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We study many-body localization (MBL) in a one-dimensional system of spinless fermions with a determinis-
tic aperiodic potential in the presence of random interactions Vi j decaying as power-law Vi j/(ri j )α with distance
ri j . We demonstrate that MBL survives even for α < 1 and is preceded by a broad nonergodic subdiffusive
phase. Starting from parameters at which the short-range interacting system shows an infinite temperature MBL
phase, turning on random power-law interactions results in many-body mobility edges in the spectrum with a
larger fraction of ergodic delocalized states for smaller values of α. Hence, the critical disorder hr

c, at which
ergodic to nonergodic transition takes place, increases with the range of interactions. Time evolution of the
density imbalance I (t ), which has power-law decay I (t ) ∼ t−γ in the intermediate to large time regime, shows
that the critical disorder hI

c, above which the system becomes diffusionless (with γ ∼ 0) and transits into the
MBL phase, is much larger than hr

c. In between hr
c and hI

c there is a broad nonergodic subdiffusive phase, which
is characterized by the Poissonian statistics for the level spacing ratio, multifractal eigenfunctions, and a nonzero
dynamical exponent γ � 1/2. The system continues to be subdiffusive even on the ergodic side (h < hr

c) of the
MBL transition, where the eigenstates near the mobility edges are multifractal. For h < h0 < hr

c, the system is
superdiffusive with γ > 1/2. The rich phase diagram obtained here is unique to the random nature of long-range
interactions. We explain this in terms of the enhanced correlations among local energies of the effective Anderson
model induced by random power-law interactions.

DOI: 10.1103/PhysRevB.103.064203

I. INTRODUCTION

Many-body localization (MBL) has been a topic of im-
mense interest in condensed matter physics. Though generic
interacting clean systems are diffusive, the absence of dif-
fusion is a hallmark of systems that undergo Anderson
localization [1] and many-body localization [2–8]. The MBL
phase is a nonergodic phase in which local observables do
not thermalize, leading to violation of the eigenstate thermal-
ization hypothesis [9–11]. The MBL phase has been shown
to have similarity with integrable systems with an extensive
number of local integrals of motion [12,13].

In most of the MBL systems, there occurs a transition from
an ergodic delocalized phase to the nonergodic MBL phase
as the disorder strength increases compared to the interaction
strength [7,14–29]; however it is also possible to have an
intermediate nonergodic extended phase. Such a phase has
been described in numerical studies on Josephson-junction
arrays [30], the quantum random energy model [31], and a
one-dimensional (1D) fermionic system with spin-orbit cou-
plings [32]. In conventional models of MBL of spin-1/2
particles or spinless fermions on a chain, the nonergodic
extended phase has been realized [33,34] for a very narrow
range of parameters, raising questions about its stability in the
thermodynamic limit, though in models with quasiperiodic
potentials which have single-particle mobility edges it has
been argued that the nonergodic extended phase survives in
the thermodynamic limit [35,36]. Here we present a route to

realize a broad nonergodic subdiffusive phase in the presence
of random long-range interactions in a system where all the
single-particle states are localized.

The effect of random interactions on MBL is perplex-
ing and interesting. On one side, random interactions in the
absence of any random one-body potential (e.g., random mag-
netic field for spin systems) have been shown to cause MBL
beyond the picture of local integrals of motion for the case of
nearest-neighbor (NN) [37] as well as long-range interactions
[38]. In contrast, sufficiently long-ranged random interactions
in the presence of random magnetic field have been argued
to cause delocalization for any infinitesimal strength of in-
teractions [39–43]. For example, in the Heisenberg and XXZ
model (with long-range zz term) with a random magnetic field
and random interactions Ji j = ±J decaying as a power law
Ji j ∼ r−α

i j with distance, the MBL phase does not survive for
α < 2d [39,41,42] where d is the dimension of the system.
We emphasize that the absence of MBL in these models is
not linked only to the long-range nature of interactions, but
the fact that coefficients of interactions are random plays a
crucial role in delocalizing the system, especially for the case
of zz interactions. This is evident from the fact that in the
one-dimensional XXZ and Ising model with uniform coeffi-
cients of the power-law zz term MBL has been shown to exist
for α < 2 both theoretically [40,44–46] and experimentally
[47–49]. Similarly, in a system of spin-less fermions in the
presence of power-law interactions with uniform coefficients
and nearest-neighbor hopping, MBL exists even for α < 1
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FIG. 1. Phase diagram of the model in Eq. (1) in the α-h plane.
For very weak disorder strength h < 2t0, the system is ergodic (the
level spacing ratio obeys Wigner-Dyson statistics) and superdiffusive
[the density imbalance I (t ) ∼ t−γ with γ > 1/2] for all ranges of
interactions. For long-range interactions (α < 2) the superdiffusive
phase extends up to h0 > 2t0. For h > h0, the system shows sub-
diffusive transport with γ < 1/2 though a narrow diffusive regime
(γ = 1/2) is expected close to h0 for α < 2 shown as the red shaded
region in the phase diagram. As the disorder strength is increased
further, ergodic to nonergodic transition takes place at hr

c, which is
determined from the level spacing statistics. hr

c increases monoton-
ically as α decreases. The nonergodic side of the transition is not
MBL as indicated by slow dynamics in the quantum quench; rather
it is subdiffusive with multifractal eigenstates. A much stronger
strength of disorder hI

c is required for transition into the MBL phase
where γ ∼ 0, with hI

c increasing as α decreases.

[50,51]. In this paper, we study the effect of random power-
law interactions on a one-dimensional model of spinless
fermions in the presence of an aperiodic potential and show
that transition from the ergodic extended phase to the MBL
phase occurs via an intervening nonergodic extended phase,
as the strength of the aperiodic potential is increased. The in-
termediate nonergodic phase is characterized with multifractal
states and subdiffusive transport and its width increases with
the range of interactions.

To be specific, in this paper we study a half-filled model
of spinless fermions in one dimension in the presence of an
aperiodic deterministic potential [27,50,52–54] and random
power-law interactions Vi j/rα

i j among fermions. Interestingly,
power-law interactions with random coefficients significantly
modify the correlations among local energies of the effec-
tive Anderson model in the Fock space such that a much
stronger aperiodic potential is required to achieve the noner-
godic phase, characterized by the Poissonian statistics (PS) for
the level spacing ratio, for systems with longer-range interac-
tions. Furthermore, a broad regime of this nonergodic phase
continues to have subdiffusive transport before the system
becomes diffusionless in the MBL phase. The main findings
of our paper, that are presented in the phase diagram of Fig. 1,
are summarized below.

