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Josephson junctions based on three-dimensional topological insulators offer intriguing possibilities to realize
unconventional p-wave pairing and Majorana modes. Here, we provide a detailed study of the effect of a
uniform magnetization in the normal region: We show how the interplay between the spin-momentum locking
of the topological insulator and an in-plane magnetization parallel to the direction of phase bias leads to an
asymmetry of the Andreev spectrum with respect to transverse momenta. If sufficiently large, this asymmetry
induces a transition from a regime of gapless, counterpropagating Majorana modes to a regime with unprotected
modes that are unidirectional at small transverse momenta. Intriguingly, the magnetization-induced asymmetry
of the Andreev spectrum also gives rise to a Josephson Hall effect, that is, the appearance of a transverse
Josephson current. The amplitude and current phase relation of the Josephson Hall current are studied in detail.
In particular, we show how magnetic control and gating of the normal region can enable sizable Josephson Hall
currents compared to the longitudinal Josephson current. Finally, we also propose in-plane magnetic fields as an
alternative to the magnetization in the normal region and discuss how the planar Josephson Hall effect could be
observed in experiments.
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I. INTRODUCTION

The helical spin structure of the surface states of three-
dimensional topological insulators (3D TIs) offers intriguing
possibilities of tailoring the surface-state properties by vari-
ous proximity effects. A conventional s-wave superconductor
can, for example, be used to proximity-induce superconduc-
tivity in the TI surface. The interplay between the helical
spin-momentum locking of the TI surface state and the super-
conducting pairing then mediates an effective pairing between
electrons at the Fermi level. This effective pairing features a
mixture of singlet s-wave and triplet p-wave pair correlations
[1–3] and turns the TI surface into a topological superconduc-
tor [2,4–9] with Majorana zero modes [1] and odd-frequency
pairing [10].

In this context, Josephson junctions based on 3D TIs or
on their two-dimensional (2D) counterparts have been studied
extensively for potential signatures of topological supercon-
ductivity, both theoretically [1,3,11–24] and experimentally
[25–29]. These so-called topological Josephson junctions ex-
hibit a ground-state fermion parity that is 4π -periodic in the
superconducting phase difference φ and Andreev bound states
(ABS) with a protected zero-energy crossing [30,31].

*Corresponding author: o.maistrenko@fkf.mpg.de
†Corresponding author: hankiewicz@physik.uni-wuerzburg.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

Topological Josephson junctions are particularly intrigu-
ing if they are based on 3D TIs, as depicted in Fig. 1(a):
Because of the 2D nature of the surface, the system sup-
ports modes that propagate along the direction parallel to the
superconductor/normal TI interface, that is, the y direction
in Fig. 1(a). Due to the protected zero-energy crossing oc-
curring at zero transverse momentum and phase difference
φ = π , a π junction exhibits two counterpropagating gapless
states, so-called nonchiral Majorana modes [1] [see Fig. 1(b)
bottom].

Besides proximity-induced superconductivity, one can also
envision other proximity effects whose interplay with the
spin texture of the TI surface state leads to novel phenom-
ena: In nonsuperconducting setups, for example, the interplay
between the helical surface states and proximity-induced mag-
netism provides a versatile platform for studying fundamental
effects and spintronic applications [4,32,33]. Ferromagnetic
tunnel junctions based on 3D TIs [34–38], in particular,
show some promise for potential spintronic devices [39]. The
combination of 3D TIs with both proximity-induced super-
conductivity and magnetism can prove even more interesting
[11,40–42], however, and could point to novel possibilities for
superconducting spintronics [43,44].

Motivated by this prospect [45] as well as by phenomena
found in nonsuperconducting TI tunneling junctions, such as
the tunneling planar Hall effect [38], we study 3D TI-based
Josephson junctions with a ferromagnetic tunneling barrier
[see Fig. 1(c)]. In contrast to previous studies on this system
[11,40,41], we focus not only on the longitudinal response
but also on the transverse response to an applied phase bias.
We find that especially the configuration with an in-plane
magnetization parallel to the direction of the phase bias
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FIG. 1. (a) Scheme of a Josephson junction based on a 3D TI:
s-wave superconductors (S) on top of the TI proximity-induced
pairing into the TI surface state. The two proximity-induced super-
conducting regions are separated by a normal region. (b) Top view
and low-energy Andreev spectrum of a short topological π junction
for transverse momenta py close to py = 0: The two low-energy
ABS correspond to counterpropagating nonchiral Majorana modes
with opposite group velocities. No net Josephson Hall current flows
in the y direction. (c) Ferromagnetic Josephson junction based on
a 3D TI: Same as (a) but with a magnetic region separating the
superconducting regions. In this setup, the Zeeman field/exchange
splitting M is proximity induced by a ferromagnet (F). (d) Same
as (a) but for a ferromagnetic Josephson junction with large M
parallel to the direction of the phase bias: The Andreev spectrum is
asymmetric and has been tilted in such a way that the two low-energy
modes are unidirectional for small py. Note that these ABS are no
Majorana modes protected against backscattering because there are
additional zero-energy states for py close to the Fermi momentum
(not shown). The asymmetry in the Andreev spectrum gives rise to a
finite Josephson Hall current flowing in the y direction.

exhibits striking features: Such a magnetization leads to an
asymmetric Andreev spectrum for a fixed finite transverse
momentum. If sufficiently large, this asymmetry even induces
a transition from the regime of counterpropagating, nonchiral
Majorana modes to a regime with unprotected unidirectional
modes at small transverse momenta [compare Fig. 1(b) bot-
tom and Fig. 1(d) bottom]. Most importantly, even a small
magnetization-induced asymmetry in the Andreev spectrum
causes a transverse Josephson Hall current [see Fig. 1(d) top].
In contrast to other Josephson Hall effects [46,47], the effect
found here arises from an in-plane magnetization, which is
why we call it the planar Josephson Hall effect. The planar
Josephson Hall effect is the superconducting analog to the
tunneling planar Hall effect found in nonsuperconducting TI
tunneling junctions [38].

Below, we will discuss the origin of the Josephson Hall
current, its properties, and how it could be experimentally
verified. The paper is organized as follows: After introducing
the effective model used to describe the Josephson junction
in Sec. II, we study its ABS in Sec. III. In Secs. IV and V,
the procedure to compute the different Josephson currents is
presented. These currents are then discussed in Sec. VI. A
brief summary concludes the paper in Sec. VII.

II. MODEL

A. Hamiltonian and unitary transformation

In our model, we consider a Josephson junction based on
the 2D surface state of a 3D TI, as depicted in Fig. 1(c), where
the pairing in the superconducting (S) regions is induced from
a nearby s-wave superconductor. The ferromagnetic (F) region
is subject to an exchange splitting/Zeeman term proximity
induced from a nearby ferromagnet [48]. If one is only inter-
ested in an in-plane Zeeman term, an alternative way to realize
such a Zeeman term is by applying an in-plane magnetic field
as discussed in Sec. VII below. The surface state lies in the
xy plane, with the direction of the superconducting phase bias
denoted as the x direction. We take the system to be infinite
in both the x and y directions. Here, we study the regime
where the Fermi level is situated inside the bulk gap and
where only surface states exist. Moreover, we assume that
the surface considered is far enough away from the opposite
surface so that there is no overlap between their states. Then,
the Josephson junction based on a single surface is described
by the Bogoliubov-de Gennes (BdG) Hamiltonian

Ĥ0
BdG = [vF (σx p̂y − σy p̂x ) − μ]τz + (V0τz − M · σ )h(x)

+ �(x)[τx cos �(x) − τy sin �(x)] (1)

with the basis order �̂ = (ψ̂↑, ψ̂↓, ψ̂
†
↓,−ψ̂

†
↑ )

T
. In Eq. (1),

p̂l (with l = x, y) denote momentum operators and σl and
τl (with l = x, y, z) Pauli matrices in spin and particle-hole
space, respectively. Moreover, σ = (σx, σy, σz ) and unit ma-
trices are not written explicitly in Eq. (1).

