
PHYSICAL REVIEW B 103, 054509 (2021)

Theoretical model for parallel SQUID arrays with fluxoid focusing
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We have developed a comprehensive theoretical model for predicting the magnetic field response of a parallel
superconducting quantum interference device (SQUID) array in the voltage state. The model predictions are
compared with our experimental data from a parallel SQUID array made of a yttrium barium copper oxide thin
film patterned into wide tracks, busbars, and leads, with 11 step-edge Josephson junctions. Our theoretical model
uses the Josephson equations for resistively shunted junctions as well as the second Ginzburg-Landau equation
to derive a system of coupled first-order nonlinear differential equations to describe the time evolution of the
Josephson junction phase differences which includes Johnson noise. Employing the second London equation and
Biot-Savart’s law, the supercurrent density distribution is calculated, using the stream function approach, which
leads to a two-dimensional second-order linear Fredholm integro-differential equation for the stream function
with time-dependent boundary conditions. The model calculates the stream function everywhere in the thin-film
structure to determine during the time evolution the fluxoids for each SQUID array hole. Our numerical model
calculations are compared with our experimental data and predict the bias-current-versus-voltage and the voltage-
versus-magnetic-field response with accuracy. The model elucidates the importance of fully taking Meissner
shielding and current crowding into account in order to properly describe fluxoid focusing and bias-current
injection. Furthermore, our model illustrates the failure of the simple lumped-element approach to describe a
parallel SQUID array with a wide thin-film structure.
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I. INTRODUCTION

In this paper we develop a comprehensive theoretical
model for a parallel superconducting quantum interference
device (SQUID) array with overdamped Josephson junctions
(JJs), made from a high-Tc superconducting thin film with
wide tracks, busbars, and leads, exposed to an applied mag-
netic field while driven by a bias current into the voltage state.
Opposite to the commonly used lumped-element model, our
model can describe for the first time the experimental data of
a parallel SQUID array with accuracy. Highly accurate pre-
dictions are important for the optimization of magnetometers,
low-noise current amplifiers, and high-frequency ac magnetic
field sensors.

Enhanced quantum interference in a parallel SQUID array
was first mentioned by Feynman et al. [1] and was pre-
dicted to show up as a sharpening of the array’s critical
current peak, seen in measurements of the array’s critical
current as a function of an applied magnetic field. Such
an enhancement was observed experimentally for the first
time in the 1960s in parallel arrays of superconducting point
contacts [2,3]. A three-junction parallel SQUID array was
fabricated and theoretically described in the early 1970s using
a simple lumped-element model [4]. Later a parallel SQUID
array [named superconducting quantum interference grating
(SQUIG)] with 11 JJs was theoretically modeled with an
improved lumped-element model by Miller et al. [5], re-
vealing in detail the mechanism of the enhanced quantum
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interference effect and its dependence on the SQUID array’s
screening parameter βL. In the late 1980s and early 1990s,
interest in modeling of two-dimensional (2D) arrays of JJs
emerged, due to the realization that most high-temperature
superconducting (HTS) materials are granular where grain
boundaries act as JJs [6]. In contrast to parallel SQUID arrays,
which only have vertical JJ connections, 2D JJ arrays have
both vertical and horizontal JJ connections, which form the
plaquettes of the array [7]. In the early 2000s, parallel SQUID
arrays with varying hole area sizes between junctions, named
superconducting quantum interference filters (SQIFs), were
investigated experimentally and theoretically, again using a
lumped-element model [8,9]. Serial SQUID arrays were also
studied [10,11], and the question of how to optimize linear-
ity was addressed [12–14]. Furthermore, the performance of
parallel SQIF arrays put in series (2D SQIF arrays) has also
been investigated by Kornev et al. [15], Taylor et al. [16],
and Mitchell et al. [17]. In a recent review, theoretical and
experimental studies of different SQUID arrays made from
low-temperature superconducting (LTS) materials and used as
miniature antennas have been compared [18]. The similari-
ties between interference patterns in parallel SQUID arrays
and optical multiple-slit gratings have been discussed by De
Luca [19]. Last year, one- and two-dimensional SQUID arrays
have been investigated further experimentally and theoreti-
cally [20–22]. In addition, a review about design tools and
progress in modeling of superconducting circuits was written
by Fourie [23].

The often used lumped-element model can only be applied
if a SQUID array consists of sufficiently narrow supercon-
ducting tracks such that Kirchhoff’s law can be applied at
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well-defined current vertices [8,9]. However, SQUID arrays
are usually made from thin-film structures with wide tracks,
busbars, and leads, where the Meissner shielding from wide
superconducting structures creates strong magnetic flux fo-
cusing and current crowding. Neither flux focusing nor current
crowding are part of the lumped-element model. Going be-
yond the lumped-element model, a two-junction SQUID array
(the normal dc SQUID) with a wide washer structure in the
zero-voltage state has been investigated theoretically in an
approximate way by Clem and Brandt [24]. Terauchi et al.
[25] investigate the effect of wider tracks on the shape of the
voltage pulses of a dc SQUID.

Here, in our paper, we have developed a comprehensive
theoretical model for parallel SQUID arrays in the voltage
state. In particular, we consider wide superconducting thin-
film structures in the Meissner state and incorporate into the
Josephson array equations the time-dependent supercurrent
density distribution of the array, obtained from the second
London equation and Biot-Savart’s law. In contrast to the
lumped-element model, our model does not make use of any
lumped-element inductances but instead calculates the values
for the fluxoids of each hole in the array during the time
evolution of the JJ phase differences. The static supercurrent
density and magnetic field distributions in different supercon-
ducting thin-film geometrical structures, based on London and
Maxwell equations, with and without dc current injection but
without any JJs, have been studied previously [26–29].

Our paper is organized as follows. In Sec. II we outline
in detail our theoretical model for parallel SQUID arrays
with wide superconducting thin-film structures. In Sec. III we
briefly mention our device fabrication and experimental setup.
In Sec. IV we present the results of our model calculations and
compare them with our yttrium barium copper oxide (YBCO)
thin-film array experimental data as well as with results from
a lumped-element model calculation. We summarize our find-
ings in Sec. V.

II. THEORETICAL MODEL FOR PARALLEL
SQUID ARRAYS

The main goal of this paper is to calculate the voltage
response of a thin-film parallel SQUID array to an applied
perpendicular magnetic field and compare our results with our
experimental data for a YBCO thin-film parallel SQUID array.
Contrary to the commonly used lumped-element model [5,8],
we will use the second London equation and Biot-Savart’s law
to calculate from the supercurrent density within the array the
fluxoids of the SQUID array holes during the oscillatory time
evolution of the array [24].

As an example, Fig. 1 displays a thin-film parallel SQUID
array with N = 5 JJs and N − 1 holes, with wide tracks, bus-
bars, and bias-current leads. The array lies in the xy plane,
and the magnetic induction Ba is applied perpendicular in
the z direction. The array is symmetric about both the x and
y axes.

