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Extracting many-body localization lengths with an imaginary vector potential
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One challenge of studying the many-body localization transition is defining the length scale that diverges
upon the transition to the ergodic phase. In this manuscript we explore the localization properties of a ring with
onsite disorder subject to an imaginary magnetic flux. We connect the imaginary flux which delocalizes single-
particle orbitals of an Anderson-localized ring with the localization length of an open chain. We thus identify the
delocalizing imaginary flux per site with an inverse localization length characterizing the transport properties of
the open chain. We put this intuition to use by exploring the phase diagram of a disordered interacting chain,
and we find that the inverse imaginary flux per bond provides an accessible description of the transition and its
diverging localization length.
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I. INTRODUCTION

A large body of evidence shows that one-dimensional
fermionic quantum systems with both (local) interactions and
sufficiently strong disorder will exhibit a cluster of traits
known as many-body localization [1–3]. These include long-
time memory of an initial state, conductance exponentially
small in length, slow entanglement growth, and near-Poisson
level statistics.

The localization length of single particle orbitals is a
standard measure of localization. This notion applies to in-
teracting localized systems as well as noninteracting systems.
In fact, the localized nature of the many-body localized phase
implies that it can be described by a so-called �-bit Hamil-
tonian [4,5]. The Hamiltonian can be written in terms of
mutually commuting single-particle occupation operators ñ j

with local support as

H =
∑

Ejñ j +
∑

jk

J (2)ñ j ñk +
∑
j1 j2 j3

J (3)
j1 j2 j3

ñ j1 ñ j2 ñ j3 + · · · ,

where the interactions J (n) are presumptively short-ranged.
Explicitly constructing the �-bits would fully solve the quan-
tum dynamics of a many-body localized chain; the problem of
doing so has attracted much attention [6–10].

The first phenomenological and numerical treatments of
the MBL transition tended to concentrate on entanglement
and transport times [11–14], and computed the gap ratio, the
entanglement entropy of eigenstates, or decay of local ob-
servables [2,3,15–17]. But the microscopic avalanche picture
[18–21] and recent renormalization analysis [22] hinge on the
correlation lengths of perturbatively constructed �-bits.

The most direct way to probe many-body localization,
however, should be through finding the appropriate local-
ization length of single particle creation operators. Such
a localization length, which is analogous to the Anderson

localization scale, would be most relevant to transport-related
questions. A localization length could be defined from the
support of the �-bits. But constructing �-bits is difficult and
relies on variants of exact diagonalization, Wegner flow or
matrix product state methods; moreover, the same physical
Hamiltonian can be described in terms of many different
sets of �-bits. Extracting localization length from �-bits of
limited-size systems is therefore, difficult and ambiguous.
Nonetheless, Refs. [23–25] succeed in extracting localization
length by constructing �-bit operators and exploring their de-
cay.

In this manuscript we show that exploring the response of
a system to non-Hermitian hoppings (namely, to an imaginary
flux) provides a direct way to address the definition of a local-
ization length. Furthermore, it does not require knowledge of
any �-bits properties, and addresses directly the localization
length most relevant for transport. We introduce an imaginary
vector potential, which maps to a “tilt”—an asymmetry in
the tunneling rates between neighboring lattice sites. While at
small tilts all eigenvalues of the system’s Hamiltonian remain
real, they develop imaginary parts at some critical tilt. We
argue that the critical tilt of a non-Hermitian system probes
the �-bit localization length ξl-bit of its zero-tilt Hermitian
limit, while the distribution of points at which successive
eigenvalues develop imaginary parts (“exceptional points”)
probes the �-bit interaction scale Jint. We show explicitly that
the critical tilt in a ring (a chain with periodic boundary
conditions) is the inverse localization length of the open chain
with the same disorder realization. We use this to describe
the many-body localization transition and extract its phase
diagram.

We first introduce our model in Sec. II. We then articulate
the connection between critical tilt in a ring and the local-
ization length of an open chain in the single-particle case (in
Sec. III); in doing so, we extend the work of Ref. [26] to
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connect the critical tilt on a ring to a Green’s function on
the open chain. We then consider generalizations to the many-
particle, noninteracting case (Sec. IV A) and to the interacting
case (Sec. IV B), where we show a connection between the
distribution of exceptional points and the l-bit interaction
strength. Finally, in Sec. V we use the critical tilt to map
the MBL transition of the isotropic random-field Heisen-
berg model. We find a phase diagram and critical exponents
broadly consistent with [16]. In addition, we see that the MBL
regime is re-entrant as a function of interaction strength.

II. INTRODUCING NON-HERMITIAN HOPPING TO THE
MANY-BODY LOCALIZATION MODEL

A. Background

The non-Hermitian hopping problem in a tilted disordered
lattice was proposed as an effective model for vortex pin-
ning in nonparallel columnar defects [27–30]. Indeed, the
anhermiticity of the hopping operator represented the tilt of
the columnar pinning defects relative to the external field.
The critical tilt in this single particle problem was shown
to be intimately related to the localization properties of the
zero-tilt system [26]. The relationship between critical tilt
and correlation length has received much interest, as have
various properties of the single-particle spectrum at fixed tilt
[31–37]. Very recently, non-Hermitian tilt was also introduced
to interacting systems [38,39].

B. Model

We study spinless fermions hopping on a one-dimensional
lattice with a random onsite chemical potential and an imagi-
nary vector potential. The system’s Hamiltonian is

H = t
∑

j

[egc†
j c j+1 + e−gc†

j+1c j]

+ U
∑

j

n jn j+1 +
∑

j

h jn j, (1)

with the random onsite potential h j uniformly distributed on
[−W,W ]. We set the bare hopping to t = 1. When U = 2,
this model is Jordan-Wigner equivalent to the random-field
Heisenberg model. In Sec. III we work in the single-particle
sector; in the subsequent sections we work at half-filling.