In this paper, we study two models for a Josephson junc-
tion with a F region of width d: (a) a model with a δ-like
F region described by h(x) = dδ(x) and �(x) = � and (b)
a model with a finite F region where h(x) = �(d/2 − |x|)
and �(x) = ��(|x| − d/2). In both cases, the phase conven-
tion is �(x) = φ�(x), where φ is the superconducting phase
difference between the two S regions. The superconducting
pairing amplitude with strength � � 0 is proximity induced
from the s-wave superconductors deposited on the TI surface.
The density of states of these superconductors is typically
much larger than that of the TI surface states, e.g., we can
assume Nb superconductors used in experiments. Therefore,
the currents flowing in the TI surface do not significantly
affect the superconducting phases and we can use constant φ

and � within each superconducting lead. In other words the
resistivity of the junction region is much larger than that of
the leads; this justifies our approximation [49,50] commonly
used in mesoscopic systems. We note that the superconductors
from which superconductivity is induced in the TI surface
states are not explicitly included in our model (1). However,
in the real system they are important to make this assumption.
The Fermi velocity of the surface state is vF , and V0 the
potential in the F region, which can also be viewed as de-
scribing the difference between the chemical potentials in the
S and F regions, μ and μF = μ − V0. The Zeeman term due
to the proximity-induced ferromagnetic exchange splitting is
described by the effective magnetization M = (Mx, My, Mz )
[48]. Note that the direction of M is set by the magnetization
in the ferromagnet.
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For our calculations, it is more convenient to introduce
the unitary rotation transformation in spin space U = (1 −
iσz )/

√
2 and bring the Dirac Hamiltonian (1) into the form

ĤBdG = [σ · (vF p̂ − τzM ′h(x)) − μ + V0h(x)]τz

+ �(x)[τx cos �(x) − τy sin �(x)] (2)

with p̂ = ( p̂x, p̂y, 0). Because of the rotated spin axes used
in Eq. (2) M ′ is a rotated effective magnetization, which is
related to the components of the real magnetization M induced
in the F region via M ′ = (−My, Mx, Mz ). In addition, for the
Dirac equation this Zeeman term has the same form as a vector
potential. From now on, we use the Hamiltonian (2) because
it proves more convenient mathematically.

B. General form of the solutions

To solve ĤBdG�(r) = E�(r) and obtain the eigenspectrum
of Eq. (2), we first make use of translational invariance along
the y direction, [ĤBdG, p̂y] = 0. Although, on a macroscopic
scale y � d the phase may depend on the transverse coor-
dinate, this should not affect the local structure of Andreev
levels calculated below. Hence, we proceed with the ansatz
�(r) = eipyyψ (x)/

√
W , which reasonably simplifies the an-

alytical treatment of the system. Here py is the momentum
quantum number, ψ (x) is a spinor in Nambu space, and W
is a unit width of the system in the y direction. Even if one
considers a large finite-size system in the y direction, these
solutions should describe states away from the boundaries.
Here and in the remainder of this paper, we set h̄ = 1. The
eigenenergies and ψ (x) can then be obtained from the 1D
BdG equation

ĤBdG(py)ψ (x) = Eψ (x), (3)

where ĤBdG(py) is given by Eq. (2) with the operator p̂y

replaced by the quantum number py.
The energy-momentum relation in the S regions is given by

q± =
√

(μ ± �)2/v2
F − p2

y with � = √
E2 − �2. We find the

following solutions in the S leads:

ψ
(S)
ξα (x) = 1√

2

(
uξ

e−i�(x)vξ

)
⊗

( 1
vF (αqξ + ipy)

μ + ξ�

)
eiαqξ x, (4)

where ξ = ±1 corresponds to particlelike and holelike solu-
tions and α = ±1 selects the direction of motion. Here,

uξ =
√

1

2

(
1 + ξ�

E

)
, vξ =

√
1

2

(
1 − ξ�

E

)
. (5)

In the F region, the electron and hole states are given by

ψ
(F )
ξα (x) = ei(−ξMy/vF +αkξ )x

√
2E ′(E ′ − ξMz )

(
E ′ − ξMz

αvF kξ + i(vF py − ξMx )

)
(6)

with vF ke/h = √
(μ ± E − V0)2 − (vF py ∓ Mx )2 − M2

z and
E ′ = μ + ξE − V0. The Zeeman term Mz opens a symmetric
gap in the spectrum, while in-plane magnetization Mx shifts
the position of the Dirac cone and introduces an asymmetry
in the barrier states. For a given py mode this changes the
effective energy gap in the barrier, making the Andreev reflec-
tion process angle dependent. This result of spin-momentum

locking will have important consequences for the discussion
below.

III. ANDREEV BOUND STATES

A. General equations

In order to understand the Josephson currents and the emer-
gence of a Josephson Hall current, it is instructive to first
look at the ABS of Eq. (3), that is, bound states decaying for
|x| → ∞ and hence with energies |E | < �. We focus on the
ABS of a junction with finite F region and refer to Appendix
A for the Andreev spectrum of the δ model, where relatively
compact, analytical solutions are possible in certain limiting
cases. The eigenenergies of the ABS and their corresponding
eigenstates can be determined from the ansatz

ψ (x) =

⎧⎪⎪⎨
⎪⎪⎩

A1ψ
(S)
e,−sμ

(x) + A2ψ
(S)
h,sμ

(x), x < − d
2∑

ξ=e/h,α=± Dξαψ
(F )
ξα (x), |x| < d

2

B1ψ
(S)
e,sμ

(x) + B2ψ
(S)
h,−sμ

(x), d
2 < x

(7)

for a junction with a finite F region and sμ = sgn(μ). Now,
the coefficients A1, A2, De±, Dh±, B1, B2 have to be calculated
from the boundary conditions at the S/F interfaces,

ψ (0+) = ψ (0−), ψ (d+) = ψ (d−). (8)

The boundary conditions (8) lead to systems of linear equa-
tions for the coefficients A1 to B2. By requiring a nontrivial
solution of this system of linear equations, that is, by re-
quiring its determinant to vanish, we find the ABS energies
E = E (φ, py).

B. Andreev spectrum of a ferromagnetic Josephson junction

This procedure enables us to compute the Andreev spec-
trum of a finite barrier, examples of which are shown in Fig. 2
for a short junction with an F region of length d = 330 nm,
|μ| � �, and different configurations of M. For these param-
eters, there are two ABS with energies E±(φ, py) at a given
momentum py, where the subscript ± denotes which state lies
higher (lower) in energy, that is, E+(φ, py) � E−(φ, py). We
can compare the φ and py dependence of these ABS with
the case of no magnetization, that is, M = 0 (not shown):
For M = 0, the Andreev spectrum E±(φ, py) exhibits a zero-
energy crossing protected by fermion parity at odd integer
multiples of φ = π and py = 0, as also discussed in Appendix
C. This protected zero-energy crossing is accompanied by
two gapless, nonchiral Majorana modes that counterpropagate
along the y direction and are localized mostly in the normal
region [1,3].

If we include a finite M, its effects on the ABS are the
following:

(i) A component My (not shown) shifts the entire Andreev
spectrum as a function of φ, that is, E±(φ, py) → E±(φ +
2Zy, py), where Zy = Myd/vF , but leaves the spectrum other-
wise unchanged [11]. In particular, the protected zero-energy
crossing for py = 0 and the nonchiral Majorana modes are
now shifted to φ = (2n + 1)π − 2Zy, where n ∈ Z is an inte-
ger. Indeed, the My component can be absorbed into the phase
difference by performing a gauge transformation of the BdG
Hamiltonian (see Appendix A).
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FIG. 2. Andreev bound state spectra for different combinations
of M and V0: (a),(c) M = Mez, V0 = 1.5 meV and (b),(d) M = Mex ,
V0 = 0. Here, el denotes a unit vector in the l direction with l =
x, y, z. In all panels, M = 0.2 meV, d = 330 nm, μ = 2 meV, vF =
5 × 105 m/s, and � = 100 μeV. The solid lines depict the spectra
given in Eq. (A8) for the δ barrier in the Andreev approximation. The
discrete data points depict the numerically computed ABS spectra
as obtained for the finite F region without any approximations to
Eq. (2).