A. Josephson junction phase differences and fluxoids

In our case the width wJ of the JJs is much less than
the Josephson penetration depth λJ [30] (short junction), and

FIG. 1. Example of a thin-film parallel SQUID array with N = 5
JJs. The domain � (blue) is made of a superconducting YBCO thin
film. All JJs have the same width wJ , and the hole domains �k are of
the same width wh and length 2h. ∂�k is the boundary of hole k. ϕk

are the gauge-invariant phase differences across the JJs, where k =
1, . . . , N . The JJs are connected via wide superconducting horizontal
busbars on the top and bottom, each of area 2a(b − h) with wide
attached superconducting leads, 2c wide and l long, and wJ wide
tracks attached to the JJs. In our fabricated devices, l is much longer
than shown here. A bias current Ib is injected into the top lead and
exits from the bottom lead. The time-averaged voltage V is measured
between the ends of the two leads.

the applied magnetic induction Ba is sufficiently small such
that the JJ current density is nearly constant across junction
areas. In this case, the current across the junctions is de-
scribed by the Josephson equation Ick sin ϕk (t ) [31], where
ϕk (t ) is the gauge-invariant phase difference across the kth
junction at time t and Ick is the junction critical current with
k = 1, . . . , N .

Because in high-temperature superconducting materials,
such as YBCO thin films, the capacitance of the fabricated
JJs is small, one can apply the resistively shunted junction
(RSJ) model to describe the time-dependent total current Ik (t )
flowing through the junctions, i.e.,

Ik (t ) = Vk (t )

Rk
+ Ick sin ϕk (t ) + INoise

k (t ). (1)
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Here, Rk is the normal resistance of the kth junction, and Vk (t )
is the voltage across that junction, which according to the
Josephson equation is

Vk (t ) = �0

2π

dϕk (t )

dt
, (2)

where �0 is the flux quantum. INoise
k (t ) in Eq. (1) is the

Johnson noise current, originating at finite temperature from
the resistor Rk . This noise is often also called Nyquist noise or
white noise.

From the second Ginzburg-Landau equation [32] it follows
that

ϕk+1(t ) − ϕk (t ) = 2π

�0

[
μ0λ

2
∮

∂�k

j(r, t ) · dl + �k (t )

]
, (3)

with k = 1, . . . , N − 1. Here, μ0 is the permeability of free
space, λ is the London penetration depth, j(r, t ) is the su-
percurrent density with r being a spatial vector, the symbol
· means scalar product, and dl is an integration line element.
The integration contour ∂�k is chosen as the inner boundary
contour of hole k as indicated in Fig. 1, integrated in counter-
clockwise direction. In Eq. (3), �k (t ) is the time-dependent
total magnetic flux that penetrates the hole area �k (Fig. 1).
The sum of the two terms in square brackets in Eq. (3) is called
the fluxoid and is similar to London’s fluxoid [33] though here
the fluxoid in Eq. (3) is not quantized.

The time-dependent total flux �k (t ) through the kth hole
of the array is the sum of two parts,

�k (t ) = �
(a)
k + �

(J )
k (t ), (4)

where �
(a)
k is the static applied flux through the hole �k , i.e.,

�
(a)
k = BaAk with Ak being the area of the hole k and Ba being

the applied magnetic inductance, Ba = μ0Ha, where Ha is the
applied magnetic field. Here, we restrict our investigation to
the case where all hole areas Ak are of the same size Ah, with
Ah = 2hwh (Fig. 1). The flux �

(J )
k (t ) in Eq. (4) is the flux

spilled into the kth array hole, and according to Biot-Savart’s
law, �

(J )
k (t ) originates from the supercurrent density j(r, t )

that is flowing throughout the whole superconducting array.
We will show in the following how the flux �

(J )
k (t ) can be

calculated and how the junction currents Ik (t ) in Eq. (1) can
be expressed in terms of the differences of gauge-invariant
phase differences, ϕk+1(t ) − ϕk (t ), leading to a system of
coupled first-order nonlinear ordinary differential equations
for the ϕk (t )’s, and an integro-differential equation for the
stream function g(x, y) (defined below), from which the time-
averaged voltage of the array as a function of the applied
magnetic field can be determined.

B. Biot-Savart’s law, London’s equation, and the stream
function equation for a parallel SQUID array

with wide tracks, busbars, and leads

In order to calculate the magnetic flux �
(J )
k (t ) of Eq. (4),

we employ Biot-Savart’s law and the second London equa-
tion. The SQUID array we wish to model is made out of a
YBCO high-temperature superconducting thin film of thick-
ness d = 0.125 μm and a London penetration depth (77 K) of
approximately λ = 0.3 μm. Because here λ > d , the super-
current density through the thickness d of the film is nearly

homogeneous, independent of the z direction, and therefore
Biot-Savart’s law in 2D can be applied [24,26]. In this case,
the magnetic field H (J )(x, y, t ) in the z direction, produced
by the supercurrent density j(x, y, t ) flowing in the array of
domain � (see Fig. 1), is given by

H (J )(x, y, t )

= d

4π

∫
�

jx(x′, y′, t )(y − y′) − jy(x′, y′, t )(x − x′)√
(x − x′)2 + (y − y′)2

3 dx′dy′,

(5)

where jx and jy are the x and y components of the supercurrent
density j. One can express jx and jy in Eq. (5) in terms of the
stream function g(x, y, t ), which is defined as

jx = 1

d

∂g

∂y
and jy = − 1

d

∂g

∂x
. (6)

This type of stream function approach has been used previ-
ously by Khapaev and co-workers [28,34,35] and Brandt [26].

To be allowed to integrate Eq. (5) in 2D by
parts, it is required to smoothen the functions in
the integrand of Eq. (5) to generate continuously
differentiable functions. We achieve this by analytically

integrating (y − y′)/
√

(c − x′)2 + (y − y′)2
3

and (x − x′)/√
(c − x′)2 + (y − y′)2

3
over small intervals around their

singularity points. This leads to

H (J )(x, y, t ) = fs(x, y, t )

− 1

4π

∫
�

QF (x, y, x′, y′)g(x′, y′, t )dx′dy′, (7)

where the kernel QF (x, y, x′, y′) is defined in Appendix A and

fs(x, y, t )

= 1

4π

∮
∂�

g(x′, y′, t )√
(x − x′)2 + (y − y′)2

3

(
x − x′
y − y′

)
· n dl ′. (8)

Here, dl ′ is the integration line element, and n is a 2D normal
vector in the xy plane which is perpendicular on the domain
boundary ∂�, pointing outwards, away from the area �. The
contour ∂� includes the hole boundaries of the array.

Exploiting the stream function symmetry about the x axis,
i.e., g(x′, y′, t ) = g(x′,−y′, t ), one can restrict the integration
domain � in Eq. (7) and the contour integration domain ∂�

in Eq. (8) to only the upper domains �u and ∂�u (y′ � 0),
respectively, where � = �u ∪ �d , with the superscript u re-
ferring to the upper (y′ > 0) and d to the lower (y′ < 0)
domain (see Fig. 2). Thus one finds for Eq. (7)

H (J )(x, y, t ) = fs(x, y, t )

− 1

4π

∫
�u

Q(x, y, x′, y′)g(x′, y′, t )dx′dy′, (9)

where the integration is now only over the upper domain �u

with a kernel Q given by

Q(x, y, x′, y′) = QF (x, y, x′, y′) + QF (x, y, x′,−y′) (10)

and

fs(x, y, t ) = f u
s (x, y, t ) + f u

s (x,−y, t ). (11)
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FIG. 2. The different boundary contour sections ∂�(L), ∂�(T ),
and ∂�(R) along the upper domain �u (shaded darker) and the hole
domains �k and contours ∂�k for k = 1, . . . , N − 1, of the holes
between domains �u and �d .

