Wc for all system sizes
amenable to exact diagonalization. This is a manifestation of
strong finite-size effects in the MBL problems [16,79,82,83],
which make extremely difficult a reliable determination of the
critical point of the MBL transition and of the associated crit-
ical behavior on the basis of exact diagonalization. A closely
related observation is a rather broad critical regime on the
delocalized side of Wc, where the system sizes that can be
treated by exact diagonalization are too small in order to reach
(even approximately) the ergodic behavior.

Let us now discuss a possible way to experimentally mea-
sure the frequency-dependent eigenstate correlations. In this
connection, consider the return probability p(t ) to a many-
body state ψ (0):

p(t ) = |〈ψ (t )|ψ (0)〉|2, (41)

where ψ (t ) = e−iHtψ (0) follows the dynamics determined by
the Hamiltonian H . Let us choose one of the basis states as the
initial state |ψ (0)〉 = | j〉. Expanding ψ (0) and ψ (t ) in terms
of the eigenstates ψk , we get

p(t ) =
∑

kl

e−i(Ek−El )t |ψk ( j)|2|ψl ( j)|2. (42)

In the limit t → ∞, the return probability is determined by
the diagonal (k = l) terms in Eq. (42), which yields

p(t → ∞) ≡ p∞ =
∑

k

|ψk ( j)|4 = P( j)
2 . (43)

Here, P( j)
2 is the inverse participation ratio (23), with a slight

difference that the summation goes over k rather than over j
(i.e., it characterizes the expansion of a basis state over exact
eigenstates). This difference is not essential (and disappears
completely upon averaging). Focusing on the MBL phase and
the critical point, we have thus

p∞ ∼ N−τ (W ). (44)

The dynamical part of the return probability p(t ) is given
by nondiagonal terms in Eq. (42):

p(t ) − p∞ =
∑
k �=l

e−i(Ek−El )t |ψk ( j)|2|ψl ( j)|2

=
∫

dE ν2(E )
∫

dω e−iωt N2β(ω), (45)

where β(ω) is the eigenstate correlation function (2). [Note
that β(ω) implicitly depends on E .] The many-body den-
sity of states ν(E ) is sharply peaked near the middle of the
band, so that the integral in Eq. (45) is governed by the
vicinity of the corresponding value of E . Using Eq. (8) or
(37), we get a power-law temporal decay of the many-body
return probability in the localized phase and at the critical
point:

p(t ) − p∞ ∼ t−1+μ(W ). (46)

Here we have discarded the N-dependent factor in Eq. (37)
that is not that important in practice in view of smallness of
the exponent τ (W ) and of large compensation between the
logarithmic and power-law factor for realistic N [see comment
after Eq. (37)].

As has been already pointed out in the Introduction, the
return probability p(t ) can be efficiently measured in engi-
neered many-body systems (quantum simulators or quantum
processors), such as arrays of trapped ions, atoms, and su-
perconducting qubits [45,71–73]. The state-of-the-art devices
contain ≈50 elements [“qubits” analogous to spins in the
Hamiltonian (28)]; it is expected that this number will grow
up to ≈100 in the near future. Clearly, the full quantum-state
tomography is impossible in such devices, in view of the
huge size of the many-body Hilbert space N ∼ 250–2100 ≈
1015–1030. At the same time, the measurement of the many-
body return probability p(t ) [i.e., of the Fourier transform of
the dynamical eigenstate correlation function β(ω)] is abso-
lutely feasible. This is done by measuring the evolved state
ψ (t ) in the noninteracting basis j (i.e., measuring all Sz

i ).
If the measurement is performed, e.g., ∼104 times (as in
Refs. [71,72]), one can determine p(t ) as long as it is �10−4.
For a rather slow, power-law decay (46), this allows one to
determine p(t ) up to very long times t > 104 (in microscopic
units set by characteristic magnitude of parameters in the
Hamiltonian). In a related experiment on quantum proces-
sors [73], the number of measurements was ∼106, implying
a possibility to proceed up to p(t ) as small as ∼10−6. Ex-
perimental investigation of the eigenstate correlations across
the MBL transition is thus a very promising avenue for future
research.

Finally, it is worth mentioning connections between our
results for the eigenstate correlation function β(ω) and the be-
havior of other dynamical observables. In particular, Ref. [54]
studied frequency dependence of matrix elements of local (in
real space) operator Si

z, where i is a given site of the lattice (see
also a similar study in a recent Ref. [84]). In our notations, this
means the following correlation function

〈|(Si
z

)
kl |2〉 ≡ 〈|〈ψk|Si

z|ψl〉|2〉, (47)

considered as a function of the frequency ω = Ek − El . Here,
ψk and ψl are exact many-body eigenstates, and Ek and El

the corresponding energies, as in Eq. (2). The ω → t Fourier
transform of Eq. (47) can be viewed as a return probability in
real space, which is in general very different from the return
probability in the many-body space p(t ) given by the Fourier
transform of the correlation function β(ω) studied in this
work. At the same time, there is a remarkable similarity in the
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behavior of both correlation functions in the localized phase
(and at criticality): they both show a power-law dependence
on frequency, with a continuously changing exponent. A re-
lated power-law scaling of the ac conductivity, σ (ω) ∼ ωα ,
with 1 < α < 2 in the MBL phase, was found in Ref. [81].
A better understanding of connections between the exponents
governing the scaling of the observables characterizing dy-
namics in the real space [like the correlation functions of the
type (47) or the conductivity] and in the many-body Hilbert
space [the correlation function β(ω) studied in this work and

its Fourier transform p(t )] remains an interesting goal for
future research.
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