(1) Starting from the parameters at which the system in
the presence of nearest-neighbor interaction shows an infinite

temperature MBL phase, turning on power-law interactions
with random coefficients results in the formation of the
many-body mobility edges separating the nonergodic local-
ized states from the ergodic extended states. The fraction of
ergodic extended states is larger for the longer-range interac-
tions (i.e., smaller values of α) such that the critical disorder,
hr

c, at which the level spacing ratio for the entire spectrum
obeys Poissonian statistics increases with increase in the range
of interactions.

(2) The dynamics of the system after a quench starting from
a charge density wave (CDW) ordered initial state demon-
strates that a part of the ergodic phase below hr

c is subdiffusive
where the density imbalance I (t ) ∼ t−γ with γ < 1/2 though
for h < h0 < hr

c the system is superdiffusive with γ > 1/2.
For short-range interactions (α > 2), h0 coincides with the
localization transition point of the noninteracting system but
with increase in the range of interactions h0 increases.

(3) For h > hr
c there exists a broad nonergodic subdiffu-

sive phase, intervening the ergodic subdiffusive phase and the
MBL phase, which is characterized by Poissonian statistics
for the level spacing ratio and exponent γ � 1/2 and the
width of which increases with decrease in α.

(4) Analysis of eigenfunction statistics shows that for hr
c <

h < hI
c, where the system is in the nonergodic subdiffusive

phase, eigenstates in the middle of the spectrum are multi-
fractal.

(5) Eventually at hI
c, the system enters into the MBL phase

which has nonergodic localized states and is characterized
by the absence of power-law decay in the imbalance (that is,
γ = 0).

The rest of the paper is organized as follows. In Sec. II,
we introduce the model explored in this paper. In Sec. III, we
analyze correlation among local energies of the effective An-
derson model as a function of the range of random power-law
interactions. In Sec. IV we discuss results for the level spacing
statistics and identify the ergodic to nonergodic transition
point hr

c which is a function of the range of interaction. In
Sec. V, we describe dynamics of the system after a quench
starting from a charge density wave ordered initial state both
below the hr

c as well as above it. Section VI presents results
for the eigenfunction statistics based upon the analysis of the
inverse participation ratio (IPR). Finally we summarize our
results and conclude with some remarks and open questions.

II. MODEL

We study a model of spinless fermions in one dimension
described by the following Hamiltonian:

H = −t0
∑

i

[c†
i ci+1 + H.c.] +

∑

i

hini

+
∑

j>i

Vi j
nin j

|ri − r j |α . (1)

Here t0 is the nearest-neighbor hopping amplitude with open
boundary conditions, and hi is the onsite potential of the
form hi = h cos(2πβin + φ) where β =

√
5−1
2 is an irrational

number and φ is an offset [52–54]. Vi j is the coefficient
of the power-law interaction term between fermions, chosen
randomly from a uniform distribution [−V,V ] where V is
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measured in units of t0. In the noninteracting limit, Vi j = 0,
for n = 1, this model maps to the well-known Aubry-Andre
model [55], where all the single-particle states are delocalized
(localized) for h < 2t0 (h > 2t0). For n < 1, the system has
single-particle mobility edges at Ec = ±|2t0 − h| for h < 2t0
[53]. For h > 2t0, all the single-particle states are localized
for any value of n. In this paper, we choose to work with this
model rather than fully random disorder because there are no
rare-region effects due to the deterministic aperiodic potential,
which are generally considered to be the cause for subdif-
fusive transport. This will help in understanding the role of
random long-range interactions on MBL more clearly. Also by
tuning parameters, one can study systems with single-particle
mobility edges or without it. In this paper we chose to work
with n = 0.5.

The model in Eq. (1) with nearest-neighbor repulsion
between fermions (i.e., Vi j = V for j = i + 1 and zero oth-
erwise) has been studied earlier [24,27]. For h < 2t0, where
the noninteracting system has single-particle mobility edges,
the interacting system with NN interactions shows MBL only
if the chemical potential does not lie between the two single-
particle mobility edges, that is, for special dopings away from
half filling, though for h > 2t0 the NN interacting system can
show MBL at any filling for weak interactions. For very strong
disorder h � 2t0, the NN interacting system shows an infinite
temperature MBL phase where all the many-body states are
localized. In this paper, we focus on the half-filled limit of the
model in Eq. (1) to explore the competing effects of random
interactions and the aperiodic potential. In order to understand
the physics of random power-law interactions, we map this
model to an effective Anderson model in the many-body Fock
space.

III. CORRELATION AMONG LOCAL ENERGIES OF THE
EFFECTIVE ANDERSON MODEL IN THE MANY-BODY

FOCK SPACE

We map the Hamiltonian in Eq. (1) to an effective An-
derson model defined in the Fock space of spinless fermions
which has LCL/2 configurations for a half-filled chain of L
sites. The effective Hamiltonian in the Fock-space basis has
the following form:

Heff =
∑

l

εl |l〉〈l| +
∑

lm

T̂lm|l〉〈m| (2)

with εl = ∑
i hi〈l|ni|l〉 + ∑

j>i Vi j
〈l|nin j |l〉
( j−i)α and T̂lm =

−t0
∑

i〈l|c†
i ci+1 + H.c.|m. Here |l〉 represents configurations

in the Fock space which are specified by the occupancies
at each site |ni〉 where ni is 1 or 0 if the site i in the
real space is occupied or unoccupied. Let us analyze the
local energy, εl , that has contribution from interactions
among all the particles in the system. Figure 2 shows the
probability distribution P(εl ) of the local energy for h = t0
and Vi j ∈ [−1, 1] for various values of α. As α decreases,
the width of the distribution increases and hence the standard
deviation, σ , increases as shown in the inset. This implies
that as the range of random power-law interactions increases,
the strength of effective disorder in the Anderson model
[Eq. (2)] on Fock space also increases. Thus, naively one
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FIG. 2. Probability distribution of the local energy, εl , of the
effective Anderson model in Eq. (2). The width of the distribution
increases as α decreases. The inset shows the standard deviation σ as
a function of α.

would expect enhanced localization in a system with random
longer-range interactions. In fact in a recent study it has been
shown that random nearest-neighbor interactions between
one-dimensional spinless fermions alone, without any onsite
disorder, can stabilize MBL [37]. But random-power-law
interactions also affect the correlation of the local energies εl .
Correlation among local energies has been shown to be crucial
for MBL [56,57], and hence it is important to understand how
these correlations are modified in the presence of random
power-law interactions.