Here, f u
s is defined by Eq. (8) but with a contour integration

only over the upper contour ∂�u of the domain �u (see Fig. 2),
where ∂�u includes the upper boundary part of the holes.
In Eq. (11), the second term on the right-hand side, due to
symmetry, accounts for the lower domain part.

In order to obtain an equation to calculate the stream func-
tion g(x, y, t ), we use the second London equation, which has
the form

λ2∇× j = −H, (12)

where H is the total magnetic field. Again, because λ > d ,
and thus j(x, y, z) = j(x, y), we can employ the 2D second
London equation, which from Eq. (12) becomes

	
xyg(x, y, t ) = H (x, y, t ). (13)

Here, in 2D, the magnetic field and the stream function are
governed by the 2D screening length or Pearl length [36]
	 = λ2/d . The operator 
xy is the 2D Laplace operator,
∂2/∂x2 + ∂2/∂y2, while H (x, y, t ) is the total magnetic field
in the z direction. Because

H (x, y, t ) = Ha + H (J )(x, y, t ), (14)

where Ha is the applied magnetic field in the z direction,
one finds, using Eqs. (8), (9), (11), (13), and (14), a 2D
second-order linear Fredholm integro-differential equation for

the stream function g(x, y, t ) of the form

	
xyg(x, y, t ) + 1

4π

∫
�u

Q(x, y, x′, y′)g(x′, y′, t )dx′dy′

= Ha + f u
s (x, y, t ) + f u

s (x,−y, t ), (15)

with

f u
s (x, y, t )

= 1

4π

∮
∂�u

g(x′, y′, t )√
(x − x′)2 + (y − y′)2

3

(
x − x′
y − y′

)
· n dl ′. (16)

C. Array boundary condition for the stream function
integro-differential equation

In order to solve Eq. (15), one has to define boundary
conditions for g(x, y, t ) and 
xyg(x, y, t ) along the boundary
∂�u.

Figure 2 shows the names given to different sections
along the ∂�u boundary. As the bias current Ib is injected
downwards into the top current lead (Fig. 1), and because
jyd = −∂g/∂x, we choose for the current injection boundary
condition g(x, y, t ) = Ibx/(2c) for (x, y) ∈ ∂�(T ). Because no
current is crossing the boundaries ∂�(L), ∂�(R), and ∂�k (in-
side holes), we find by using Eq. (6) the boundary conditions
g(x, y, t ) = −Ib/2 for (x, y) ∈ ∂�(L) and g(x, y, t ) = Ib/2 for
(x, y) ∈ ∂�(R), while for the hole-boundary conditions along
(x, y) ∈ ∂�k , one has g(x, y, t ) = g̃k (t ), where

g̃k (t ) =
k∑

j=1

I j (t ) − Ib

2
. (17)

Thus the junction currents I1(t ) and IN (t ) at the ends of the
array are I1(t ) = g̃1(t ) + Ib/2 and IN (t ) = −g̃N−1(t ) + Ib/2,
while between holes, the junction currents are Ik (t ) = g̃k (t ) −
g̃k−1(t ).

With the above boundary conditions one can calculate
fs(x, y, t ) [Eqs. (11) and (16)], which can be written in the
form

fs(x, y, t ) = P0(x, y)Ib +
N−1∑
k=1

Pk (x, y)g̃k (t ), (18)

where both P0(x, y) and Pk (x, y) are independent of time t and

P0(x, y) := Pu
0 (x, y) + Pu

0 (x,−y),

Pk (x, y) := Pu
k (x, y) + Pu

k (x,−y). (19)

Here, Pu
0 is the part of the integral in Eq. (16) along the

contours ∂�(R) ∪ ∂�(T ) ∪ ∂�(L), while Pu
k is the part of the

integral along the upper half (y � 0) of the hole contour
∂�k (see Fig. 2). We have calculated Pu

0 (x, y) and Pu
k (x, y)

analytically using Eq. (16), and the results are shown in
Appendix B.

D. Magnetic flux in array holes

The total magnetic flux �k (t ) [Eq. (4)] in hole k, required
in Eq. (3), becomes with Eq. (14),

�k (t ) = μ0

∫
�k

[Ha + H (J )(x, y, t )]dxdy, (20)

where the integration is over the hole domain �k (see Fig. 2).
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Using Eqs. (9) and (18), one derives

�k (t )

μ0
= HaAh + Lk0Ib +

N−1∑
j=1

Lk j g̃ j (t )

− 1

4π

∫
�u

Q̃k (x′, y′)g(x′, y′, t )dx′dy′, (21)

where μ0HaAh is the applied magnetic flux that penetrates
each hole of area Ah and

Lk j :=
∫

�k

Pj (x, y)dxdy = 2
∫

�k

Pu
j (x, y)dxdy, (22)

with j = 0, 1, . . . , N − 1. Furthermore, in Eq. (21), Q̃k (x′, y′)
is defined as

Q̃k (x′, y′) :=
∫

�k

Q(x, y, x′, y′)dxdy, (23)

where Q(x, y, x′, y′) is given by Eq. (10) with (x′, y′) ∈ �u.
Lk j in Eq. (22) as well as Q̃k (x′, y′) in Eq. (23) can be cal-
culated analytically. However, here, calculations were simply
performed numerically for each hole k, since these quantities
are solely of geometrical nature and time independent, and
thus, have to be calculated only once.

E. Conversion to algebraic equations and vectorization

In order to calculate numerically the stream function
g(x, y, t ) with Eq. (15) for (x, y) ∈ �u, one has to convert
Eq. (15) into an algebraic equation. To do so, we choose a
sufficiently fine square grid on �u (Fig. 2) and discretize the
spatial vectors r = (x, y) to rn = (xn, yn) located at the center
of each small square grid element of size w = (
x)2, where

x is the square grid spacing and the index n counts the grid
elements, n = 1, . . . , Ng, where Ng is the total number of grid
elements in the domain �u. The integro-differential equation
(15) for g(x, y, t ) then becomes∑
m∈�u

[
	
nm + w

4π
Qnm

]
gm(t ) = Ha + P0nIb +

N−1∑
k=1

Pnkg̃k (t ),

(24)

for all n ∈ �u. Here,

gn(t ) := g(rn, t ), Qnm := Q(rn, rm),

P0n := P0(rn), Pnk := Pk (rn). (25)

In vector notation, the relationship in Eq. (17) between the
boundary values g̃k (t ) and the junction currents Ik (t ) and bias
injection current Ib becomes

g̃(t ) = T ◦ Ĩ(t ) − Ib

2
1N−1, (26)

where g̃ is the (N − 1)-dimensional stream function vector,
g̃ = (g̃1, . . . , g̃N−1), for the holes. In Eq. (26) the symbol
◦ means multiplication of a matrix with a vector (and also
later matrix multiplication), the (N − 1)×(N − 1) matrix T
is defined as (T )k j = 1 if k � j and zero otherwise, and
the junction current vector Ĩ(t ) is an N − 1 (not N) vector,
Ĩ(t ) := [I1(t ), . . . , IN−1(t )]. The vector 1N−1 is of dimension
N − 1, where 1N−1 := (1, . . . , 1). By using Eq. (26) above,

Eq. (24) can conveniently be written in vector notation, and by
performing a matrix inversion one obtains the time-dependent
stream function vector g(t ) as

g(t ) =
(

	D + w

4π
Q

)−1

◦
[

Ha1Ng + P0Ib + P ◦ T ◦ Ĩ(t )