(ii) Finite components Mx and Mz, shown in Figs. 2(b)
and 2(d) and Figs. 2(a) and 2(c), respectively, also do not
remove this zero-energy crossing for py = 0 and φ = (2n +
1)π − 2Zy. This crossing remains protected by the fermion
parity and cannot be removed by a finite Mx or Mz [30,31]
(see also Appendix C). The main effect of a finite out-of-plane
magnetization Mz in the F region is to detach the ABS from the
continuum states with |E | > � [see Fig. 2(a) and Appendix
D 1], consistent with the results found in Refs. [40,41].

(iii) Intriguingly, we find that a finite Mx �= 0 introduces
an asymmetry in the Andreev spectrum at finite py as shown
in Figs. 2(c) and 2(d): It does no longer satisfy E±(φ, py) =
−E∓(φ, py), but only the weaker condition E±(φ, py) =
−E∓(φ,−py), dictated by the particle-hole symmetry of the
BdG formalism. In particular, Fig. 2(d), which shows the
py dependence of the Andreev spectrum, illustrates that the
asymmetry E±(φ, py) �= −E∓(φ, py) manifests itself in a ‘tilt-
ing’ of the spectrum. If Mx is large enough, it can even
lead to a situation where the group velocities in y direction,
vg ∝ ∂E±(φ, py)/∂ py, for ABS in the vicinity of py = 0 and
φ ≈ π − 2Zy have the same sign. Such a situation is shown
in Fig. 2(d). In this regime, the ABS change from nonchiral,
counterpropagating Majorana modes to modes propagating
in the same direction for small py. At small py, the disper-
sion of these ABS is reminiscent of the unidirectional modes
found in noncentrosymmetric superconductors [51–53] or in
Rashba sandwiches [54]. An energy spectrum asymmetric in
the transverse momentum py can also appear at a single F/S
interface due to broken rotational symmetry by the Mx term

[42]. It is important to note that the unidirectional ABS close
to py = 0 are, however, not protected against backscattering:
As can be seen in Fig. 2(d), these states are accompanied by
other zero-energy states with py close to the Fermi momentum
and with opposite group velocities.

The results presented above show that although the Zee-
man term enters the equations in the form of a vector potential
[see Eq. (2)], its effect is not limited to the semiclassical
phase factor typical for a spin degenerate electron system.
The found asymmetry of the Andreev spectrum emerges from
the interplay between the spin-orbit coupling of the TI and
Mx which plays the role of the magnetic tunneling barrier.
We discuss it in more detail in Appendix B with an effective
low-energy model.

In Fig. 2, we also compare the numerically obtained ABS
with the analytical expressions one can derive for the ABS of
a model with a δ-like F region in the Andreev approximation,
as discussed in Appendix A. For short junctions and momenta
close to py = 0, these analytical expressions provide an excel-
lent description of the ABS. In particular, these expressions
also capture the asymmetry and ‘tilting’ of the Andreev spec-
trum induced by Mx. In addition, we show in Appendix D 2
that the same effect is also present for parameters beyond the
Andreev approximation, i.e., for μ ∼ �.

C. Spin structure of Andreev bound states

Figure 3 shows the spatial dependence of the quasiparticle
density |ψ (x)|2 = 〈σ0(x)〉 of the two ABS for φ = 0.9π and
different momenta py if Mz �= 0 [Figs. 3(a)–3(c)] and if Mx �=
0 [Figs. 3(d)–3(f)]. As can be discerned from Figs. 3(a)–3(c),
Mz �= 0 leads to ABS that are increasingly localized at the S/F
interfaces as py or Mz are increased. One can understand this
behavior by recalling that a magnetization component in the
z direction acts as a mass term that increasingly isolates the
left and right S regions. If the two S regions are completely
isolated from each other, that is, for Mz → ∞, each S region
separately corresponds to a topological superconductor that
hosts one chiral Majorana mode at its boundary [1]. Hence,
the results in Figs. 3(a)–3(c) can be interpreted as the in-
termediate regime between M = 0 with nonchiral Majorana
modes that are completely delocalized inside the F region and
Mz → ∞ with one chiral Majorana mode at each of the S/F
interfaces. Comparing |ψ (x)|2 for finite Mz with |ψ (x)|2 for a
finite Mx of the same strength, we find that |ψ (x)|2 is not as
localized at the S/F interfaces for Mx, but rather constant in
the whole F region, as shown in Figs. 3(d)–3(f).

We also depict the expectation values of the spin densities
ψ†(x)σxψ (x) = 〈σx(x)〉 and ψ†(x)σyψ (x) = 〈σy(x)〉 in Fig. 3.
The spin densities 〈σx(x)〉 and 〈σy(x)〉 are related to the charge
currents in the x and y directions, respectively (see Sec. IV
below). By comparing right and left columns of Fig. 3, we
find that for in-plane magnetization 〈σy(x)〉 is delocalized
within the F region. This is in contrast to the out-of-plane
case, where the 〈σy(x)〉 spin density and the wave functions
are peaked near the S/F interfaces. Another important obser-
vation is that for finite Mx the spin polarization amplitudes
of the two Andreev levels are no longer equal. Together with
the asymmetry of the Andreev spectrum for Mx �= 0 discussed
above, a finite 〈σy(x)〉 such as in Fig. 3 gives rise to a finite net
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FIG. 3. Expectation values σi(x) obtained from the ABS wave
functions: (a)–(c) M = Mez, V0 = 1.5 meV, (d)–(f) M = Mex , V0 =
0. Here, el denotes a unit vector in l direction with l = x, y, z. In all
panels, φ = 0.9 π , M = 0.2 meV, d = 330 nm, μ = 2 meV, vF =
5 × 105 m/s, and � = 100 μeV. Light blue designates the normal
(F) region.

Josephson Hall current, even for small Mx. The emergence of
this Josephson Hall current will be discussed next.

IV. CURRENT OPERATORS AND CONTINUITY
EQUATIONS

Having found ABS with a peculiar behavior for Mx �= 0,
we next study whether this gives characteristic signatures in
observable quantities, such as for example the Josephson cur-
rent. In order to derive current density operators, we consider
the continuity equation for the charge density defined by the

operator

ρ̂(r) = e
∑

σ

ψ̂†
σ (r)ψ̂σ (r) (9)

or equivalently by the matrix 1
2 eτzσ0 in the Nambu basis with

e denoting the electron charge. The time evolution of the
density operator is given by the equation of motion ∂ρ̂/∂t =
i[ĤBdG, ρ̂(r, t )]. After using the fermionic commutation rela-
tions for field operators, this equation of motion can be written
in the form of the continuity equation

∂ρ̂

∂t
+ ∇ ĵ(r) = Ŝ(r). (10)

Here, the quasiparticle part of the current density is propor-
tional to the spin operator, analogous to the nonsuperconduct-
ing case for Dirac materials [38]

ĵ(r) = 1

2
evF �̂†(r)τ0σ�̂(r). (11)

The source term corresponding to the conversion of quasipar-
ticles to Cooper pairs in the S leads is given by

Ŝ(r) = �(x)�̂†(r)[τx sin �(x) + τy cos �(x)]�̂(r). (12)

The expectation values of these one-body operators can be
expressed as traces of the Green’s function which will be
derived in the next section.