The covariance between a pair of Fock-space onsite ener-
gies is defined as Cov(l, m) = 〈εlεm〉 − 〈εl〉〈εm〉 where 〈〉 is
the average over various independent disorder configurations
of the aperiodic potential as well as the random power-law
interactions. The left bottom panel of Fig. 3 shows the num-
ber of pairs of the Fock states having a certain value of
Cov(l, m). As the range of interaction increases, the most
probable value of the covariance also increases. The top left
panel of Fig. 3 shows covariance as a function of the Ham-
ming distance x between a pair of configurations |l〉 and
|m〉. Cov(x) ∼ a(1 − x/L)b, with the exponent b → 1 as the
range of interaction, decreases, which is consistent with ear-
lier studies on short-range interacting systems. Also Cov(x)
for 2 < x < L/2 increases as α decreases. A related quan-
tity useful to study is the correlation among local energies
Cor(l, m) = Cov(l, m)/[σ (l )σ (m)] with σ (l ) = 〈ε2

l 〉 − 〈εl〉2

such that Cor(l, m) ∈ [−1, 1]. The right bottom panel of
Fig. 3 shows that the number of pairs (l, m) having −0.3 <

Cor(l, m) < 0.6 increases significantly as the range of inter-
action increases though the probability to have Cor(l, m) <

−0.3 or Cor(l, m) > 0.6 decreases. When analyzed in terms
of the Hamming distance between various pairs of the Fock
state configurations, we see that for systems with longer-
range interactions there is a clear enhancement of Cor(x) for
the states separated by larger Hamming distances (x > L/2)
though states separated by smaller Hamming distance also
show slight increase of Cor(x). Further, as shown in the top
right panel of Fig. 3, Cor(x) ∼ a(1 − x/L)b with b increasing
from 1 to 1.5 as the range of interaction increases, which is
consistent with earlier studies on the model with NN inter-
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FIG. 3. Bottom panels show the distribution of covariance
Cov(l, m) and the correlation Cor(l, m) among local ener-
gies of the effective Anderson model for |l〉, |m〉 configu-
rations of the Fock space. As α decreases, Cov(l, m) for
most of the pairs increases though the number of Fock state
pairs having −0.3 < Cor(l, m) < 0.6 increases significantly. Top
panels show the plot of Cov(x) and Cor(x) as a function
of the Hamming distance x between a pair of Fock states
(|l〉, |m〉). Note that both Cov(x) and Cor(x) ∼ (1 − x/L)b

with b ∼ 1 for the short-range model and it increases as the range of
interaction increases. The data shown are for h = t0 and Vi j ∈ [−1, 1]
for L = 18.

action [56]. Note that power-law interactions with uniform
coefficients do not have any effect on correlation among local
energies as expected.

So far we presented correlation for a fixed value of h = t0
and Vi j ∈ [−1, 1]. Keeping the interaction strength fixed as
we increase the disorder strength, the probability of having
smaller |Cor(l, m)| decreases though it becomes more proba-
ble to have larger values of |Cor(l, m)|. Eventually as h keeps
increasing, the distribution approaches that for the noninter-
acting problem V = 0, which is peaked at Cor(l, m) = ±1,
as shown in Fig. 4. The exponent b in Cor(x) ∼ (1 − x/L)b

decreases and approaches 1 as h increases. For α = 0.5, this
happens around h/t0 = 10 though for shorter-range interac-
tions it happens at much smaller values of h. For example, for
α = 2 the distribution of Cor(l, m) for h/t0 = 6 is almost the
same as that for the noninteracting case. Thus, on one side
random power-law interactions increase the effective disorder
in the local energies but more importantly they modify cor-
relations among local energies of the Anderson model. As
we will see in further analysis, the correlation effects among
local energies dominate the physics of this model. A stronger
disorder, h, is required to localize the system in the presence
of longer-range random interactions. The threshold value of
h at which the distribution of Cor(l, m) merges with that
for the noninteracting system is close to the transition point
obtained from the level spacing statistics as discussed in the
next section.

In the following sections, we describe various quantities
that have been analyzed in order to obtain the phase diagram
in Fig. 1. The model in Eq. (1) is solved using exact diag-
onalization for system sizes L = 10–18 and various physical
quantities are averaged over a large number of independent

(a) (b)

(c) (d)1
0

6

FIG. 4. Bottom panels show the distribution of correlation
Cor(l, m) among local energies of the effective Anderson model for
various values of the disorder h and Vi j ∈ [−1, 1]. The left panel
shows results for α = 0.5 while the right panel shows results for
α = 2. As h increases, probability for having smaller values of
|Cor(l, m)| decreases though the larger values of |Cor(l, m)| become
more probable. As h is increased further, distribution of Cor(l, m)
eventually approaches that for the noninteracting V = 0 case. Top
panels show Cor(x) as a function of the Hamming distance x.
Cor(x) ∼ (1 − x/L)b and b → 1 as h increases.

disorder configurations 20 000–200, respectively. Quantum
quench analysis has been done using the Chebyshev polyno-
mial method for L = 16–24 and the data presented have been
averaged over 500-210 independent disorder configurations.
All the results shown below are for the half-filled system for
Vi j ∈ [−1, 1] and t0 = 1.

IV. LEVEL SPACING STATISTICS

We characterize the ergodic to nonergodic transition us-
ing the eigenvalue statistics of the Hamiltonian in Eq. (1).
The distribution of energy level spacings is expected to have
PS for a nonergodic phase which indicates the absence of
level repulsion while for an ergodic phase it is expected to
follow the Wigner-Dyson statistics (WDS). We calculate the
disorder averaged ratio of successive gaps in energy levels
rn = min(δn,δn+1 )

max(δn,δn+1 ) with δn = En+1 − En. The disorder averaged
value of r is 0.386 for the PS, while for the WDS the mean
value of r ≈ 0.53.