The Hamiltonian Eq. (1) is non-Hermitian, with anher-
miticity parametrized by the imaginary vector potential, or
“tilt,” g. In an open chain the tilt g could be removed by a
similarity transformation

S = e

∑
j

g jn j

. (2)

In a ring, the imaginary flux cannot be removed by such a
similarity transformation, and imaginary parts can appear in
the energy eigenvalues of the system.

The imaginary eigenvalues are directly related to delocal-
ization on the ring. For g > 0, the system prefers leftwards
hopping, but if g is small one expects the system to remain
localized. Localized orbitals cannot explore the entire ring,
and therefore their energy eigenvalues remain real. At large g
the preferential leftward hopping dominates, and one expects
the system to be delocalized. Orbitals that wrap around the

ring necessarily develop an imaginary part to their energy. In
the next section we explain how to precisely relate the tilt g
at which imaginary parts appear to the localization length of
orbitals.

III. CRITICAL TILT AND LOCALIZATION LENGTH: THE
SINGLE-PARTICLE CASE

As the tilt in a ring increases, the Hamiltonian’s eigenval-
ues develop imaginary parts. The point at which an eigenvalue
develops an imaginary part is called an exceptional point. We
seek a precise relationship between the localization length of
the open chain and the location of the exceptional point.

We can get some intuition for the processes involved and
see what ingredients are required by a heuristic argument,
in which we gauge the imaginary flux to one link and add
that link perturbatively. Consider the Hamiltonian of Eq. (1)
on N sites with periodic boundary conditions, and take the
single-particle case. At g = 0 its single-particle eigenstates
are exponentially localized, and, therefore, cannot explore the
flux penetrating the ring. An eigenstate |n〉 centered on some
site j, for instance, can be asymptotically written as

|n〉 ∼
∑

j′
e−| j− j′ |/ξ | j′〉 . (3)

Through a similarity transformation as in Eq. (2), we can shift
all of the imaginary vector potential to the far side of the sys-
tem, away from |n〉’s center site j. The imaginary flux would
then be shifted to j̄ = j + N/2 mod N , and the Hamiltonian
would be

H =
∑
j′ �= j̄

[c†
j′c j′+1 + H.c.] +

∑
j′

hz
j′n j′

+ eNgc†
j̄
c j̄+1 + e−Ngc†

j̄+1
c j̄ . (4)

Imagine now adding the anhermitian hopping on the link
j̄, j̄ + 1 perturbatively. The perturbation becomes important
when the resulting change in energy is comparable to some
energy difference �E in the closed chain: that is, when

1 ∼ 〈n| teNgc†
j̄+1

c j̄ |n〉 ∼ eN (g−ξ−1 )�E−1, (5)

where �E is some energy difference in the closed chain.
Immediately we see that the anhermiticity is important when
g ∼ ξ−1. This crucial insight—that the tilt competes directly
with the localization properties of individual eigenstates—
goes back to the work of Hatano and Nelson (e.g., Ref. [28]).
But we also see the three ingredients that will be important
in our detailed calculation: the tilt g, the end-to-end hop-
ping matrix element in eigenstates of the open chain, and
energy differences in the open chain. Although our detailed
calculation in Secs. III A–III D applies only to single-particle
(noninteracting) systems, we hope that this perturbative ap-
proach will in the future yield more precise insight into
interacting (many-body localized) systems; we will return to
it in interpreting our results for those systems.

For g > gc, the eigenstates with complex energy eigen-
values resemble a plane wave [28]. (Recall that we work in
the single-particle sector.) Therefore, these eigenstates have

064201-2



EXTRACTING MANY-BODY LOCALIZATION LENGTHS … PHYSICAL REVIEW B 103, 064201 (2021)

FIG. 1. Eigenenergies for one particle on a chain of N = 100
sites with disorder width W = 1 at three tilts g. For sufficiently strong
gauge field the single-particle spectra form ellipses emerging from
the band center.

(complex) energy εk ≈ cos(k − ig) (recall t = 1) and are
distributed on an ellipse

( �(ε)

cosh g

)2

+
( 	(ε)

sinh g

)2

= 1 (6)

(cf Fig. 1).
For the Hamiltonian Eq. (1) in the single-particle sector, a

heuristic relationship between the critical tilt gc and the end-
to-end Green’s function of an open chain was established in
Ref. [26]. There it was shown that the critical tilt of a ring is

(
eNgc + e−Ngc − 2

)−1 =

N∏
i=1

ti

N∏
i=1

(E − εi )

, (7)

with εi the spectrum of the ring (in the absence of a tilt), E
the energy at which the first eigenvalue develops an imagi-
nary part, and ti are the hoppings between site i and i + 1
modulo N . The right-hand side of this relationship is sug-
gestive: were the εi eigenvalues of the open chain at g = 0
and g = gc respectively, it would be closely related to the
end-to-end Green’s function of that open chain at energy E .
Since the eigenvalues εi will, in fact, approach the eigenvalues
of the open chain in the long-system, strong-disorder limit,
this provides good intuition—but the connection is definitely
not exact.