V. GREEN’S FUNCTION ANALYSIS

A. General expressions and analytical continuation

In this section, we briefly describe the procedure for con-
structing the Green’s function of the junction Hamiltonian (2).
We follow the McMillan approach [55] and derive it from
the wave-function solutions of the system. Thus, we choose
the energies |E | > |�|, where Eq. (4) describes propagating
states, and solve the scattering problem

ψn>
(x) =

⎧⎪⎪⎨
⎪⎪⎩

ψ (S)
n (x) + ∑

n′
<

rnn′ (py)ψ (S)
n′ (x) x < d

2 ,∑
n′

>,<
snn′ (py)ψ (F )

n (x) |x| < d
2 ,∑

n′
>

tnn′ (py)ψ (S)
n′ (x) x > d

2 ,

(13)

where the multi-index n = (α, ξ ) ∈ {n>} corresponds to an
incident state from the left with fixed py. Using the boundary
conditions defined in Eq. (8) [or in Eq. (A1) for a δ barrier], we
find the reflection and transmission coefficients rnn′ (py) and
tnn′ (py) correspondingly. Analogously, we can obtain states
ψn<

(x) corresponding to processes when there is a quasiparti-
cle incident from the right part of the junction. These solutions
determine the continuum spectrum of the system, located
above the superconducting gap. Furthermore, we employ the
same procedure for the transposed Hamiltonian ĤT

BdG to find
the conjugate states

ĤT
BdGψ̃n(x) = Eψ̃n(x), (14)

where the transpose operation acts on the Pauli matrices
(Nambu space) and on the coordinate space (by replacing p̂
with −p̂). Afterward, we can write the Green’s function for a
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fixed py as an outer product of these solutions

GR
py

(x, x′, E ) =
{∑

n>,n′
<

Cnn′ψn(x)ψ̃n′ (x′), x > x′,∑
n<,n′

>
Cnn′ψn(x)ψ̃n′ (x′), x < x′,

(15)

where the position-independent coefficients Cnn′ should be
determined from the boundary condition at x = x′,

GR
py

(x + 0+, x) − GR
py

(x − 0+, x) = i

vF
τzσx. (16)

Having determined the Green’s function of the system in
this way, we can express a given single-particle operator in
terms of this Green’s function. In equilibrium the expecta-
tion value of the operator can be obtained by evaluating a
sum over the fermionic Matsubara frequencies ωn. This step
requires us to extend the Green’s function into the complex
plane. We use the fact that the retarded (advanced) Green’s
function is analytical in the upper (lower) half of the complex
plane. Hence, we perform an analytical continuation from the
open interval on the real axis (given by propagating solutions)
to the Matsubara frequencies, by replacing E → iωn in all
expressions in Eq. (15) [56]. To access negative Matsubara
frequencies, we calculate the advanced Green’s function in the
same manner as the retarded one. The uniqueness of the an-
alytical continuation allows us to use these expressions to go
to energies below the gap, so the expectation values obtained
in this way contain both contributions from the continuum
spectrum and bound states.

Finally, the expectation value of the quasiparticle part of
the current density operator is given by

jl (x) ≡ 〈 ĵl (x)〉 = evF

2β

∫
d py

∞∑
n=−∞

tr[τ0σlGpy (x, x, iωn)]

(17)
with l = x, y [57]. If Mx �= 0, the summation in frequency
space for jy(x) does not converge due to an oscillating be-
havior at high energies. This is similar to the behavior of
jy(x) in the normal state, where the contributions arising from
the oscillating wave functions for Mx �= 0 vanish only after
integration over x, that is, when computing the transverse
current from the transverse current density. Such a behavior
can also be understood as an artifact of the continuum Dirac
model. In fact, this model is only valid close to the Dirac
point within the band gap of the TI. To account for this, we
separate the current contributions into superconducting and
normal parts, j = jSC + jN , where we define jSC = j − jN .
Here, jN is evaluated for a normal system where we set � = 0
and captures all divergent terms that we treat in more details
in Appendix E. In the remaining expression jSC , which is also
the part that does not vanish after integration over x, the sum
converges fast and is performed numerically up to a cutoff.
Since it can be proven that the normal part goes to zero in
equilibrium, we focus only on the regular part jSC which
describes the actual Josephson current in the junction.

Note that Eq. (17) only contains the spatial dependence
of the quasiparticle part of the current density. In order to
compute the spatial dependence of the full current density,
one also needs to include contributions due to the source term
Ŝ(x) from Eq. (12) in the S leads [58]. As a consequence the
full current density in the x direction, consisting of jx(x) from

Eq. (17) and a term originating from Ŝ(x) in the S regions,
has a constant value and is independent of the position x. For
the transverse current, there is no contribution due to Ŝ(x).
Finally, we remark that the current densities computed from
Eqs. (15) and (17) are the current densities for a situation
where all states have equilibrium occupations without any
external constraints. Therefore, Eqs. (15) and (17) describe the
current densities without conservation of the fermion parity.

B. Induced superconducting pairing

Before discussing the current operators it is interesting to
consider how the superconducting correlations are modified
in the presence of the S/F/S junction. The bulk Green’s
function of a TI based superconductor [2,3] has mixtures of
even frequency singlet s-wave and triplet p-wave components.
Near the S/F/S interface the translational symmetry is broken
and odd-frequency components appear [6,42]. We define the
anomalous spectral function as

F (x = x′, py, E ) = (F R − F A) tanh
βE

2
. (18)

Here F R/A are off diagonal parts of the corresponding full
Green’s function obtained in Eq. (15). The superconducting
GF can be further decomposed into singlet and triplet compo-
nents

FSE(E ) =
∣∣∣∣
∫

d pytr
1

2
σ0(F (E ) + F (−E ))

∣∣∣∣, (19)

FTO(E ) =
√√√√ 3∑

i=1

∣∣∣∣
∫

d pytr
1

2
σi(F (E ) − F (−E ))

∣∣∣∣
2

, (20)

where we have extracted the even- and odd-frequency de-
pendence correspondingly. Other parts in the GF have odd
momentum dependency and hence vanish after py integration.
As seen in Figs. 4(a) and 4(b) the spectrum is composed of
the continuum (E > �) and bound states (E < �) parts. The
continuum spectrum shows the familiar superconducting peak
at the gap boundary. The spectrum inside the superconduct-
ing gap attributed to the bound states is located inside the
barrier and decays exponentially away from the barrier. The
even-frequency singlet (SE) part is close to zero inside the
gap and recovers full value deep inside the superconduct-
ing lead. The odd-frequency (TO) part originating from the
breaking of the translational symmetry in the x direction has
its maximum value near the S/F interface and decays into
the bulk. The bound states spectrum is equally composed of
SE and TO components. The TO component can be related
to Majorana modes at S/F interfaces [59], which in turn
form Andreev bound states in the junction. We did not find
significant changes in the spectrum of anomalous Green’s
function between in-plane and out-of-plane magnetization, so
we cannot attribute the appearance of the odd frequency to the
finite transverse supercurrent found in the next section.

VI. JOSEPHSON HALL CURRENT AND CURRENT-PHASE
RELATION

We are now in a position to discuss the emergence of the
transverse Josephson Hall current, which is the main result of
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FIG. 4. Position dependent spectrum of anomalous Green’s function with magnetization Mx = 0.3 meV. We choose the following param-
eters: vF = 5 × 105 m/s, μ = 2 meV, d = 330 nm, � = 0.2 meV, V0 = 0. meV, φ = 0.7π . The broadening of the peaks in the spectrum is
η = 0.02�.

this paper. Without a barrier magnetization, M = 0, or if there
is only an My component of M, the transverse current density
jy(x) = 〈 ĵy(x)〉 vanishes. On the other hand, the asymmetry in
the Andreev spectrum due to a finite Mx or the separation of
Majorana modes localized at the S/F interfaces due to a finite
Mz induce a finite jy(x). This is illustrated by Fig. 5, where
we present the spatial dependence of jy(x) in the presence
of a finite magnetization in the barrier. For a magnetization
Mz [Fig. 5(a)], we observe two transverse current densities of
opposite sign localized at the S/F interfaces. At each inter-
face, this localized current density corresponds mainly to the
chiral Majorana mode that emerges at an S/F interface for
large Mz as discussed above in Sec. III B. The magnitude of
jy(x) increases proportional to Mz. In contrast to the constant
longitudinal Josephson current density, jy(x) oscillates with
kF and decays exponentially into the S regions. As shown
from a symmetry argument in Appendix F, jy(x) is odd with

respect to x and consequently the total Josephson Hall current
through the F region,

Iy =
∫ d/2

−d/2
dx jy(x), (21)

is zero for finite Mz.
For a magnetization Mx, there is a finite transverse Joseph-

son current density flowing in the same direction inside the
whole F region, as shown in Fig. 5(b). In this case, the
current density profile jy(x) is an even function of x, which
clearly allows for a finite Josephson Hall current Iy as given
by Eq. (21) flowing in the F region. To increase Iy, one can
apply an additional gate voltage V0 inside the barrier, which
reduces the effective Fermi momentum in the F region and
hence suppresses the oscillating behavior inside the barrier.
In Fig. 5(c), one can see that by tuning V0 close to μ we

FIG. 5. Spatial dependence of the transverse current density for different magnetization directions and amplitudes of M and V0: (a) M =
Mzez and V0 = 1.5 meV, (b) M = Mxex and V0 = 1.5 meV, (c) Mx = 0.1 meV and different V0. In all panels, φ = 0.7π , d = 330 nm, μ =
2 meV, vF = 5 × 105 m/s, and � = 200 μeV.
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FIG. 6. Dependence of averaged Josephson current density
through the F region (a) on the phase difference φ for Mx = 0.4 meV
and (b) on the magnetization Mx at φ = 3π/2 for different gating
potentials V0. The solid line represents the Josephson Hall current
density j̄y and the dotted line represent longitudinal current density
jx . In all panels, d = 330 nm, μ = 2 meV, vF = 5 × 105 m/s, and
� = 200 μeV.

can achieve an almost flat profile of jy(x) within the junction,
thereby increasing Iy.