Figure 5 shows the level spacing ratio 〈r〉 averaged over
the entire many-body spectrum and over many independent
realizations of disorder for various values of α. For low dis-
order strength, 〈r〉 approaches the value expected for WDS
as L increases for all values of α studied whereas for larger
disorder values 〈r〉 approaches the PS as L increases. An
interesting point to notice is that the disorder strength above
which 〈r〉 approaches the PS value is larger for smaller values
of α. As can be gathered from Fig. 5, the curves for different
L values do not cross at one value of h, but the curves for
L show crossings with those for L + 2 and L + 4 at different
values of h. To estimate the critical disorder, hr

c, at which
the system undergoes ergodic to nonergodic transition, we
determine the crossing points of the 〈r〉 curves for L and L + 2
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FIG. 5. Average level spacing ratio of successive gaps 〈r〉 vs
disorder strength h/t0 for various values of α. The data have been
averaged over 20 000–500 configurations for L = 10–16. We observe
that below a threshold disorder, 〈r〉 approaches the WDS value as
L → ∞ indicating an ergodic state whereas above that disorder
strength 〈r〉 approaches the PS value as L → ∞ indicating a non-
ergodic state. Note that curves for various L do not cross at one value
of h.

as well as L and L + 4. The left panel of Fig. 6 shows these
crossing points as a function of the inverse of the system size
for various values of α. The data have been best fitted with the
polynomial function and the extrapolated value in the limit
L → ∞ provides an estimate for the critical disorder hr

c in
the thermodynamic limit which is shown in the right panel
of Fig. 6. Note that the value of level spacing at the crossing
points approaches 0.39 in the thermodynamic limit for any
value of α. The critical disorder hr

c increases with the range
of random power-law interactions. We would like to further
emphasize that though hr

c increases as α decreases, it stays
finite even for α < 1, which is in contrast to the prediction
based on resonance count argument for a system of a few
particles [39,40].

The fact that the critical disorder hr
c increases with the

range of the random power-law interactions indicates that
turning on random long-range interactions delocalizes at least
a part of the spectrum introducing mobility edges in the many-
body eigenspectrum. To ensure the existence of many-body
mobility edges, we plot energy resolved level spacing ratio
r(ε) as a function of normalized energy ε for each value of α

and h/t0. The normalized energy, ε, is defined as ε = E−Emin
Emax−Emin

(a) (b)

FIG. 6. Panel (a) shows the value of h at the crossing points of
〈r〉 vs h curves of Fig. 5 between L and L + 2 and L and L + 4 vs
inverse of the average size. The value of h at the crossing points
increases with increase in α and the system size. Dashed lines are
the polynomial fits to the data. Panel (b) shows the critical disorder
hr

c vs α where hr
c is obtained by extrapolation of the fits in the

thermodynamic limit.

where E is the bare eigenenergy and Emin/max are the minimum
and maximum eigenvalues. Figure 7 shows r(ε) for α = 0.5
for various values of h and three system sizes. In the weak
disorder regime, for a large fraction of states in the middle of
the spectrum r(ε) approaches the WDS value as L increases
though at the edges of the spectrum r(ε) shows a PS value. As
h increases, the range of ε for which r(ε) approaches the WDS
reduces, such that at h = 10t0 the entire spectrum obeys PS.
By calculating the crossing points between the curves for dif-
ferent system sizes we determine E1 and E2 such that the states
below E1 and above E2 have PS whereas the states in between
obey WDS in the thermodynamic limit. Plots of r(ε) for some
other values of α are shown in Appendix A. Figure 8 shows
the many-body mobility edges as a function of the disorder

(a) (b)

(c) (d)

WDS
PS

FIG. 7. Average level spacing ratio of successive gaps r(ε) vs
normalized energy ε for α = 0.5. Each panel shows data for a fixed
disorder strength h and three different system sizes. For h = 4t0 a
large fraction of states in the middle of the spectrum is ergodic, with
r(ε) approaching the value for WDS as L increases though states
on the edges of the spectra obey PS. As h increases, the width of
the ergodic region of the spectrum decreases such that at h = 10t0,
almost all the many-body states show PS for all the system sizes
studied.
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FIG. 8. Many-body mobility edges E1,2 vs h for various values of
α obtained from the level spacing statistics. Many-body states below
E1 and above E2 are nonergodic obeying PS while the states in the
middle are ergodic with WDS. For a given disorder strength h, the
fraction of ergodic states is larger for smaller values of α.

strength h for various values of α. At a given disorder strength,
h, the range of energy over which many-body states remain
ergodic increases as α decreases. The fraction of nonergodic
states increases with the increase in the disorder strength h
and eventually the mobility edges disappear after a critical
disorder strength hME, which is a function of α. The critical
value hME is larger for smaller values of α. Note that hME,
obtained from analysis of energy resolved level spacing for
L up to 18, is consistent with hr

c, the critical disorder in the
thermodynamic limit.

V. TIME EVOLUTION OF DENSITY IMBALANCE

We study dynamics of the system after a quench starting
from an initial CDW ordered state |
0〉 = ∏L/2−1

i=0 C†
2i|0〉 and

calculate the time evolution of the density imbalance between
even and odd sites to distinguish between the localized and
delocalized phases. Imbalance I (t ), for the initial state con-
sidered, is defined as

I (t ) =
∑L−1

i=0 (−1)i〈ni(t )〉
∑L−1

i=0 〈ni(t )〉 . (3)

Density imbalance is a signature of how much memory
the system has of the initial order after certain time steps
and can be easily probed in experiments [16]. Starting from
an initial state |
0〉, we let the state evolve with respect to
the Hamiltonian in Eq. (1) to obtain the time evolved state
|
(t )〉 = exp(−iHt )|ψ0〉 and calculate I (t ) as a function of
time which is then averaged over many independent disorder
realizations. Time evolution is carried out numerically using
the Chebyshev polynomial method [58–62], details of which
are given in Appendix B. The density imbalance has an initial
rapid decay followed up by oscillations. For the intermediate
to large time regime, I (t ) shows a power-law decay superim-
posed on decaying oscillations I (t ) ∼ t−γ [63]. The exponent