+
(

P0 − 1

2
P ◦ 1N−1

)
Ib − 	d
(t )

]
. (27)

The stream function vector, g(t ) := [g1(t ), . . . , gNg (t )],
represents the stream function g(x, y, t ) at all grid point
elements in �u. The matrix D is an Ng×Ng matrix corre-
sponding to the Laplace operator in Eq. (24), where (D)nm :=
[−4δnm + δNb

nm]/w with w = (
x)2 and with δNb
n,m = 1 if rm is

a nearest neighbor of rn and zero otherwise. The matrix Q
is also an Ng×Ng matrix, defined as (Q)nm := Q(rn, rm). The
symbol 1Ng in Eq. (27) is the vector 1Ng = (1, 1, . . . , 1) of
dimension Ng, and P0 := (P1, . . . , PNg ), defined in Eq. (19)
and Appendix B. The symbol P is an Ng×(N − 1) matrix
with (P )nk := Pk (rn). The components of the time-dependent
Ng-dimensional vector d
(t ) in Eq. (27) originate from the
part of the Laplace operator which operates on the domain
boundary ∂�u (which includes the holes) and the boundary
along junctions. Most of the components of d
(t ) are zero,
but for grid elements adjacent to boundaries, the components
are (8/3)g̃(L)/w, (8/3)g̃(T )/w, (8/3)g̃(R)/w, and (8/3)g̃k (t )/w
(along ∂�k) (Fig. 2). For grid elements adjacent to junctions,
the corresponding components of d
(t ) vary linearly with
distance along the junctions. The time dependence of d
(t )
therefore arises from the time-dependent hole-boundary con-
ditions [Eq. (17)]. The above factor of 8/3 results from using a
Laplacian for a nonequidistant grid [Eq. (C1) in Appendix C].
Care has to be taken at corner grid elements. Note that in
order to calculate g(t ) using Eq. (27), a very large Ng×Ng

matrix, 	D + w
4π
Q, has to be inverted. It is important to note

that since this matrix is time independent, this large matrix
inversion has to be performed only once at the beginning of a
computation.

In vector notation, using Eqs. (21) and (26), the flux vec-
tor �(t ) = [�1(t ), . . . , �N−1(t )] of the magnetic flux inside
array holes takes the form

�(t )

μ0
= HaAh1N−1 +

(
L0 − 1

2
L ◦ 1N−1

)
Ib

+L ◦ T ◦ Ĩ(t ) − w

4π
Q̃ ◦ g(t ), (28)

where L0 := (L10, . . . , LN−1,0) with Lk0 given by Eq. (22) and
L is an (N − 1)×(N − 1) matrix defined as (L)k j := Lk j ( j �
1), where Lk j is again given by Eq. (22). In Eq. (28), Q̃ is an
(N − 1)×Ng matrix given by (Q̃)k j := Q̃k (r j ), where Q̃k (r j )
is defined by Eq. (23).

Furthermore, we rewrite the Ginzburg-Landau equation (3)
in vector notation of the form

N ◦ ϕ(t ) = 2π

�0
[μ0	K(t ) + �(t )], (29)

where N is an (N − 1)×N matrix defined as (N )k j = −1
for k = j, (N )k j = 1 for k = j − 1, and (N )k j = 0 other-
wise. The phase difference vector ϕ(t ) is N dimensional,
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ϕ(t ) := [ϕ1(t ), . . . , ϕN (t )]. Using Eqs. (3) and (6), the com-
ponents Kk (t ) of the (N − 1)-dimensional vector

K(t ) := [K1(t ), . . . , KN−1(t )] are

Kk (t ) = d
∮

∂�k

j(t ) · dl =
∮

∂�k

(
∂g(t )

∂y
dx − ∂g(t )

∂x
dy

)
,

(30)
where the contour integration is counterclockwise along the
boundary ∂�k of the hole k (see Figs. 1 or 2).

F. System of coupled differential equations for the Josephson
phase differences for a parallel SQUID array

with wide thin-film structure

Using Eqs. (28) and (29) and eliminating the flux vector
�(t ), one derives an equation for the junction current vector
Ĩ(t ) as a function of the phase difference vector ϕ(t ) and the
stream function vector g(t ) of the form

Ĩ(t ) = (L ◦ T )−1

[
�0

2πμ0
N ◦ ϕ(t ) − 	K(t ) − HaAh1N−1

−
(

L0 − 1

2
L ◦ 1N−1

)
Ib + w

4π
Q̃ ◦ g(t )

]
. (31)

Note that Ĩ(t ) is an (N − 1) vector and its components
do not contain the junction current IN (t ) across the last JJ.

However, since IN (t ) = Ib − ∑N−1
k=1 Ik (t ), the current IN (t ) is

well defined, and thus Eq. (31), together with Eqs. (1) and
(2), defines a complete set of coupled first-order differential
equations for the gauge-invariant phase differences ϕk (t ) with
k = 1, . . . , N .

It is convenient to define Ic as the average junction criti-
cal current, Ic = ∑N

k=1 Ick/N , and R as the average junction
resistance, R = ∑N

k=1 Rk/N . Note that R is not the total array
resistance. Then, Eq. (1) combined with Eq. (2) can be put
into the form

dϕk (τ )

dτ
= ξk

(
−ηk sin ϕk (τ ) + Ik (τ )

Ic
+ INoise

c (τ )

Ic

)
, (32)

where τ is the reduced time in dimensionless units,

τ = 2π

�0
RIct, (33)

ξk = Rk/R, and ηk = Ick/Ic, and thus ξk (ηk) is a measure of
deviation of Rk (Ick) from R (Ic). The standard deviations for
Rk and Ick in YBCO thin-film SQUID arrays can be as large
as 0.3 [22,37].

At this point it is convenient to write Eq. (32) in vector
notation and combine it with Eq. (31), which results in

ϕ̇(τ ) = S(τ ) + ξ̂ ◦ (L ◦ T )−1

◦
[

�0

2πμ0
N ◦ ϕ(τ ) − 	K(τ ) + w

4π
Q̃ ◦ g(τ ) −

(
L0 − 1

2
L ◦ 1N−1

)
Ib − HaAh1N−1

]
+ ξ̂ ◦ Ĩ

Noise
(τ ). (34)

Here, the components of the vector ϕ̇(τ ) are dϕk (τ )/dτ , and the components of the vector S(τ ) are −ξkηk sin ϕk (τ ), where
k = 1, . . . , N − 1. The matrix ξ̂ is an (N − 1)×(N − 1) diagonal matrix with diagonal elements ξk/Ic, where k = 1, . . . , N − 1,
and Ĩ

Noise
(τ ) := [INoise

1 (τ ), . . . , INoise
N−1 (τ )]. Please note that K(τ ) and g(τ ) are both functions of time τ since the supercurrent

density distribution in a SQUID array undergoes periodic changes with time.
To make the set of coupled differential equations for ϕk (τ ) of Eq. (34) complete, one has to add an equation for dϕN (τ )/dτ

using Eqs. (1) and (2), which gives, because of Ib = ∑N
k=1 Ik (τ ),

dϕN (τ )

dτ
= ξN

(
−ηN sin ϕN (τ ) +

[
Ib −

N−1∑
k=1

Ik (τ )

]/
Ic + INoise

N (τ )
/

Ic

)
. (35)

Equation (34) together with Eq. (35) forms a complete set
of coupled first-order differential equations for all the ϕk (τ )’s.
To solve this set of differential equations, initial conditions for
all ϕk (τ = 0) have to be chosen. This is done by starting with
equal junction currents Ik (τ = 0) = Ib/N , using Eqs. (26)–
(28) and (30) to calculate the ϕk (τ = 0)’s from N ◦ ϕ(τ ) of
Eq. (29), and setting ϕ1(τ = 0) = 0.