For the case of Mx �= 0 we, moreover, compare the
averaged transverse current density j̄y = Iy/d with the cor-
responding longitudinal Josephson current density jx = Ix/W
in Fig. 6 [60]. Here W is the width of the junction, and we
normalized the current to the corresponding junction cross
section. Ix is proportional to the number of transverse modes,
i.e., W , and therefore jx is effectively W independent. Fig-
ure 6(a) shows the current-phase relation of jx and j̄y for
several different values of V0. Both Ix and Iy are 2π periodic in
the superconducting phase difference φ since fermion parity
is not conserved if all states have equilibrium occupations
(see Sec. V). There is, however, a marked difference in the
current-phase relation between the nonsinusoidal Ix, which
is an odd function of φ, and Iy, which is an even function
of φ. Unlike Ix, Iy does typically not exhibit zeros at integer
multiples of φ = π . Remarkably, we see that for φ close to π

the direction of the current can be controlled not only by the
sign of Mx but also by modifying the gate voltage V0, which
can be appealing for practical applications.

In Fig. 6(b), we show jx and j̄y at φ = 3π/2 as a function
of Mx. This illustrates that for a large enough magnetization
the Josephson Hall current density can exceed the longitudinal
Josephson current. Such ratios j̄y/ jx > 1 are comparable to
the ratios found in normal TI-based ferromagnetic tunneling
junctions and are a result of the strong SOC in 3D TI surface
state. Although in our theoretical treatment we considered
the limit of the system infinite in the y direction, we believe
that qualitatively our results also hold for the junctions where
W and d are comparable. This makes the planar Joseph-
son Hall effect in TI-based Josephson junctions a promising
candidate to observe sizable transverse currents with ratios
Iy/Ix exceeding the corresponding ratios of other Josephson
Hall effects [46,47,61,62]. We also expect the appearance of
transverse Josephson currents (but with smaller Iy/Ix ration)
in the Rashba 2DEG ferromagnet junction based on the study
of the normal planar Hall effect in such a system [63].

VII. CONCLUSIONS

In this paper, we have studied Josephson junctions realized
on three-dimensional topological insulators which are subject
to a Zeeman term in the normal topological insulator region.
Most importantly, we have found that the interplay between
the spin-momentum locking of the topological insulator sur-
face state, superconductivity, and an in-plane Zeeman field
in the normal region gives rise to a net transverse Josephson
Hall current. For this Josephson Hall current to emerge, the
in-plane Zeeman field has to have a component parallel to the
superconducting phase bias direction [see Fig. 1(d)]. Since the
effect is caused by an in-plane Zeeman term, we refer to it as
the planar Josephson Hall effect to also distinguish it from
other Josephson Hall effects [46,47,61].

The emergence of the Josephson Hall current is reflected
in an asymmetry and ‘tilting’ of the Andreev spectrum with
respect to the transverse momenta py. If sufficiently large, this
asymmetry even induces a transition in the Andreev spectrum
from a regime with gapless, counterpropagating Majorana
modes to a regime with unprotected modes that are unidirec-
tional at small py. Due to strong spin-orbit coupling, the planar
Josephson Hall effect in topological-insulator-based junctions
enables sizable Josephson Hall currents, whose amplitudes
can be further modulated by electrostatic and/or magnetic
control of the normal region.

Until now, we have mainly discussed Zeeman terms
induced into the normal topological insulator region by mag-
netic proximity effects from a nearby ferromagnet, such as in
YIG/(Bi, Sb)2Te3 [64], EuS/Bi2Se3 [65], or (Bi,Mn)Te with
thin Fe overlayers [66]. Since the planar Josephson Hall ef-
fect requires in-plane Zeeman terms, an alternative realization
could be by applying an in-plane magnetic field along the
phase bias direction in the normal region [67]. Assuming, for
example, an in-plane g factor of g = 10, an in-plane magnetic
field of around B = 0.35 T corresponds to a Zeeman splitting
of 0.1 meV [68], which can already yield sizable Josephson
Hall currents flowing through the normal region, as illustrated
by Fig. 6(b). Indeed, in Josephson junctions composed of
thin-film aluminium and HgTe quantum wells, which can also
act as three-dimensional topological insulators [69], in-plane
magnetic fields of more than 1 T have been achieved [70–72].

It would be interesting to extend our study to systems
finite in the y dimension, where the transverse Josephson
current can lead to various phenomena found in sys-
tems with SOC. In this case additional care should be
taken to account for currents arising in the superconduct-
ing leads, by calculating corrections to the spacial phase
dependence in a self-consistent manner [73]. Effects such
as current circulation patterns near the edges under hard
wall boundary conditions [73], interplay between longitudi-
nal and transverse phase biases in a crossed junction setup
[74], and control of the phase difference by nonequilib-
rium current injection [75] may occur. Furthermore, here
we have focused on transverse charge currents in topolog-
ical Josephson junctions. For future research on topological
Josephson junctions, it might also prove fruitful to study the
role of superspin Hall currents [74,76] and spin polariza-
tions [77–79], known from semiconductor/superconductor or
ferromagnet/superconductor heterostructures.
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APPENDIX A: ANDREEV BOUND STATES IN THE δ

MODEL

1. Ansatz and boundary conditions

In Sec. III of the main text, we have presented ABS ob-
tained numerically for a finite F region. Most of the prominent
features of short TI-based Josephson junctions are, however,
already captured by the model of a δ-like F region with
h(x) = dδ(x), �(x) = �, and �(x) = φ�(x) in Eqs. (1) and
(2). The advantage of this model is that it allows for a trans-
parent analytical treatment of the ABS with relatively compact
expressions.

For a δ junction, the ansatz to obtain the ABS is similar
to Eq. (7), with the states ψ (x < 0) given by the first line of
Eq. (7) and ψ (x > 0) given by the third line of Eq. (7). Now,
the coefficients A1, A2, B1, and B2 have to be calculated from
the boundary conditions at x = 0. This boundary condition
can be obtained by integrating Eq. (3) from x = −η to x = η

with η → 0+. The corresponding procedure [16,38,80] yields

ψ (0+) =
(

Û+ 0

0 Û−

)
ψ (0−), (A1)

where

Û± = e∓iZy

([
cos Z ∓ Zx sin Z

Z

]
i sin Z

Z (∓Zz − Z0)

i sin Z
Z (±Zz − Z0)

[
cos Z ± Zx sin Z

Z

]
)

(A2)

with Z0 = V0d/vF , Zl = Mld/vF with l = x, y, z, and Z =√
Z2

0 − Z2
x − Z2

z .