A precise relationship between the critical tilt of a ring and
the inverse localization length of an open chain does exist;
we work it out in this section. To expose the relationship we
start with an open chain, and add a “lead” site with some
local potential μ0 (cf. Fig. 2). The lead site is then connected
weakly (with hopping t0 
 1) to both the first and the last sites
of the open chain. Next, we calculate the determinant of the
resulting closed chain in terms of the open-chain eigenvalues.
We then connect this determinant on the one hand to the
end-to-end Green’s function of the open chain, and hence
to end-to-end eigenstate correlations; and on the other to the
critical tilt. We ultimately find that for an appropriate choice

FIG. 2. Lead setup for Sec. III: open chain (sites 1 through N
with onsite chemical onsite potentials ε1 . . . εN and uniform hopping
amplitude t) together with lead site (chemical potential μ0) con-
nected to chain by a tunneling t0.

of chemical potential μ0 and tunneling strength t0,

e−(N+1)gc ∼ 〈n| c†
N c1 |n〉 , (8)

where |n〉 is an eigenstate selected by μ0 of the open-chain
Hamiltonian, while 1 and N are basis states on the first and
last sites of the open chain.

Having established this relationship, we go on to generalize
to generic lattice rings and to the many-particle (but noninter-
acting: U = 0) case.

A. Determinant formula for the closed chain with lead

Start with the Hamiltonian Eq. (1) in the g = 0, U = 0,
open boundary conditions case—call it

H [1:N]
open = t

N−1∑
j=1

[c†
j c j+1 + c†

j+1c j] +
N∑

j=1

h jn j . (9)

(We write H [k:l]
open = t

∑l−1
j=k[c†

j c j+1 + c†
j+1c j + n jn j+1] +∑l

j=k h jn j for the Hamiltonian on sites k through l with open
boundary conditions; we will have occasion to use not only
H [1:N]

open but also H [2:N]
open .)

Add a “lead” site with chemical potential μ0 connected to
both ends of the chain by a hopping amplitude t0:

H = H [1:N]
open + μ0n0 + t0(c†

0c1 + c†
1c0)

+ t0(e(N+1)gc†
N c0 + e−(N+1)gc†

0cN ). (10)

Since the chain now has periodic boundary conditions, we
can no longer gauge away the imaginary vector potential à
la Eq. (2); it is convenient to work in a gauge in which all of
the vector potential lives on the bond between the lead and
site N . We ultimately plan to take N � 1 and g � 1, so we
can comfortably ignore the term t0e−(N+1)gc†

0cN .
For the purposes of finding a precise determinant formula,

we take the lead to be weakly connected to the rest of the
chain: t0 
 t . We will discuss relaxing this assumption below.
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H then has matrix representation

EI − H (g)

=

⎡
⎢⎢⎢⎣

E − μ0 t0
t0 E − ε1 t

t E − ε2 t
t E − ε3 t

t0e(N+1)g t E − ε4

⎤
⎥⎥⎥⎦

(11)

and determinant

det[EI − H (g)] = (E − μ0) det(EI − Hopen )

− t2
0 det(EI − H [2:N]

open )

+ (−1)N+2t2
0 tN−1e(N+1)g (12)

(expanding in minors along the first column). Since we take t0
small we can ignore the t2

0 term compared to the t2
0 egN term. If

we take E to be an eigenvalue of H (g) this is

det(EI − H [1:N]
open )

= (−1)NtN−1(E − μ0)−1t2
0 e(N+1)g. (13)

B. Open-chain Green’s function

We can rewrite the determinant in Eq. (13) in terms of the
open-chain Green’s function. This has (1, N ) matrix element

G[1:N]
1N (E ) = [(EI − H [1:N]

open )−1]1N

= [adj (EI − H [1:N]
open )]1N

det(EI − H [1:N]
open )

(14)

for

G[1:N]
1N (E ) = (−1)N+1

[
det

(
EI − H [1:N]

open

)]−1
tN−1. (15)

With this relation Eq. (13) becomes(
G(1:N]

1N

)−1 = −(E − μ0)−1t2
0 e(N+1)g. (16)

We can extract the tunneling probability for an eigenstate |α〉
of H [1:N]

open from the Green’s function

〈1|α〉 〈α|N〉 = (E − Eα )G[1:N]
1N (E ) (17)

by identifying poles, so Eq. (16) is

e−(N+1)g = 〈1|α〉〈α|N〉(Eα − E )−1(E − μ0)−1t2
0 . (18)

C. Critical tilt gc

Equation (18) has three free parameters: μ0, t0, and g. E is
not a (continuously tunable) parameter: It is fixed by μ0, t0, g,
since it is an eigenvalue of the non-Hermitian Hamiltonian
with lead site. But we can choose these parameters to strongly
constrain the non-Hermitian eigenvalue E , and hence relate
gc, the tilt at which eigenstate α coalesces with the lead state
and develops an imaginary part, to 〈1|α〉〈α|N〉.

Suppose we wish to probe the eigenstate α of H [1:N]
open . Then

choose

0 <Eα − μ0 
 typical level spacing ,

t0 = 1

2
(Eα − μ0) (19)

FIG. 3. Sketch of the lead spectrum as in Sec. III C: Eα is a level
of the open chain, μ0 the chemical potential of the lead, and E the
energy at which we measure the Green’s function. Unlabeled vertical
lines are other eigenenergies of the open chain.

(cf Fig. 3). Because the open chain is localized, the lead’s
occupied state will not hybridize substantially with any of the
chain’s levels in the Hermitian chain. But as we increase g,
the lead state and the chain level n will start to hybridize,
and the energy of the lead site and of state n will approach
each other. When they coalesce, which they will do at a value
E � 1

2 (μ0 + En), both levels will develop imaginary parts.
Because Eα − μ0 
 typical level spacing, we expect this to
be the first pair to coalesce. With

γ ≡ t2
0

(Eα − E )(E − μ0)
� 1 (20)

(where the estimate follows from our premeditated choice of
t0), Eq. (18) will become

gc = 1

N + 1
ln[γ 〈α| c†

1cN |α〉]

= ξ−1
α + ln γ

N + 1
� ξ−1

α , (21)

where we define an eigenstate localization length ξ−1
n ≡

ln 〈α| c†
1cN |α〉.