Please note that Eqs. (34) and (35) together with Eqs. (26),
(27), and (31) are the key equations of this paper. The set
of equations (34) and (35) were solved numerically using
the fourth-order Runge-Kutta method. After each time step,
chosen as 
τ = 0.1, the ϕk’s change, and thus the Josephson
currents Ik (τ ) change slightly [Eq. (31)], which then slightly
changes the boundary condition g̃(τ ) [Eq. (26)]. Thus, after
each time step 
τ , an updated stream function g(τ + 
τ )
[Eq. (27)] has to be calculated, resulting in updated g and K
vectors in Eq. (34).

Details about how the noise currents Ĩ
Noise

(τ ) in Eq. (34)
and INoise

N (τ ) in Eq. (35) were treated numerically are outlined
in Appendix D.

G. Time-averaged voltage

The time-averaged normalized voltage, V/(RIc), between
the leads of a parallel SQUID array, is given by time averag-
ing the right-hand side of the Josephson equation (2), which
results in

V

RIc
= lim

τ→∞
1

τ
[ϕk (τ + τ0) − ϕk (τ0)], (36)

where k can be any k ∈ {1, . . . , N}. One has to choose τ0 large
enough such that numerical self-adjustment for the initial ϕk’s
has occurred, and τ has to be taken sufficiently large.
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In the case where Johnson noise can be neglected, one finds

V

RIc
= 2π

τp
, (37)

where τp is the period of oscillations of the ϕk (τ )’s. In the case
of non-negligible Johnson noise, Eq. (37) cannot be used, but
one can reduce the statistical error in V/(RIc) by averaging
over all the N phase differences, i.e.,

V

RIc
� 1

τ

1

N

N∑
k=1

[ϕk (τ + τ0) − ϕk (τ0)], (38)

where τ has to be chosen sufficiently large.

H. Effective areas of SQUID array holes

The wide tracks, busbars, and leads focus magnetic flux
into the array holes. In addition, the Meissner shielding cur-
rent crowding near the holes enhances the

∮
j · dl term. An

effective area Aeff
k can be defined for each array hole k via the

fluxoid it contains as

Aeff
k = lim

Ic,Ib→0

μ0λ
2
∮
∂�k

j · dl + �k

Ba
. (39)

Aeff
k can also be defined in the limit of Ba → ∞ instead of

Ic and Ib → 0. From the definition in Eq. (39), employing
Eqs. (28) and (30), it follows that Aeff

k in vector notation, Aeff ,
normalized to the hole area Ah, is

Aeff

Ah
= 1N−1 + μ0

BaAh

(
	K0 − w

4π
Q̃ ◦ g0

)
, (40)

where the subscript 0 in K0 and g0 means that g in Eq. (27)
and K in Eq. (30) are evaluated with the boundary condition
g(x, y) = 0 along ∂�u, since Ic = Ib = 0.

III. DEVICE FABRICATION AND EXPERIMENT

Parallel SQUID arrays were fabricated lithographically by
growing thin films of YBCO on 1-cm2 MgO substrates. Steps
were etched into the MgO surface using a well-established
technique based on argon milling [38,39]. During YBCO thin-
film growth by e-beam evaporation, a long grain boundary
forms at the top of the edge of the MgO step, creating a long
JJ. Films were then lithographically patterned into parallel
SQUID arrays [22]. The width of junctions and junction tracks
is wJ = 2 μm, and the width of holes is wh = 4 μm with half
height h = 4 μm (see Fig. 1). For our N = 11 array, which
is the array discussed in detail in this paper, the thickness
of the thin film is d = 0.125 μm, the width of the busbar
is b − h = 8 μm, and the bias-lead half width is c = 4 μm.
For the calculation the length of the bias lead was chosen
sufficiently long as l = 24 μm (see Fig. 1). A micrograph of
the N = 11 device is shown as an inset in Fig. 3(a).

To measure the V (Ba) response, the array was placed on
a measurement probe, which generated a perpendicular ap-
plied induction Ba (magnetic field Ha), and then dipped into a
Dewar of liquid nitrogen and zero-field cooled down to a tem-
perature of 77 K. To screen out the Earth’s magnetic field, the
Dewar was surrounded by five layers of mu-metal shielding. A
bias current Ib, with a value which optimized the SQUID array
response (maximized transfer function dV/dBa), was injected

FIG. 3. The inset in (a) shows a micrograph of our parallel
SQUID array with N = 11 junctions where the horizontal line in-
dicates the step edge across which JJs have formed. (a) displays
the time evolution of the phase differences ϕk for k = 1–11, calcu-
lated using Eqs. (34) and (35) together with Eq. (27) for Ba = 0.
(b) displays the time evolution of the phase differences ϕk (τ ) for
Ba = 12 μT.

into the top bias lead, and the voltage V at different Ba was
measured using the standard four-terminal method.

IV. RESULTS AND DISCUSSION

In the following, as a representative example, we discuss
in detail the calculated and experimental results for a parallel
SQUID array with N = 11 junctions with 8-μm-wide fluxoid
focusing busbars and bias leads. A micrograph of this device
is shown as an inset in Fig. 3(a). The parameters used in
the calculation are the array bias current Ib = 200 μA (given
by experiment), the average critical current of a junction
Ic = 24 μA, and the London penetration depth λ = 0.33 μm.
Further below we will discuss how the values for Ic and λ were
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determined. We found that choosing the square grid spacing
as 
x = 0.5 μm, or even 
x = 1 μm, was numerically suf-
ficient, and therefore the number of grid points Ng that lie in
the array domain �u is Ng = 3104, or 776.

Figures 3(a) and 3(b) show the calculated time evolution
of the N = 11 phase differences ϕk (τ ) [from Eqs. (34) and
(35)] for perpendicular applied magnetic inductions Ba = 0
and Ba = 12 μT, respectively. For Ba = 0, the fluxoid in each
hole is close to zero, while at Ba = 12 μT, the fluxoid in each
hole is about half a flux quantum, �0/2. Due to thermally ac-
tivated phase slippages, caused by an effective Johnson noise
strength � = 0.135 [Eq. (D1)] at T = 77 K, the time evolution
of the ϕk (τ ) in Figs. 3(a) and 3(b) is somewhat erratic. For
Ba = 0, coherent phase slippages by 2π occur quite suddenly,
while in the Ba = 12 μT case, 2π increments appear more
sinusoidal. Furthermore, in the Ba = 12 μT case the ϕk (τ ) are
incrementally shifted upwards by about π with increasing k.

Figures 4(a) and 4(b), using Eq. (27), show the stream
function g(x, y) for the upper domain �u at time τ = 9000
(Fig. 3) for Ba = 0 and Ba = 12 μT, respectively. As can
be seen, the stream function values along the left and right
boundaries, ∂�(L) and ∂�(R), are ∓Ib/2 = ∓100 μA, while
the steplike structure of g(x, y) along the 10 holes corresponds
to the stream function boundary values g̃k in the holes which
vary with time τ .