2. δ model at py = 0

First, we look at the case of py = 0, where vF (αpξ +
ipy)/(μ + ξ�) = α. We invoke the boundary condition (A1)
on the first and third lines of Eq. (7) and require a nontrivial
solution of the resulting system of linear equations. This then
yields the two ABS energies E = PE0(φ), where P = ±1
denotes the two fermion-parity branches and

E0(φ) = � cos (φ/2 + Zy)√
cos2 Z + Z2

0 sin2 Z/Z2
. (A3)

The two ABS given by E = ±E0(φ) exhibit a nondegenerate
zero-energy crossing at φ = π if M = 0 [81]. At this crossing,
the ground-state fermion parity changes, and the two branches
in Eq. (A3) have been chosen such that each branch pre-
serves its fermion parity [30,31]. As such a nondegenerate
zero-energy crossing is protected by the fermion parity, it

cannot be removed even for finite M �= 0 (see Refs. [30,31]
and Appendix C). The crossing can only be shifted, which
is what happens for a finite My �= 0, where E0(φ) = 0 for
φ = (2n + 1)π − 2Zy with n ∈ Z. This protected crossing is
a hallmark of the topological Josephson junction and can
also be found in models with finite F region. At py = 0, the
main effect of magnetization components Mx,z �= 0 is thus to
reduce the bandwidth of the ABS and detach them from the
continuum states.

The finite magnetization My �= 0 acts as a vector potential
in the x direction and can be absorbed in the phase difference
by performing the gauge transformation of the BdG Hamilto-
nian Ux = exp [iτzχ (x)] where

χ (x) =

⎧⎪⎨
⎪⎩

−Zy/2, x < −d/2,

Myx/vF , |x| < d/2,

Zy/2, x > d/2.

(A4)

So, the gauge invariant phase difference is given by φ − 2Zy,
which explains the shift of ABS found in Eq. (A3).

We also remark that the case of py = 0 is equivalent to
a Josephson junction based on a single quantum spin Hall
edge if Mx → My, My → −Mz and Mz → Mx. With these
replacements, Eq. (A3) describes the ABS spectrum of such
Josephson junctions in the short junction regime [82].

3. δ model in Andreev approximation

Another limit that allows for closed analytical solutions is
the case of |μ| � �, where we can make use of the Andreev
approximation. If we introduce the angle −π/2 < θ < π/2
via vF py = μ sin θ , the eigenstates (4) are simplified within
the Andreev approximation in so far that

sμvF q± ≈ μ cos θ ± i

√
�2 − E2

cos θ
,

vF (αqξ + ipy)

(μ + ξ�)
≈ αeiαθ . (A5)

With these approximations, the condition for a nontrivial
solution to Eq. (3) can be written as

X 2 − 2A(θ )X − B(θ ) = 0, (A6)

where X = √
�2 − E2/E and

A(θ ) = Zx sin Z cos Z sin θ cos θ

Z
[
cos2 θ cos2

(
φ

2 + Zy
) + sin2 θ

(Z2
0 −Z2

x ) sin2 Z
Z2

] ,

B(θ ) =
cos2 θ

[
sin2

(
φ

2 + Zy
) + (Z2

x +Z2
z ) sin2 Z
Z2

]
cos2 θ cos2

(
φ

2 + Zy
) + sin2 θ

(Z2
0 −Z2

x ) sin2 Z
Z2

. (A7)

From the two solutions of Eq. (A6), X = A(θ ) ±√
A2(θ ) + B(θ ), one can see that at a fixed angle θ the

two solutions for the energy E±(φ, θ ) do not come as
E±(φ, θ ) = −E∓(φ, θ ) if A(θ ) �= 0. This is the case for finite
Zx and finite θ . Instead, the two solutions can be obtained as

E±(φ, θ ) = sgn
(
A(θ ) ±

√
A2(θ ) + B(θ )

)
�√

1 + (
A(θ ) ±

√
A2(θ ) + B(θ )

)2
, (A8)
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which only satisfies the weaker condition E±(φ, θ ) =
−E∓(φ,−θ ) originating from the particle-hole symmetry of
the formalism. While such asymmetric ABS could also be
obtained within a semiclassical treatment taking into account
only phase effects, such a treatment does not capture the exact
details of the Andreev spectrum as obtained from a micro-
scopic treatment such as the one provided here.

If θ = 0, Eq. (A8) reduces simply to E±(φ, θ = 0) =
±|E0(φ)| with E0(φ) given by Eq. (A3). Note that now the
sign ± does not refer to the parity branch, but instead to pos-
itive and negative energies. Another point worth mentioning
with regard to Eq. (A8) is that for Zx = 0 it reduces to [3,83]

E±(φ, θ ) = ±�

√
1 − T (θ )

[
sin2

(
φ

2
+ Zy

)
+ Z2

z sin2 Z

Z2

]
,

(A9)
where

T (θ ) = cos2 θ

cos2 θ + (Z2
0 sin2 θ+Z2

z cos2 θ ) sin2 Z
Z2

(A10)

is the transmission of a normal/ferromagnet/normal junction
with Zx = 0 [38].

For Mx �= 0, Eq. (A8) exhibits several salient features: A
finite Mx �= 0 introduces not only an asymmetry in the ABS
spectrum at finite py, but can even lead to a situation where
the group velocities in the y direction, vg ∝ ∂E±(φ, θ )/∂θ ,
have the same sign for ABS in the vicinity of py = 0 and
φ ≈ π − 2Zy. At these momenta, the two ABS propagate
in the same direction. This change from nonchiral, counter-
propagating ABS to unidirectional ABS propagating in the
same direction occurs for B(θ ) < 0. Close to φ ≈ π − 2Zy,
B(θ ) < 0 is satisfied if |Mx| > |V0|. Hence, if the Zeeman term
in the direction of the phase bias φ exceeds the mismatch
between the chemical potentials of the S and F regions, the
ABS close to py = 0 and φ + 2Zy ≈ π propagate in the same
direction in short junctions.

At this point, it is important to remark that the Andreev
approximation (A5) breaks down at large transverse momenta,
that is, at momenta close to the Fermi momentum pF . Because
of this, Eq. (A8) does not describe the ABS for py ≈ pF well.
This is also illustrated by Fig. 2(d), which shows a comparison
between Eq. (A8) and the results for a finite barrier without
any further approximations. For small py = μ sin θ , Eq. (A8)
is in good agreement with the results of the finite barrier.
Equation (A8) cannot, however, capture the appearance of
zero-energy ABS that occur at large momenta once the modes
close to py = 0 become unidirectional.

APPENDIX B: EFFECTIVE LOW-ENERGY MODEL

The asymmetry of the ABS spectrum as well as the emer-
gence of unidirectional modes for large Mx and small py can
be understood from the interplay between the effective spin
degree of freedom and Mx. To elucidate the origin of these
modes, we employ a simple effective low-energy Hamilto-
nian. For a δ-like F region, the BdG Hamiltonian (2) always
supports two ABS. Following the procedure in Ref. [1], we de-
rive an effective low-energy Hamiltonian describing these two

ABS in the vicinity of the protected crossing at φ = π − 2Zy

for small py.
To do so, we first note that the BdG Hamiltonian (2) can be

written as ĤBdG(py) = ĤBdG(py = 0) + vF pyσyτz, where we
treat the term vF pyσyτz as a perturbation. Then, we can take
the two parity-conserving ABS |±〉 for py = 0 discussed in
Sec. A 2 and project the full Hamiltonian (2) onto these two
states. This procedure yields the effective Hamiltonian

Ĥeff = E0(φ)σ̃z + v0 pyσ̃y + vy pyσ̃0, (B1)

where E0(φ) is given by Eq. (A3) and originates from
ĤBdG(py = 0). In Eq. (B1), the two-level system formed by
the two ABS at py = 0 is described by the Pauli matrices
σ̃l (l = x, y, z) and the corresponding 2 × 2 unit matrix σ̃0.
Moreover, we have introduced the velocities

v0 = �
(
� cos Z + μ Z0 sin Z

Z

)
�2 + μ2

√
1 + Z2

z sin2 Z
Z2

1 + Z2
x +Z2

z

Z2 sin2 Z
vF (B2)

and

vy = �
(
� Z0 sin Z

Z − μ cos Z
)

�2 + μ2

Zx sin Z
Z

1 + Z2
x +Z2

z

Z2 sin2 Z
vF , (B3)

which arise from the matrix elements of the perturbation
vF pyσyτz. Since we are mainly interested in the ABS close
to the crossing at φ = π − 2Zy, we have approximated the
φ-dependent velocities v0(φ) and vy(φ) by φ-independent
velocities v0(φ) ≈ v0(π − 2Zy) ≡ v0 and vy(φ) ≈ vy(π −
2Zy) ≡ vy.