We show gc and ξα for eigenstate α = 20 of a chain with
N = 40 with 1000 disorder realizations in Fig. 4, and see good
agreement. We first diagonalize the open chain; we then take
μ0 = E20 − 0.01h/L and t = 0.005h/L, in accordance with

0.2 0.4 0.6
ξ−1
α

0.1

0.2

0.3

0.4

0.5

0.6

g c

ED

gc = ξ−1
α

FIG. 4. Critical tilt gc against inverse localization length ξ−1
α via

exact diagonalization for 1000 disorder realizations of Eq. (10) at
system size N = 40 and lead parameters as in Eq. (19). (We consider
eigenstate α = 20 of each realization.) This confirms our analytical
relationship Eq. (21).
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Eq. (19), and find gc in the resulting closed chain. The varia-
tion comes from γ : E is not always exactly E = 1

2 (Eα + μ0).

D. Closed chain without lead

Even though the chain with lead has periodic boundary
conditions, in the sense that there are exactly two paths be-
tween any two sites, it is not obvious that the results of
Sec. III C will carry over to ordinary chains with periodic
boundary conditions. Equation (21), which connects gc and ξα

for some eigenstate, requires a carefully fine-tuned lead site.
Can we do better? Can we take a generic lead site—that is, a
straightforward periodic chain?

If we are willing to relax our demands for rigor, we can
make some estimates. Take the Hamiltonian Eq. (1) with
periodic boundary conditions acting on one particle. Single
out one arbitrary site for treatment as the “lead,” and return
to Eq. (12). Once again take E to be an eigenvalue of the
non-Hermitian Hamiltonian H (g), so Eq. (12) becomes

0 = (E − μ0) det
(
EI − H [1:N]

open

) − t2
0 det

(
EI − H [2:N]

open

)
+ (−1)N+1t2

0 tN−1e(N+1)g. (22)

Take t0 = t—the supposed lead site is just a normal lattice
site, after all—and write the determinants in terms of the
(1, N ) components of the Green’s functions G[1:N], G[2:N] of
H [1:N]

open , H [2:N]
open . This becomes

0 = (E − μ0) 〈1|G[1:N]|N〉−1 + t 〈2|G[2:N]|N〉−1

+ e(N+1)g. (23)

Now work at gc. Once again write Eα for the eigenvalue
nearest μ0; even though t0 is no longer small, we expect

E − μ0 ∼ Eα − E ∼ 1

2
(Eα − μ) ∼ 1√

L

 1, (24)

so we can ignore the G[1:N] term. If we assume

〈2|G[2:N]|N〉−1 ∼ e−(N−1)ξ−1
, (25)

then

gc ∼ ξ−1
α . (26)

IV. MANY-PARTICLE CASE AND INTERACTION
BROADENING

A. Many-particle noninteracting case

Now let the same Hamiltonian Eq. (1) act on many
particles—in fact on the half-filling sector—but take it to be
noninteracting (U = 0). Its eigenstates will be Slater deter-
minants

∏
α∈A c†

α |0〉 with eigenvalues EA = ∑
α∈A Eα . When

two single-particle states pass through an exceptional point,
developing imaginary parts to their energies, they therefore
take with them a whole class of many-particle states.

To quantify this effect consider first increasing g through
gc, the tilt at which the first two single-particle states go
through an exceptional point. (In the example above, of an
open chain with a lead site, these will be the lead site and
the open-chain level n.) Call those two states α1 and α2, and
occupy a set A of additional levels, not including α1, α2, with

1.0 1.5 2.0 2.5 3.0
tilt g

0.5

0.6

0.7

0.8

0.9

1.0

f i
m

ag

N = 6

N = 8

N = 10

N = 12

FIG. 5. Emergence of imaginary part of energy with increasing
tilt g. y axis is fraction of eigenvalues having imaginary component
for one realization of Eq. (1) at interaction strength U = 0, disorder
width W = 7, and system size N as indicated. Dotted lines show our
analytical results Eqs. (28) and (29) for the first few bifurcations.

more particles. Since the energy difference of the many-body
state is the same as that of the delocalizing orbitals,

Eα1A(g) − Eα2A(g) = Eα1 (g) − Eα2 (g), (27)

every such set gives a pair of levels that coalesce at gc. As we
tune g through gc, then, all

n1 = 2

(
N − 2

N/2 − 1

)
(28)

levels with either α1 or α2 occupied will coalesce with the
states with α2 and α1 occupation switched. (Recall that we
assume a half filled system with an even number N of sites.)
These states will re-emerge with imaginary parts, simply be-
cause the energies are the sum of the single-particle energies
Eα . (Note that if both α1 and α2 are occupied the resulting
energy is real, because Eα2 = E∗

α2
.)

Consider now increasing g through the tilt at which the
second pair of single-particle eigenstates passes through an
exceptional point. At this tilt,

n2 = 2

(
N − 4

N/2 − 1

)
+ 2

(
N − 4

N/2 − 3

)
= 4

(
N − 4

N/2 − 1

)
(29)

eigenstates will develop imaginary parts (these two ex-
pressions have α1 and α2 either fully occupied or fully
unoccupied).

Figure 5 shows the fraction of eigenenergies that develop a
complex eigenenergy as a function of disorder for a particular
disorder and no interactions.