(a) (b)

(c) (d)

FIG. 9. The density imbalance I (t ) as a function of time for var-
ious values of disorder h and α for L = 24. The points are the results
of numerical calculation using Chebyshev polynomial method and
lines are the fit to the form t−γ . For very small disorder values, for
example, h = 3t0, I (t ) decays with the exponent γ > 1/2 for α < 1
representing a superdiffusive regime though for α = 1.5 the system
is almost diffusive with γ ∼ 1/2. As h increases, the rate of decay of
the imbalance decreases resulting in γ < 1/2. The value of disorder
hI

c at which the imbalance shows saturation and no significant power-
law decay (basically γ � 0.01) is much larger for smaller values of
α resulting in a broad subdiffusive phase above hr

c for longer-range
interacting systems. Panel (d) shows the plot of γ vs h for three α

values studied. The dotted lines are cuts at γ = 0.5 corresponding to
the diffusive phase and γ = 0.01 corresponding to the MBL phase.

γ has been shown to be related to the dynamical exponent of
the mean square displacement 〈x2〉 ∼ t2/z as γ = 1/z [64].

Figure 9 shows I (t ) for various values of disorder and
α < 2. For a fixed disorder strength, h, the imbalance shows
the fastest decay for the smallest value of α. This implies
that the system with longer-range interaction has less memory
of the initial state and hence is more ergodic which is con-
sistent with the analysis of level spacing statistics and the
correlation among local energies in the Fock space. A more
quantitative analysis of the imbalance can be done by fitting
the imbalance data to the power-law decay form I (t ) ∼ t−γ

for the intermediate to large time regime. The dashed lines in
Fig. 9 show the fits to the data and zoom-in fits are shown on
log scale in Fig. 10. As shown in Fig. 10, for smaller values of
h, the imbalance shows a change of slope around t0t ∼ O(100)
such that the exponent γ derived from the long-time fit is
larger than the γ obtained from fits up to t0t ∼ 100. As h
increases the difference between the two values of γ reduces
and eventually for h � hr

c(α) the imbalance data in the entire
time range studied can be fitted with one exponent. We believe
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(a) (b) (c)

FIG. 10. Zoom-in plots of the density imbalance I (t ) as a function of time on log scale for various values of disorder h < hr
c and α.

For smaller values of h � hr
c, I (t ) clearly shows a change of slope after t ∼ 100 such that γ obtained by fitting I (t ) for shorter time range

(mentioned first in the keys) is smaller than the γ value obtained from the fit for t > 100 (written later in the keys). As h increases, the two
γ values become closer to each other and for h > hr

c we could not see a significant slope change in the imbalance. The data shown are for
L = 24.

that the change in dynamical exponent with time for h < hr
c is

an indication of more than one relaxation time scale in the
system due to the presence of both ergodic and nonergodic
states, which are separated by the many-body mobility edges.
In panel (d) of Fig. 9, we have shown the larger γ values for
h < hr

c where change of slope occurs.
There are a couple of important observations to be made

from Fig. 9. First as shown in panel (d), for very small values
of disorder h � 2t0, the density imbalance shows superdiffu-
sive dynamics with γ > 1/2 for all values of α studied. The
corresponding imbalance plots are shown in Appendix B. For
longer-range interactions (α < 2) the superdiffusive regime
gets extended up to h0 beyond 2t0 as shown in Fig. 10. For
α = 0.5 the imbalance shows superdiffusive behavior up to
h = 4t0 while for α = 1.0, γ remains more than 1/2 up to
h = 3t0. In systems with quasiperiodic potential, superdiffu-
sive transport has been observed earlier in the noninteracting
case [65] as well as for MBL systems with weak disorder
and weak interactions [66]. This is because the noninteract-
ing system with quasiperiodic potential has extended states
that are ballistic and not diffusive [19,55] and even in the
presence of weak interactions the extended states remain su-
perdiffusive. But in the model we studied, though for h < 2t0
the system has single-particle mobility edges separating the
extended (ballistic) states from the localized states, the half-
filled interacting system is fully ergodic and extended [27],
resulting in superdiffusive transport. For longer-range interac-
tions, even for h = 4t0 more than 99% of the many-body states
are ergodic and extended and hence the system continues
to have superdiffusive transport. Compared to earlier studies
on quasiperiodic potential [66], the superdiffusive phase in
our model appears for a much larger strength of interactions
Vi j ∈ [−1, 1] and the aperiodic potential h and gets broadened
for a longer range of random power-law interactions. This
is because of enhanced delocalization of many-body states
due to power-law interactions with random coefficients and

is in complete consistency with our level spacing analysis.
We believe that the system must have diffusive dynamics with
γ ∼ 1/2 at least for a narrow window above h0, though in our
numerics we did not see γ exactly being equal to 1/2 for any
of the parameter values studied.

As h increases further but still staying below hr
c, the system

which has many-body mobility edges separating the localized
nonergodic states from the ergodic states in the middle of the
spectrum enters into the slow dynamics subdiffusive phase
with γ < 1/2. The exponent γ decreases monotonically with
increase in h, as shown in Figs. 9 and 10, which can be ex-
plained in terms of a slowly decreasing fraction of the ergodic
many-body states with increase in the disorder strength. The
ergodic subdiffusive phase has been observed in many earlier
works, both theoretically [58,63,66–68] and experimentally
[69] for systems with nearest-neighbor interactions in the
presence of random as well as quasiperiodic potential. We
observe a broad ergodic subdiffusive phase for h0 < h < hr

c
even in the presence of long-range interactions in this model
and the width of this phase increases for longer-range interac-
tions. We discuss the possibility of Griffiths effects behind the
subdiffusive phase in detail in Sec. VII.