The spectrum of Eq. (B1) is given by E±
eff (φ) = vy py ±√

E2
0 (φ) + (v0 py)2. At the crossing point, E0(π − 2Zy) =

0 and E±
eff (π − 2Zy) = (vy ± v0)py. If vy = 0, that is, if

Mx = 0, the spectrum at φ = π − 2Zy is simply E±
eff (π −

2Zy) = ±v0 py and describes two counterpropagating Majo-
rana modes along the y direction, similar to Ref. [1]. For finite
vy, on the other hand, the group velocities (vy ± v0) of the two
modes point into the same direction if |vy| > |v0|.

The appearance of a term vy pyσ̃0 in Eq. (B1) has thus its
origin in the unidirectional modes at small py. While there
is always a finite v0 in TI-based Josephson junctions, vy �= 0
only arises for finite Mx �= 0. This can be understood in the
following way: The terms containing v0 and vy originate from
the matrix elements vF py〈P|σyτz|P ′〉 with P,P ′ = ±1 denot-
ing the two parity branches of py = 0. If Mx = 0, the effective
spin orientation of the eigenstates |±〉 of ĤBdG(py = 0) lie in
the xz plane and thus the expectation values 〈±|σyτz|±〉 vanish
and vy = 0. Only off-diagonal matrix elements 〈∓|σyτz|±〉 are
finite and give rise to v0 �= 0.

For finite Mx �= 0, however, the effective spin expectation
values of |±〉 now also acquire a component in the y direction
and 〈±|σyτz|±〉 �= 0. The eigenstates |±〉 satisfy the relation
|±〉 = K̂|∓〉, where K̂ denotes complex conjugation. Because
of this property, 〈+|σyτz|+〉 = 〈−|σyτz|−〉 and consequently
the diagonal matrix elements of the perturbation is propor-
tional to σ̃0 (and not to σ̃z or a linear combination of σ̃0 and σ̃z).
The spectrum of Eq. (B1) makes it clear that the ABS spec-
trum for small py and close to the protected crossing point φ +
2Zy = π (or, more generally, close to φ = (2n + 1)π − 2Zy
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with n ∈ Z) can support unidirectional modes around py ≈ 0
for finite Mx.

APPENDIX C: PROTECTED ZERO-ENERGY CROSSING
FOR py = 0

A peculiar feature of the ABS spectrum of a Josephson
junction based on a single surface of a 3D TI is its protected
zero-energy crossing for py = 0, even in the presence of a
Zeeman term in the F region, as discussed in Sec. A 2. Follow-
ing Ref. [31], we can understand this protection arising from
the particle-hole symmetry of the BdG Hamiltonian, which
allows one to define a Pfaffian, Pf[ĤBdG(py = 0)] for any
φ. The existence of a Pfaffian then implies that twofold de-
generate zero-energy states are generically protected against
perturbations as long as particle-hole symmetry is preserved.

For the system studied here, particle-hole symmetry is de-
scribed by the operator Ĉ = σyτyK̂, where K̂ denotes complex
conjugation and σy and τy are the respective Pauli matrices in
spin and electron/hole space. Any BdG Hamiltonian, includ-
ing Eq. (2), anticommutes with Ĉ,

{Ĉ, ĤBdG} = 0. (C1)

If we introduce the momentum quantum number py, this be-
comes

ĈĤBdG(py)Ĉ−1 = −ĤBdG(−py). (C2)

Thus, only for py = 0, does particle-hole symmetry imply
{Ĉ, ĤBdG(py = 0)} = 0, while in general particle-hole sym-
metry connects states with py to states with −py.

From now on, we focus only on the two ABS |±〉 at
py = 0 and with M = 0. For a δ-like F region and M = 0,
the energies are simply given by E = ±� cos(φ/2), that is,
they possess twofold degenerate zero-energy states at φ = π .
Similar to Sec. B, the corresponding low-energy Hamiltonian
is the 2 × 2 matrix with respect to the ABS |±〉,

Ĥ0
eff =

(
� cos(φ/2) 0

0 −� cos(φ/2)

)
, (C3)

which can in turn be transformed to

ˆ̃H0
eff = i

(
0 � cos(φ/2)

−� cos(φ/2) 0

)
≡ iÂ0

eff . (C4)

The Pfaffian of Eq. (C3) is then given by Pf(Ĥ0
eff ) =

iPf(Â0
eff ) = i� cos(φ/2) and can be related to the ground-state

fermion parity F0 via (−1)F0 = sgn[Pf(Â0
eff )]. Since Pf(Ĥ0

eff )
exhibits only a single zero, a perturbation that preserves
particle-hole symmetry cannot remove the two zero-energy
states, but only shift them to other values of φ [31].

Now, we are in a position to understand why the crossing at
φ = π is protected against finite M in the F region. For finite
M and py, we can write the BdG Hamiltonian as

ĤBdG(py) = ĤBdG(py = 0)|M=0 + Ĥ ′
M + Ĥ ′

py
(C5)

with

Ĥ ′
M = −M ′ · σ h(x) (C6)

and

Ĥ ′
py

= vF pyσyτz. (C7)

We remind the reader that because of the rotated spin axes
used in Eq. (2) M ′ in Eq. (C6) is a rotated effective magne-
tization. This magnetization M ′ is related to the components
of the real magnetization M = (Mx, My, Mz ) induced in the F
region via M ′ = (−My, Mx, Mz ). In Eq. (C5), the additional
terms behave differently under Ĉ: {Ĉ, Ĥ ′

M} = 0 and thus a
finite M does not remove the zero-energy crossing. On the
other hand, {Ĉ, Ĥ ′

py
} �= 0 and thus a gap is opened at finite py

because in this case particle-hole symmetry does not protect
Ĥ ′

py
but connects Ĥ ′

py
and Ĥ ′

−py
(see above). While we have

employed this analysis to the case of a δ barrier for illustration,
we note that this is valid for all single-energy crossings that are
only double degenerate, including the case of a finite barrier
also studied in this paper [84].

Hence, as a final remark we note that the analysis from
Eqs. (C3) and (C4) applies also to the case of finite M,
where � cos(φ/2) should simply be replaced by E0(φ)
from Eq. (A3). This also makes it clear that the ground-
state fermion parity F0 given by (−1)F0 = sgn[E0(φ)] =
sgn[cos(φ/2 + Zy)] for finite M is only shifted in its φ de-
pendence by Zy ∝ My, but remains unaltered otherwise.

APPENDIX D: ADDITIONAL ANDREEV BOUND
STATES RESULTS

1. Large out-of-plane Zeeman term

In this part, we provide additional plots of the ABS and
discuss the relevant system parameters required to observe the
effect of detaching the Andreev bound states from the contin-
uum spectrum. Inducing a bigger gap between the Andreev
bound states and the continuum states requires increasing the
effective barrier strength Zz. This can be achieved either by a
stronger magnetic field or magnetization Mz or by increasing
the barrier length d . Here we keep d relatively small, i.e.,
in the short-junction limit, in order to be comparable with
our analytical δ-barrier solution. On the other hand, large Mz

requires large g factors and huge magnetic fields which are
not feasible in experiments. If the Zeeman term is proximity
induced from a nearby ferromagnet on the other hand larger
Mz are indeed possible. Figure 7 shows the results for such a
case, where we increased the magnetization to Mz = 1 meV.

2. Chemical potential dependence

Although more difficult to control experimentally, our
model also allows us to consider a situation where the chem-
ical potential μ in the proximitized S leads is similar to the
induced superconducting gap, i.e., μ ∼ �. This situation is
beyond the Andreev approximation commonly used in previ-
ous studies. We show the Andreev bound states for this regime
in Fig. 8. Similar to the case of large μ, a finite Mx leads to
an asymmetry in the Andreev spectrum with respect to the
transverse momentum ky, which in turn gives rise to a trans-
verse Josephson Hall current. A main effect of the decreased
chemical potential is that larger values of Mx are required to
achieve the regime with unidirectional modes close to ky = 0.
This can be seen by comparing parameters used in Fig. 8(b)
and the ones in Fig. 2(d) in the main text. Figure 8 also
illustrates that for small chemical potentials Andreev bound
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FIG. 7. Dependence of the Andreev bound states on (a) phase
and (b) transverse momentum. Here, we used the parameters
vF = 5 × 105 m/s, μ = 2 meV, d = 330 nm, � = 0.1 meV, V0 =
0.2 meV, and Mz = 1 meV. Solid lines are analytical expressions for
the δ-barrier model and dots are obtained from the numerical solution
of a finite-barrier problem.

states appear at momenta ky larger than kF , which is very
different from the commonly studied case of μ � �.