B. Many-particle interacting case

Turn now to the interacting case, and consider disorder
strong enough that the Hamiltonian Eq. (1) is fully local-
ized for 0 � U � 1, g = 0. In terms of �-bits that interacting

064201-5



HEUSSEN, WHITE, AND REFAEL PHYSICAL REVIEW B 103, 064201 (2021)

1.0 1.5 2.0 2.5
tilt g

0.0

0.2

0.4

0.6

0.8

1.0

f i
m

ag

U = 2−8

U = 2−7

U = 2−6

U = 2−5

U = 2−4

U = 2−3

U = 2−2

U = 2−1

U = 0

FIG. 6. Effect of weak interaction on emergence of imaginary
parts of energy. y axis is fraction of eigenvalues having imaginary
component for one realization of Eq. (1) at disorder width W = 8,
system size N = 10, and interaction strength U as indicated. Dotted
lines again show the analytical results Eqs. (28) and (29). In the MBL
phase (U = 1, W = 8) interactions smear out the discrete steps char-
acteristic of the noninteracting case, which result from coalescence
of single-particle eigenstates.

Hamiltonian is

H =
∑

Ejñ j +
∑

jk

J (2)ñ j ñk

+
∑
j1 j2 j3

J (3)
j1 j2 j3

ñ j1 ñ j2 ñ j3 + · · · (30)

In the single-particle sector this reduces to H (g) =∑
α Eαnα (g).
One can imagine running the same procedure as in the pre-

vious part. As one increases g, the single-particle eigenvalues
develop imaginary parts—but this cannot lead to simultane-
ous coalescence of many eigenvalues. The interaction terms

∑
αβ J (2)

αβ ñα ñβ + . . . mean that now

Eα1A(g) − Eα2A(g) �= Eα1 − Eα2 , (31)

in contrast to Eq. (27), in which the energy difference was
independent of the additional orbitals A. The �-bit interactions
of Eq. (30) therefore smooth the sharp step-like coalescence
of many-body states; the degree of this smoothing probes the
strength of those interactions. We show this process in Fig. 6

V. PHASE DIAGRAM OF THE RANDOM-FIELD
XXZ MODEL

In this section we make use of the relationship gc ∼ ξ−1 to
probe the phase diagram of the model Eq. (1) using the critical
tilt. We show that it is consistent with previous studies.

A. Fixed interaction

Considering the critical tilt gc for each eigenstate gives us
the localization length as a function of energy. We measure
gc;rα for each eigenstate j of each disorder realization r with
precision 0.05; we then average before inverting to estimate a
localization length:

ξ j := [ḡc]−1 =
[

1

Nrealizations

∑
realizations r

gc;r j

]−1

. (32)

In Fig. 7 we show ξ j as a function of eigenstate fraction

j
( N

N/2

)−1
. We mark

ξ j = cL, (33)

with c chosen via finite-size scaling; this gives a heuristic
estimate of the phase transition.

The resulting phase diagram is broadly consistent with that
of Ref. [16]. We see an apparent mobility edge for 1�W � 4,

FIG. 7. Phase diagram of the disordered, interacting Hamiltonian Eq. (1) at system size N = 12, interaction strength U = 1 (left) and
U = 3 (right), half filling, extracted from critical tilts. The color scale is ξ ≡ [ḡc]−1; we show it as a function of disorder width W and
eigenstate fraction with eigenstates sorted from lowest to highest. See Fig. 11 for localization length as a function of energy. Red dots indicate
ξ = 0.3N (U = 1, left) or ξ = 0.2N (U = 3, right), which is consistent with the crossing in the scaling collapse of Fig. 8. Compare to Ref.
[16] Fig. 1; see Fig. 11 for the same data plotted against energy.

064201-6



EXTRACTING MANY-BODY LOCALIZATION LENGTHS … PHYSICAL REVIEW B 103, 064201 (2021)

−20 −10 0 10 20
(W − Wc)N

1/ν

0.2

0.4

0.6

0.8

ξ/
N

U = 1; ν = 1.0, Wc = 4.0

N = 8

N = 10

N = 12

−50 0 50

0.5

1.0

−20 0 20
(W − Wc)N

1/ν

0.15

0.20

0.25

0.30

0.35

0.40

ξ/
N

U = 3; ν = 1.0, Wc = 6.0

N = 8

N = 10

N = 12

−50 0 50

0.25

0.50

0.75

FIG. 8. Finite-size scaling collapse for the localization length
ξ = [ḡc]−1 at interaction strength U = 1 (top) and U = 3 (bottom)
with critical disorder width Wc = 4 and correlation-length exponent
ν = 1. We average over 10 eigenstates near the middle of the spec-
trum. We find a crossing at ξ = 0.3N and ξ = 0.2N (where N is
system size) for U = 1 and U = 3, respectively. The gray horizontal
lines indicate those crossings. We show putative scaling collapse for
different Wc, ν in Appendix C. These scalings result from the average
of 99 (U = 1) or 98 (U = 3) disorder realizations. Error bars come
from nonparametric bootstrap.

as well as full localization [per our criterion Eq. (33)] for
Wc � 4. (Our critical disorder is different because we work
at a different interaction strength.) We also see a slight asym-
metry in �E ↔ −�E , again consistent with Ref. [16].

Finite-size scaling gives a better estimate for Wc, as well as
an estimate for the correlation length exponent ν. In addition
to averaging over disorder realizations, we average over 10
eigenstates n0 = 0.5

( N
N/2

)
through n0 + 9 = 0.5

( N
N/2

) + 9 near
the middle of the spectrum:

ξ = [ḡc]−1 =
[

1

10Nrealizations

∑
realizations r

n0+9∑
j=n0

gc;r j

]−1

. (34)

This gives cleaner statistics, but does not appreciably change
the scaling parameters we extract. By seeking a scaling col-
lapse (Fig. 8—cf Appendix C), we find Wc ≈ 4 and ν ≈ 1.
Our system sizes are very small, so we do not claim this scal-
ing collapse reflects the ultimate large-system properties of
the transition. (In looking for ultimate large-system behavior,
we would need to in addition check for Kosterlitz-Thouless

behavior [14,22,40–42].) Nevertheless, even at these small
sizes our collapse is not consistent with the result of Hamazaki
et al., who find a correlation-length exponent ν = 1