Figures 5(a) and 5(b) display the current stream lines at
Ba = 0 and Ba = 12 μT, obtained from the contour lines
of g(x, y) of Figs. 4(a) and 4(b). Only the upper domain
�u is shown because of the symmetry about the x axis
where g(x, y) = g(x,−y), and thus from Eq. (6), jx(x, y) =
− jx(x,−y) and jy(x, y) = jy(x,−y). As can be seen, for Ba =
0, the current fans out from the bias lead to the junctions where
the currents through individual junctions vary with time. Cur-
rent crowding is visible left and right of the bias lead and,
in particular, at the corners between bias lead and busbar due
to Meissner shielding. For Ba = 12 μT, circulating Meissner
shielding currents are visible in the left part of the busbar.
Strong current crowding now only occurs on the right side
of the bias lead and at the right corner between bias lead and
busbar. In addition, strong current crowding is visible at the
top of holes due to the Meissner shielding current circulating
in the busbar.

Figures 6(a) and 6(b) show the calculated perpendicular
total magnetic field H (x, y) [Eqs. (9) and (14)] inside and
outside of the N = 11 parallel SQUID array (y � 0) for
Ba = 0 and Ba = 12 μT at time τ = 9000. Strong magnetic
field enhancements are visible along the edges of the bias
lead and the upper edge of the busbar, with a particularly
strong field at the corners between bias lead and busbar due
to strong current crowding. The magnetic fields around and
inside of the holes look complicated and change with time
as the junction currents oscillate with time. At Ba = 12 μT
the applied magnetic induction adds to the total field, and the
Meissner shielding currents induced in the busbars and bias
leads generate additional magnetic fields along edges. The
lowest magnetic field, in the center region of the busbar (not
visible here), is about 3.5 μT/μ0, and thus the maximum
busbar shielding is about 70%.

Figure 7(a), which is the most important result of our
paper, shows the calculated time-averaged voltage V versus

FIG. 4. Stream function g(x, y) in the upper part (y > 0) of
the N = 11 parallel SQUID array at τ = 9000 for (a) Ba = 0 and
(b) Ba = 12 μT.

the applied perpendicular magnetic induction Ba, from −200
to +200 μT, for the N = 11 parallel SQUID array at a bias
current Ib = 200 μA, assuming zero Ick, Rk spreads. The cal-
culation includes Johnson noise at T = 77 K. The average
junction critical current density Ic and the London penetra-
tion depth λ, needed as input parameters in our calculation,
were chosen to give the best agreement with our experimental
data displayed in Fig. 7(b). These parameters are Ic = 24 μA
and λ = 0.33 μm. The temperature dependence of the Lon-
don penetration depth λ(T ) for YBCO thin films has been
widely investigated [40], and Chen et al. [41] found that for
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FIG. 5. Current streamlines in the upper domain �u of the
N = 11 parallel SQUID array at time τ = 9000 for (a) Ba = 0 and
(b) Ba = 12 μT.

high-quality YBCO thin films, using ac-susceptibility mea-
surements, λ(77 K) ≈ 0.3 μm, which is similar to our value.
According to Eq. (38), to obtain the time-averaged voltage
V , the resistance R of a single JJ needs to be known, and
R = 6.2 � fits our experimental data. A very similar value
for R was also extracted from our Ib-versus-V data shown in
Fig. 11 below.(a) agrees very well with our experimental data
shown in Fig. 7(b). The calculation reproduces accurately the
experimental ratio of maximal to minimal voltage as well as
the overall experimental envelope modulation. Also, the dips
appear at the correct Ba values. In addition, the shoulder peak
that initially appears near the second side minima and then
propagates outwards with increasing Ba is closely reproduced.
In the experiment the bias current Ib = 200 μA was chosen to
maximize the transfer function dV/dBa around the center dip.
From the Ic value it follows that Ib = 0.758NIc. In cases where
Ib < NIc, it is important to take the effects of Johnson noise in
the calculation fully into account, as we have done here. Some
of the tiny spikes around the upper parts of the calculated
curve are due to numerical inaccuracies of a finite-temperature
calculation due to a limitation in available computation time.
Other slight discrepancies between Figs. 7(a) and 7(b) might
be due to possible thin-film inhomogeneities.

Our calculation reveals that the appearance of a broad
envelope modulation in the V -versus-Ba response shown in
Figs. 7(a) and 7(b) is due to inhomogeneous fluxoid focus-
ing where the effective areas Aeff

k of the two holes (k = 5
and k = 6) closest to the center are larger than the effective
areas of the holes at the ends. The values of Aeff

k , with k =
1, . . . , 11, calculated from Eq. (40), are displayed in Fig. 8.
The lower part of the bars is the μ0λ

2
∮

j · dl fluxoid contri-
bution to the effective area [Eq. (39)], while the upper part
is the �k fluxoid contribution (which contains the applied
flux). The average effective area enhancement is Aeff

av /Ah =
2.72. Using this enhancement factor, one obtains for the first
side minimum position Ba,0 := �o/Aeff

av = 23.78 μT, in close
agreement with both Figs. 7(a) and 7(b). The effective area
difference of 17% between the end and the center holes

FIG. 6. Perpendicular total magnetic field H (x, y) in the upper
half (y > 0) of the N = 11 parallel SQUID array at time τ = 9000
for (a) Ba = 0 and (b) Ba = 12 μT.

is responsible for the strong envelope modulation seen in
Figs. 7(a) and 7(b). The complicated interference pattern seen
in Fig. 7(a) is very sensitive to the actual form of the effective
area Aeff

k distribution (Fig. 8). In a simple lumped-element
simulation an envelope modulation can also be produced by
varying the geometric area sizes of the holes [22]. The effect
of varying the geometrical areas in parallel SQUID arrays on
the V -versus-Ba response has been investigated in detail by
Oppenländer et al. [8], who simulated the behavior of SQIFs
using a lumped-element approach. It is important to note that
these lumped-element simulations cannot properly account
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FIG. 7. Responses of V vs Ba at T = 77 K for (a) calculation and
(b) experiment.

for the effect of flux focusing and Meissner shielding currents
flowing in wide tracks, busbars, and leads and, in particular,
are not suitable to calculate how the injected current from a
wide bias lead fans out into the junction currents. Lumped-
element simulations are thus unable to accurately describe the
V -versus-Ba response of a parallel SQUID array with wide
superconducting thin-film busbars and leads.

Figure 9 demonstrates the importance of taking Johnson
noise of the junction resistors into account, when calculating
the V -versus-Ba response. The solid red curve in Fig. 9 was
obtained without Johnson noise and shows sharper dips and
narrow regions of zero voltage, in contrast to the dotted green
curve, which is identical to Fig. 7(a) and which includes John-
son noise. This kind of response difference is well known from
early simulations for a SQUID with N = 2 [42]. We found that
numerical calculations for the N = 11 parallel SQUID array
that include Johnson noise are computationally about 30 times
more demanding than calculations without Johnson noise. At

FIG. 8. Effective area enhancement factor Aeff
k /Ah of Eq. (40) vs

the hole index k for N = 11. The average enhancement factor is 2.72.
The lower part of the bars is the μ0λ

2
∮

j · dl fluxoid contribution to
the effective area [Eq. (39)], while the upper part is the �k fluxoid
contribution.