Furthermore, even for h > hr
c, where the system is fully

nonergodic with the level spacing ratio showing PS for the
entire many-body spectrum, the dynamics continues to be
subdiffusive with 0 < γ < 1/2 for a wide range of disorder
strength. As the disorder increases further, the system transits
into the MBL phase with γ � 0.01 at hI

c(α) as shown in Fig. 9
and also in the phase diagram of Fig. 1. The width of the
nonergodic subdiffusive phase is significantly large for α < 1,
resulting in a larger value of hI

c at which the system enters into
the MBL phase. The broad nonergodic subdiffusive phase ob-
served in this analysis, preceding the MBL phase, is analogous
to the delocalized nonergodic phase or “bad metal” phase pro-
posed to exist in short-range interacting systems for disorder
strengths below the MBL transition [33,70]. This will become
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(a) (b)

(c) (d)

FIG. 11. The density imbalance I (t ) as a function of time t for
three different system sizes for various values of α. The h values are
chosen such that it is slightly larger than or close to hr

c. Though for
α = 3, there is hardly any increase in γ with the system size, a clear
increase in γ with L is observed for smaller α values.

more clear from the analysis of eigenfunction statistics in the
next section. However, there is no consensus so far about the
fate of this “bad metal” phase in the thermodynamic limit.
Whether this phase shrinks in the thermodynamic limit to a
critical point or remains of finite width in the parameter space
is an open question [33,34]. According to a recent theoretical
work, if the noninteracting system has single-particle mobility
edges, in the corresponding interacting system the nonergodic
subdiffusive phase may persist even in the thermodynamic
limit [36]. In our model, we observe a broad nonergodic subd-
iffusive phase for h � 2t0, where all the single-particle states
are highly localized. Also the range of this phase gets broader
as the range of random power-law interactions increases.

Now we focus on the system size dependence of the
imbalance. The imbalance data shown so far are for the
L = 24 sites chain. But there is a significant system size
dependence of the density imbalance as shown in Fig. 11. As
the system size increases, the imbalance shows a faster decay
with a larger exponent γ . This has been observed earlier
in systems with short-range interactions [58,71] though the
system size effect was found to be less serious for models with
quasiperiodic potential compared to those with fully random
potential [72]. Although the model we have studied has
aperiodic potential, which is very close to the quasiperiodic
potential studied in [72], we also have random power-law
interactions. In fact, the increase in γ is more significant for
the system with a longer range of interaction. Given this, we
cannot rule out if the entire ergodic subdiffusive phase or at
least a significant part of it actually turns out to be diffusive
in the thermodynamic limit. However, given the small values
of γ for hr

c < h < hI
c, the nonergodic subdiffusive regime will

probably still remain robust with minor modifications as the

system size increases. Secondly, our estimate of the disorder
strength hI

c above which γ < 0.01 and the system enters into
the MBL phase will also shift upwards due to increase in γ

in the thermodynamic limit. This would further broaden the
nonergodic subdiffusive phase.

Generally, the subdiffusive phase near the MBL transition
is associated with multifractality of the eigenstates [63,73]. In
the next section we analyze eigenfunction statistics in order to
develop understanding of the mechanism of the subdiffusive
phases observed in this system.

VI. EIGENFUNCTION STATISTICS

Eigenfunction statistics has played a crucial role in under-
standing of Anderson localization [74] as well as many-body
localization [7]. In the noninteracting disordered system,
eigenfunctions have been shown to be multifractal near the
Anderson transition [74], which means that the eigenfunctions
are neither extended nor localized but cover a subextensive
number of sites. Similarly, close to the single-particle mobility
edges, eigenfunctions have been shown to have multifractal
behavior [75]. Below, we calculate the IPR and higher mo-
ments in order to analyze many-body eigenfunctions.

Given an eigenstate |
n〉 = ∑
l 
n(l )|l〉, in the basis state

|l〉, the qth moment is defined as Iq(n) = ∑N
l=1 |
n(l )|2q such

that for q = 2, Iq gives the IPR which measures the extent of
delocalization of the eigenstate |
n〉 in the basis |l〉. Here we
chose |l〉 to be the basis in the Fock space of spinless fermions
and N is the dimension of the Fock space. An extended
state, which gets contribution from almost all the basis states
of the Fock space, has IPR(n) ∝ 1/N while for a localized
state IPR(n) ∝ O(1) in the thermodynamic limit. There is
a third intermediate phase possible, which is known as the
multifractal phase [33,34] for which the IPR goes to zero in
the thermodynamic limit as IPR(n) ∝ 1/Nμ but with μ < 1.
In general, in the multifractal phase the qth moment goes
as Iq(n) ∝ 1/Nμq (q−1) with the generalized fractal dimension
μq deviating from 1 and having nonlinear dependence on q.
For discussion below, we have dropped the subscript for IPR
(q = 2). This phase is also known as the nonergodic (hav-
ing biased contribution from basis states in the Fock space)
extended phase. It is important to note that fractal properties
strongly depend on the choice of basis. In this paper, we chose
the standard basis of product states in the Fock space, like in
many of the previous works [34,73].

First we analyze the IPR for the entire many-body spec-
trum for h0 < h < hr

c where the system shows many-body
mobility edges from the level spacing statistics. Figure 12
shows IPR(ε) for various values of the normalized energy
ε for three α values. Following [76], we have analyzed the
scaling of ln(N ∗ IPR) vs ln(N ) and the flowing fractal expo-
nent μ = − ∂ ln[IPR(N )]

∂ ln(N ) , both shown in Fig. 12. Panels (a) and
(b) show the data for h = 6t0 for α = 0.5 and 1.0. For states
near the edges of the spectrum, for example, ε � 0.05 for
α = 0.5 and ε � 0.1 for α = 1.0, N ∗ IPR increases linearly
with N for large N , which is a signature of the localized
state. As an effect, μ → 0 in the thermodynamic limit. For
states in the middle of the spectrum, with 0.2 � ε � 0.5,
N ∗ IPR saturates for N � 1 and hence μ approaches 1 in the
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IP
R

ln

ln

ln ln

FIG. 12. Inverse participation ratio IPR for various values of the normalized eigenenergy ε and α. h values are chosen such that h < hr
c.

The top panels show ln[N ∗ IPR(N )] vs ln(N ) where N is the dimension of the Fock space. The bottom panels show the fractal exponent
μ as a function of ln(N ) for various values of ε and three values of α. Note that states on the edges ε � 0.05 are localized with μ → 0 in
the thermodynamic limit while states in the middle are extended with μ increasing as N increases. The intermediate states 0.05 < ε < 0.2
(for α = 0.5, 1.0) are multifractal with μ � 1.

thermodynamic limit. But for the states close to the mobility
edges of Fig. 8, that is, in the range 0.05 < ε < 0.2, the fractal
exponent μ neither increases in the thermodynamic limit nor
is vanishingly small, but it remains nonzero and much less
than 1, indicating the multifractal nature of states near the
mobility edges. A similar trend is observed for α = 1.5 and
h = 4t0, as shown in panel (c) of Fig. 12.