2 [38].
Like us, Ref. [38], Hamazaki et al., investigates a PT-

breaking transition in a localized many-body system, with a
finite non-Hermitian tilt. Our measurements, however, differ
from those of Ref. [38] both ontologically and operationally.
Ontologically, Hamazki et al., treat the non-Hermitian Hamil-
tonians as objects of study in their own right. They fix g �= 0
and look for a phase transition as a function of disorder width,
W . We, by contrast, use non-Hermitian Hamiltonians as in-
dicators of the properties of the underlying g = 0 Hermitian
Hamiltonian. Particularly, we are seeking to explore the prop-
erties of the delocalization transition of the g = 0 system, and
our scaling plots refer to the g = 0 transition only. The g = 0
transition could well have different universal properties than
the g > 0 disorder-tuned transition that Ref. [38] is studying.
Less importantly, operationally, Ref. [38] measures the frac-
tion of eigenvalues with imaginary parts, whereas we measure
the critical tilt for each eigenvalue and average.

A straightforward interpretation of our finite-size scaling
(Fig. 8) implies that our localization length ξ = g−1

c diverges
at the transition. This is in striking contrast to the avalanche
theory of the localization transition, which posits a finite typ-
ical localization length at the transition [18,21].

The reason for the contrast is that the localization length
used as a parameter in the avalanche picture measures the
decay of matrix elements; the avalanche results from the
competition between that decay and Hilbert space growth.
Our g−1

c , in contrast, measures the competition directly: It is
a quantity with dimensions of length measuring a competi-
tion between matrix elements of the end-to-end hopping c†

1cN

and the many-body Hilbert space dimension, characterized by
the gaps between eigenstates. In the language of Ref. [43],
Sec. IV A, our g−1

c is

ξ = g−1
c = [s − l∗]−1, (35)

where s is the entropy density and l∗ is the localization length
associated with operator matrix elements. To see this, recall
that before an eigenvalue can develop an imaginary part, it
must become degenerate with another eigenvalue. So if we
imagine gauging all of the flux to one bond and adding that
bond perturbatively, then we find that the change in energy
induced by the term tegN c†

1cN must be comparable to the gap
between the eigenstate in question and one of its neighbors.
This is precisely our argument leading up to Eq. (5), with now
|n〉 a many-body eigenstate and �E the gap between |n〉 and
another (many-body, interacting) eigenstate nearby in energy.
From Eq. (35) it is clear that our localization length ξ = g−1

c
can diverge even when the localization length l∗ associated
with operator matrix elements is finite and that our g−1

c should
diverge at the critical value of l∗ predicted by either the
straightforward logic of Ref. [43] or the more detailed logic
of the avalanche picture.

g−1
c also immediately measures coherent end-to-end trans-

port in a finite segment of a chain. We showed this explicitly
in a noninteracting chain, but even in an interacting chain we
can see by rearranging Eq. (5) to

eNgc ∼ 〈n| c†
N c1 |n〉 �E−1 (36)
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FIG. 9. Distribution of coalescence points: rate of change ∂

∂g f̄imag

of fraction of eigenenergies having imaginary parts as a function of
g for interaction strength U = 1 and disorder width W = 1 (dots),
W = 8 (solid). The average is over Nrealizations = 100 disorder realiza-
tions for N = 10, 12 sites and Nrealizations = 10 disorder realizations
for N = 14 sites; errorbars are 1√

Nrealizations
std

∂ fimag

∂g . In the ETH phase
(W = 1) the distribution is peaked near g = 0; in MBL phase (W =
8) it is peaked at some finite gmax ∼ gc. This disorder average does
not display a critical gc, because for any g there will be disorder real-
izations with critical gc < g. The behavior of ∂

∂g f̄imag|
MBL

near g = 0
therefore indirectly probes rare “quasi-thermal” disorder realizations.
This provides a diagnostic for the unrenormalized parameters of the
avalanche picture [18–21].

that gc measures the magnitude of something having the form
of an end-to-end Green’s function. (Note once again that here
|n〉 and �E are eigenstates and gaps of the many-body inter-
acting Hamiltonian.)

We expect that the origin of the critical divergence of
g−1

c is best understood in the context of long-range resonant
structures [15,44,45]; it may provide a useful diagnostic of
those resonances. Additionally, the complete distribution of
coalescence points at a single scale (as in Fig. 9) contains
information about the distribution of resonant structures at all
scales up to that scale.

B. Re-entrance in interaction strength

Now fix the disorder width at W = 2 and vary the interac-
tion strength U . (We show the resulting localization lengths
in Fig. 10.) At U = 0, the system is Anderson localized; as U
increases we see the system delocalize (except near the band
edges). But for U � 3 the system appears to localize once
again.

This is a priori surprising. In a naïve picture of Anderson
localization with interaction added perturbatively, we would
expect the Anderson eigenstates to more strongly dephase
and delocalize as we increase U ; in the more sophisticated
avalanche picture, we would expect increasing interactions to
increase the initial density of thermalized “bare spots.”

But this re-entrance is consistent with the work of Bera
et al. [48]. They study the random-field XXZ model, as we
do; they characterize MBL by probing the extent to which

FIG. 10. Re-entrance of the localized phase as a function of inter-
action strength: Localization length (extracted from critical tilt, ξ =
[ḡc]−1) as a function of eigenstate fraction and interaction strength U
for N = 12-site disordered chains with width W = 2, at half-filling.
See Fig. 10 for localization length as a function of energy. There
is an intermediate delocalized regime between U ≈ 0.5 − 4. Strong
repulsion in the large U limit freezes the system [46]; cf the work of
Giudici et al. on lattice gauge theories, in which confinement plays a
similar role [47]. The low-energy delocalized regime for U � 1 may
be related to the model’s quantum phase transition at the isotropic
point U = 2. See Fig. 12 for the same data plotted against energy.

eigenstates of the many-body interacting Hamiltonian can be
approximated by Slater determinants of single-particle states.
They find [in their Fig. 1(b)] a re-entrance in interaction very
similar to ours.