T = 77 K, particularly at small average voltages V , one has to
calculate the time evolution of the junction phase differences
ϕk (τ ) over a very long time period τ in order to obtain a
statistically accurate time-averaged voltage. The accuracy of
calculations shown in Fig. 7(a) is about 2%.

Up to this point our calculations have not considered
spreads in critical junction currents Ick and junction resis-
tances Rk . The effect of Ick, Rk spreads with a standard
deviation of σIc = 0.2 is shown in Fig. 10. Here, we assume
that Ik and Rk are anticorrelated according to the empirical
law RkIck ∝ J1/2

c [43], where Jc is the junction critical current
density, which is assumed to be a constant. The Gaussian
random Ick/Ic and Rk/R values that were used are shown
in the inset of Fig. 10. As can be seen, compared with the

FIG. 9. Comparison of calculated response of V vs Ba with John-
son noise [dotted green curve; Fig. 7(a)] and without Johnson noise
(solid red curve).
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FIG. 10. Effect of Ick, Rk spreads with σIc = 0.2 (solid red curve)
on V vs Ba. The dotted green curve is for no spread and is identical
to Fig. 7(a). The inset shows the Gaussian random Ick/Ic and Rk/R
used.

case of no spread [dotted green curve; identical to Fig. 7(a)],
the spread (solid red curve) breaks the symmetry about the
V axis, and V (Ba) �= V (−Ba). The envelope modulation is
only mildly affected, and the previously mentioned shoulder
peaks stay at their positions. In contrast, the experimental
data in Fig. 7(b) show symmetric behavior, which is due to
our experimental procedure which averages the voltages V
for direct and reversed bias current Ib, in order to cancel
any apparatus voltage offset. Thus the measurement proce-
dure symmetrized the V -versus-Ba curve in Fig. 7(b). The
fact that the calculation in Fig. 7(a) agrees so well with the
symmetrized experimental data in Fig. 7(b) indicates that
the Ick, Rk spreads of our experimental N = 11 parallel
SQUID array must be smaller than 0.2.

The time-averaged voltage V at Ba = 0 in Figs. 7(a) and
7(b) is dependent on the bias current Ib. Figure 11 displays
the calculated and experimental Ib-versus-V (Ba = 0) depen-
dence. The calculation included Johnson noise at T = 77 K
and used the same parameters as in Fig. 7(a), i.e., Ic =
24 μA and λ = 0.33 μm, again assuming zero Ick, Rk spreads.
Figure 11 shows that a junction resistance R = 6.5 � fits quite
well the experimental data and the thermal rounding seen in
the experimental Ib-versus-V curve is well reproduced. The JJ
resistance value R = 6.5 � is close to R = 6.2 �, which was
extracted above from Figs. 7(a) and 7(b). As seen in Fig. 11,
the experimental curve has a voltage offset error of 5 μV
found to be caused by a systematic error from our measuring
apparatus.

From the supercurrents that are flowing parallel and very
close to the junctions we can calculate the fluxoids in the
junctions. We find that for the largest magnetic induction
Ba = 190 μT, the value for the fluxoids in junctions is about
0.06�0. Thus the critical current of JJs is not affected by the
applied magnetic field, which is sufficiently small so that our
initial assumption of a nearly constant critical current density
across junction areas is well justified.

FIG. 11. Comparison between the experimental and calculated
bias current Ib vs the time-averaged voltage V across the N = 11
parallel SQUID array for Ba = 0. In the calculation the resistance of
each JJ is assumed to be R = 6.5 �.

It is interesting to compare the results from our compre-
hensive model with the simpler lumped-element model [5,8].
In the lumped-element approach, one also solves a system
of coupled differential equations for the junction phase dif-
ferences, but these equations contain partial inductances for
all the tracks along which currents are flowing. To obtain the
set of coupled equations for the phase differences, one has
to utilize Kirchhoff’s law for all current vertices. Thus, in a
lumped-element model, currents fanning out from the bias-
current injection lead into wide busbars cannot be modeled
properly. Therefore, in the lumped-element approach, one is
often faced with the problem of how to best simulate the
injection of the bias current [22]. It is clear that the lumped-
element model only works well if the device is made up of
very narrow tracks. Figure 12 shows the calculated result
using the lumped-element model [22] with Johnson noise
for an N = 11 parallel SQUID array assuming very narrow
tracks. In order to allow a fair comparison with our more
elaborate model, we artificially included a constant fluxoid
focusing factor of 2.72 (Fig. 8) and chose for the screening
parameter βL = 2IcLs/�0 = 0.59, which was obtained by ex-
tracting the average self-inductance Ls per array hole from
our comprehensive model. The average Ls was determined
by forcing a loop current to flow around individual holes and
then evaluating the corresponding hole fluxoid. This showed
that the self-inductances of the outside loops are about 2.3%
larger than the inner ones. The dashed red curve in Fig. 12
shows the result for homogeneous bias-current injection [22],
where all the top array current vertices receive the same bias
current Ib/N . In contrast, the solid green curve in Fig. 12
shows the calculated result for central injection, where the
full bias current Ib is injected into the top center current
vertex, i.e., above the central (k = 6) junction. It can be seen
that the lumped-element model very strongly depends on the
bias-current injection scheme chosen and completely fails to
reproduce our experimental data displayed in Fig. 7(b). Our
comprehensive model, due to its greater detail, takes a factor
of about 104 more computation time than the computationally
fast lumped-element model.
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FIG. 12. V vs Ba using the lumped-element model with John-
son noise. The dashed red curve corresponds to homogeneous
bias-current injection, and the solid green line represents central
bias-current injection. The SQUID-loop screening parameter used in
the calculation is βL = 0.59.

We have also fabricated and measured eight other parallel
SQUID arrays with numbers of JJs ranging from N = 4 to
N = 81, about which we have previously reported [22]. Since
our calculations require large computational time, a detailed
comparison of more experimental data with our model is
needed.

V. SUMMARY AND CONCLUSION

In this paper we have presented a comprehensive theo-
retical model that allows us to calculate with high accuracy
the magnetic field response of parallel SQUID arrays with
wide thin-film geometric structures, operated in the voltage
state. All aspects of the physics of parallel SQUID arrays are
fully accounted for by our model as long as the thin film
is homogeneous, the device edges are straight, the London
penetration depth is greater than the film thickness, the JJs
follow the sin ϕk law, and the junctions are overdamped. The
model calculates the fluxoids for each SQUID array hole
during the time evolution of the phase differences of the JJs.
This was achieved by solving numerically the second-order
linear Fredholm integro-differential equation for the stream
function, derived from the second London equation and Biot-
Savart’s law, with boundary conditions that are updated for
each time step. The fact that the London penetration depth of
YBCO thin films at 77 K is greater than the thickness of our
thin film allows us to solve the integro-differential equation
in 2D. The Josephson equations and the second Ginzburg-
Landau equation for the phase differences lead to a system of
coupled first-order nonlinear differential equations which de-
pend on the stream function which describes the time-varying
supercurrent density within the thin-film array structure. The
equations also take into account the Johnson noise from the
JJs. Compared with the much simpler and far less accurate
lumped-element model approach, our comprehensive model,

while computationally much more demanding, leads to highly
accurate predictions.