APPENDIX E: NORMAL JUNCTION GREEN’S FUNCTION

Let us consider the simpler case of a normal junction to bet-
ter understand the asymptotic behavior of the superconducting
solution for |E | � |�|. If we switch off superconductivity
by putting � = 0, there must be no current in equilibrium.
However, calculating the expectation value of the transverse
current has some technical difficulties which we address in
this section. Without the superconductor, the Hamiltonian is
defined by

HN = vF σ · p̂ − μ + (V0 − M ′ · σ)h(x). (E1)

FIG. 8. Dependence of the Andreev bound states on the trans-
verse momentum for μ = 0.2 meV and different Mx at (a) φ = 0.5π

and (b) φ = π . Here, we use the parameters vF = 5 × 105 m/s,
d = 330 nm, � = 0.1 meV, My = 0, Mz = 0, and V0 = 0.

To obtain the Green’s function, we proceed analogously to the
main text. For example, the lead solutions are

ψ (0)
α (x) = 1√

2

( 1

vF
αq0 + ipy

μ + E

)
eiαq0x, (E2)

where vF q0 =
√

(μ + E )2 − (vF py)2 and α = ±1 gives the
direction of propagation. In this case, we have two helical
counterpropagating sates for each py. The F-barrier solution is
given by Eq. (6) with ξ = +1. We omit the details of solving
the transposed Hamiltonian and deriving the scattering states.

To analyze the current expectation value, we stay within
the real-energy picture because it allows for a discussion of
high-energy contributions and the continuation to the Mat-
subara frequencies when the function does not decay fast for
|E | → ∞. The current operator simplifies to jN = evF σ and
we obtain〈

jN
i (x)

〉 = −2evF

∫
dE n(E )

∫
d py�

[
trσiG

R
py

(x, x)
]
, (E3)

where n(E ) is the Fermi-Dirac distribution. In the case
|E + μ| � |py|, we can conduct a variable substitution
in the integral, namely vF q0 = |E + μ| cos θ and vF py =
|E + μ| sin θ . This allows us to rewrite the integration limits
over py, which yields for the transverse current

〈
jN
y (x < −d/2)

〉 = 2evF

∫
dE |E + μ|n(E )

∫ π/2

−π/2
dθ�[

r(E , θ )e−2ix(μ+E ) cos θ/vF e−iαθ
]
,

(E4)

where r(E , θ ) is the reflection coefficient of the mode inci-
dent from the left lead. The case of |E + μ| < |py| is treated
analogously employing hyperbolic functions. In the nonsuper-
conducting case, it is possible to obtain a relatively compact
form for the reflection coefficient [38].

δ-barrier solutions.. We consider the stationary states sim-
ilar to Eq. (13), with the superconducting lead wave functions
replaced by ψ (0)

n (x) and in the limit d → 0. Then, using the
boundary condition (A1) for the electron block, we obtain the
reflection and transmission coefficients

r = eisθ (Zx + iZz cos θ − sZ0 sin θ ) sin Z

Z cos θ cos Z + i(Z0 − sZx sin θ ) sin Z
, (E5)

t = e−iZy Z cos θ

Z cos θ cos Z + i(Z0 − sZx sin θ ) sin Z
, (E6)

where we have defined s = sgn(E + μ). We notice the prop-
erty r(E , θ ) = r(−E ,−θ ). The δ barrier does not introduce
an energy scale. Therefore, the reflection amplitude is energy
independent. This means that all states in the system are
affected by the introduction of the barrier, which has signif-
icant consequences for Eq. (E4) because the spectrum is not
bounded from below.

Finite-barrier solutions.. By using the boundary condi-
tions from Eq. (8) and lead wave functions defined in Eq. (E2),
we obtain the reflection and transmission coefficients as

r(E ) = eisθ−id (E+μ) cos θ/vF a(E ) sin(dk0)

vF k0 cos θ cos(dk0) + ib(E ) sin(dk0)
, (E7)
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t (E ) = e−idMy/vF −id (E+μ) cos θ/vF vF k0 cos θ

vF k0 cos θ cos(dk0) + ib(E ) sin(dk0)
(E8)

with s = sgn(E + μ) and

a(E ) = Mx + iMz cos θ − sV0 sin θ, (E9)

b(E ) = (E + μ) cos2 θ + V0 − Mx sin θ. (E10)

In this case, r(E ) exhibits a behavior ∼1/|E | for large |E |, but
this is still not enough to make the energy integral in Eq. (E4)
finite.

The divergent behavior comes from the fact that the energy
spectrum of the Dirac cone is not bound from below, so for-
mally we have to include all contributions down to E = −∞
in the expectation values. At the same time, the presence
of the magnetic barrier introduces spin polarization into all
states, making them contribute to the integral (E4). In the real
system, the low-energy model is invalid for energies far from
the Dirac cone located in the gap of the topological insulator.
On the other hand, the high-energy solutions become highly
oscillating with wave vector E/vF . These oscillations cannot
be resolved in the real system, which provides another argu-
ment why we should drop high-energy terms. Thus, we choose
to use the regularization e−λ|E | in the integral. Then, we can
perform the energy integration analytically which yields a
prefactor λ in front of the expression for the current. Hence,
after taking the limit λ → 0, 〈 jN

y 〉 vanishes. When computing
the current density in the superconducting case (� > 0), we
subtract jN expression before performing integration. After
that, the integral can be performed numerically or more con-
veniently by going to the complex plane and mapping it to the
Matsubara sum.

APPENDIX F: SYMMETRIES OF THE CURRENT
OPERATOR

We can get some insight into the current operator expec-
tation values from a symmetry point of view. In this section,
we provide the conditions for the current density 〈 jy(x)〉 to
be an even or odd function. First, we note that expressions in

the junction Hamiltonian (2) have the following properties:
�(x) = �(−x), h(x) = h(−x), and we can choose �(x) =
−�(−x) because only the relative phase is important. Appli-
cation of the time-reversal symmetry T = iσyK results in the
following changes in the Hamiltonian: � → −� and M ′ →
−M ′ (equivalent to M → −M). Inversion symmetry I has the
effect of � → −� and p̂ → −p̂, but does not change the spin.
We also consider two mirror planes Myz and Mxy, which act
in the spin space such that My,z → −My,z and Mx,y → −Mx,y,
respectively, and both reverse the sign of the kinetic term. If
Mx(z) = 0, we find that Sx(z) = Myz(xy)IT is a symmetry of
the Hamiltonian.

Next, we derive how the current operator transforms under
given symmetries

Sx jyS−1
x = − jy and Sz jyS−1

z = jy. (F1)

Using that Sψ (r) can be presented as Uψ∗(V r), where U is a
unitary matrix in spinor space and V is an orthogonal trans-
formation in coordinate space, we obtain a relation for the
contribution of the operator expectation value from a single
state

〈Sψ (r)| jy |Sψ (r)〉 = 〈ψ (V r)|S jyS−1 |ψ (V r)〉 , (F2)

where the scalar product is performed only in spinor space.
The expectation value of the total current density is the sum
of contributions from all states weighted with the occupation
number, which is a function of energy. If S is the symmetry of
HBdG, states |ψn(x, y)〉 and S |ψn(x, y)〉 either have the same
energy or coincide. Hence, we obtain

〈 jy(x, y)〉 = −〈 jy(−x, y)〉 if Mx = 0, (F3)

〈 jy(x, y)〉 = 〈 jy(−x,−y)〉 if Mz = 0. (F4)

Since the current is independent of y due to translation invari-
ance, these symmetry relations are generalized to the whole
junction. We also mention that in case of the δ barrier we
may have a discontinuity at x = 0 and the value of the current
would depend on the direction from which we approach the
barrier.
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