VI. CONCLUSION

In this manuscript we showed that an imaginary vector
potential can provide direct access to localization lengths of
noninteracting as well interacting localized systems. The cru-
cial quantity is the “critical tilt,” i.e., the vector potential at
which an eigenenergy develops an imaginary part. We argue
that the critical tilt measures the localization length of the
underlying Hermitian system. We show this explicitly for the
noninteracting limit with a lead site connecting the two ends
of an open system. Importantly, we show that the localization
length of an open disordered chain is given directly by the
critical tilt (or critical imaginary flux per bond) of a ring made
of the open chain plus a tunneling site. We then argue that the
connection remains for ordinary periodic boundary conditions
and that interactions cause a “broadening” in the appearance
of imaginary eigenvalues. Finally, we use the correspondence
to extract the localization length most relevant for transport
properties in interacting, many-body localized, systems.

By using the critical tilt to measure localization length, we
study the MBL transition. We find re-entrance in the interac-
tion strength U , which is a priori surprising but consistent
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FIG. 11. Phase diagram of the disordered, interacting Hamiltonian Eq. (1) at system size N = 12, interaction strength U = 1 (left) and
U = 3 (right), half filling, extracted from critical tilts. The color scale is ξ ≡ [ḡc]−1; x axis is still disorder width W ; y axis is now energy
(rescaled by bandwidth); cf Fig. 7. Red dots indicate ξ = 0.3N (U = 1, left) or ξ = 0.2N (U = 3, right), which is consistent with the crossing
in the scaling collapse of Fig. 8.

with prior work [48], and with the MBL transition found
by Giudici et al. [47] in U (1) lattice gauge theories, where
1D Coulomb interactions cooperate with disorder to localize
the system, rather than competing. We also find a critical
exponent ν ≈ 1, in agreement with other studies of the critical
length exponent.

Our work has finite overlap with the work by Hamazaki
et al. [38], which studies directly the disorder-tuned PT break-
ing transition of a disordered system with a finite tilt. We
emphasize the difference between our works: We are seeking
to characterize the tilt-free MBL transition, whereas Ref. [38]
studies the finite tilt transition and obtain a critical length
exponent of ν = 1/2. Indeed, our results suggest that the two
transitions—finite tilt and zero-tilt—are in different univer-
sality classes, as we confirm earlier observations on finite
systems of ν = 1 at the transition. This raises the possibility
that the non-Hermitian system could provide differentiation
between the different length scales explored, e.g., in Ref. [23].

Our per-eigenstate critical tilt measures a localization
length of each eigenstate. It could be recast as the critical tilt
in each energy window, [E , E + δE ), as is done in Figs. 11
and 12 in Appendix B. This is in some sense the MBL-side
mirror image of the slow thermalization rates measured by
Pancotti et al. [49] on the ETH side of the transition. Pancotti
et al. characterize the distribution of operator decay rates of
the most nearly conserved local operators in terms of extreme
value statistics; these anomalously slow decay rates probe the
least thermal states on the ETH side of the MBL transition—
those states that take the longest to decay to equilibrium. As
disorder increases they find a crossover from tight Gumbel
statistics to heavy-tailed Fréchet statistics. Measuring critical
tilt in an energy window, by contrast, would measure the local-
ization lengths of the least localized states on the MBL side of
the transition. It would be interesting to characterize the dis-
tribution of gc across disorder realizations in terms of extreme
value statistics. This would be the subject of future work.

It is also interesting to consider the critical tilt in light of the
avalanche picture of De Roeck et al. [18–21]. In the avalanche

FIG. 12. Re-entrance of the localized phase as a function of
interaction strength and energy: Localization length (extracted from
critical tilt, ξ = [ḡc]−1) as a function of eigenstate energy (rescaled
by bandwidth) and interaction strength U for N = 12-site disordered
chains with width W = 2, at half-filling (cf. Fig. 10). There is an
intermediate delocalized regime between U ≈ 0.5–4. Strong repul-
sion in the large U limit freezes the system [46]; cf the work of
Giudici et al. on lattice gauge theories, in which confinement plays a
similar role [47]. The low-energy delocalized regime for U � 1 may
be related to the model’s quantum phase transition at the isotropic
point U = 2.
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narrative, one adds interactions to an Anderson insulator via a
quasiperturbative RG scheme; regions where interactions can-
not be treated perturbatively are treated as thermal inclusions.
They take the microscopic system to be parametrized by two
parameters, an Anderson localization length and a density of
these initial thermal inclusions. This is the basis for the RG
picture in Ref. [22]. In this picture it is not enough to con-
sider the critical gc in some energy window: this corresponds
(we expect) to the localization length of the least localized
eigenstate. But a single delocalized eigenstate should not be
enough to destabilize a surrounding localized region. Rather,
one needs a finite fraction of eigenstates to be delocalized. In
this picture gfinite-frac (for systems of some fixed size N) corre-
sponds to the localization length that is the key variable in the
avalanche picture RG flow; in principle, computing gfinite-frac

as a function of system size will allow one to probe the flow
of that variable, providing a sensitive test of the avalanche pic-
ture. Because—for open boundary conditions—eigenstates of
the tilted system are gauge-equivalent to eigenstates of the un-
derlying Hermitian system, tensor network techniques [8,50–
54] may give access to these quantities for large systems.