We have tested the predictive power of our model by com-
paring our model results with our experimental data for an
N = 11 parallel SQUID array with wide thin-film structures.
The theoretical model requires only three parameters, i.e., the
junction critical current density Ic and its resistance R, and the
London penetration depth λ. These parameters were adjusted
to give the best all-over agreement with the experimental
V (Ba) curve of the array. The model predicts with high accu-
racy the V (Ba) curve of the array over a wide applied magnetic
field range and also describes well the experimentally ob-
served thermal rounding of the Ib-versus-V (Ba = 0) curve.
The model reveals that the observed envelope modulation of
the experimental V (Ba) curve is due to the nonequal effective
hole areas of the array, where the center holes have a larger
effective area. Spreads in Ick and Rk lead to Ba asymmetry
of the V (Ba) curve. For wide thin-film geometric structures,
the lumped-element model fails to correctly predict the V (Ba)
array response, because it cannot describe fluxoid focusing
and, in particular, fails to appropriately handle the bias-current
injection.
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APPENDIX A: KERNEL QF

The integral equation (5) is a convergent improper inte-
gral where the integrand is singular for (x, y) = (x′, y′). In
order to apply the method of integration by parts, one can

smoothen the functions (y − y′)/
√

(c − x′)2 + (y − y′)2
3

and

(x − x′)/
√

(c − x′)2 + (y − y′)2
3

in Eq. (5) by analytically in-
tegrating them over the small area of a square grid element
(
x)2 size, so that these functions become continuously dif-
ferentiable functions. This leads in Eq. (7) to a kernel of the
form

QF (x, y, x′, y′)

= 1

(
x)2

⎡⎣[√
x̄2 + ȳ2

x̄ȳ

]x′−x+
x/2

x′−x−
x/2

(x̄)

⎤⎦y′−y+
x/2

y′−y−
x/2

(ȳ), (A1)

with the definition[
[ f (x, y)]s2

s1
(x)

]s4

s3
(y)

= f (s2, s4) − f (s1, s4) − f (s2, s3) + f (s1, s3). (A2)

We also have tried a method suggested by Brandt [26] in order
to avoid the singularity in Eq. (5). Brandt [26] uses the fact

that 1/
√

(x − x′)2 + (y − y′)2
3

in Eq. (5) can be interpreted as
4π times the magnetic field in the xy plane of a point dipole
of unit strength, positioned at (x′, y′) and oriented in the z
direction. Since the magnetic flux through the infinite xy plane
is zero, this leads to an additional equation that Brandt [26]
uses to eliminate any unphysical singularity. We found that
this method is less accurate than our method described above.

054509-12



THEORETICAL MODEL FOR PARALLEL SQUID ARRAYS … PHYSICAL REVIEW B 103, 054509 (2021)

APPENDIX B: ANALYTICAL EXPRESSIONS FOR THE FUNCTIONS Pu
0 (x, y) AND Pu

k (x, y)

Using Eqs. (18) and (19), the function Pu
0 (x, y) is obtained by integrating the line integral in Eq. (16) along the contours ∂�L,

∂�R, and ∂�T (see Fig. 2), which results in

Pu
0 (x, y) = 1

8π
[αL(x, y) + αR(x, y) + αT (x, y)], (B1)

where

αL(x, y) = 1

x + c

ỹ√
(x + c)2 + ỹ2

∣∣∣∣b+l−y

ỹ=b−y

− 1

y − b

x̃√
x̃2 + (y − b)2

∣∣∣∣−c−x

x̃=−a−x

+ 1

x + a

ỹ√
(x + a)2 + ỹ2

∣∣∣∣b−y

ỹ=−y

, (B2)

with c, b, l , and a defined in Fig. 1,

αR(x, y) = 1

x − c

ỹ√
(x − c)2 + ỹ2

∣∣∣∣b+l−y

ỹ=b−y

+ 1

y − b

x̃√
x̃2 + (y − b)2

∣∣∣∣a−x

x̃=c−x

+ 1

x − a

ỹ√
(x − a)2 + ỹ2

∣∣∣∣b−y

ỹ=−y

, (B3)

and

αT (x, y) = 1

c

[
xx̃

y − (b + l )
− [y − (b + l )]

]
1√

x̃2 + [y − (b + l )]2

∣∣∣∣c−x

x̃=−c−x

. (B4)

The function Pu
k (x, y), where k = 1, . . . , N − 1, is obtained by integrating the line integral in Eq. (16) along the contour ∂�k

(Fig. 2) for y′ � 0, which results in

4πPu
k (x, y) = − x̃

(y − h)
√

x̃2 + (y − h)2

∣∣∣∣xk+wh−x

x̃=xk−x

+ ỹ

(x − xk )
√

(x − xk )2 + ỹ2

∣∣∣∣h−y

ỹ=−y

− ỹ

[x − (xk + wh)]
√

[x − (xk + wh)]2 + ỹ2

∣∣∣∣h−y

ỹ=−y

, (B5)

where xk := k(wJ + wh) − wh − a.

APPENDIX C: LAPLACIAN

The superconducting thin-film 2D domain �u (Fig. 2) is
divided into small square aerial elements w = (
x)2, where
the square grid spacing 
x was chosen as 0.5 μm or 1.0 μm.
The grid points rn, with n = 1, . . . , Ng, lie in the center of
these grid elements.

In Eq. (24), if a point rn lies more than a distance 
x/2
from the boundary ∂�u (which includes the boundaries
∂�k) or from the junction boundary, then the Laplacian
on the square grid operates such that

∑
m 
nmgm =

[g(xn + 
x, yn) + g(xn, yn + 
x) − 4g(xn, yn) + g(xn −

x, yn) + g(xn, yn − 
x)]/w, where the sum over m includes
the four nearest-neighbor sites of rn.

In Eq. (24), if a point rn lies only a distance 
x/2 from the
boundary ∂�u or a junction, one has to use the Laplacian for
a nonequidistant grid. For example, if rn is on the right side of
a boundary line that runs along the y direction, then

∂2g/∂x2
∣∣
(xn,yn ) ≈ g(xn − h1, yn)

2/h1

h1 + h2
− g(xn, yn)

2

h1h2

+ g(xn + h2, yn)
2/h2

h1 + h2
, (C1)

where in this case h1 = 
x/2, h2 = 
x, and g(xn − h1, yn)
is the stream function value on the boundary line. Equivalent

equations for the Laplacian are used for other ∂�u boundary
lines and along junctions. Special attention has to be given to
points rn near corners.

APPENDIX D: JOHNSON CURRENT NOISE

We assume that the uncorrelated Johnson noise from the
normal resistances of the junctions are the dominant noise
sources, compared with junction shot noise or thermal fluc-
tuations in critical currents [42]. When solving Eqs. (34) and
(35) numerically, the normalized noise currents INoise

k /Ic, with
k = 1, . . . , N , become sequences of random numbers corre-
sponding to successive averages over small time steps 
τ of
the continuous noise currents INoise

k (τ )/Ic. Thus each noise
current is an independent Gaussian random variable with
mean-square deviation 2�k/
τ and zero average [42,44],
where �k is the effective noise strength

�k = R

Rk

2πkBT

Ic�0
, (D1)

where kB is the Boltzmann constant and T is the temperature
at which the device is held (here, T = 77 K). When applying
the above concept to a single resistively shunted JJ, our nu-
merical results agree with the Fokker-Planck calculations of
Ambegaokar and Halperin [45].
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