Next we study eigenfunctions in the middle of the spec-
trum for various values of h, shown in Fig. 13. We calculate
IPR for 1/10th of the states in the middle of the spectra,
that is, around ε = 0.5 for various system sizes L = 10–18,
and average it over many independent disorder realizations.
For very large values of h, for example, h = 22t0, N ∗ IPR
increases linearly with N and μ ∼ 0 for large N , which is a
signature of the localized state though μ increases a bit as
α decreases. On the other hand, for conventional extended
states N ∗ IPR should saturate for N � 1 to a value which
increases with the disorder strength. For α = 0.5(1.0), we see
this trend for h � 6t0 (h � 4t0) though for larger α values this
trend is seen for further smaller values of h. In this regime,
the fractal exponent μ approaches its conventional value 1 as
the Fock-space volume increases, as seen clearly in the panels
for α = 0.5 and 1.0 for h = 4t0. For intermediate values of
disorder, like 6 < h/t0 < 10 for α = 0.5 and 4 < h/t0 < 8
for α = 1.0, N ∗ IPR does not show saturation for the system
sizes studied, but the fractal exponent μ shows an increasing
trend in the large-N limit indicating that the states are ex-
tended here as well. Thus for h < hr

c, where the midspectra
level spacing ratio obeys WDS, the corresponding eigenstates
are also extended in the Fock space. But for hr

c < h < hI
c, the

fractal exponent μ neither increases in the thermodynamic
limit nor is vanishingly small but μ remains nonzero, being

much less than 1, indicating the multifractal nature of the
eigenstates.

Finally, we discuss the higher moments for h < hr
c as well

as h > hr
c for q = 3 and 4. Figure 14 shows the generalized

fractal dimension μq for the above-mentioned values of q
for the states in the middle of the spectrum. For h < hr

c, μq

increases with the system size and should approach unity in
the thermodynamic limit, supporting our conclusion from IPR
analysis that the states are fully extended in this parameter
regime. But for hr

c < h < hI
c, μq does not show clear increase

with the system size and μq � 1 for all the values of q studied.
Panel (d) of Fig. 14 shows a nonlinear dependence of μq

on q for hr
c < h < hI

c which confirms multifractal nature of
eigenstates.

To summarize, quantum quench dynamics showed two
regimes of subdiffusive transport, one below hr

c, where the
system has many-body mobility edges, and the other for
hr

c < h < hI
c. Eigenfunction statistics reveals that for h < hr

c
the many-body states near the mobility edges are multifractal
though the states in the middle of the spectrum are extended.
For hr

c < h � hI
c, the eigenstates in the middle of the spectrum

are multifractal.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have explored competing effects of the
long-range power-law interactions Vi jr

−α
i j with random co-

efficients Vi j and the one-body aperiodic potential, h. We
demonstrated that h, required to attain the MBL phase in
the presence of random power-law interactions, is much
larger compared to the case of short-range interactions, which
we attribute to the modification in correlation among local
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R

ln ln ln

ln

FIG. 13. Inverse participation ratio IPR for states in the middle of the spectrum for various values of α and h. The top panels show
ln[N ∗ IPR(N )] vs ln(N ) where N is the dimension of the Fock space. The bottom panels show the fractal exponent μ as a function of ln(N )
for various values of h and three values of α.

energies of the effective Anderson model on Fock space due
to random long-range interactions. The MBL phase in the
presence of random long-range interactions is preceded by a
broad nonergodic subdiffusive phase the width of which in-

(a) (b)

(d)(c)

ln ln

ln

FIG. 14. Generalized fractal dimension μq for q = 2, 3, 4 for
states in the middle of the spectrum for various values of α and h.
For h < hr

c μq increases with the system size for all q studied and for
all values of α, while for hr

c < h < hI
c μq � 1 for all values of q and

α studied here. Panel (d) shows the dependence of generalized fractal
exponent μq on q for various values of h and three values of α.

creases with decrease in α. The nonergodic subdiffusive phase
observed here is characterized by Poissonian statistics for the
level spacing ratio, slow dynamics in quantum quench, and
multifractality of the eigenstates. Generally, the nonergodic
extended phase is expected to appear only near the MBL
transition [33,34,70,73] though its fate in the thermodynamic
limit has been debatable. In this paper we have observed a
broad nonergodic subdiffusive phase which interestingly has
parallels with the slow nonthermalizing dynamics that has
been recently observed in models of quantum spin glass [77]
and with the “quasi-MBL” phase observed in an infinite-range
random interactions model of fermions [78].

Based on the time dynamics of a charge density wave
ordered initial state, we also identify a superdiffusive phase
for h < h0 < hr

c, characterized by the fast decay of the density
imbalance with the dynamical exponent γ > 1/2. For h0 <

h < hr
c, where the level spacing ratio shows mobility edges

separating ergodic states in the middle from the nonergodic
states at the edges of the spectrum, the system is subdiffusive
with γ < 1/2 as shown in the phase diagram of Fig. 1. The
width of this ergodic subdiffusive phase increases for smaller
values of α, where the interactions are long range in nature.
Even for h > hr

c, the dynamics remain subdiffusive for a wide
range of the disorder strength and become slower as the disor-
der strength increases. Eventually the system transits into the
MBL phase which is nonergodic and diffusionless.

In short, in our model we observe two regimes of subd-
iffusive transport. The subdiffusive phase closer to the MBL
transition (for hr

c < h < hI
c) is completely nonergodic and has

multifractal eigenstates in the middle of the spectrum. The
other subdiffusive phase appears at much lower values of dis-
order, h < hr

c, where the states near the many-body mobility
edges are multifractal. This seems consistent with earlier
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proposals in which subdiffusive transport close to the MBL
phase is explained in terms of multifractality of the eigenstates
[33,63,73,74]. The question of interest is why random long-
range interactions result in multifractal behavior of eigenstates
over such a broad parameter regime and will be explored in
future works.