The finite-fraction tilt gfinite-frac will also probe the unrenor-
malized “bare spot” probability: that is, the probability that a
subsystem will be thermal. Recall (Fig. 9) that the distribution
of gc extends all the way to zero, even for large disorder width.
This is because some (anomalous) disorder realizations have
eigenstates stretching across the system. If a particular disor-
der width has small gfinite-frac, it is effectively thermal—that is,
it is a “bare spot,” in the language of the avalanche picture.
More careful measurements of the distribution of gc, and the
analogous distribution for gfinite-frac, at small system size will
therefore also characterize the unrenormalized, microscopic
inputs into the avalanche picture.
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APPENDIX A: JORDAN-WIGNER TRANSFORM

For convenience we note that the Hamiltonian Eq. (1) has
Jordan-Wigner transform

H = t
∑

j

[egc†
j c j+1 + e−gc†

j+1c j] (A1)

+U
∑

j

n jn j+1 +
∑

j

h jn j (A2)

= t
∑

j

[egS+
j S−

j+1 + e−gS+
j+1S−

j ]

+U
∑

j

Sz
jS

z
j+1 +

∑
j

h jn j

∝ t
∑

j

1

2
[egS+

j S−
j+1 + e−gS+

j+1S−
j ]

+ 1

2
U

∑
j

Sz
jS

z
j+1 +

∑
j

1

2
h jS

z
j, (A3)

which in the g = 0 case reduces to

H ∝
∑

j

[
t
(
Sx

j S
x
j+1 + Sy

j S
y
j+1

) + U

2
Sz

jS
z
j

]
+

∑
j

h j

2
Sz

j (A4)

(hence the choice of factors of 2).

APPENDIX B: PHASE DIAGRAMS AS A FUNCTION
OF ENERGY

In Fig. 7 we plotted the localization length ξ (extracted
from the tilt) as a function of disorder width and the “eigen-
state fraction”—where in the sorted list of eigenstates a partic-
ular eigenstate falls. In Figs. 11 and 12 we plot the localization
length ξ as a function of energy (normalized by the bandwidth
of each disorder realization). To be more precise, we

(1) average the energies for eigenstate α ∈ 1 . . .
( N

N/2

)
(at

fixed disorder width W and interaction strength), and
(2) average the critical tilt gc for eigenstate α and extract

the localization length.
We plot the localization length (averaged in this sense)

against the disorder width W or interaction strength U and
the energy (averaged in this sense).

This changes the shape of the phase diagram, because the
density of states is heuristically

ρ(E ) ∝ 1

σ
√

2πN
e−E2/2σ 2

√
N , σ ∼

√
N (t2 + W 2

c ) (B1)

(before bandwidth normalization).
The rescaling highlights certain “glitches” (e.g., in Fig. 11

near �(E ) ≈ 0.9 [bandwidth]). These also appear in Fig. 7 but
they are almost imperceptible because they only span one or
two states.

We suspect that the glitches result from the presence or
absence of resonances in the particular disorder realizations
we use. At very low or very high energy density, eigenener-
gies are widely spaced, so interactions are less likely to link
subsystems and cause them to dephase each other. This is why
the system is (at finite size) more localized near the edge of the
spectrum. But if—due to the vagaries of a particular disorder
realization—two subsystems have eigenenergies near the edge
of the spectrum that line up, or disagree more than usual, then
they will be anomalously delocalized or localized.

These edge-of-spectrum effects are, strictly speaking,
outside the scope of this work: they are likely the re-
sult of infinite-randomness ground state physics, rather than
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FIG. 13. Putative finite-size scaling for U = 1,Wc = 4, and a
variety of ν.
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FIG. 14. Putative finite-size scaling for U = 1, ν = 1.0, and a
variety of Wc.

many-body localization properly understood. (One can al-
ready glimpse a similarity to Dasgupta-Ma [55] real-space
renormalization group arguments in our explanation above.)

APPENDIX C: FINITE-SIZE SCALING

In Sec. V A we claimed that our finite-size scalings gave
Wc = 4, 6 for U = 1, 3 respectively, and ν = 1 for both inter-
action strengths. In Figs. 13–16 we show (putative) finite-size
scalings for a variety of Wc, ν, so the reader can judge the
accuracy and precision of our claims.

064201-11



HEUSSEN, WHITE, AND REFAEL PHYSICAL REVIEW B 103, 064201 (2021)

−20 −10 0 10 20
(W − Wc)N

1/ν

0.15

0.20

0.25

0.30

0.35

ξ/
N

U = 3; ν = 1.0, Wc = 5.6

N = 8

N = 10

N = 12

−50 0 50

0.25

0.50

0.75

−20 −10 0 10 20
(W − Wc)N

1/ν

0.15

0.20

0.25

0.30

0.35

ξ/
N

U = 3; ν = 1.0, Wc = 5.8

N = 8

N = 10

N = 12

−50 0 50

0.25

0.50

0.75

−20 0 20
(W − Wc)N

1/ν

0.15

0.20

0.25

0.30

0.35

0.40

ξ/
N

U = 3; ν = 1.0, Wc = 6.0

N = 8

N = 10

N = 12

−50 0 50

0.25

0.50

0.75

−20 −10 0 10 20
(W − Wc)N

1/ν

0.15

0.20

0.25

0.30

ξ/
N

U = 3; ν = 1.0, Wc = 6.2

N = 8

N = 10

N = 12

−50 0 50

0.25

0.50

0.75

−20 −10 0 10 20
(W − Wc)N

1/ν

0.15

0.20

0.25

0.30

ξ/
N

U = 3; ν = 1.0, Wc = 6.4

N = 8

N = 10

N = 12

−50 0

0.25

0.50

0.75

FIG. 15. Putative finite-size scaling for U = 3, ν = 1.0, and a
variety of Wc.
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variety of ν.
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