There are suggestive explanations of the subdiffusive
transport in terms of the Griffiths phase for systems with
short-range interactions in one dimension, where the rare in-
sulating regions act as bottlenecks for transport resulting in
slow dynamics of the system [79] close to the MBL transi-
tion. Though the rare region effects are absent for systems
with deterministic potential, the model we have studied also
has random power-law interactions which can have “rare re-
gions.” Generally, it is believed that Griffiths effects in 1D
systems with long-range interactions are similar to those in
higher dimensions with short-range interactions where insu-
lating inclusions in an ergodic phase can be bypassed. But,
we would like to emphasize, this is true only if the hopping
is long range in nature. With nearest-neighbor hopping and
long-range interactions with random coefficients, the one-
dimensional system must have rare region effects. This is
better supported by comparing the transport in this model in
the presence of long-range interactions with uniform coeffi-
cients rather than random coefficients. For the system with
uniform long-range interactions, in the nonergodic regime, the
imbalance does not show any decay with time and the system
remains localized (as shown in Appendix B) though in the
presence of random long-range interactions we observed a
broad subdiffusive phase. We believe that this difference in
dynamics of the two systems is because of the rare region ef-
fects which are present in the system with random long-range
interactions and are absent for the case of uniform power-law
interactions. There can be rare regions where interactions are
very small and hence the disorder is effectively strong, which
can result in “insulating” bubbles in the ergodic phase for
h < hr

c and may lead to subdiffusive transport. Similarly, for
h > hr

c, there might be rare regions where the interactions
are weak or purely repulsive which might generate extended
bubbles like |010100 . . .〉 + |100010〉 + |100100〉 + . . . in an
otherwise MBL phase. These thermal bubbles in the otherwise
MBL phase prohibit complete localization of the system and
result in a subdiffusive phase near the MBL transition.

It will certainly be interesting to explore other dynamical
quantities like mean-square displacement, conductivity, and
return probability especially for bigger system sizes and if
possible using analytic calculations. Understanding the mech-
anism behind wide regions of anomalous transport and Grif-
fiths effects in the presence of random-long-range interactions
is crucial and will be explored in future works. Finally, since
the range of power-law interactions can now be controlled
in state-of-the-art experiments [47–49], it will be interesting
to explore MBL in the presence of power-law interactions
with random coefficients in experiments and to look for the
proposed nonergodic subdiffusive phase in these systems.
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APPENDIX A

In this Appendix, we present energy resolved level spacing
statistics for α = 1.0 and 1.5. Figure 15 shows the plot of r(ε)
vs ε for the system with random power-law interactions for
various values of h and three system sizes. For α = 1.0 the
system shows mobility edges, which separate states obeying
PS from those which obey WDS, up to h = 6t0. For h = 8t0
the system is fully nonergodic with the level spacing ratio for
all the many-body states showing PS value. For shorter-range
interactions, the transition to the nonergodic phase occurs at
smaller values of h. As shown in the bottom panel of Fig. 15,
for α = 1.5, already at h = 6t0, r ∼ 0.386 for the entire many-
body spectrum.

APPENDIX B

In this section we provide a brief description of the Cheby-
shev polynomial method used to evaluate the time evolution
of the density imbalance and also some results related to the
density imbalance.

1. Chebyshev polynomial method for time evolution

The direct calculation for time evolution is not feasible for
larger Hilbert-space dimension using exact diagonalization
technique, which restricts the calculation to L = 16 system
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FIG. 16. Density imbalance I (t ) vs t0t for h = t0 for various
values of α. The data shown are for L = 24.

sizes. Hence, to study dynamics in large system sizes, we use
the Chebyshev polynomial method, which is a well-known
and established method for time evolution of quantum systems
[59–62] and has been used to study quantum quench dynamics
of MBL systems [58].

In the Chebyshev scheme, we express the time evolution
operator U (t, 0) in terms of a finite series of first-kind Cheby-
shev polynomials of order k. One important point to note is
that the whole set of Chebyshev polynomials is defined on
the interval [−1 : 1]. Hence before expanding the time evolu-
tion operator U (t, 0) in terms of Chebyshev polynomials, we
must shift and rescale the Hamiltonian H̃ = H−b

a to restrict
the spectrum within the interval [−1, 1] [59]. The parameters
b = 1

2 (Emax + Emin) and a = 1
2 (Emax − Emin + ε) where Emax

and Emin represent the extreme eigenvalues of the Hamiltonian
H . A small parameter ε has been introduced to ensure that
rescaled eigenvalues |Ẽ | � 1

1+δ
lie well inside [−1 : 1] [60].

We use the Lanczos method to obtain the largest and smallest
eigenvalues of H for L = 24 for a few realizations of disor-
der configurations for various parameters in the Hamiltonian.
Then we use a slight overestimation of Emax − Emin for nor-
malization of the spectrum. For practical purposes we chose
δ = 0.01.

2. Density imbalance for h = t0

For very small values of disorder h � 2t0, where the nonin-
teracting system has single-particle mobility edges, and hence

FIG. 17. The density imbalance I (t ) as a function of time for
h = 5t0 and α = 0.5. The red curve represents the results for the
system with uniform power-law interactions with V = t0 while the
blue curve is the result for the system with random power-law
interactions.

the half-filled interacting system is fully ergodic and extended,
the density imbalance shows superdiffusive dynamics with
γ > 1/2 for all values of α studied. Corresponding imbalance
plots are shown in Fig. 16 for h = t0 for various values of α.
I (t ) decays very fast during the initial time period and reaches
around 0.01 for t0t ∼ O(10) after which it shows power-law
decay with γ > 1/2 as shown in the inset of Fig. 16. For
h = t0, γ ∼ 0.68 for all the values of α studied.

3. Comparison of density imbalance for the random
and uniform power-law interactions

Figure 17 shows the comparison of the density imbalance
for the system with uniform power-law interactions and ran-
dom power-law interactions for the same value of h = 5t0
and α = 0.5. In the case of uniform power-law interactions,
the density imbalance saturates to a value close to unity after
an initial decay. This shows that the system remains in the
MBL phase having strong memory of the initial order. But in
the presence of random power-law interactions, I (t ) shows a
clear power-law decay with the dynamical exponent γ ∼ 0.35
indicating that the system is not in the MBL phase but shows
subdiffusive transport.
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